" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Monday, 28 March 2011 20:05

Waste Disposal Operations

Written by
Rate this item
(1 Vote)

Workers involved in municipal waste disposal and handling face occupational health and safety hazards which are as diverse as the materials they are handling. Workers’ primary complaints relate to odour and upper respiratory tract irritation usually related to dust. However, actual occupational health and safety concerns vary with the work process and the waste stream characteristics (mixed municipal solid waste (MSW), sanitary and biological waste, recycled wastes, agricultural and food wastes, ash, construction debris and industrial wastes). Biological agents such as bacteria, endotoxins and fungi may present hazards, particularly for immune system-compromised and hypersensitive workers. In addition to safety concerns, health impacts have involved predominantly respiratory health problems among workers, including symptoms of organic dust toxic syndrome (ODTS), irritation of the skin, eyes and upper airways and cases of more severe pulmonary diseases such as asthma, alveolitis and bronchitis.

The World Bank (Beede and Bloom 1995) estimates that 1.3 billion tonnes of MSW were generated in 1990 which represents an average of two-thirds of a kilogram per person per day. In the US alone, an estimated 343,000 workers were involved in MSW collection, transport and disposal according to 1991 US Census Bureau statistics. In industrialized countries waste streams are increasingly distinct and work processes are increasingly complex. Efforts to segregate and better define the compositions of waste streams are often critical for identifying occupational hazards and appropriate controls and for controlling environmental impacts. Most waste disposal workers continue to face unpredictable exposures and risks from mixed wastes in dispersed open dumps, often with open burning.

The economics of waste disposal, reuse and recycling, as well as public health concerns, are driving rapid changes in waste handling globally to maximize recovery of resources and reduce dispersion of refuse into the environment. Depending on local economic factors this results in the adoption of either increasingly labour-intensive or capital-intensive work processes. Labour-intensive practices draw an increasing number of workers into hazardous work environments and commonly involve informal sector scavengers who sort mixed refuse by hand and sell recyclable and reusable materials. Increased capitalization has not automatically led to improvements in working conditions as increased work within confined spaces (e.g., in drum composting operations or incinerators), and increased mechanical processing of wastes can result in increased exposure to both airborne contaminants and mechanical hazards, unless proper controls are implemented.

Waste Disposal Processes

A variety of waste disposal processes are used, and as waste collection, transportation and disposal costs increase to meet increasingly stringent environmental and community standards, an increasing diversity of processes can be cost-justified. These processes break down into four basic approaches which may be used in combination or in parallel for various waste streams. The four basic processes are dispersal (land or water dumping, evaporation), storage/isolation (sanitary and hazardous waste landfills), oxidation (incineration, composting) and reduction (hydrogenation, anaerobic digestion). These processes share some general occupational hazards associated with waste handling, but also involve work-process-specific occupational hazards.

General Occupational Hazards in Waste Handling

Regardless of the specific disposal process being utilized, simply processing MSW and other wastes involves common defined hazards (Colombi 1991; Desbaumes 1968; Malmros and Jonsson 1994; Malmros, Sigsgaard and Bach 1992; Maxey 1978; Mozzon, Brown and Smith 1987; Rahkonen, Ettala and Loikkanen 1987; Robazzi et al. 1994).

Unidentified, highly hazardous materials are often intermixed with normal waste. Pesticides, flammable solvents, paints, industrial chemicals, and biohazardous waste, may all be intermixed with household waste. This hazard can be handled primarily through segregation of the waste stream and in particular separation of industrial and household waste.

Odours and exposure to mixed volatile organic compounds (VOCs) can induce nausea but are typically well below American Conference of Governmental Industrial Hygenists (ACGIH) threshold limit values (TLVs), even within enclosed spaces (ACGIH 1989; Wilkins 1994). Control typically involves isolation of the process, as in sealed anaerobic digesters or drum composters, minimizing worker contact through daily soil cover or transfer station cleanup and controlling biological degradation processes, particularly minimizing anaerobic degradation by controlling moisture content and aeration.

