" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Tuesday, 12 April 2011 09:43

Introduction

Written by
Rate this item
(0 votes)

Toxicology is the study of poisons, or, more comprehensively, the identification and quantification of adverse outcomes associated with exposures to physical agents, chemical substances and other conditions. As such, toxicology draws upon most of the basic biological sciences, medical disciplines, epidemiology and some areas of chemistry and physics for information, research designs and methods. Toxicology ranges from basic research investigations on the mechanism of action of toxic agents through the development and interpretation of standard tests characterizing the toxic properties of agents. Toxicology provides important information for both medicine and epidemiology in understanding aetiology and in providing information as to the plausibility of observed associations between exposures, including occupations, and disease. Toxicology can be divided into standard disciplines, such as clinical, forensic, investigative and regulatory toxicology; toxicology can be considered by target organ system or process, such as immunotoxicology or genetic toxicology; toxicology can be presented in functional terms, such as research, testing and risk assessment.

It is a challenge to propose a comprehensive presentation of toxicology in this Encyclopaedia. This chapter does not present a compendium of information on toxicology or adverse effects of specific agents. This latter information is better obtained from databases that are continually updated, as described in the last section of this chapter. Moreover, the chapter does not attempt to set toxicology within specific subdisciplines, such as forensic toxicology. It is the premise of the chapter that the information provided is relevant to all types of toxicological endeavours and to the use of toxicology in various medical specialities and fields. In this chapter, topics are based primarily upon a practical orientation and integration with the intent and purpose of the Encyclopaedia as a whole. Topics are also selected for ease of cross-reference within the Encyclopaedia.

In modern society, toxicology has become an important element in environmental and occupational health. This is because many organizations, governmental and non-governmental, utilize information from toxicology to evaluate and regulate hazards in the workplace and nonoccupational environment. As part of prevention strategies, toxicology is invaluable, since it is the source of information on potential hazards in the absence of widespread human exposures. Toxicological methods are also widely used by industry in product development, to provide information useful in the design of specific molecules or product formulations.

The chapter begins with five articles on general principles of toxicology, which are important to the consideration of most topics in the field. The first general principles relate to understanding relationships between external exposure and internal dose. In modern terminology, “exposure” refers to the concentrations or amount of a substance presented to individuals or populations—amounts found in specific volumes of air or water, or in masses of soil. “Dose” refers to the concentration or amount of a substance inside an exposed person or organism. In occupational health, standards and guidelines are often set in terms of exposure, or allowable limits on concentrations in specific situations, such as in air in the workplace. These exposure limits are predicated upon assumptions or information on the relationships between exposure and dose; however, often information on internal dose is unavailable. Thus, in many studies of occupational health, associations can be drawn only between exposure and response or effect. In a few instances, standards have been set based on dose (e.g., permissible levels of lead in blood or mercury in urine). While these measures are more directly correlated with toxicity, it is still necessary to back-calculate exposure levels associated with these levels for purposes of controlling risks.

The next article concerns the factors and events that determine the relationships between exposure, dose and response. The first factors relate to uptake, absorption and distribution—the processes that determine the actual transport of substances into the body from the external environment across portals of entry such as skin, lung and gut. These processes are at the interface between humans and their environments. The second factors, of metabolism, relate to understanding how the body handles absorbed substances. Some substances are transformed by cellular processes of metabolism, which can either increase or decrease their biological activity.

The concepts of target organ and critical effect have been developed to aid in the interpretation of toxicological data. Depending upon dose, duration and route of exposure, as well as host factors such as age, many toxic agents can induce a number of effects within organs and organisms. An important role of toxicology is to identify the important effect or sets of effects in order to prevent irreversible or debilitating disease. One important part of this task is the identification of the organ first or most affected by a toxic agent; this organ is defined as the “target organ”. Within the target organ, it is important to identify the important event or events that signals intoxication, or damage, in order to ascertain that the organ has been affected beyond the range of normal variation. This is known as the “critical effect”; it may represent the first event in a progression of pathophysiological stages (such as the excretion of small-molecular-weight proteins as a critical effect in nephrotoxicity), or it may represent the first and potentially irreversible effect in a disease process (such as formation of a DNA adduct in carcinogenesis). These concepts are important in occupational health because they define the types of toxicity and clinical disease associated with specific exposures, and in most cases reduction of exposure has as a goal the prevention of critical effects in target organs, rather than every effect in every or any organ.

