الثلاثاء، شنومكس مارس شنومكس شنومكس: شنومكس

الطيف الكهرومغناطيسي: الخصائص الفيزيائية الأساسية

قيم هذا المقال
(الاصوات 4)

أكثر أشكال الطاقة الكهرومغناطيسية شيوعًا هو ضوء الشمس. تردد ضوء الشمس (الضوء المرئي) هو الخط الفاصل بين الإشعاع المؤين الأكثر قوة (الأشعة السينية والأشعة الكونية) عند الترددات الأعلى والإشعاع الأكثر اعتدالًا وغير المؤين عند الترددات المنخفضة. هناك طيف من الإشعاع غير المؤين. في سياق هذا الفصل ، توجد الأشعة تحت الحمراء تحت الضوء المرئي مباشرةً. يوجد أدناه النطاق الواسع للترددات الراديوية ، والتي تشمل (بترتيب تنازلي) الموجات الدقيقة ، والراديو الخلوي ، والتلفزيون ، وراديو FM وراديو AM ، والموجات القصيرة المستخدمة في السخانات العازلة والحثية ، وفي النهاية المنخفضة ، الحقول ذات تردد الطاقة. الطيف الكهرومغناطيسي موضح في الشكل 1. 

الشكل 1. الطيف الكهرومغناطيسي

ELF010F1

مثلما يتغلغل الضوء أو الصوت المرئي في بيئتنا ، المساحة التي نعيش ونعمل فيها ، كذلك تتغلغل طاقات المجالات الكهرومغناطيسية. أيضًا ، تمامًا كما يتم إنشاء معظم الطاقة الصوتية التي نتعرض لها من خلال النشاط البشري ، كذلك الطاقات الكهرومغناطيسية: من المستويات الضعيفة المنبعثة من أجهزتنا الكهربائية اليومية - تلك التي تجعل أجهزة الراديو والتلفزيون لدينا تعمل - إلى الأعلى المستويات التي يطبقها الممارسون الطبيون لأغراض مفيدة - على سبيل المثال ، الإنفاذ الحراري (المعالجة الحرارية). بشكل عام ، تتناقص قوة هذه الطاقات بسرعة مع المسافة من المصدر. المستويات الطبيعية لهذه الحقول في البيئة منخفضة.

يشمل الإشعاع غير المؤين (NIR) جميع الإشعاع ومجالات الطيف الكهرومغناطيسي التي لا تحتوي على طاقة كافية لإنتاج تأين المادة. أي أن NIR غير قادر على نقل طاقة كافية لجزيء أو ذرة لتعطيل بنيته عن طريق إزالة إلكترون واحد أو أكثر. عادة ما يتم ضبط الحد الفاصل بين الأشعة تحت الحمراء والإشعاع المؤين على طول موجة يقارب 100 نانومتر.

كما هو الحال مع أي شكل من أشكال الطاقة ، فإن طاقة NIR لديها القدرة على التفاعل مع الأنظمة البيولوجية ، وقد لا تكون النتيجة ذات أهمية ، أو قد تكون ضارة بدرجات مختلفة ، أو قد تكون مفيدة. مع الترددات الراديوية (RF) وإشعاع الميكروويف ، فإن آلية التفاعل الرئيسية هي التسخين ، ولكن في الجزء منخفض التردد من الطيف ، قد تحفز المجالات ذات الكثافة العالية تيارات في الجسم وبالتالي تكون خطرة. ومع ذلك ، فإن آليات التفاعل لقوى المجال منخفضة المستوى غير معروفة.