Insect- and rodent-borne pathogens can be controlled through daily cover of waste with soil. Botros et al. (1989) reported that 19% of garbage workers in Cairo had antibodies to Rickettsia Typhi (from fleas) which causes human rickettsial disease.

Injection or blood contact with infectious waste, such as needles and blood soiled waste, is best controlled at the generator by segregation and sterilization of such waste prior to disposal and disposal in puncture resistant containers. Tetanus is also a real concern should skin damage occur. Up-to-date immunization is required.

Ingestion of Giardia sp. and other gastrointestinal pathogens can be controlled by minimizing handling, reducing hand-to-mouth contact (including tobacco use), supplying safe drinking water, providing toilet and clean up facilities for workers and maintaining appropriate temperature in composting operations in order to destroy pathogens prior to dry handling and bagging. Precautions are particularly appropriate for Giardia found in sewage sludge and disposable baby diapers in MSW, as well as for tape and round worms from poultry and slaughterhouse wastes.

Inhalation of airborne bacteria and fungi is of particular concern when mechanical processing increases (Lundholm and Rylander 1980) with compactors (Emery et al. 1992), macerators or shredders, aeration, bagging operations and when moisture content is allowed to drop. This results in increased respiratory disorders (Nersting et al. 1990), bronchial obstruction (Spinaci et al. 1981) and chronic bronchitis (Ducel et al. 1976). Although there are no formal guidelines, the Dutch Occupational Health Association (1989) recommended that total bacteria and fungal counts should be kept below 10,000 colony forming units per cubic metre (cfu/m3) and below 500 cfu/m3 for any single pathogenic organism (outdoor air levels are about 500 cfu/m3 for total bacteria, indoor air is typically less). These levels may be regularly exceeded in composting operations.

Biotoxins are formed by fungi and bacteria including endotoxins formed by gram-negative bacteria. Inhaling or ingesting an endotoxin, even after killing the bacteria which produced it, can cause fever and flu-like symptoms without infection. The Dutch Working Group on Research Methods in Biological Indoor Air Pollution recommends that airborne gram-negative bacteria be kept below 1000 cfu/m3 to avoid endotoxin effects. Bacteria and fungi can produce a variety of other potent toxins which may also present occupational hazards.

Heat exhaustion and heat stroke can be serious concerns particularly where safe drinking water is limited and where PPE is utilized in sites known to contain hazardous wastes. Simple PVC-Tyvek suits show a heat stress equivalent of adding 6 to 11°C (11 to 20°F) to the ambient wet bulb globe temperature (WBGT) index (Paull and Rosenthal 1987). When the WBGT exceeds 27.7°C (82°F) conditions are considered hazardous.

Skin damage or disease are common complaints in waste handling operations (Gellin and Zavon 1970). Direct skin damage from caustic ash and other irritating waste contaminants, combined with high exposures to pathogenic organisms, frequent skin lacerations and punctures and, typically, poor availability of washing facilities result in a high incidence of skin problems.

Wastes contain a variety of materials that can cause lacerations or punctures. These are of particular concern in labour intensive operations such as waste sorting for recycling or manual turning of MSW compost and where mechanical processes such as compacting, crushing or shredding can create projectiles. The most critical control measures are safety glasses and puncture and slash resistant footwear and gloves.

Vehicular-use hazards include both operator hazards such as rollover and engulfment hazards and collision hazards with workers on the ground. Any vehicle that works on unsound or irregular surfaces should be equipped with rollover cages that will support the vehicle and allow the operator to survive. Pedestrian and vehicular traffic should be separated to the extent possible into distinct traffic areas, particularly where visibility is limited such as during open burning, at night and in composting yards where dense ground fogs may develop in cold weather.

Reports of increased atopic bronchopulmonary reactions such as asthma (Sigsgaard, Bach and Malmros 1990) and skin reactions can occur in waste workers, particularly where organic dust exposure levels are high.

