الأحد، 16 يناير 2011 16: 18

مقدمة ومفاهيم

قيم هذا المقال
(الاصوات 3)

علم السموم الميكانيكي هو دراسة كيفية تفاعل العوامل الكيميائية أو الفيزيائية مع الكائنات الحية لتسبب السمية. إن معرفة آلية سمية مادة ما تعزز القدرة على منع السمية وتصميم مواد كيميائية مرغوبة بدرجة أكبر ؛ يشكل الأساس للعلاج عند التعرض المفرط ، ويتيح في كثير من الأحيان مزيدًا من الفهم للعمليات البيولوجية الأساسية. لأغراض هذا موسوعة سيتم التركيز على الحيوانات للتنبؤ بسمية الإنسان. تشمل المجالات المختلفة لعلم السموم علم السموم الميكانيكي والوصفي والتنظيمي والطب الشرعي والبيئي (كلاسن وأمدور ودول 1991). كل هذه الفوائد من فهم الآليات الأساسية للسمية.

لماذا نفهم آليات السمية؟

إن فهم الآلية التي تسبب بها مادة ما سمية يعزز مجالات مختلفة من علم السموم بطرق مختلفة. يساعد الفهم الآلي المنظم الحكومي على وضع حدود آمنة ملزمة قانونًا للتعرض البشري. يساعد علماء السموم في التوصية بمسارات العمل المتعلقة بتنظيف أو معالجة المواقع الملوثة ، بالإضافة إلى الخصائص الفيزيائية والكيميائية للمادة أو الخليط ، يمكن استخدامها لتحديد درجة معدات الحماية المطلوبة. المعرفة الآلية مفيدة أيضًا في تشكيل الأساس للعلاج وتصميم عقاقير جديدة لعلاج الأمراض التي تصيب الإنسان. بالنسبة لطبيب السموم الشرعي ، غالبًا ما توفر آلية السمية نظرة ثاقبة حول كيفية تسبب عامل كيميائي أو فيزيائي في الوفاة أو العجز.

إذا تم فهم آلية السمية ، يصبح علم السموم الوصفي مفيدًا في التنبؤ بالتأثيرات السامة للمواد الكيميائية ذات الصلة. من المهم أن نفهم ، مع ذلك ، أن نقص المعلومات الآلية لا يمنع المهنيين الصحيين من حماية صحة الإنسان. تُستخدم القرارات الحكيمة المستندة إلى الدراسات التي أجريت على الحيوانات والخبرة البشرية لتحديد مستويات التعرض الآمنة. تقليديا ، تم إنشاء هامش أمان باستخدام "مستوى لا تأثير ضار" أو "أدنى مستوى تأثير ضار" من الدراسات على الحيوانات (باستخدام تصميمات التعرض المتكرر) وقسمة هذا المستوى على 100 للتعرض المهني أو 1,000 من أجل التعرض البشري البيئي الآخر. يتضح نجاح هذه العملية من الحوادث القليلة للتأثيرات الصحية الضارة التي تُعزى إلى التعرض للمواد الكيميائية لدى العمال حيث تم تحديد حدود التعرض المناسبة والالتزام بها في الماضي. بالإضافة إلى ذلك ، يستمر عمر الإنسان في الازدياد ، وكذلك نوعية الحياة. بشكل عام ، أدى استخدام بيانات السمية إلى رقابة تنظيمية وطوعية فعالة. ستعمل المعرفة التفصيلية بالآليات السامة على تعزيز إمكانية التنبؤ بنماذج المخاطر الجديدة التي يتم تطويرها حاليًا وستؤدي إلى التحسين المستمر.

إن فهم الآليات البيئية أمر معقد ويفترض معرفة باضطراب النظام البيئي والتوازن (التوازن). على الرغم من عدم مناقشته في هذه المقالة ، فإن الفهم المعزز للآليات السامة وعواقبها النهائية في النظام البيئي من شأنه أن يساعد العلماء على اتخاذ قرارات حكيمة فيما يتعلق بالتعامل مع النفايات البلدية والصناعية. تعد إدارة النفايات مجالًا متناميًا للبحث وستظل مهمة جدًا في المستقبل.

تقنيات دراسة آليات السمية

تبدأ غالبية الدراسات الآلية بدراسة وصفية للسموم على الحيوانات أو بملاحظات إكلينيكية على البشر. من الناحية المثالية ، تشمل الدراسات التي أجريت على الحيوانات ملاحظات سلوكية وسريرية دقيقة ، وفحصًا كيميائيًا حيويًا دقيقًا لعناصر الدم والبول بحثًا عن علامات الوظيفة السلبية للأنظمة البيولوجية الرئيسية في الجسم ، وتقييم ما بعد الذبح لجميع أنظمة الأعضاء عن طريق الفحص المجهري للتحقق من الإصابة (انظر إرشادات اختبار منظمة التعاون الاقتصادي والتنمية ؛ توجيهات المفوضية الأوروبية بشأن التقييم الكيميائي ؛ قواعد اختبار وكالة حماية البيئة الأمريكية ؛ لوائح المواد الكيميائية في اليابان). هذا مشابه لفحص جسدي بشري شامل يتم إجراؤه في المستشفى خلال فترة زمنية تتراوح من يومين إلى ثلاثة أيام باستثناء فحص ما بعد الوفاة.

إن فهم آليات السمية هو فن وعلم الملاحظة ، والإبداع في اختيار التقنيات لاختبار الفرضيات المختلفة ، والدمج المبتكر للعلامات والأعراض في علاقة سببية. تبدأ الدراسات الآلية بالتعرض ، وتتبع التوزيع المرتبط بالوقت والمصير في الجسم (الحرائك الدوائية) ، وتقيس التأثير السام الناتج على مستوى معين من النظام وعند مستوى جرعة ما. يمكن أن تعمل المواد المختلفة على مستويات مختلفة من النظام البيولوجي في التسبب في السمية.

تعرض

عادة ما يكون مسار التعرض في الدراسات الآلية هو نفسه بالنسبة للتعرض البشري. الطريق مهم لأنه يمكن أن تكون هناك تأثيرات تحدث محليًا في موقع التعرض بالإضافة إلى تأثيرات جهازية بعد امتصاص المادة الكيميائية في الدم وتوزيعها في جميع أنحاء الجسم. مثال بسيط ولكنه مقنع للتأثير الموضعي هو التهيج والتآكل النهائي للجلد بعد تطبيق المحاليل الحمضية أو القلوية القوية المصممة لتنظيف الأسطح الصلبة. وبالمثل ، يمكن أن يحدث التهيج والموت الخلوي في الخلايا المبطنة للأنف و / أو الرئتين بعد التعرض لأبخرة أو غازات مهيجة مثل أكاسيد النيتروجين أو الأوزون. (كلاهما من مكونات تلوث الهواء ، أو الضباب الدخاني). بعد امتصاص مادة كيميائية في الدم من خلال الجلد أو الرئتين أو الجهاز الهضمي ، يتم التحكم في التركيز في أي عضو أو نسيج من خلال العديد من العوامل التي تحدد الحرائك الدوائية للمادة الكيميائية في الجسم. الجسم لديه القدرة على التنشيط وكذلك إزالة السموم من المواد الكيميائية المختلفة كما هو مذكور أدناه.

دور حركية الدواء في السمية

تصف حركية الدواء العلاقات الزمنية للامتصاص الكيميائي ، والتوزيع ، والتمثيل الغذائي (التغيرات الكيميائية الحيوية في الجسم) والتخلص أو الإخراج من الجسم. بالنسبة لآليات السمية ، يمكن أن تكون هذه المتغيرات الدوائية مهمة للغاية وفي بعض الحالات تحدد ما إذا كانت السمية ستحدث أم لا. على سبيل المثال ، إذا لم يتم امتصاص المادة بكمية كافية ، فلن تحدث سمية جهازية (داخل الجسم). على العكس من ذلك ، فإن المادة الكيميائية عالية التفاعل التي يتم إزالتها بسرعة (ثوانٍ أو دقائق) عن طريق إنزيمات الجهاز الهضمي أو الكبد قد لا يكون لديها الوقت لتسبب السمية. بعض المواد والمخاليط المهلجنة متعددة الحلقات وكذلك معادن معينة مثل الرصاص لن تسبب سمية كبيرة إذا كان الإخراج سريعًا ؛ لكن التراكم إلى مستويات عالية بما فيه الكفاية يحدد مدى سميتها لأن الإخراج ليس سريعًا (يُقاس أحيانًا بالسنوات). لحسن الحظ ، لا تمتلك معظم المواد الكيميائية مثل هذا الاحتباس الطويل في الجسم. لا يزال تراكم مادة غير ضارة لا يسبب السمية. غالبًا ما يشار إلى معدل التخلص من الجسم وإزالة السموم على أنه نصف عمر المادة الكيميائية ، وهو الوقت الذي يتم فيه إفراز 50٪ من المادة الكيميائية أو تغييرها إلى صورة غير سامة.