The next two articles concern important host factors that affect many types of responses to many types of toxic agents. These are: genetic determinants, or inherited susceptibility/resistance factors; and age, sex and other factors such as diet or co-existence of infectious disease. These factors can also affect exposure and dose, through modifying uptake, absorption, distribution and metabolism. Because working populations around the world vary with respect to many of these factors, it is critical for occupational health specialists and policy-makers to understand the way in which these factors may contribute to variabilities in response among populations and individuals within populations. In societies with heterogeneous populations, these considerations are particularly important. The variability of human populations must be considered in evaluating the risks of occupational exposures and in reaching rational conclusions from the study of nonhuman organisms in toxicological research or testing.

The section then provides two general overviews on toxicology at the mechanistic level. Mechanistically, modern toxicologists consider that all toxic effects manifest their first actions at the cellular level; thus, cellular responses represent the earliest indications of the body’s encounters with a toxic agent. It is further assumed that these responses represent a spectrum of events, from injury through death. Cell injury refers to specific processes utilized by cells, the smallest unit of biological organization within organs, to respond to challenge. These responses involve changes in the function of processes within the cell, including the membrane and its ability to take up, release or exclude substances; the directed synthesis of proteins from amino acids; and the turnover of cell components. These responses may be common to all injured cells, or they may be specific to certain types of cells within certain organ systems. Cell death is the destruction of cells within an organ system, as a consequence of irreversible or uncompensated cell injury. Toxic agents may cause cell death acutely because of certain actions such as poisoning oxygen transfer, or cell death may be the consequence of chronic intoxication. Cell death can be followed by replacement in some but not all organ systems, but in some conditions cell proliferation induced by cell death may be considered a toxic response. Even in the absence of cell death, repeated cell injury may induce stress within organs that compromises their function and affects their progeny.

The chapter is then divided into more specific topics, which are grouped into the following categories: mechanism, test methods, regulation and risk assessment. The mechanism articles mostly focus on target systems rather than organs. This reflects the practice of modern toxicology and medicine, which studies organ systems rather than isolated organs. Thus, for example, the discussion of genetic toxicology is not focused upon the toxic effects of agents within a specific organ but rather on genetic material as a target for toxic action. Likewise, the article on immunotoxicology discusses the various organs and cells of the immune system as targets for toxic agents. The methods articles are designed to be highly operational; they describe current methods in use in many countries for hazard identification, that is, the development of information related to biological properties of agents.

The chapter continues with five articles on the application of toxicology in regulation and policy-making, from hazard identification to risk assessment. The current practice in several countries, as well as IARC, is presented. These articles should enable the reader to understand how information derived from toxicology tests is integrated with basic and mechanistic inferences to derive quantitative information used in setting exposure levels and other approaches to controlling hazards in the workplace and general environment.

A summary of available toxicology databases, to which the readers of this encyclopaedia can refer for detailed information on specific toxic agents and exposures, can be found in Volume III (see “Toxicology databases” in the chapter Safe handling of chemicals, which provides information on many of these databases, their information sources, methods of evaluation and interpretation, and means of access). These databases, together with the Encyclopaedia, provide the occupational health specialist, the worker and the employer with the ability to obtain and use up-to-date in- formation on toxicology and the evaluation of toxic agents by national and international bodies.

This chapter focuses upon those aspects of toxicology relevant to occupational safety and health. For that reason, clinical toxic-ology and forensic toxicology are not specifically addressed as subdisciplines of the field. Many of the same principles and approaches described here are used in these subdisciplines as well as in environmental health. They are also applicable to evaluating the impacts of toxic agents on nonhuman populations, a major concern of environmental policies in many countries. A committed attempt has been made to enlist the perspectives and experiences of experts and practitioners from all sectors and from many countries; however, the reader may note a certain bias towards academic scientists in the developed world. Although the editor and contributors believe that the principles and practice of toxic-ology are international, the problems of cultural bias and narrowness of experience may well be evident in this chapter. The chapter editor hopes that readers of this Encyclopaedia will assist in ensuring the broadest perspective possible as this important reference continues to be updated and expanded.