Process-specific Hazards

Dispersion

Dispersion includes dumping waste into bodies of water, evaporation into the air or dumping with no effort at containment. Ocean dumping of MSW and hazardous wastes is rapidly declining. However, an estimated 30 to 50% of MSW is not collected in the cities of developing countries (Cointreau-Levine 1994) and is commonly burned or dumped in canals and streets, where it presents a significant public health threat.

Evaporation, sometimes with active heating at low temperatures, is used as a cost-saving alternative to incinerators or kilns, especially for volatile liquid organic contaminants such as solvents or fuel which are mixed with non-combustible wastes such as soil. Workers may face confined-space entry hazards and explosive atmospheres, especially in maintenance operations. Such operations should incorporate appropriate air emissions controls.

Storage/isolation

Isolation involves a combination of remote locations and physical containment in increasingly secure landfills. Typical sanitary landfills involve excavation with earth moving equipment, dumping of waste, compaction and daily cover with soil or compost to reduce pest infestations, odours and dispersion. Clay or impervious plastic caps and/or liners may be installed to limit water infiltration and leachate into groundwater. Test wells may be used to evaluate off-site leachate migration and to allow monitoring of leachate within the landfill. Workers include heavy equipment operators, truck drivers, spotters who may be responsible for rejecting hazardous waste and directing vehicle traffic flows and informal sector scavengers who may sort the waste and remove recyclables.

In areas dependent on coal or wood for fuel, ash can constitute a significant portion of the waste. Quenching prior to dumping, or segregation into ash monofills, may be necessary to avoid fires. Ash can cause skin irritation and caustic burns. Fly ash presents a variety of health hazards including respiratory and mucosal irritation as well as acute respiratory distress (Shrivastava et al. 1994). Low density fly ash can also constitute an engulfment hazard and can be unstable under heavy equipment and in excavations.

In many nations waste disposal continues to consist of simple dumping with open burning, which may be combined with informal scavenging of reusable or recyclable components with value. These informal sector workers face serious safety and health hazards. It is estimated that in Manila, Philippines, 7,000 scavengers work at the MSW dump, 8,000 in Jakarta and 10,000 in Mexico City (Cointreau-Levine 1994). Because of the difficulties in controlling work practices in informal work, an important step in controlling these hazards is to move separation of recyclables and reusables into the formal waste collection process. This may be performed by the waste generators, including consumers or household workers, by collection/sorting workers (e.g., in Mexico City collection workers officially spend 10% of their time sorting waste for sale of recyclables, and in Bangkok 40% (Beede and Bloom 1995)) or in pre-disposal waste separation operations (e.g., magnetic separation of metallic waste).

Open burning exposes workers to a potentially toxic mix of degradation products as discussed below. Because open burning can be used by informal scavengers to assist in separating metal and glass from combustible waste, it may be necessary to recover materials with salvage value prior to dumping in order to eliminate such open burning.

As hazardous wastes are successfully segregated from the waste stream, risks of MSW workers are reduced while quantities handled by hazardous waste site workers increase. Highly secure hazardous waste treatment and disposal sites depend on detailed manifesting of waste composition, high levels of worker PPE, and extensive worker training to control hazards. Secure landfills have unique hazards including slip and fall hazards where excavations are lined with plastic or polymer gels to reduce migration of leachate, potentially serious dermatological problems, heat stress related to work for extended periods in impermeable suits and supplied air quality control. Heavy equipment operators, labourers and technicians depend largely on PPE to minimize their exposures.

Oxidation (incineration and composting)

Open burning, incineration and waste-derived fuel are the most obvious examples of oxidation. Where the moisture content is low enough and the combustible content is high enough, increasing effort is made to utilize the fuel value in MSW either through the generation of waste-derived fuel as compressed briquettes or by incorporating electrical cogeneration or steam plants into municipal waste incinerators. Such operations can involve high levels of dry dusts due to efforts to produce a fuel with consistent heat value. Residual ash must still be disposed of, usually in landfills.