ومع ذلك ، إذا تراكمت مادة كيميائية في خلية أو عضو معين ، فقد يشير ذلك إلى سبب لإجراء مزيد من الفحص لسميتها المحتملة في ذلك العضو. في الآونة الأخيرة ، تم تطوير نماذج رياضية لاستقراء المتغيرات الحركية الدوائية من الحيوانات إلى البشر. هذه النماذج الحركية الدوائية مفيدة للغاية في وضع الفرضيات واختبار ما إذا كان حيوان التجارب يمثل تمثيلًا جيدًا للبشر. تمت كتابة العديد من الفصول والنصوص حول هذا الموضوع (Gehring et al. 1976 ؛ Reitz et al. 1987 ؛ Nolan et al. 1995). يوضح الشكل 1 مثالًا مبسطًا للنموذج الفسيولوجي.

الشكل 1. نموذج حركي دوائي مبسط

TOX210F1

يمكن أن تتأثر المستويات والأنظمة المختلفة سلبًا

يمكن وصف السمية على مستويات بيولوجية مختلفة. يمكن تقييم الإصابة في الشخص بأكمله (أو الحيوان) ، أو في نظام العضو ، أو الخلية أو الجزيء. تشمل أجهزة الجهاز المناعي والجهاز التنفسي والقلب والأوعية الدموية والكلى والغدد الصماء والجهاز الهضمي والجهاز العضلي والهيكل العظمي والدم والجهاز العصبي الإنجابي والمركزي. تشمل بعض الأعضاء الرئيسية الكبد ، والكلى ، والرئة ، والدماغ ، والجلد ، والعينين ، والقلب ، والخصيتين أو المبيضين ، والأعضاء الرئيسية الأخرى. على المستوى الخلوي / الكيميائي الحيوي ، تشمل التأثيرات الضائرة التداخل مع وظيفة البروتين الطبيعية ، ووظيفة مستقبلات الغدد الصماء ، وتثبيط الطاقة الأيضية ، أو تثبيط أو تحريض إنزيم غريب الأطوار (مادة غريبة). تشمل التأثيرات الضائرة على المستوى الجزيئي تغيير الوظيفة الطبيعية لنسخ DNA-RNA ، وارتباط مستقبلات حشوية ونووية معينة ، وتغيير الجينات أو المنتجات الجينية. في النهاية ، من المحتمل أن يكون سبب الخلل الوظيفي في نظام عضو رئيسي هو تغيير جزيئي في خلية مستهدفة معينة داخل هذا العضو. ومع ذلك ، فليس من الممكن دائمًا تتبع آلية رجوعًا إلى الأصل الجزيئي للسببية ، كما أنه ليس ضروريًا. يمكن تصميم التدخل والعلاج دون فهم كامل للهدف الجزيئي. ومع ذلك ، فإن المعرفة حول الآلية المحددة للسمية تزيد من القيمة التنبؤية والدقة للاستقراء للمواد الكيميائية الأخرى. الشكل 2 هو تمثيل تخطيطي للمستويات المختلفة حيث يمكن اكتشاف تداخل العمليات الفسيولوجية العادية. تشير الأسهم إلى أن العواقب على الفرد يمكن تحديدها من أعلى إلى أسفل (التعرض ، الحرائك الدوائية لسمية النظام / العضو) أو من الأسفل إلى الأعلى (التغيير الجزيئي ، التأثير الخلوي / الكيميائي الحيوي على سمية الجهاز / العضو).

الشكل 2. إعادة تمثيل آليات السمية

TOX210F2

أمثلة على آليات السمية

يمكن أن تكون آليات السمية مباشرة أو معقدة للغاية. في كثير من الأحيان ، هناك اختلاف بين نوع السمية ، وآلية السمية ، ومستوى التأثير ، فيما يتعلق بما إذا كانت الآثار الضارة ناتجة عن جرعة عالية وحادة مفردة (مثل التسمم العرضي) ، أو جرعة أقل. التعرض المتكرر (من التعرض المهني أو البيئي). تقليديًا ، لأغراض الاختبار ، تُعطى جرعة مفردة حادة عن طريق التنبيب المباشر في معدة القوارض أو التعرض لجو غاز أو بخار لمدة ساعتين إلى أربع ساعات ، أيهما يشبه التعرض البشري على أفضل وجه. تتم مراقبة الحيوانات على مدى أسبوعين بعد التعرض ، ثم يتم فحص الأعضاء الخارجية والداخلية الرئيسية بحثًا عن الإصابة. يتراوح اختبار الجرعات المتكررة من شهور إلى سنوات. بالنسبة لأنواع القوارض ، تعتبر سنتان دراسة مزمنة (مدى الحياة) كافية لتقييم السمية والسرطنة ، بينما بالنسبة إلى الرئيسيات غير البشرية ، يمكن اعتبار عامين دراسة دون المزمنة (أقل من العمر) لتقييم سمية الجرعات المتكررة. بعد التعرض ، يتم إجراء فحص كامل لجميع الأنسجة والأعضاء والسوائل لتحديد أي آثار ضارة.

آليات السمية الحادة

الأمثلة التالية خاصة بالجرعات العالية والآثار الحادة التي يمكن أن تؤدي إلى الوفاة أو العجز الشديد. ومع ذلك ، في بعض الحالات ، سينتج عن التدخل آثار عابرة وقابلة للعكس تمامًا. ستحدد جرعة أو شدة التعرض النتيجة.

الاختناقات البسيطة. آلية السمية للغازات الخاملة وبعض المواد الأخرى غير التفاعلية هي نقص الأكسجين (نقص الأكسجين). تسمى هذه المواد الكيميائية ، التي تسبب حرمان الجهاز العصبي المركزي من الأكسجين (CNS) الخانقات البسيطة. إذا دخل شخص إلى مكان مغلق يحتوي على النيتروجين دون كمية كافية من الأكسجين ، يحدث استنفاد فوري للأكسجين في الدماغ ويؤدي إلى فقدان الوعي والموت في نهاية المطاف إذا لم يتم إزالة الشخص بسرعة. في الحالات القصوى (بالقرب من صفر أكسجين) يمكن أن يحدث فقدان الوعي في بضع ثوان. يعتمد الإنقاذ على الإزالة السريعة لبيئة مؤكسجة. يمكن أن يحدث البقاء على قيد الحياة مع تلف دماغي لا يمكن إصلاحه من تأخر الإنقاذ ، بسبب موت الخلايا العصبية التي لا يمكن أن تتجدد.

الخانقات الكيماوية. يتنافس أول أكسيد الكربون (CO) مع الأكسجين في الارتباط بالهيموجلوبين (في خلايا الدم الحمراء) وبالتالي يحرم الأنسجة من الأكسجين من أجل استقلاب الطاقة ؛ يمكن أن يؤدي الموت الخلوي. يشمل التدخل إزالة مصدر ثاني أكسيد الكربون والعلاج بالأكسجين. يعتمد الاستخدام المباشر للأكسجين على التأثير السام لثاني أكسيد الكربون. وهناك مادة كيميائية أخرى خانقة قوية وهي السيانيد. يتداخل أيون السيانيد مع التمثيل الغذائي الخلوي واستخدام الأكسجين للطاقة. يتسبب العلاج باستخدام نتريت الصوديوم في حدوث تغيير في الهيموجلوبين في خلايا الدم الحمراء إلى ميثيموجلوبين. يمتلك الميثيموغلوبين تقارب ارتباط أكبر مع أيون السيانيد من الهدف الخلوي للسيانيد. وبالتالي ، فإن الميثيموغلوبين يربط السيانيد ويبقي السيانيد بعيدًا عن الخلايا المستهدفة. هذا يشكل الأساس للعلاج بالترياق.