 

Back

Read 13522 times Last modified on Thursday, 13 October 2011 20:49

Contents

Preface
Part I. The Body
Part II. Health Care
Part III. Management & Policy
Part IV. Tools and Approaches
Part V. Psychosocial and Organizational Factors
Part VI. General Hazards
Barometric Pressure Increased
Barometric Pressure Reduced
Biological Hazards
Disasters, Natural and Technological
Electricity
Fire
Heat and Cold
Hours of Work
Indoor Air Quality
Indoor Environmental Control
Lighting
Noise
Radiation: Ionizing
Resources
Radiation: Non-Ionizing
Vibration
Violence
Visual Display Units
Part VII. The Environment
Part VIII. Accidents and Safety Management
Part IX. Chemicals
Part X. Industries Based on Biological Resources
Part XI. Industries Based on Natural Resources
Part XII. Chemical Industries
Part XIII. Manufacturing Industries
Part XIV. Textile and Apparel Industries
Part XV. Transport Industries
Part XVI. Construction
Part XVII. Services and Trade
Part XVIII. Guides

Radiation: Ionizing Additional Resources

Click the Button below to view additional resources for this topic.

button

Radiation: Ionizing References

American National Standards Institute (ANSI). 1977. Radiation Safety for X-Ray, Diffraction and Fluorescence Analysis Equipment. Vol. 43.2. New York: ANSI.

American Nuclear Society. 1961. Special report on SL-1 Accident. Nuclear News.

Bethe, HA. 1950. Revs. Mod. Phys., 22, 213.

Brill, AB and EH Forgotson. 1964. Radiation and congenital malformations. Am J Obstet Gynecol 90:1149-1168.

Brown, P. 1933. American Martyrs to Science through the Roentgen Rays. Springfield, Ill: Charles C Thomas.

Bryant, PM. 1969. Data assessments concerning controlled and accidental releases of I-131 and Cs-137 to the atmosphere. Health Phys 17(1).

Doll, R, NJ Evans, and SC Darby. 1994. Paternal exposure not to blame. Nature 367:678-680.

Friedenwald, JS and S Sigelmen. 1953. The influence of ionizing radiation on mitotic activity in the rat corneal epithelium. Exp Cell Res 4:1-31.

Gardner, MJ, A Hall, MP Snee, S Downes, CA Powell, and JD Terell. 1990. Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. Brit Med J 300:423-429.

Goodhead, DJ. 1988. Spatial and temporal distribution of energy. Health Phys 55:231-240.

Hall, EJ. 1994. Radiobiology for the Radiologist. Philadelphia: JB Lippincott.

Haynie, JS and RH Olsher. 1981. A summary of x-ray machine exposure accidents at the Los Alamos National Laboratory. LAUP.

Hill, C and A Laplanche. 1990. Overall mortality and cancer mortality around French nuclear sites. Nature 347:755-757.

International Agency for Research on Cancer (IARC). 1994. IARC study group on cancer risk among nuclear industry workers, new estimates of cancer risk due to low doses of ionizing radiation: An international study. Lancet 344:1039-1043.

International Atomic Energy Agency (IAEA). 1969. Symposium on the Handling of Radiation Accidents. Vienna: IAEA.

—. 1973. Radiation Protection Procedure. International Atomic Energy Agency Safety Series, No. 38. Vienna: IAEA.

—. 1977. Symposium on the Handling of Radiation Accidents. Vienna: IAEA.

—. 1986. Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment. Technical report No. 260. Vienna: IAEA.

International Commission on Radiological Protection (ICRP). 1984. Nonstochastic effects of ionizing radiation. Ann ICRP 14(3):1-33.

—. 1991. Recommendations of the International Commission on Radiological Protection. Ann ICRP 21:1-3.

Jablon, S, Z Hrubec, and JDJ Boice. 1991. Cancer in populations living near nuclear facilities. A survey of mortality nationwide and incidence in two areas. JAMA 265:1403-1408.