MSW incinerators involve a variety of safety hazards (Knop 1975). Swedish MSW incinerator workers showed increased ischemic heart disease (Gustavsson 1989), while a study of US incinerator workers in Philadelphia, Pennsylvania, failed to show a correlation between health outcomes and exposure groups (Bresnitz et al. 1992). Somewhat elevated blood lead levels have been identified in incinerator workers, primarily related to exposures to electrostatic precipitator ash (Malkin et al. 1992).

Ash exposures (e.g., crystalline silica, radioisotopes, heavy metals) can be significant not only in incinerator operations, but also at landfills and lightweight concrete plants where ash is used as aggregate. Although crystalline silica and heavy metal content vary with the fuel, this may present serious silicosis risk. Schilling (1988) observed lung function and respiratory symptom effects in ash exposed workers, but no changes observable by x ray.

Thermal degradation on pyrolysis products resulting from incomplete oxidation of many waste products can pose significant health risks. These products can include hydrogen chloride, phosgene, dioxins and dibenzofurans from chlorinated wastes, such as polyvinyl chloride (PVC) plastics and solvents. Non-halogenated wastes also can produce hazardous degradation products, including polyaromatic hydrocarbons, acrolein, cyanide from wools and silk, isocyanates from polyurethane and organotin compounds from a variety of plastics. These complex mixtures of degradation products can vary tremendously with waste composition, feed rates, temperature and available oxygen during combustion. While these degradation products are a significant concern in open burning, exposures in MSW incinerator workers appear to be relatively low (Angerer et al. 1992).

In MSW and hazardous waste incinerators and rotary kilns, control of combustion parameters and the residence time for waste vapours and solids at high temperatures is critical in destruction of wastes while minimizing the generation of more hazardous degradation products. Workers are involved in incinerator operation, loading and waste transfer into the incinerator, waste delivery and unloading from trucks, equipment maintenance, housekeeping and ash and slag removal. While incinerator design can limit necessary manual labour and worker exposures, with less capital-intensive designs there may be significant worker exposures and a need for regular confined space entry (e.g., chipping for removal of slag from glass waste from incinerator grates).

Composting

In aerobic biological processes the temperature and speed of oxidation are lower than incineration, but it is nevertheless oxidation. Composting of agricultural and yard wastes, sewage sludge, MSW and food wastes is increasingly common in city-scale operations. Rapidly developing technologies for biological remediation of hazardous and industrial wastes often involve a sequence of aerobic and anaerobic digestion processes.

Composting usually occurs either in wind rows (long piles) or in large vessels which provide aeration and mixing. The objective of composting operations is to create a mix of waste with optimum ratios of carbon and nitrogen (30:1) and then maintain moisture at 40 to 60% by weight, greater than 5% oxygen and temperature levels 32 to 60oC so that aerobic bacteria and other organisms can grow (Cobb and Rosenfield 1991). Following separation of recyclables and hazardous wastes (which typically involves hand sorting), MSW is shredded to create more surface area for biological action. Shredding can produce high noise and dust levels and significant mechanical guarding concerns. Some operations use ganged hammer-mills to allow reduced front-end sorting.

In-vessel or drum composting operations are capital intensive but allow more effective odour and process control. Confined space entry is a significant hazard for maintenance workers as high levels of CO2 may be released causing oxygen deficiency. Lockout of equipment prior to maintenance is also critical as mechanisms include internal screw-drives and conveyors.

In less capital intensive wind row composting operations, waste is shredded and placed in long piles which are mechanically aerated through perforated pipes or simply by turning, either with front-end loaders or manually. Wind rows may be covered or roofed to facilitate maintenance of constant moisture content. Where specialized wind row turning equipment is used, chain mixing-flails rotate at high speed through the compost and should be well guarded from human contact. As these flails rotate through the wind row, they eject objects which can become dangerous projectiles. Operators must assure safe clearance distances around and behind the equipment.

Regular temperature measurements with probes allow monitoring the progress of composting and assure high enough temperatures to kill pathogens while allowing adequate survival of beneficial organisms. At moisture contents of 20 to 45% when the temperature exceeds 93oC there can also be a spontaneous combustion fire hazard (much like a silo fire). This is most likely to occur when piles exceed 4 m in height. Fires can be avoided by keeping pile heights below 3 m, and turning when the temperature exceeds 60°C. Facilities should provide water hydrants and adequate access between wind rows for control of fires.