مثبطات الجهاز العصبي المركزي. تتميز السمية الحادة بالتخدير أو فقدان الوعي لعدد من المواد مثل المذيبات غير التفاعلية أو التي تتحول إلى مواد وسيطة تفاعلية. من المفترض أن يكون التهدئة / التخدير ناتجًا عن تفاعل المذيب مع أغشية الخلايا في الجهاز العصبي المركزي ، مما يضعف قدرتها على نقل الإشارات الكهربائية والكيميائية. في حين أن التخدير قد يبدو شكلاً خفيفًا من السمية وكان أساسًا لتطوير أدوية التخدير المبكرة ، فإن "الجرعة لا تزال تصنع السم". إذا تم إعطاء جرعة كافية عن طريق الابتلاع أو الاستنشاق ، فقد يموت الحيوان بسبب توقف التنفس. إذا لم يحدث موت المخدر ، فعادة ما يكون هذا النوع من السمية قابلاً للعكس بسهولة عند إزالة الموضوع من البيئة أو إعادة توزيع المادة الكيميائية أو إزالتها من الجسم.

آثار الجلد. يمكن أن تتراوح الآثار الضارة للجلد من التهيج إلى التآكل ، اعتمادًا على المادة المصادفة. الأحماض القوية والمحاليل القلوية غير متوافقة مع الأنسجة الحية وهي مسببة للتآكل ، وتسبب حروقًا كيميائية وتندبًا محتملاً. يحدث التندب نتيجة موت خلايا الجلد العميقة المسؤولة عن التجدد. قد تؤدي التركيزات المنخفضة فقط إلى تهيج الطبقة الأولى من الجلد.

آلية سامة أخرى للجلد هي التحسس الكيميائي. على سبيل المثال ، يحدث التحسس عندما يرتبط 2,4،XNUMX-dinitrochlorobenzene بالبروتينات الطبيعية في الجلد ويتعرف الجهاز المناعي على المركب المتغير المرتبط بالبروتين باعتباره مادة غريبة. في الاستجابة لهذه المادة الغريبة ، يقوم الجهاز المناعي بتنشيط خلايا خاصة للتخلص من المادة الغريبة عن طريق إطلاق الوسطاء (السيتوكينات) التي تسبب طفح جلدي أو التهاب الجلد (انظر "علم السموم المناعية"). هذا هو نفس رد فعل الجهاز المناعي عند حدوث التعرض لبلاب السام. التحسس المناعي خاص جدًا بمادة كيميائية معينة ويتطلب تعريضين على الأقل قبل إثارة الاستجابة. يؤدي التعرض الأول إلى التحسس (يُهيئ الخلايا للتعرف على المادة الكيميائية) ، ويؤدي التعرض اللاحق إلى تحفيز استجابة الجهاز المناعي. عادة ما تكون إزالة الملامسة وعلاج الأعراض باستخدام الكريمات المضادة للالتهابات المحتوية على الستيرويد فعالة في علاج الأفراد المعرضين للحساسية. في الحالات الخطيرة أو المقاومة للحرارة ، يتم استخدام مثبطات المناعة الجهازية المفعول مثل بريدنيزون بالتزامن مع العلاج الموضعي.

توعية الرئة. يتم إثارة استجابة التحسس المناعي بواسطة ثنائي أيزوسيانات التولوين (TDI) ، لكن الموقع المستهدف هو الرئتين. يؤدي التعرض المفرط لـ TDI لدى الأفراد المعرضين للإصابة إلى وذمة الرئة (تراكم السوائل) وتضيق الشعب الهوائية وضعف التنفس. هذه حالة خطيرة وتتطلب إزالة الفرد من التعرضات اللاحقة المحتملة. العلاج هو في المقام الأول من الأعراض. حساسية الجلد والرئة تتبع استجابة للجرعة. يمكن أن يؤدي تجاوز المستوى المحدد للتعرض المهني إلى تأثيرات ضارة.

آثار العين. تتراوح إصابة العين من احمرار الطبقة الخارجية (احمرار حمام السباحة) إلى تشكل الساد في القرنية وتلف القزحية (الجزء الملون من العين). تُجرى اختبارات تهيج العين عندما يُعتقد أن الإصابة الخطيرة لن تحدث. يمكن أن تتسبب العديد من الآليات التي تسبب تآكل الجلد أيضًا في إصابة العينين. المواد المسببة للتآكل للجلد ، مثل الأحماض القوية (درجة الحموضة أقل من 2) والقلويات (الرقم الهيدروجيني أكبر من 11.5) ، لا يتم اختبارها في عيون الحيوانات لأن معظمها يسبب التآكل والعمى بسبب آلية مماثلة لتلك التي تسبب تآكل الجلد . بالإضافة إلى ذلك ، يمكن أن تتسبب العوامل النشطة السطحية مثل المنظفات والمواد الخافضة للتوتر السطحي في إصابة العين تتراوح من التهيج إلى التآكل. مجموعة المواد التي تتطلب الحذر هي المواد الخافضة للتوتر السطحي موجبة الشحنة (الموجبة) ، والتي يمكن أن تسبب حروقًا وعتامة دائمة للقرنية وتكوين الأوعية الدموية (تكوين الأوعية الدموية). مادة كيميائية أخرى ، دينيتروفينول ، لها تأثير محدد لتكوين الساد. يبدو أن هذا مرتبط بتركيز هذه المادة الكيميائية في العين ، وهو مثال على خصوصية توزيع الحرائك الدوائية.

في حين أن القائمة أعلاه ليست شاملة ، إلا أنها مصممة لمنح القارئ تقديرًا لمختلف آليات السمية الحادة.

آليات السمية شبه المزمنة والمزمنة

عند إعطائها كجرعة عالية واحدة ، فإن بعض المواد الكيميائية ليس لها نفس آلية السمية كما هو الحال عند إعطائها مرارًا وتكرارًا كجرعة أقل ولكن لا تزال سامة. عندما يتم إعطاء جرعة عالية واحدة ، فهناك دائمًا احتمال تجاوز قدرة الشخص على إزالة السموم أو إفراز المادة الكيميائية ، وقد يؤدي ذلك إلى استجابة سامة مختلفة عن تلك التي تحدث عند إعطاء جرعات متكررة أقل. الكحول مثال جيد. تؤدي الجرعات العالية من الكحول إلى تأثيرات أولية على الجهاز العصبي المركزي ، بينما تؤدي الجرعات المنخفضة المتكررة إلى إصابة الكبد.

تثبيط Anticholinesterase. معظم مبيدات الفوسفات العضوي ، على سبيل المثال ، لها سمية قليلة للثدييات حتى يتم تنشيطها الأيضي ، بشكل أساسي في الكبد. تتمثل الآلية الأساسية لعمل الفوسفات العضوي في تثبيط إنزيم أستيل كولينستراز (AChE) في الدماغ والجهاز العصبي المحيطي. AChE هو الإنزيم الطبيعي الذي ينهي تحفيز الناقل العصبي أستيل كولين. لم يرتبط التثبيط الطفيف لـ AChE على مدى فترة طويلة بتأثيرات ضارة. عند مستويات عالية من التعرض ، يؤدي عدم القدرة على إنهاء هذا التحفيز العصبي إلى تحفيز مفرط للجهاز العصبي الكوليني. يؤدي التحفيز الكوليني المفرط في النهاية إلى مجموعة من الأعراض ، بما في ذلك توقف التنفس ، يليه الموت إذا لم يتم علاجه. العلاج الأساسي هو إعطاء الأتروبين ، الذي يمنع آثار الأسيتيل كولين ، وإعطاء البراليدوكسيم كلوريد ، الذي يعيد تنشيط AChE المثبط. لذلك ، تتم معالجة كل من سبب وعلاج سمية الفوسفات العضوي من خلال فهم الأساس الكيميائي الحيوي للسمية.

تنشيط التمثيل الغذائي. يتم تنشيط العديد من المواد الكيميائية ، بما في ذلك رابع كلوريد الكربون ، والكلوروفورم ، وأسيتيل أمين فلورين ، والنيتروزامين ، والباراكوات بشكل استقلابي إلى الجذور الحرة أو غيرها من المواد الوسيطة التفاعلية التي تثبط الوظيفة الخلوية الطبيعية وتتداخل معها. عند مستويات عالية من التعرض ، يؤدي هذا إلى موت الخلايا (انظر "الإصابة الخلوية والموت الخلوي"). بينما تظل التفاعلات المحددة والأهداف الخلوية غير معروفة ، فإن أنظمة الأعضاء التي لديها القدرة على تنشيط هذه المواد الكيميائية ، مثل الكبد والكلى والرئة ، كلها أهداف محتملة للإصابة. على وجه التحديد ، تتمتع خلايا معينة داخل العضو بقدرة أكبر أو أقل على تنشيط أو إزالة السموم من هذه المواد الوسيطة ، وهذه القدرة تحدد القابلية داخل الخلايا داخل العضو. الأيض هو أحد الأسباب التي تجعل فهم الحرائك الدوائية ، الذي يصف هذه الأنواع من التحولات وتوزيع هذه المواد الوسيطة والقضاء عليها ، مهمًا في التعرف على آلية عمل هذه المواد الكيميائية.