 

 

 

 

 

 

 

 

الكميات والوحدات

المجالات عند الترددات التي تقل عن 300 ميغا هرتز يتم قياسها كمياً من حيث شدة المجال الكهربائي (E) وشدة المجال المغناطيسي (H). E يتم التعبير عنها بالفولت لكل متر (V / m) و H بالأمبير لكل متر (أ / م). كلاهما حقلا متجه - أي أنهما يتميزان بالحجم والاتجاه عند كل نقطة. بالنسبة لمدى التردد المنخفض ، غالبًا ما يتم التعبير عن المجال المغناطيسي من حيث كثافة التدفق ، B، مع وحدة SI تسلا (T). عندما تتم مناقشة الحقول الموجودة في بيئتنا اليومية ، عادةً ما تكون الوحدة الفرعية ميكروتسلا (μT) هي الوحدة المفضلة. في بعض الأدبيات ، يتم التعبير عن كثافة التدفق بوحدة gauss (G) ، والتحويل بين هذه الوحدات هو (للحقول في الهواء):

1 طن = 104 G أو 0.1 μT = 1 mG و 1 A / m = 1.26 μT.

تتوفر مراجعات للمفاهيم والكميات والوحدات والمصطلحات الخاصة بالحماية من الإشعاع غير المؤين ، بما في ذلك إشعاع الترددات الراديوية (NCRP 1981 ؛ Polk and Postow 1986 ؛ WHO 1993).

على المدى إشعاع تعني ببساطة الطاقة المنقولة عن طريق الأمواج. الموجات الكهرومغناطيسية هي موجات من القوى الكهربائية والمغناطيسية ، حيث يتم تعريف حركة الموجة على أنها انتشار الاضطرابات في نظام فيزيائي. التغيير في المجال الكهربائي مصحوب بتغيير في المجال المغناطيسي والعكس صحيح. وصف جي سي ماكسويل هذه الظواهر في عام 1865 في أربع معادلات أصبحت تُعرف باسم معادلات ماكسويل.

تتميز الموجات الكهرومغناطيسية بمجموعة من المعلمات التي تشمل التردد (f) ، الطول الموجي (λ) ، شدة المجال الكهربائي ، شدة المجال المغناطيسي ، الاستقطاب الكهربائي (P) (اتجاه E المجال) ، سرعة الانتشار (c) وناقل بوينتينغ (S). الشكل 2  يوضح انتشار الموجة الكهرومغناطيسية في الفضاء الحر. يُعرَّف التردد بأنه عدد التغييرات الكاملة في المجال الكهربائي أو المغناطيسي عند نقطة معينة في الثانية ، ويُعبر عنه بالهرتز (هرتز). الطول الموجي هو المسافة بين قمتين متتاليتين أو قاع الموجة (الحد الأقصى أو الصغرى). التردد والطول الموجي وسرعة الموجة (v) مترابطة على النحو التالي:

v = f λ

الرقم 2. موجة مستوية تنتشر بسرعة الضوء في الاتجاه x

ELF010F2

سرعة الموجة الكهرومغناطيسية في الفضاء الحر تساوي سرعة الضوء ، لكن السرعة في المواد تعتمد على الخواص الكهربائية للمادة - أي على السماحية (ε) والنفاذية (μ). تتعلق السماحية بتفاعلات المواد مع المجال الكهربائي ، وتعبر النفاذية عن التفاعلات مع المجال المغناطيسي. المواد البيولوجية لها سماح تختلف اختلافا كبيرا عن تلك الموجودة في الفضاء الحر ، لأنها تعتمد على الطول الموجي (خاصة في نطاق الترددات الراديوية) ونوع الأنسجة. ومع ذلك ، فإن نفاذية المواد البيولوجية تساوي نفاذية الفضاء الحر.

في الموجة المستوية ، كما هو موضح في الشكل 2 ، المجال الكهربائي عمودي على المجال المغناطيسي واتجاه الانتشار عمودي على كل من المجالين الكهربائي والمغناطيسي.

 

 

 

بالنسبة للموجة المستوية ، تُعرف نسبة قيمة شدة المجال الكهربائي إلى قيمة شدة المجال المغناطيسي ، وهي ثابتة ، باسم الممانعة المميزة (Z):

Z = E/H

في مساحة خالية ، Z= 120π ≈ 377Ω لكن على خلاف ذلك Z يعتمد على سماحية ونفاذية المادة التي تمر الموجة خلالها.