Jensen, RH, RG Langlois, and WL Bigbee. 1995. Elevated frequency of glycophorin A mutations in erythrocytes from Chernobyl accident victims. Rad Res 141:129-135.

Journal of Occupational Medicine (JOM). 1961. Special Supplement. J Occup Med 3(3).

Kasakov, VS, EP Demidchik, and LN Astakhova. 1992. Thyroid cancer after Chernobyl. Nature 359:21.

Kerber, RA, JE Till, SL Simon, JL Lyon, DC Thomas, S Preston-Martin, ML Rallison, RD Lloyd, and WS Stevens. 1993. A cohort study of thyroid disease in relation to fallout from nuclear weapons testing. JAMA 270:2076-2082.

Kinlen, LJ. 1988. Evidence for an infective cause of childhood leukaemia: Comparison of a Scottish New Town with nuclear reprocessing sites in Britain. Lancet II:1323-1327.

Kinlen, LJ, K Clarke, and A Balkwill. 1993. Paternal preconceptional radiation exposure in the nuclear industry and leukaemia and non-Hodgkin’s lymphoma in young people in Scotland. Brit Med J 306:1153-1158.

Lindell, B. 1968. Occupational hazards in x-ray analytical work. Health Phys 15:481-486.

Little, MP, MW Charles, and R Wakeford. 1995. A review of the risks of leukemia in relation to parental pre-conception exposure to radiation. Health Phys 68:299-310.

Lloyd, DC and RJ Purrott. 1981. Chromosome aberration analysis in radiological protection dosimetry. Rad Prot Dosimetry 1:19-28.

Lubenau, JO, J Davis, D McDonald, and T Gerusky. 1967. Analytical X-Ray Hazards: A Continuing Problem. Paper presented at the 12th annual meeting of the Health Physics Society. Washington, DC: Health Physics Society.

Lubin, JH, JDJ Boice, and C Edling. 1994. Radon and Lung Cancer Risk: A Joint Analysis of 11 Underground Miners Studies. NIH Publication No. 94-3644. Rockville, Md: National Institutes of Health (NIH).

Lushbaugh, CC, SA Fry, and RC Ricks. 1987. Nuclear reactor accidents: Preparedness and consequences. Brit J Radiol 60:1159-1183.

McLaughlin, JR, EA Clarke, D Bishri, and TW Anderson. 1993. Childhood leukemia in the vicinity of Canadian nuclear facilities. Cancer Causes and Control 4:51-58.

Mettler, FA and AC Upton. 1995. Medical Effects of Ionizing Radiation. New York: Grune & Stratton.

Mettler, FA, MR Williamson, and HD Royal. 1992. Thyroid nodules in the population living around Chernobyl. JAMA 268:616-619.

National Academy of Sciences (NAS) and National Research Council (NRC). 1990. Health Effects of Exposure to Low Levels of Ionizing Radiation. Washington, DC: National Academy Press.

—. 1994. Health Effects of Exposure to Radon. Time for Reassessment? Washington, DC: National Academy Press.

National Council on Radiation Protection and Measurements (NCRP). 1987. Radiation Exposure of the U.S. Population from Consumer Products and Miscellaneous Sources. Report No. 95, Bethesda, Md: NCRP.

National Institutes of Health (NIH). 1985. Report of the National Institutes of Health Ad Hoc Working Group to Develop Radioepidemiological Tables. NIH publication No. 85-2748. Washington, DC: US Government Printing Office.

Neel, JV, W Schull, and A Awa. 1990. The children of parents exposed to atomic bombs: Estimates of the genetic doubling dose of radiation for humans. Am J Hum Genet 46:1053-1072.

Nuclear Regulatory Commission (NUREG). 1980. Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants. Document No. NUREG 0654/FEMA-REP-1, Rev. 1. Washington, DC: NUREG.

Otake, M, H Yoshimaru, and WJ Schull. 1987. Severe mental retardation among the prenatally exposed survivors of the atomic bombing of Hiroshima and Nagasaki: A comparison of the old and new dosimetry systems. In RERF Technical Report. Hiroshima: Radiation Effects Research Foundation.

Prisyazhiuk, A, OA Pjatak, and VA Buzanov. 1991. Cancer in the Ukraine, post-Chernobyl. Lancet 338:1334-1335.