آليات السرطان. السرطان هو تعدد الأمراض ، وبينما يتزايد فهم أنواع معينة من السرطان بسرعة بسبب العديد من التقنيات البيولوجية الجزيئية التي تم تطويرها منذ عام 1980 ، لا يزال هناك الكثير لنتعلمه. ومع ذلك ، من الواضح أن تطور السرطان هو عملية متعددة المراحل ، والجينات الحرجة هي المفتاح لأنواع مختلفة من السرطان. يمكن أن تؤدي التعديلات في الدنا (الطفرات الجسدية) في عدد من هذه الجينات الحرجة إلى زيادة القابلية للإصابة أو الآفات السرطانية (انظر "علم السموم الوراثي"). التعرض للمواد الكيميائية الطبيعية (في الأطعمة المطبوخة مثل لحوم البقر والأسماك) أو المواد الكيميائية الاصطناعية (مثل البنزيدين المستخدم كصبغة) أو العوامل الفيزيائية (الأشعة فوق البنفسجية من الشمس ، الرادون من التربة ، أشعة جاما من الإجراءات الطبية أو النشاط الصناعي) كلها المساهمين في الطفرات الجينية الجسدية. ومع ذلك ، هناك مواد طبيعية وصناعية (مثل مضادات الأكسدة) وعمليات إصلاح الحمض النووي التي تحمي وتحافظ على التوازن. من الواضح أن الوراثة عامل مهم في الإصابة بالسرطان ، لأن متلازمات الأمراض الوراثية مثل جفاف الجلد المصطبغ ، حيث يوجد نقص في إصلاح الحمض النووي الطبيعي ، تزيد بشكل كبير من القابلية للإصابة بسرطان الجلد من التعرض للأشعة فوق البنفسجية من الشمس.

آليات الإنجاب. على غرار السرطان ، فإن العديد من آليات السمية الإنجابية و / أو التنموية معروفة ، ولكن هناك الكثير مما يجب تعلمه. من المعروف أن بعض الفيروسات (مثل الحصبة الألمانية) والالتهابات البكتيرية والأدوية (مثل الثاليدومايد وفيتامين أ) ستؤثر سلبًا على النمو. في الآونة الأخيرة ، أظهر عمل Khera (1991) ، الذي راجعه Carney (1994) ، دليلًا جيدًا على أن التأثيرات التطورية غير الطبيعية في الاختبارات الحيوانية باستخدام جلايكول الإيثيلين تُعزى إلى المستقلبات الحمضية الأيضية للأم. يحدث هذا عندما يتم استقلاب الإيثيلين جلايكول إلى مستقلبات الحمض بما في ذلك حمض الجليكوليك وحمض الأكساليك. يبدو أن التأثيرات اللاحقة على المشيمة والجنين ناتجة عن عملية التسمم الأيضي.

وفي الختام

الهدف من هذه المقالة هو إعطاء منظور حول العديد من الآليات المعروفة للسمية والحاجة إلى الدراسة المستقبلية. من المهم أن نفهم أن المعرفة الآلية ليست ضرورية تمامًا لحماية صحة الإنسان أو البيئة. ستعزز هذه المعرفة قدرة المحترف على التنبؤ وإدارة السمية بشكل أفضل. تعتمد التقنيات الفعلية المستخدمة في توضيح أي آلية معينة على المعرفة الجماعية للعلماء وتفكير أولئك الذين يتخذون القرارات المتعلقة بصحة الإنسان.

 

الرجوع

عرض 10714 مرات آخر تعديل ليوم الثلاثاء، 26 يوليو 2022 19: 33
المزيد في هذه الفئة: إصابة الخلايا وموتها »

"إخلاء المسؤولية: لا تتحمل منظمة العمل الدولية المسؤولية عن المحتوى المعروض على بوابة الويب هذه والذي يتم تقديمه بأي لغة أخرى غير الإنجليزية ، وهي اللغة المستخدمة للإنتاج الأولي ومراجعة الأقران للمحتوى الأصلي. لم يتم تحديث بعض الإحصائيات منذ ذلك الحين. إنتاج الطبعة الرابعة من الموسوعة (4). "

المحتويات

مراجع علم السموم

أندرسن و KE و HI Maibach. 1985. الاتصال بالاختبارات التنبؤية للحساسية على خنازير غينيا. الفصل. 14 بوصة المشاكل الحالية في الأمراض الجلدية. بازل: كارجر.

آشبي ، جي و آر دبليو تينانت. 1991. علاقات نهائية بين التركيب الكيميائي ، والسرطنة والطفرات لـ 301 مادة كيميائية تم اختبارها بواسطة NTP بالولايات المتحدة. موتات ريس 257: 229-306.

بارلو ، إس و إف سوليفان. 1982. المخاطر الإنجابية للمواد الكيميائية الصناعية. لندن: مطبعة أكاديمية.

باريت ، جي سي. 1993 أ. آليات عمل مسببات السرطان البشرية المعروفة. في آليات التسرطن في تحديد المخاطر، تم تحريره بواسطة H Vainio و PN Magee و DB McGregor و AJ McMichael. ليون: الوكالة الدولية لأبحاث السرطان (IARC).

-. 1993 ب. آليات التسرطن متعدد الخطوات وتقييم مخاطر المواد المسببة للسرطان. إنفيرون هيلث بيرسب 100: 9-20.

برنشتاين ، مي. 1984. العوامل التي تؤثر على الجهاز التناسلي الذكري: تأثيرات البنية على النشاط. القس متعب المخدرات 15: 941-996.

بيوتلر ، إي. 1992. البيولوجيا الجزيئية لمتغيرات G6PD وعيوب أخرى في الخلايا الحمراء. آنو القس ميد 43: 47-59.

بلوم ، م. 1981. مبادئ توجيهية للدراسات الإنجابية في السكان البشريين المعرضين. وايت بلينز ، نيويورك: مؤسسة March of Dimes.

بورغوف ، إس ، بي شورت وجي سوينبيرج. 1990. الآليات البيوكيميائية والبيولوجيا المرضية لاعتلال الكلية أ -2-الجلوبيولين. Annu Rev Pharmacol Toxicol 30: 349.

بورشيل ، بي ، دي دبليو نيبرت ، دكتور نيلسون ، كو دبليو بوك ، تي إياناجي ، بي إل إم يانسن ، دي لانسيت ، جي جي مولدر ، جي آر تشودري ، جي سيست ، تي آر تيفلي ، وبي ماكنزي. 1991. عائلة جين UPD-glucuronosyltransferase الفائقة: التسمية المقترحة على أساس الاختلاف التطوري. بيول خلية الحمض النووي 10: 487-494.

بورليسون ، جي ، إيه مونسون ، وجي دين. 1995. الطرق الحديثة في علم السموم المناعية. نيويورك: وايلي.

Capecchi، M. 1994. استبدال الجينات المستهدفة. علوم 270: 52-59.

كارني ، إي دبليو. 1994. منظور متكامل حول السمية التنموية للإيثيلين جلايكول. مندوب توكسيكول 8: 99-113.

دين ، جيه إتش ، مي لاستر ، إيه إي مونسون ، وأنا كيمبر. 1994. علم السموم المناعية وعلم الأدوية المناعي. نيويورك: مطبعة رافين.

ديسكوتس ، ي. 1986. علم السموم المناعي للأدوية والكيماويات. أمستردام: إلسفير.

ديفاري ، واي ، سي روزيت ، جي أيه ديدوناتو ، إم كارين. 1993. تنشيط NFkB بواسطة الأشعة فوق البنفسجية التي لا تعتمد على إشارة نووية. علوم 261: 1442-1445.

ديكسون ، RL. 1985. علم السموم التناسلية. نيويورك: مطبعة رافين.

دافوس ، ج. 1993. مسرد للكيميائيين للمصطلحات المستخدمة في علم السموم. بيور ابيل كيم 65: 2003-2122.

Elsenhans و B و K Schuemann و W Forth. 1991. المعادن السامة: التفاعلات مع المعادن الأساسية. في التغذية والسمية والسرطان، الذي حرره IR Rowland. بوكا راتون: مطبعة اتفاقية حقوق الطفل.