يتم وصف نقل الطاقة بواسطة ناقل Poynting ، والذي يمثل حجم واتجاه كثافة التدفق الكهرومغناطيسي:

S = E x H

لموجة الانتشار ، تكامل S فوق أي سطح يمثل الطاقة الآنية المنقولة عبر هذا السطح (كثافة الطاقة). يتم التعبير عن حجم متجه Poynting بالواط لكل متر مربع (W / m2) (في بعض الأدبيات الوحدة ميغاواط / سم2 - التحويل إلى وحدات النظام الدولي (SI) هو 1 ميغاواط / سم2 = 10 واط / م2) وبالنسبة للموجات المستوية فهي مرتبطة بقيم شدة المجال الكهربائي والمغناطيسي:

S = E2 / 120π = E2 / 377

و

S = 120π H2 = 377 H2

لا يمكن تمثيل جميع ظروف التعرض التي تمت مواجهتها في الواقع بواسطة الموجات المستوية. في المسافات القريبة من مصادر إشعاع التردد الراديوي ، لا تتحقق العلاقات المميزة للموجات المستوية. يمكن تقسيم المجال الكهرومغناطيسي المشع بواسطة الهوائي إلى منطقتين: منطقة المجال القريب ومنطقة المجال البعيد. عادة ما يتم وضع الحدود بين هذه المناطق في:

r = 2a2 / lect

أين a هو أكبر بُعد للهوائي.

في منطقة المجال القريب ، يجب أن يتميز التعرض لكل من المجالين الكهربائي والمغناطيسي. في المجال البعيد ، تكفي واحدة من هذه ، حيث إنها مترابطة بواسطة المعادلات المذكورة أعلاه التي تتضمن E و H. من الناحية العملية ، غالبًا ما يتم إدراك حالة المجال القريب عند ترددات أقل من 300 ميجا هرتز.

يزداد التعرض لمجالات التردد اللاسلكي تعقيدًا بسبب تفاعلات الموجات الكهرومغناطيسية مع الأشياء. بشكل عام ، عندما تواجه الموجات الكهرومغناطيسية شيئًا ما ، تنعكس بعض الطاقة الساقطة ، ويمتص بعضها وينتقل البعض الآخر. تعتمد نسب الطاقة المنقولة أو الممتصة أو المنعكسة بواسطة الكائن على تردد واستقطاب المجال والخصائص الكهربائية وشكل الجسم. يؤدي تراكب الحادث والموجات المنعكسة إلى موجات واقفة وتوزيع مجال غير منتظم مكانيًا. نظرًا لأن الموجات تنعكس تمامًا عن الأجسام المعدنية ، فإن الموجات الواقفة تتشكل بالقرب من هذه الأجسام.

نظرًا لأن تفاعل مجالات التردد اللاسلكي مع الأنظمة البيولوجية يعتمد على العديد من الخصائص الميدانية المختلفة والمجالات التي يتم مواجهتها في الممارسة العملية معقدة ، يجب مراعاة العوامل التالية عند وصف حالات التعرض لمجالات التردد اللاسلكي:

  • ما إذا كان التعرض يحدث في منطقة المجال القريب أو البعيد
  • إذا كان قريبًا ، فقم بالقيم لكليهما E و H مطلوبين؛ إذا كان المجال بعيدًا ، فإما أيضًا E or H
  • الاختلاف المكاني لحجم المجال (المجالات)
  • استقطاب المجال ، أي اتجاه المجال الكهربائي بالنسبة لاتجاه انتشار الموجة.

 

بالنسبة للتعرض للمجالات المغناطيسية منخفضة التردد ، لا يزال من غير الواضح ما إذا كانت قوة المجال أو كثافة التدفق هي الاعتبار الوحيد المهم. قد يتضح أن هناك عوامل أخرى مهمة أيضًا ، مثل وقت التعرض أو سرعة التغيرات الميدانية.