Hazards in composting operations include vehicle and mechanical hazards resulting from tractors and trucks involved in turning wind-rows of waste to maintain aeration and moisture content. In cooler climates the elevated temperatures of compost can produce dense ground fogs in a work area occupied by heavy equipment operators and pedestrian workers. Compost workers report more nausea, headache and diarrhoea than their counterparts in a drinking water plant (Lundholm and Rylander 1980). Odour problems can occur as a result of poor control of the moisture and air required for the composting to progress. If anaerobic conditions are allowed to occur, hydrogen sulphide, amines and other odorous materials are generated. In addition to typical disposal worker concerns, composting involving actively growing organisms can raise MSW temperatures high enough to kill pathogens, but can also produce exposures to moulds and fungi and their spores and toxins, especially in compost bagging operations and where compost is allowed to dry. Several studies have evaluated airborne fungi, bacteria, endotoxins and other contaminants (Belin 1985; Clark, Rylander and Larsson 1983; Heida, Bartman and van der Zee 1975; Lacey et al. 1990; Millner et al. 1994; van der Werf 1996; Weber et al. 1993) in composting operations. There is some indication of increased respiratory disorders and hypersensitivity reactions in compost workers (Brown et al. 1995; Sigsgaard et al. 1994). Certainly bacterial and fungal respiratory infections (Kramer, Kurup and Fink 1989) are a concern for immune-suppressed workers such as those with AIDS and those receiving cancer chemotherapy.

Reduction (hydrogenation and anaerobic digestion)

Anaerobic digestion for sewage and agricultural waste involves closed tanks, often with rotating brush contacts if nutrients are dilute, which can pose serious confined space entry concerns for maintenance workers. Anaerobic digesters are also commonly used in many countries as methane generators which may be fuelled with agricultural, sanitary or food wastes. Methane collection from MSW landfills and burning or compression for use is now required in many countries when methane generation exceeds specified thresholds, but most landfills have inadequate moisture for anaerobic digestion to proceed efficiently. Hydrogen sulphide generation is also a common result of anaerobic digestion and can cause eye irritation and olfactory fatigue at low levels.

More recently, high temperature reduction/hydrogenation has become a treatment option for organic chemical wastes. This can involve smaller, and therefore potentially mobile, installations with less energy input than a high temperature incinerator because metallic catalysts allow hydrogenation to proceed at lower temperatures. Organic wastes can be converted into methane and used as fuel to continue the process. Critical worker safety concerns include explosive atmospheres and confined space entry for cleaning, sludge removal and maintenance, hazards of transporting and loading the liquid feed wastes and spill response.

Summary

As wastes are viewed as resources for recycling and reuse, waste processing increases, resulting in rapid change in the waste disposal industry globally. Occupational health and safety risks of waste disposal operations often go beyond obvious safety hazards to a variety of chronic and acute health concerns. These hazards are often faced with minimal PPE and inadequate sanitary and wash-up facilities. Industrial waste reduction and pollution prevention efforts are increasingly shifting recycling and reuse processes away from contracted or external waste disposal operations and into production work areas.

Top priorities in controlling occupational safety and health hazards in this rapidly changing industry sector should include:

  • integrating informal sector work into the formal work process
  • providing adequate toilet and wash-up facilities and safe drinking water
  • eliminating open burning and waste dispersion into the environment
  • segregating waste streams to facilitate characterization of wastes and identification of appropriate control measures and work practices
  • minimizing mixed vehicular and pedestrian traffic in work areas
  • following appropriate excavation practices for soil and waste characteristics
  • anticipating and controlling hazards prior to entry into confined spaces
  • minimizing respirable dust exposures in high dust operations
  • using safety glasses and slash and puncture resistant shoes and gloves
  • integrating occupational safety and health concerns when introducing process change plans, particularly during transitions from open dumping and landfills to more complex and potentially more hazardous enclosed operations such as composting, mechanical or manual separation for recycling, waste to energy operations or incinerators.