وكالة حماية البيئة (EPA). 1992. خطوط إرشادية لتقييم التعرض. ريج فيدرالي 57: 22888-22938.

-. 1993. مبادئ تقييم مخاطر السمية العصبية. ريج فيدرالي 58: 41556-41598.

-. 1994. مبادئ توجيهية لتقييم السمية الإنجابية. واشنطن العاصمة: وكالة حماية البيئة الأمريكية: مكتب البحث والتطوير.

فيرغسون ، جي. 1990. العناصر الثقيلة. الفصل. 15 بوصة الكيمياء والتأثير البيئي والآثار الصحية. أكسفورد: بيرغامون.

Gehring و PJ و PG Watanabe و GE Blau. 1976. دراسات حركية الدواء في تقييم المخاطر السمية والبيئية للمواد الكيميائية. المفاهيم الجديدة Saf Eval 1 (الجزء 1 ، الفصل 8): 195-270.

غولدشتاين ، جيه إيه و إس إم إف دي مورايس. 1994. الكيمياء الحيوية والبيولوجيا الجزيئية للإنسان CYP2C فصيلة. علم الوراثة الدوائي 4: 285-299.

جونزاليس ، FJ. 1992. السيتوكروم البشري P450: المشاكل والآفاق. اتجاهات Pharmacol العلوم 13: 346-352.

Gonzalez و FJ و CL Crespi و HV Gelboin. 1991. السيتوكروم البشري المعبر عن cDNA P450: عصر جديد في علم السموم الجزيئي وتقييم المخاطر البشرية. موتات ريس 247: 113-127.

جونزاليس ، FJ و DW نيبرت. 1990. تطور الفصيلة الجينية الفائقة P450: "الحرب" الحيوانية والنباتية ، والدافع الجزيئي ، والاختلافات الجينية البشرية في أكسدة الدواء. اتجاهات الجينات 6: 182-186.

جرانت ، مارك ألماني. 1993. علم الوراثة الجزيئي لـ N-acetyltransferases. علم الوراثة الدوائي 3: 45-50.

جراي ، لي ، جي أوستبي ، آر سيغمون ، جي فيريل ، آر ليندر ، آر كوبر ، جي جولدمان ، وجي لاسكي. 1988. وضع بروتوكول لتقييم الآثار التناسلية للمواد السامة في الفئران. مندوب توكسيكول 2: 281-287.

جينجيرش ، FP. 1989. تعدد أشكال السيتوكروم P450 في البشر. اتجاهات Pharmacol العلوم 10: 107-109.

-. 1993. إنزيمات السيتوكروم P450. أنا علوم 81: 440-447.

هانش ، سي ، وآيه ليو. 1979. الثوابت البديلة لتحليل الارتباط في الكيمياء والبيولوجيا. نيويورك: وايلي.

هانش ، سي و إل تشانغ. 1993. العلاقات الكمية بين التركيب والنشاط للسيتوكروم P450. القس متعب المخدرات 25: 1-48.

هايز أ. 1988. مبادئ وطرق علم السموم. الطبعة الثانية. نيويورك: مطبعة رافين.

Heindell و JJ و RE Chapin. 1993. طرق في علم السموم: السموم التناسلية للذكور والإناث. المجلد. 1 و 2. سان دييغو ، كاليفورنيا: مطبعة أكاديمية.

الوكالة الدولية لأبحاث السرطان (IARC). 1992. الأشعة الشمسية والأشعة فوق البنفسجية. ليون: IARC.

-. 1993. التعرض المهني لمصففي الشعر والحلاقين والاستخدام الشخصي لملونات الشعر: بعض صبغات الشعر وملونات التجميل والأصباغ الصناعية والأمينات العطرية. ليون: IARC.

-. 1994 أ. الديباجة. ليون: IARC.

-. 1994 ب. بعض الكيماويات الصناعية. ليون: IARC.

اللجنة الدولية للوقاية من الإشعاع (ICRP). 1965. مبادئ المراقبة البيئية المتعلقة بتداول المواد المشعة. تقرير اللجنة الرابعة للجنة الدولية للوقاية من الإشعاع. أكسفورد: بيرغامون.

البرنامج الدولي للسلامة الكيميائية (IPCS). 1991. مبادئ وطرق تقييم السمية الكلوية المرتبطة بالتعرض للمواد الكيميائية ، EHC 119. جنيف: منظمة الصحة العالمية.

-. 1996. مبادئ وطرق التقييم السمية المناعية المباشرة المرتبطة بالتعرض للمواد الكيميائية, إي إتش سي 180. جنيف: منظمة الصحة العالمية.

جوهانسون ، جي و بي إتش ناسلوند. 1988. برمجة جداول البيانات - نهج جديد في النمذجة الفسيولوجية للحركية السمية للمذيبات. رسائل Toxicol 41: 115-127.

جونسون ، BL. 1978. الوقاية من مرض السمية العصبية في السكان العاملين. نيويورك: وايلي.

جونز ، جي سي ، جي إم وارد ، يو موهر ، وآر دي هانت. 1990. نظام المكونة للدم ، دراسة ILSI ، برلين: Springer Verlag.

كالو ، و. 1962. علم الوراثة الدوائية: الوراثة والاستجابة للأدوية. فيلادلفيا: دبليو بي سوندرز.

-. 1992. علم الوراثة الدوائية من التمثيل الغذائي للدواء. نيويورك: بيرغامون.

Kammüller و ME و N Bloksma و W Seinen. 1989. المناعة الذاتية وعلم السموم. عدم انتظام المناعة الناجم عن الأدوية والمواد الكيميائية. أمستردام: Elsevier Sciences.

كواجيري ، ك ، ج واتانابي ، وسي هاياشي. 1994. تعدد الأشكال الجيني لـ P450 وسرطان الإنسان. في السيتوكروم P450: الكيمياء الحيوية والفيزياء الحيوية والبيولوجيا الجزيئية، الذي حرره MC Lechner. باريس: جون ليبي يوروتكست.

كيهرير ، جي بي. 1993. الجذور الحرة كوسيط لإصابة الأنسجة والمرض. كريت القس توكسيكول 23: 21-48.

كيليرمان ، جي ، سي آر شو ، وإم لويتن كيليرمان. 1973. تحريض أريل هيدروكربون هيدروكسيلاز والسرطان القصبي المنشأ. New Engl J Med 289: 934-937.

خيرة ، كانساس. 1991. التغييرات المستحثة كيميائيا التوازن الأمومي وأنسجة الحمل: أهميتها المسببة في التشوهات الجنينية الفئران. علم المسخ 44: 259-297.

Kimmel و CA و GL Kimmel و V Frankos. 1986. حلقة عمل لفريق الاتصال التنظيمي المشترك بين الوكالات بشأن تقييم مخاطر السمية الإنجابية. إنفيرون هيلث بيرسب 66: 193-221.

كلاسن ، سي دي ، مو أمدور وجيه دول (محرران). 1991. كاساريت ودول علم السموم. نيويورك: مطبعة بيرغامون.

كرامر ، HJ ، EJHM Jansen ، MJ Zeilmaker ، HJ van Kranen و ED Kroese. 1995. الأساليب الكمية في علم السموم لتقييم استجابة الإنسان للجرعة. تقرير RIVM عدد. 659101004.

كريس ، إس ، سي سوتر ، بي تي ستريكلاند ، إتش مختار ، جي شفايتزر ، إم شوارتز. 1992. نمط الطفرات النوعية للسرطان في الجين p53 في سرطان الخلايا الحرشفية المستحث بالإشعاع فوق البنفسجي لجلد الفأر. مرض السرطان 52: 6400-6403.

Krewski، D، D Gaylor، M Szyazkowicz. 1991. نهج خال من النماذج لاستقراء الجرعات المنخفضة. إنف إتش بيرس 90: 270-285.

Lawton و MP و T Cresteil و AA Elfarra و E Hodgson و J Ozols و RM Philpot و AE Rettie و DE Williams و JR Cashman و CT Dolphin و RN Hines و T Kimura و IR Phillips و LL Poulsen و EA Shephare و DM Ziegler. 1994. تسمية لعائلة الجينات أحادية الأكسجين التي تحتوي على الفلافين في الثدييات على أساس هويات تسلسل الأحماض الأمينية. قوس Biochem Biophys 308: 254-257.

Lewalter و J و U Korallus. 1985. اتحاد بروتينات الدم واستلة الأمينات العطرية. نتائج جديدة بشأن الرصد البيولوجي. Int قوس احتلال البيئة الصحية 56: 179-196.