على المدى حقل كهرومغناطيسي (EMF) ، كما يتم استخدامه في وسائل الإعلام والصحافة الشعبية ، يشير عادةً إلى المجالات الكهربائية والمغناطيسية في نهاية التردد المنخفض من الطيف ، ولكن يمكن أيضًا استخدامه بمعنى أوسع بكثير ليشمل الطيف الكامل من الاشعاع الكهرومغناطيسي. لاحظ أنه في نطاق التردد المنخفض ، يكون ملف E و B المجالات غير مقترنة أو مترابطة بنفس الطريقة التي تكون بها عند الترددات الأعلى ، وبالتالي فمن الأكثر دقة الإشارة إليها على أنها "مجالات كهربائية ومغناطيسية" بدلاً من المجالات الكهرومغناطيسية.

 

الرجوع

عرض 13030 مرات تم إجراء آخر تعديل يوم الأربعاء ، 17 آب (أغسطس) 2011 الساعة 17:44

"إخلاء المسؤولية: لا تتحمل منظمة العمل الدولية المسؤولية عن المحتوى المعروض على بوابة الويب هذه والذي يتم تقديمه بأي لغة أخرى غير الإنجليزية ، وهي اللغة المستخدمة للإنتاج الأولي ومراجعة الأقران للمحتوى الأصلي. لم يتم تحديث بعض الإحصائيات منذ ذلك الحين. إنتاج الطبعة الرابعة من الموسوعة (4). "

المحتويات

الإشعاع: مراجع غير مؤينة

ألين ، سان جرمان. 1991. القياسات الميدانية للترددات الراديوية وتقييم المخاطر. J Radiol Protect 11: 49-62.

المؤتمر الأمريكي لخبراء الصحة الصناعية الحكوميين (ACGIH). 1992. توثيق قيم حد العتبة. سينسيناتي ، أوهايو: ACGIH.

-. 1993. القيم الحدية للمواد الكيميائية والعوامل الفيزيائية ومؤشرات التعرض البيولوجي. سينسيناتي ، أوهايو: ACGIH.

-. 1994 أ. التقرير السنوي للجنة القيم الحدية للوكلاء الفيزيائيين ACGIH. سينسيناتي ، أوهايو: ACGIH.

-. 1994 ب. TLV's ، قيم حد العتبة ومؤشرات التعرض البيولوجي للفترة 1994-1995. سينسيناتي ، أوهايو: ACGIH.

-. 1995. 1995-1996 قيم حد العتبة للمواد الكيميائية والعوامل الفيزيائية ومؤشرات التعرض البيولوجي. سينسيناتي ، أوهايو: ACGIH.

-. 1996. TLVs © و BEIs ©. القيم الحدية للمواد الكيميائية والعوامل الفيزيائية ؛ مؤشرات التعرض البيولوجي. سينسيناتي ، أوهايو: ACGIH.

المعهد الوطني الأمريكي للمعايير (ANSI). 1993. الاستخدام الآمن لليزر. رقم المعيار Z-136.1. نيويورك: ANSI.

Aniolczyk، R. 1981. قياسات التقييم الصحي للمجالات الكهرومغناطيسية في بيئة الإنفاذ الحراري ، واللحام ، والسخانات الحثية. Medycina Pracy 32: 119-128. قرصنة مديسينا XNUMX: XNUMX-XNUMX.

باسيت ، CAL ، SN Mitchell ، و SR Gaston. 1982. العلاج بالمجال الكهرومغناطيسي النبضي في الكسور غير الموحدة والكسور الفاشلة. J Am Med Assoc 247: 623-628.

Bassett و CAL و RJ Pawluk و AA Pilla. 1974. زيادة ترميم العظام بالمجالات الكهرومغناطيسية المقترنة حثيًا. Science 184: 575-577.