 

In this period of rapid change in the industry, significant improvements in worker health and safety can be made at low cost.

 

Back

Read 5339 times Last modified on Wednesday, 29 June 2011 13:20

Contents

Preface
Part I. The Body
Part II. Health Care
Part III. Management & Policy
Part IV. Tools and Approaches
Part V. Psychosocial and Organizational Factors
Part VI. General Hazards
Part VII. The Environment
Part VIII. Accidents and Safety Management
Part IX. Chemicals
Part X. Industries Based on Biological Resources
Part XI. Industries Based on Natural Resources
Part XII. Chemical Industries
Part XIII. Manufacturing Industries
Part XIV. Textile and Apparel Industries
Part XV. Transport Industries
Part XVI. Construction
Part XVII. Services and Trade
Education and Training Services
Emergency and Security Services
Entertainment and the Arts
Health Care Facilities and Services
Hotels and Restaurants
Office and Retail Trades
Personal and Community Services
Public and Government Services
Resources
Transport Industry and Warehousing
Part XVIII. Guides

Public and Government Services Additional Resources

Click the Button below to view additional resources for this topic.

button

Public and Government Services References

American Conference of Governmental Industrial Hygienists (ACGIH). 1989. Guidelines for the Assessment of Bioaerosols in the Indoor Environment. Cincinnati, OH: ACGIH.

Angerer, J, B Heinzow, DO Reimann, W Knorz, and G Lehnert. 1992. Internal exposure to organic substances in a municipal waste incinerator. Int Arch Occup Environ Health; 64(4):265-273.

Asante-Duah, DK, FK Saccomanno, and JH Shortreed. 1992. The hazardous waste trade: Can it be controlled? Environ Sci Technol 26:1684-1693.

Beede, DE and DE Bloom. 1995. The economics of municipal solid waste. World Bank Research Observer. 10(2):113-115.

Belin, L. 1985. Health problems caused by actinomycetes and moulds in the industrial environment. Allergy Suppl. 40:24-29.

Bisesi, M and D Kudlinski. 1996. Measurement of airborne gram-negative bacteria in selected areas of a sludge dewatering building. Presented at the American Industrial Hygiene Conference and Exposition, 20-24 May, Washington, DC.

Botros, BA, AK Soliman, M Darwish, S el Said, JC Morrill, and TG Ksiazek. 1989. Seroprevalence of murine typhus and fievre boutonneuse in certain human populations in Egypt. J Trop Med Hyg. 92(6):373-378.

Bourdouxhe, M, E Cloutier, and S Guertin. 1992. Étude des risques d’accidents dans la collecte des ordures ménagères. Montreal: Institut de recherche en santé de la sécurité du travail.

Bresnitz, EA, J Roseman, D Becker, and E Gracely. 1992. Morbidity among municipal waste incinerator workers. Am J Ind Med 22 (3):363-378.

Brophy, M. 1991. Confined space entry programs. Water Pollution Control Federation Safety and Health Bulletin (Spring):4.

Brown, JE, D Masood, JI Couser, and R Patterson. 1995. Hypersensitivity pneumonitis from residential composting: residential composter’s lung. Ann Allergy, Asthma & Immunol 74:45-47.

Clark, CS, R Rylander, and L Larsson. 1983. Levels of gram-negative bacteria, aspergillus fumigatus, dust and endotoxin at compost plants. Appl Environ Microbiol 45:1501-1505.

Cobb, K and J Rosenfield. 1991. Municipal Compost Management Home Study Program. Ithaca, NY: Cornell Waste Management Institute.

Cointreau-Levine, SJ. 1994. Private Sector Participation in MSW Services in Developing Countries: The Formal Sector, Vol. 1. Washington, DC: World Bank.

Colombi, A. 1991. Health risks for waste disposal industry workers (in Italian). Med Lav 82(4):299-313.