Majno ، G وأنا جوريس. 1995. موت الخلايا المبرمج ، الأورام والنخر: نظرة عامة على موت الخلايا. أنا J باتول 146: 3-15.

ماتيسون ، DR و PJ Thomford. 1989. آلية عمل المواد السامة للتكاثر. توكسيكول باتول 17: 364-376.

ماير ، UA. 1994. تعدد أشكال السيتوكروم P450 CYP2D6 كعامل خطر في التسرطن. في السيتوكروم P450: الكيمياء الحيوية والفيزياء الحيوية والبيولوجيا الجزيئية، الذي حرره MC Lechner. باريس: جون ليبي يوروتكست.

Moller ، H ، H Vainio و E Heseltine. 1994. التقدير الكمي والتنبؤ بالمخاطر في الوكالة الدولية لبحوث السرطان. دقة السرطان 54: 3625-3627.

مولينار ، RJ. 1994. الافتراضات الافتراضية في تقييم مخاطر المواد المسرطنة التي تستخدمها الوكالات التنظيمية. ريجول توكسيكول فارماكول 20: 135-141.

موسر ، VC. 1990. مناهج فحص السمية العصبية: مجموعة مراقبة وظيفية. J آم كول توكسيكول 1: 85-93.

المجلس القومي للبحوث (NRC). 1983. تقييم المخاطر في الحكومة الاتحادية: إدارة العملية. واشنطن العاصمة: NAS Press.

-. 1989. العلامات البيولوجية في السمية الإنجابية. واشنطن العاصمة: NAS Press.

-. 1992. العلامات البيولوجية في علم السموم المناعية. اللجنة الفرعية لعلم السموم. واشنطن العاصمة: NAS Press.

نيبرت ، دويتشه فيله. 1988. الجينات التي تشفر إنزيمات استقلاب الدواء: دور محتمل في مرض الإنسان. في التباين المظهري في السكان، تم تحريره بواسطة AD Woodhead و MA Bender و RC Leonard. نيويورك: Plenum Publishing.

-. 1994. إنزيمات التمثيل الغذائي للدواء في النسخ المشكل بالرابط. دكاك Pharmacol 47: 25-37.

Nebert و DW و WW Weber. 1990. علم الوراثة الدوائية. في مبادئ العمل في مجال المخدرات. أساس علم الأدوية، الذي حرره WB Pratt و PW Taylor. نيويورك: تشرشل ليفينجستون.

نيبرت ، دويتشه فيله ودكتور نيلسون. 1991. تسمية الجينات P450 على أساس التطور. في طرق علم الانزيم. السيتوكروم P450تم تحريره بواسطة MR Waterman و EF Johnson. أورلاندو ، فلوريدا: مطبعة أكاديمية.

نيبرت ، دويتشه فيله ورايه ماكينون. 1994. السيتوكروم P450: التطور والتنوع الوظيفي. بروغ ليف ديس 12: 63-97.

Nebert و DW و M Adesnik و MJ Coon و RW Estabrook و FJ Gonzalez و FP Guengerich و IC Gunsalus و EF Johnson و B Kemper و W Levin و IR Phillips و R Sato و MR Waterman. 1987. الفصيلة الجينية الفائقة P450: التسمية الموصى بها. بيول خلية الحمض النووي 6: 1-11.

Nebert و DW و DR Nelson و MJ Coon و RW Estabrook و R Feyereisen و Y Fujii-Kuriyama و FJ Gonzalez و FP Guengerich و IC Gunsalas و EF Johnson و JC Loper و R Sato و MR Waterman و DJ Waxman. 1991. عائلة P450 الفائقة: تحديث للتسلسلات الجديدة ، ورسم الخرائط الجينية ، والتسميات الموصى بها. بيول خلية الحمض النووي 10: 1-14.

Nebert و DW و DD Petersen و A Puga. 1991. تعدد الأشكال في موضع الإنسان والسرطان: تحفيز CYP1A1 والجينات الأخرى عن طريق منتجات الاحتراق والديوكسين. علم الوراثة الدوائي 1: 68-78.

نيبرت ، دويتشه فيله ، أ بوجا ، وفاسيليو. 1993. دور مستقبلات Ah وبطارية الجينات المحفزة بالديوكسين [Ah] في السمية والسرطان ونقل الإشارة. Ann NY Acad Sci 685: 624-640.

Nelson و DR و T Kamataki و DJ Waxman و FP Guengerich و RW Estabrook و R Feyereisen و FJ Gonzalez و MJ Coon و IC Gunsalus و O Gotoh و DW Nebert و K Okuda. 1993. عائلة P450 الفائقة: تحديث للتسلسلات الجديدة ، ورسم خرائط الجينات ، وأرقام المدخلات ، والأسماء التافهة المبكرة للإنزيمات ، والتسميات. بيول خلية الحمض النووي 12: 1-51.

Nicholson و DW و A All و NA Thornberry و JP Vaillancourt و CK Ding و M Gallant و Y Gareau و PR Griffin و M Labelle و YA Lazebnik و NA Munday و SM Raju و ME Smulson و TT Yamin و VL Yu و DK Miller. 1995. تحديد وتثبيط إنزيم البروتياز ICE / CED-3 الضروري لموت الخلايا المبرمج في الثدييات. الطبيعة 376: 37-43.

Nolan و RJ و WT Stott و PG Watanabe. 1995. البيانات السمية في تقييم السلامة الكيميائية. الفصل. 2 بوصة باتي للنظافة الصناعية وعلم السمومتم تحريره بواسطة LJ Cralley و LV Cralley و JS Bus. نيويورك: جون وايلي وأولاده.

نوردبيرج ، جي إف. 1976. علاقات التأثير والجرعة والاستجابة للمعادن السامة. أمستردام: إلسفير.

مكتب تقييم التكنولوجيا (OTA). 1985. مخاطر الإنجاب في مكان العمل. رقم الوثيقة OTA-BA-266. واشنطن العاصمة: مكتب الطباعة الحكومي.

-. 1990. السمية العصبية: تحديد السموم في الجهاز العصبي والتحكم فيها. رقم الوثيقة OTA-BA-436. واشنطن العاصمة: مكتب الطباعة الحكومي.

منظمة التعاون الاقتصادي والتنمية (OECD). 1993. مشروع مشترك بين وكالة حماية البيئة الأمريكية والمفوضية الأوروبية بشأن تقييم علاقات النشاط البنيوي (الكمي). باريس: OECD.

بارك ، سي إن ، إن سي هوكينز. 1993. استعراض التكنولوجيا ؛ لمحة عامة عن تقييم مخاطر السرطان. طرق Toxicol 3: 63-86.

بيز ، دبليو ، جي فاندنبرغ ، و دبليو كيه هوبر. 1991. مقارنة النهج البديلة لتحديد المستويات التنظيمية للمواد السمية الإنجابية: DBCP كدراسة حالة. إنفيرون هيلث بيرسب 91: 141-155.

Prpi ƒ -ماجي ƒ و D و S Telišman و S Kezi ƒ . 6.5. دراسة في المختبر عن تفاعل الرصاص والكحول وتثبيط إنزيم دلتا-أمينوليفولينك حامض الكريات الحمر في الإنسان. سكاند جي بيئة العمل الصحية 10: 235-238.

Reitz و RH و RJ Nolan و AM Schumann. 1987. تطوير أنواع متعددة ، نماذج حركية دوائية متعددة المسارات لكلوريد الميثيلين و 1,1,1،XNUMX،XNUMX ثلاثي كلورو الإيثان. في الحرائك الدوائية وتقييم المخاطر ومياه الشرب والصحة. واشنطن العاصمة: مطبعة الأكاديمية الوطنية.

رويت ، أنا ، جيه بروستوف ، ودي ذكر. 1989. علم المناعة. لندن: جاور للنشر الطبي.

Sato، A. 1991. تأثير العوامل البيئية على سلوك الحرائك الدوائية لأبخرة المذيبات العضوية. آن احتل هيج 35: 525-541.

سيلبيرجيلد ، كرونة إستونية. 1990. تطوير طرق تقييم المخاطر الرسمية للمواد السامة للأعصاب: تقييم للدولة من الفن. في التطورات في علم السموم السلوكية العصبيةتم تحريره بواسطة BL Johnson و WK Anger و A Durao و C Xintaras. تشيلسي ، ميشيغان: لويس.

سبنسر ، PS و HH Schaumberg. 1980. علم السموم العصبي التجريبي والسريري. بالتيمور: ويليامز وويلكينز.