بيرجر ، دي ، إف أورباخ ، وري ديفيز. 1968. طيف عمل الحمامي الناجم عن الأشعة فوق البنفسجية. في التقرير الأولي الثالث عشر. Congressus Internationalis Dermatologiae ، Munchen ، تم تحريره بواسطة W Jadassohn و CG Schirren. نيويورك: Springer-Verlag.

برنهاردت ، ج. 1988 أ. وضع حدود تعتمد على التردد للمجالات الكهربائية والمغناطيسية وتقييم التأثيرات غير المباشرة. راد إنفير بيوفيس 27: 1.

برنهاردت وجيه إتش وإر ماثيس. 1992. المصادر الكهرومغناطيسية ELF و RF. في الحماية من الإشعاع غير المؤين ، تم تحريره بواسطة MW Greene. فانكوفر: مطبعة يو بي سي.

Bini و M و A Checcucci و A Ignesti و L Millanta و R Olmi و N Rubino و R Vanni. 1986. تعرض العمال لمجالات كهربائية RF مكثفة تتسرب من مانعات التسرب البلاستيكية. J قوة الميكروويف 21: 33-40.

بوهر وإي وإي سوتر ومجلس الصحة الهولندي. 1989. المرشحات الديناميكية لأجهزة الحماية. في قياس جرعات إشعاع الليزر في الطب والبيولوجيا ، تم تحريره بواسطة GJ Mueller و DH Sliney. بيلينجهام ، واش: SPIE.

مكتب الصحة الإشعاعية. 1981. تقييم انبعاث الإشعاع من محطات عرض الفيديو. روكفيل ، دكتوراه في الطب: مكتب الصحة الإشعاعية.

كليويت ، إيه وماير. 1980. Risques liés à l'utilisation industrielle des lasers. In Institut National de Recherche et de Sécurité، Cahiers de Notes Documentaires، No. 99 Paris: Institut National de Recherche et de Sécurité.

كوبلنتز و WR و R Stair و JM Hogue. 1931. العلاقة الحمامية الطيفية للجلد بالأشعة فوق البنفسجية. في وقائع الأكاديمية الوطنية للعلوم بالولايات المتحدة الأمريكية واشنطن العاصمة: الأكاديمية الوطنية للعلوم.

كول ، كاليفورنيا ، دي إف فوربس ، وبي دي ديفيز. 1986. طيف عمل للتسرطن الضوئي للأشعة فوق البنفسجية. Photochem Photobiol 43 (3): 275-284.

المفوضية الدولية de L'Eclairage (CIE). 1987. الإضاءة الدولية مفردات. فيينا: CIE.

كولين ، و AP ، و BR Chou ، و MG Hall ، و SE Jany. 1984. الأشعة فوق البنفسجية - ب تضر البطانة القرنية. Am J Optom Phys Opt 61 (7): 473-478.

Duchene و A و J Lakey و M Repacholi. 1991. إرشادات IRPA بشأن الحماية من الإشعاع غير المؤين. نيويورك: بيرغامون.

Elder و JA و PA Czerki و K Stuchly و K Hansson Mild و AR Sheppard. 1989. إشعاع الترددات الراديوية. في الحماية من الإشعاع غير المؤين ، تم تحريره بواسطة MJ Suess و DA Benwell-Morison. جنيف: منظمة الصحة العالمية.

Eriksen، P. 1985. حل الزمن الأطياف البصرية من اشتعال قوس اللحام MIG. Am Ind Hyg Assoc J 46: 101-104.

Everett و MA و RL Olsen و RM Sayer. 1965. حمامي فوق بنفسجية. قوس ديرماتول 92: 713-719.

فيتزباتريك ، TB ، MA Pathak ، LC Harber ، M Seiji ، و A Kukita. 1974. ضوء الشمس والرجل ، الاستجابات الضوئية الطبيعية وغير الطبيعية. طوكيو: جامعة. مطبعة طوكيو.