Coughlin, SS. 1996. Environmental justice: The role of epidemiology in protecting unempowered communities from environmental hazards. Sci Total Environ 184:67-76.

Council for International Organizations of Medical Sciences (CIOMS). 1993. International Ethical Guidelines for Biomedical Research Involving Human Subjects. Geneva: CIOMS.

Cray, C. 1991. Waste Management Inc.: An Encyclopedia of Environmental Crimes and Other
Misdeeds, 3rd (revised) edition. Chicago, IL: Greenpeace USA.

Crook, B, P Bardos, and J Lacey. 1988. Domestic waste composting plants as source of airborne microorganisms. In Aerosols: Their Generation, Behavior and Application, edited by WD Griffiths. London: Aerosol Society.

Desbaumes, P. 1968. Study of risks inherent in industries treating refuse and sewage (in French). Rev Med Suisse Romande 88(2):131-136.

Ducel, G, JJ Pitteloud, C Rufener-Press, M Bahy, and P Rey. 1976. The importance of bacterial exposure in sanitation employees when collecting refuse (in French). Soz Praventivmed 21(4):136-138.

Dutch Occupational Health Association. 1989. Protocol Onderzoeksmethoden Micro-biologische Binnenlucht- verontreinigingen [Research Methods in Biological Indoor Air Pollution]. Working Group Report. The Hague, The Netherlands: Dutch Occupational Health Association.

Emery, R, D Sprau, YJ Lao, and W Pryor. 1992. Release of bacterial aerosols during infectious waste compaction: An initial hazard evaluation for healthcare workers. Am Ind Hyg Assoc J 53(5):339-345.

Gellin, GA and MR Zavon. 1970. Occupational dermatoses of solid waste workers. Arch Environ Health 20(4):510-515.

Greenpeace. 1993. We’ve Been Had! Montreal’s Plastics Dumped Overseas. Greenpeace International Toxic Trade Report. Washington, DC: Greenpeace Public Information.

—. 1994a. The Waste Invasion of Asia: A Greenpeace Inventory. Greenpeace Toxic Trade Report. Washington, DC: Greenpeace Public Information.

—. 1994b. Incineration. Greenpeace Inventory of Toxic Technologies. Washington, DC: Greenpeace Public Information.

Gustavsson, P. 1989. Mortality among workers at a municipal waste incinerator. Am J Ind Med 15(3):245-253.

Heida, H, F Bartman, and SC van der Zee. 1975. Occupational exposure and indoor air quality monitoring in a composting facility. Am Ind Hyg Assoc J 56(1): 39-43.

Johanning, E, E Olmsted, and C Yang. 1995. Medical issues related to municipal waste composting. Presented at the American Industrial Hygiene Conference and Exposition, 22-26 May, Kansas City, KS.

Knop W. 1975. Work safety in incinerator plants (in German) Zentralbl Arbeitsmed 25(1):15-19.

Kramer, MN, VP Kurup, and JN Fink. 1989. Allergic bronchopulmonary aspergillosis from a contaminated dump site. Am Rev Respir Dis 140:1086-1088.

Lacey, J, PAM Williamson, P King, and RP Barbos. 1990. Airborne Microorganisms Associated with Domestic Waste Composting. Stevenage, UK: Warren Spring Laboratory.

Lundholm, M and R Rylander. 1980. Occupational symptoms among compost workers. J Occup Med 22(4):256-257.

Malkin, R, P Brandt-Rauf, J Graziano, and M Parides. 1992. Blood lead levels in incinerator workers. Environ Res 59(1):265-270.

Malmros, P and P Jonsson. 1994. Wastes management: Planning for recycling workers’ safety. Waste Management & Resource Recovery 1:107-112.

Malmros, P, T Sigsgaard and B Bach. 1992. Occupational health problems due to garbage sorting. Waste Management & Research 10:227-234.

Mara, DD. 1974. Bacteriology for Sanitary Engineers. London: Churchill Livingstone.

Maxey, MN. 1978. Hazards of solid waste management: bioethical problems, principles, and priorities. Environ Health Perspect 27:223-230.