سويني ، AM ، MR Meyer ، JH Aarons ، JL Mills ، و RE LePorte. 1988. تقييم طرق التحديد المستقبلي للخسائر المبكرة للجنين في الدراسات الوبائية البيئية. آم J إبيديميول 127: 843-850.

تايلور ، بكالوريوس ، HJ Heiniger ، و H Meier. 1973. التحليل الجيني للمقاومة لتلف الخصية الناجم عن الكادميوم في الفئران. بروك سوك أكسب بيول ميد 143: 629-633.

Telišman، S. 1995. تفاعلات المعادن الأساسية و / أو السامة والفلزات فيما يتعلق بالاختلافات بين الأفراد في القابلية للإصابة بمواد سامة مختلفة وأمراض مزمنة في الإنسان. اره تلاعب رادا توكسيكول 46: 459-476.

Telišman و S و A Pinent و D Prpi ƒ -ماجي ƒ . 6.5. تدخل الرصاص في استقلاب الزنك وتفاعل الرصاص والزنك في البشر كتفسير محتمل لقابلية الفرد الواضحة للتعرض للرصاص. في المعادن الثقيلة في البيئة ، حرره RJ Allan و JO Nriagu. إدنبرة: CEP Consultants.

Telišman، S، D Prpi ƒ -ماجي ƒ ، و س كيزي ƒ . 6.5. دراسة في الجسم الحي عن تفاعل الرصاص والكحول وتثبيط إنزيم نازعة حمض الدم في الإنسان. سكاند جي بيئة العمل الصحية 10: 239-244.

تيلسون ، HA و PA Cabe. 1978. استراتيجيات لتقييم النتائج السلوكية العصبية للعوامل البيئية. إنفيرون هيلث بيرسب 26: 287-299.

ترامب و BF و AU Arstila. 1971. إصابة الزنزانة وموتها. في مبادئ علم الأمراض، حرره MF LaVia و RB Hill Jr. New York: Oxford Univ. يضعط.

ترامب ، BF و IK Berezesky. 1992. دور عصاري خلوي Ca2 + في إصابة الخلايا والنخر والاستماتة. Curr Opin Cell Biol 4: 227-232.

-. 1995. إصابة الخلايا بوساطة الكالسيوم وموت الخلايا. بولسن J 9: 219-228.

ترامب ، BF ، IK Berezesky ، و Osornio-Vargas. 1981. موت الخلايا وعملية المرض. دور الكالسيوم الخلوي. في موت الخلايا في علم الأحياء وعلم الأمراض، الذي حرره ID Bowen و RA Lockshin. لندن: تشابمان آند هول.

فوس ، جي جي ، إم يونس وإي سميث. 1995. الحساسية المفرطة للحساسية الناجمة عن المواد الكيميائية: توصيات للوقاية نُشرت بالنيابة عن المكتب الإقليمي لمنظمة الصحة العالمية لأوروبا. بوكا راتون ، فلوريدا: مطبعة CRC.

ويبر ، دبليو. 1987. جينات الأسيتيل والاستجابة للأدوية. نيويورك: جامعة أكسفورد. يضعط.

منظمة الصحة العالمية (WHO). 1980. الحدود الصحية الموصى بها في التعرض المهني للمعادن الثقيلة. سلسلة التقارير الفنية ، رقم 647. جنيف: منظمة الصحة العالمية.

-. 1986. مبادئ وطرق تقييم السمية العصبية المرتبطة بالتعرض للمواد الكيميائية. معايير الصحة البيئية ، رقم 60. جنيف: منظمة الصحة العالمية.

-. 1987. إرشادات جودة الهواء لأوروبا. السلسلة الأوروبية ، رقم 23. كوبنهاغن: منشورات منظمة الصحة العالمية الإقليمية.

-. 1989. مسرد مصطلحات السلامة الكيميائية للاستخدام في منشورات IPCS. جنيف: منظمة الصحة العالمية.

-. 1993. اشتقاق القيم الإرشادية لحدود التعرض المعتمد على الصحة. معايير الصحة البيئية ، مسودة غير محررة. جنيف: منظمة الصحة العالمية.

Wyllie و AH و JFR Kerr و AR Currie. 1980. موت الخلية: أهمية موت الخلايا المبرمج. Int القس Cytol 68: 251-306.

REFS LABEL = قراءات أخرى ذات صلة

ألبرت ، ري. 1994. تقييم مخاطر المواد المسرطنة في وكالة حماية البيئة الأمريكية. كريت. القس Toxicol 24: 75-85.

ألبرتس ، ب ، دي براي ، جيه لويس ، إم راف ، ك روبرتس ، وجيه دي واتسون. 1988. البيولوجيا الجزيئية للخلية. نيويورك: جارلاند للنشر.

أرينز ، إي جيه. 1964. علم الأدوية الجزيئي. الحجم 1. نيويورك: مطبعة أكاديمية.

Ariens و EJ و E Mutschler و AM Simonis. 1978. Allgemeine Toxicologie [علم السموم العام]. شتوتغارت: جورج ثيمي فيرلاغ.

آشبي ، جي و آر دبليو تينانت. 1994. توقع السرطنة للقوارض لـ 44 مادة كيميائية: النتائج. الطفرات 9: 7-15.

أشفورد ، NA ، CJ Spadafor ، DB Hattis و CC Caldart. 1990. مراقبة العامل للتعرض والمرض. بالتيمور: جامعة جونز هوبكنز. يضعط.

بالابوها ، إن إس وجي فرادكين. 1958. Nakoplenie radioaktivnih elementov v Organizme I ih vivedenie [تراكم العناصر المشعة في الكائن وإفرازها]. موسكفا: ميدجز.

الكرات ، M ، J Bridges ، و J Southee. 1991. الحيوانات والبدائل في علم السموم الوضع الحالي وآفاق المستقبل. نوتنغهام ، المملكة المتحدة: صندوق استبدال الحيوانات في التجارب الطبية.

Berlin و A و J Dean و MH Draper و EMB Smith و F Spreafico. 1987. علم السموم المناعية. دوردريخت: مارتينوس نيجهوف.

Boyhous، A. 1974. التنفس. نيويورك: Grune & Stratton.

برانداو ، آر و بي إتش ليبولد. 1982. الامتصاص الجلدي والجلد. شتوتغارت: Wissenschaftliche Verlagsgesellschaft.

بروسيك ، دي جي. 1994. طرق تقييم المخاطر الجينية. بوكا راتون: دار نشر لويس.

بوريل ، ر. 1993. السمية المناعية للإنسان. مول أسبكتس ميد 14: 1-81.

كاستل ، جي في و إم جي جوميز ليتشون. 1992. بدائل في المختبر لعلم السموم الدوائية للحيوان. مدريد ، إسبانيا: Farmaindustria.

تشابمان ، ج .1967. سوائل الجسم ووظائفها. لندن: إدوارد أرنولد.

لجنة العلامات البيولوجية بالمجلس القومي للبحوث. 1987. المؤشرات البيولوجية في بحوث الصحة البيئية. إنفيرون هيلث بيرسب 74: 3-9.

Cralley و LJ و LV Cralley و JS Bus (محرران). 1978. باتي للنظافة الصناعية وعلم السموم. نيويورك: ويتي.

دايان ، AD ، RF Hertel ، E Heseltine ، G Kazantis ، EM Smith ، و MT Van der Venne. 1990. السمية المناعية للمعادن وعلم السموم المناعية. نيويورك: Plenum Press.

دجوريك ، د. 1987. الجوانب الجزيئية الخلوية للتعرض المهني للمواد الكيميائية السامة. في الجزء 1 حركية السموم. جنيف: منظمة الصحة العالمية.

دافوس ، ج. 1980. علم السموم البيئية. لندن: إدوارد أرنولد.

إيكوتوك. 1986. العلاقة بين البنية والنشاط في علم السموم وعلم السموم البيئية ، دراسة رقم 8. بروكسل: ECOTOC.

فورث ، دبليو ، دي هنشلر ، و دبليو روميل. 1983. علم الأدوية والسموم. مانهايم: Biblio- Graphische Institut.

فرايزر ، جم. 1990. المعايير العلمية للتحقق من صحة اختبارات السمية في المختبر. دراسة بيئية لمنظمة التعاون الاقتصادي والتنمية ، لا. 36. باريس: منظمة التعاون والتنمية في الميدان الاقتصادي.

-. 1992. السمية في المختبر - تطبيقات لتقييم السلامة. نيويورك: مارسيل ديكر.