Robbins, J and W Adams. 1989. Radiation effects in the Marshall Islands. In Radiation and the Thyroid, edited by S Nagataki. Tokyo: Excerpta Medica.

Rubin, P, and GW Casarett. 1972. A direction for clinical radiation pathology: the tolerance dose. In Frontiers of Radiation Therapy and Oncology, edited by JM Vaeth. Basel: Karger, and Baltimore: Univ. Park Press.

Schaeffer, NM. 1973. Reactor Shielding for Nuclear Engineers. Report No. TID-25951. Springfield, Virginia: National Technical Information Services.

Shapiro, J. 1972. Radiation Protection: A Guide for Scientists and Physicians. Cambridge, Mass: Harvard Univ. Press.

Stannard, JN. 1988. Radioactivity and Health: A History. U.S. Dept. of Energy Report, DOE/RL/01830-T59. Washington, DC: National Technical Information Services, US. Dept. of Energy.

Stevens, W, JE Till, L Lyon et al. 1990. Leukemia in Utah and radioactive fallout from the Nevada test site. JAMA. 264: 585–591.

Stone, RS. 1959. Maximum permissable exposure standards. In Protection in Diagnostic Radiology, edited by BP Sonnenblick. New Brunswick: Rutgers Univ. Press.

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 1982. Ionizing Radiation: Sources and Biological Effects. Report to the General Assembly, with Annexes. New York: United Nations.

—. 1986. Genetic and Somatic Effects of Ionizing Radiation. Report to the General Assembly, with Annexes. New York: United Nations.

—. 1988. Sources, Effects, and Risks of Ionizing Radiation. Report to the General Assembly, with Annexes. New York: United Nations.

—. 1993. Sources and Effects of Ionizing Radiation. Report to the General Assembly, with Annexes. New York: United Nations.

—. 1994. Sources and Effects of Ionizing Radiation. Report to the General Assembly, with annexes. New York: United Nations.

Upton, AC. 1986. Historical perspectives on radiation carcinogenesis. In Radiation Carcinogenesis, edited by AC Upton, RE Albert, FJ Burns, and RE Shore. New York. Elsevier.

Upton, AC. 1996 Radiologic Sciences. In The Oxford Textbook of Public Health, edited by R Detels, W Holland, J McEwen, and GS Omenn. New York. Oxford University Press.

US Atomic Energy Commission (AEC). 1957. The windscale reactor incident. In Accident Information Bulletin No. 73. Washington, DC: AEC.

—. 1961. Investigation Board Report on the Sl-1 Accident. Washington, DC: US NRC.

US Code of Federal Regulations (USCFR). 1990. Licenses for Radiography and Radiation Safety Requirements for Radiographic Operations. Washington, DC: US Government.

US Department of Energy (USDOE). 1987. Health and Environmental Consequences of the Chernobyl Nuclear Power Plant Accident. DOE/ER-0332.Washington, DC: USDOE.

US Nuclear Regulatory Commission (NRC). 1983. Instrumentation for light-water-cooled nuclear power plants to assess plant and environs conditions during and after an accident. In NRC Regulatory Guide 1.97. Rev. 3. Washington, DC: NRC.

Wakeford, R, EJ Tawn, DM McElvenny, LE Scott, K Binks, L Parker, H Dickinson, H and J Smith. 1994a. The descriptive statistics and health implications of occupational radiation doses received by men at the Sellafield nuclear installation before the conception of their children. J. Radiol. Protect. 14: 3–16.

Wakeford, R., EJ Tawn, DM McElvenny, K Binks, LE Scott and L Parker. 1994b. The Seascale childhood leukaemia cases — the mutation rates implied by paternal preconceptional radiation doses. J. Radiol. Protect. 14: 17–24.

Ward, JF. 1988. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and repairability. Prog. Nucleic Acid Res. Mol. Biol. 35: 96–128.

Yoshimoto, Y, JV Neel, WJ Schull, H Kato, M Soda, R Eto, and K Mabuchi. 1990. Malignant tumors during the first two decades of life in the offspring of atomic bomb survivors. Am. J. Hum. Genet. 46: 1041–1052.