Millner, PD, SA Olenchock, E Epstein, R Rylander, J Haines, and J Walker. 1994. Bioaerosols associated with composting facilities. Compost Science and Utilization 2:3-55.

Mozzon, D, DA Brown, and JW Smith. 1987. Occupational exposure to airborne dust, respirable quartz and metals arising from refuse handling, burning and landfilling. Am Ind Hyg Assoc J 48(2):111-116.

Nersting, L, P Malmros, T Sigsgaard, and C Petersen. 1990. Biological health risk associated with resource recovery, sorting of recycle waste and composting. Grana 30:454-457.

Paull, JM and FS Rosenthal. 1987. Heat strain and heat stress for workers wearing protective suits at a hazardous waste site. Am Ind Hyg Assoc J 48(5):458-463.

Puckett, J and C Fogel 1994. A Victory for Environment and Justice: The Basel Ban and How It Happened. Washington, DC: Greenpeace Public Information.

Rahkonen, P, M Ettala, and I Loikkanen. 1987. Working conditions and hygiene at sanitary landfills in Finland. Ann Occup Hyg 31(4A):505-513.

Robazzi, ML, E Gir, TM Moriya, and J Pessuto. 1994. The trash collection service: Occupational risks versus damages to health (in Portuguese). Rev Esc Enferm USP 28(2):177-190.

Rosas, I, C Calderon, E Salinas, and J Lacey. 1996. Airborne microorganisms in a domestic waste transfer station. In Aerobiology, edited by M Muilenberg and H Burge. New York: Lewis Publishers.

Rummel-Bulska, I. 1993. The Basel Convention: A global approach for the management of hazardous wastes. Paper presented at the Pacific Basin Conference on Hazardous Waste, University of Hawaii, November.

Salvato, JA. 1992. Environmental Engineering and Sanitation. New York: John Wiley and Sons.

Schilling, CJ, IP Tams, RS Schilling, A Nevitt, CE Rossiter, and B Wilkinson. 1988. A survey into the respiratory effects of prolonged exposure to pulverised fuel ash. Br J Ind Med 45(12):810-817.

Shrivastava, DK, SS Kapre, K Cho, and YJ Cho. 1994. Acute lung disease after exposure to fly ash. Chest 106(1):309-311.

Sigsgaard, T, A Abel, L Donbk, and P Malmros. 1994. Lung function changes among recycling workers exposed to organic dust. Am J Ind Med 25:69-72.

Sigsgaard, T, B Bach, and P Malmros. 1990. Respiratory impairment among workers in a garbage-handling plant. Am J Ind Med 17(1):92-93.

Smith, RP. 1986. Toxic responses of the blood. In Casarett and Doull’s Toxicology, edited by CD Klaassen, MO Amdur, and J Doull. New York: Macmillan Publishing Company.

Soskolne, C. 1997. International transport of hazardous waste: Legal and illegal trade in the context of professional ethics. Global Bioethics (September/October).

Spinaci, S, W Arossa, G Forconi, A Arizio, and E Concina. 1981. Prevalence of functional bronchial obstruction and identification of groups at risk in a population of industrial workers (in Italian). Med Lav 72(3):214-221.

Southam News. 1994. Export ban on toxic waste proposed. Edmonton Journal (9 March):A12.

van der Werf, P. 1996. Bioaerosols at a Canadian composting facility. Biocycle (September): 78-83.
Vir, AK. 1989. Toxic trade with Africa. Environ Sci Technol 23:23-25.

Weber, S, G Kullman, E Petsonk, WG Jones, S Olenchock, and W Sorensen. 1993. Organic dust exposures from compost handling: Case presentation and respiratory exposure assessment. Am J Ind Med 24:365-374.

Wilkenfeld, C, M Cohen, SL Lansman, M Courtney, MR Dische, D Pertsemlidis, and LR Krakoff. 1992. Heart transplantation for end-stage cardiomyopathy caused by an occult pheochromocytoma. J Heart Lung Transplant 11:363-366.