جاد ، كارولينا الجنوبية. 1994. في علم السموم المختبرية. نيويورك: مطبعة رافين.

جاداسكينا ، أ. 1970. Zhiroraya tkan I yadi [الأنسجة الدهنية والمواد السامة]. في Aktualnie Vaprosi promishlenoi toksikolgii [المشكلات الفعلية في علم السموم المهنية]، الذي حرره NV Lazarev. لينينغراد: وزارة الصحة في روسيا الاتحادية الاشتراكية السوفياتية.

جايلور ، دويتشه فيله. 1983. استخدام عوامل الأمان للتحكم في المخاطر. ياء توكسيكول البيئة الصحية 11: 329-336.

جيبسون ، جي جي ، آر هوبارد ، ودي في بارك. 1983. علم السموم المناعية. لندن: مطبعة أكاديمية.

غولدبرغ ، صباحا. 1983-1995. بدائل في علم السموم. المجلد. 1-12. نيويورك: ماري آن ليبرت.

Grandjean، P. 1992. القابلية الفردية للسمية. رسائل Toxicol 64 / 65: 43-51.

Hanke و J و JK Piotrowski. 1984. الكيمياء الحيوية توكسيكولوجى [الأساس البيوكيميائي لعلم السموم]. وارسو: PZWL.

هاتش ، تي أند بي جروس. 1954. الترسب الرئوي والاحتفاظ بالبخاخات المستنشقة. نيويورك: مطبعة أكاديمية.

مجلس الصحة الهولندي: لجنة تقييم السرطنة للمواد الكيميائية. 1994. تقييم مخاطر المواد الكيميائية المسببة للسرطان في هولندا. ريجول توكسيكول فارماكول 19: 14-30.

هولندا ، WC ، RL Klein ، و AH Briggs. 1967. علم الأدوية الجزيئي.

هوف ، جي. 1993. المواد الكيميائية والسرطان في البشر: أول دليل على حيوانات التجارب. إنفيرون هيلث بيرسب 100: 201-210.

كلاسن ، سي دي ودل إيتون. 1991. مبادئ علم السموم. الفصل. 2 بوصة علم السموم كاساريت ودول، تم تحريره بواسطة CD Klaassen و MO Amdur و J Doull. نيويورك: مطبعة بيرغامون.

كوسوفر ، إم. 1962. الكيمياء الحيوية الجزيئية. نيويورك: مكجرو هيل.

كوندييف ، يي. 1975.Vssavanie pesticidov cherez kozsu I profilaktika otravlenii [امتصاص المبيدات عن طريق الجلد ومنع التسمم]. كييف: زدوروفيا.

Kustov و VV و LA Tiunov و JA Vasiljev. 1975. Komvinovanie deistvie promishlenih Yadov [التأثيرات المجمعة للمواد السامة الصناعية]. موسكفا: ميديسينا.

Lauwerys، R. 1982. علم السموم الصناعي والتسمم المهني. باريس: ماسون.

Li و AP و RH Heflich. 1991. علم السموم الوراثي. بوكا راتون: مطبعة اتفاقية حقوق الطفل.

Loewey و AG و P Siekewitz. 1969. هيكل الخلية ووظائفها. نيويورك: هولت ورينهارت ونستون.

لوميس ، تا. 1976. أساسيات علم السموم. فيلادلفيا: ليا & فيبيجر.

Mendelsohn و ML و RJ Albertini. 1990. الطفرة والبيئة ، أجزاء AE. نيويورك: وايلي ليس.

ميتزلر ، دي. 1977. كيمياء حيوية. نيويورك: مطبعة أكاديمية.

ميلر ، ك ، جيه إل ترك ، وإس نيكلين. 1992. مبادئ وممارسات علم السموم المناعية. أكسفورد: بلاكويلز العلمية.

وزارة التجارة الدولية والصناعة. 1981. كتيب المواد الكيميائية الموجودة. طوكيو: Chemical Daily Press.

-. 1987. طلب الموافقة على المواد الكيميائية من قبل قانون مراقبة المواد الكيميائية. (باللغتين اليابانية والإنجليزية). طوكيو: مطبعة كاجاكو كوجيو نيبو.

مونتانا ، دبليو 1956. هيكل ووظيفة الجلد. نيويورك: مطبعة أكاديمية.

مولينار ، RJ. 1994. تقييم مخاطر المواد المسرطنة: مقارنة دولية. رإيغول توكسيكول فارماكول 20: 302-336.

المجلس الوطني للبحوث. 1989. العلامات البيولوجية في السمية الإنجابية. واشنطن العاصمة: NAS Press.

نيومان و WG و M Neuman. 1958. الديناميكية الكيميائية لمعادن العظام. شيكاغو: الجامعة. مطبعة شيكاغو.

Newcombe و DS و NR Rose و JC Bloom. 1992. علم السموم المناعي السريري. نيويورك: مطبعة رافين.

باتشيكو ، هـ. 1973. لا فارماكولوجي جزيء. باريس: Presse Universitaire.

بيوتروفسكي ، كيه. 1971. تطبيق الحركية الأيضية والإفرازية لمشاكل السموم الصناعية. واشنطن العاصمة: وزارة الصحة والتعليم والرعاية الاجتماعية الأمريكية.

-. 1983. التفاعلات الكيميائية الحيوية للمعادن الثقيلة: الميثالوثيونين. في الآثار الصحية للتعرض المشترك للمواد الكيميائية. كوبنهاغن: المكتب الإقليمي لمنظمة الصحة العالمية لأوروبا.

وقائع مؤتمر Arnold O. Beckman / IFCC للمؤشرات الحيوية لعلم السموم البيئية للتعرض الكيميائي. 1994. علم كلين 40 (7 ب).

راسل ، WMS و RL Burch. 1959. مبادئ التقنية التجريبية الإنسانية. لندن: ميثوين وشركاه أعيد طبعه من قبل اتحاد الجامعات لرعاية الحيوان ، 1993.

Rycroft و RJG و T Menné و PJ Frosch و C Benezra. 1992. كتاب التهاب الجلد التماسي. برلين: Springer-Verlag.

Schubert، J. 1951. تقدير العناصر المشعة في الأفراد المعرضين. النواة 8: 13-28.

شيلبي ، MD و E Zeiger. 1990. نشاط المسرطنات البشرية في اختبارات الوراثة الخلوية السالمونيلا ونخاع عظم القوارض. موتات ريس 234: 257-261.

Stone، R. 1995. نهج جزيئي لمخاطر الإصابة بالسرطان. علوم 268: 356-357.

تيسينجر ، ج. 1984. اختبار العرض في der Industrietoxikologie [اختبارات التعرض في السموم الصناعية]. برلين: VEB Verlag Volk und Gesundheit.

الكونجرس الأمريكي. 1990. المراقبة والفحص الجيني في مكان العمل ، OTA-BA-455. واشنطن العاصمة: مكتب طباعة حكومة الولايات المتحدة.

VEB. 1981. Kleine Enzyklopaedie: Leben [الحياة]. لايبزيغ: VEB Bibliographische Institut.

ويل ، إي 1975. عناصر صناعة السموم [عناصر علم السموم الصناعية]. باريس: Masson et Cie.

منظمة الصحة العالمية (WHO). 1975. الطرق المستخدمة في اتحاد الجمهوريات الاشتراكية السوفياتية لتحديد مستويات آمنة من المواد السامة. جنيف: منظمة الصحة العالمية.

1978 مبادئ وطرق تقييم سمية المواد الكيميائية ، الجزء الأول. معايير الصحة البيئية ، رقم 6. جنيف: منظمة الصحة العالمية.

-. 1981. التعرض المشترك للمواد الكيميائية ، الوثيقة المؤقتة رقم 11. كوبنهاغن: المكتب الإقليمي لمنظمة الصحة العالمية لأوروبا.

-. 1986. مبادئ دراسات السمية الحركية. معايير الصحة البيئية ، لا. 57- جنيف: منظمة الصحة العالمية.

يوفتري ، جي إم وإف سي كورتيس. 1956. اللمفاويات والأنسجة اللمفاوية والليمفاوية. كامبريدج: جامعة هارفارد. يضعط.

زاكوتينسكي ، دي. 1959. Voprosi toksikologii radioaktivnih veshchestv [مشاكل علم السموم للمواد المشعة]. موسكو: Medgiz.

Zurlo و J و D Rudacille و AM Goldberg. 1993. الحيوانات والبدائل في الاختبار: التاريخ والعلوم والأخلاق. نيويورك: ماري آن ليبرت.