فوربس ، PD و PD ديفيس. 1982. العوامل التي تؤثر على عملية التسرطن الضوئي. الفصل. 7 في Photoimmunology ، تم تحريره بواسطة JAM Parrish و L Kripke و WL Morison. نيويورك: مكتملة النصاب.

فريمان ، آر إس ، دي دبليو أوينز ، جي إم نوكس ، وهت هدسون. 1966. متطلبات الطاقة النسبية للاستجابة الحمامية للجلد للأطوال الموجية أحادية اللون للأشعة فوق البنفسجية الموجودة في الطيف الشمسي. J إنفست ديرماتول 47: 586-592.

Grandolfo و M و K Hansson Mild. 1989. حماية الترددات الراديوية العامة والمهنية والموجات الدقيقة في جميع أنحاء العالم. في التفاعل الحيوي الكهرومغناطيسي. الآليات ، ومعايير السلامة ، وأدلة الحماية ، من تحرير G Franceschetti ، و OP Gandhi ، و M Grandolfo. نيويورك: مكتملة النصاب.

غرين ، ميغاواط. 1992. الإشعاع غير المؤين. ورشة العمل الدولية الثانية للإشعاع غير المؤين ، 2-10 مايو ، فانكوفر.

هام ، WTJ. 1989. علم الأمراض الضوئية وطبيعة آفة الشبكية ذات الضوء الأزرق والأشعة فوق البنفسجية القريبة الناتجة عن الليزر والمصادر البصرية الأخرى. في تطبيقات الليزر في الطب والبيولوجيا ، تم تحريره بواسطة ML Wolbarsht. نيويورك: مكتملة النصاب.

Ham و WT و HA Mueller و JJ Ruffolo و D Guerry III و RK Guerry. 1982. طيف العمل لإصابة شبكية العين من الأشعة فوق البنفسجية القريبة في القرد اللاكئي. Am J Ophthalmol 93 (3): 299-306.

Hansson Mild، K. 1980. التعرض المهني للمجالات الكهرومغناطيسية للترددات الراديوية. Proc IEEE 68: 12-17.

هوسر ، كو. 1928. تأثير الطول الموجي في بيولوجيا الإشعاع. Strahlentherapie 28: 25-44.

معهد المهندسين الكهربائيين والإلكترونيين (IEEE). 1990 أ. IEEE COMAR Position of RF و Microwaves. نيويورك: IEEE.

-. 1990 ب. بيان موقف IEEE COMAR حول الجوانب الصحية للتعرض للمجالات الكهربائية والمغناطيسية من مانعات التسرب RF والسخانات العازلة. نيويورك: IEEE.

-. 1991. معيار IEEE لمستويات الأمان فيما يتعلق بالتعرض البشري للحقول الكهرومغناطيسية للترددات الراديوية من 3 كيلوهرتز إلى 300 جيجاهرتز. نيويورك: IEEE.

اللجنة الدولية للحماية من الإشعاع غير المؤين (ICNIRP). 1994. مبادئ توجيهية بشأن حدود التعرض للمجالات المغناطيسية الساكنة. الصحة فيز 66: 100-106.

-. 1995. إرشادات لحدود التعرض البشري لإشعاع الليزر.

بيان ICNIRP. 1996. القضايا الصحية المتعلقة باستخدام الهواتف اللاسلكية المحمولة وأجهزة الإرسال القاعدية. فيزياء الصحة ، 70: 587-593.

اللجنة الكهرتقنية الدولية (IEC). 1993. IEC قياسي رقم 825-1. جنيف: IEC.

مكتب العمل الدولي. 1993 أ. الحماية من ترددات الطاقة والمجالات الكهربائية والمغناطيسية. سلسلة السلامة والصحة المهنية ، رقم 69. جنيف: منظمة العمل الدولية.

الرابطة الدولية للحماية من الإشعاع (IRPA). 1985. مبادئ توجيهية لحدود تعرض الإنسان لأشعة الليزر. صحة فيز 48 (2): 341-359.

-. 1988 أ. التغيير: توصيات لإجراء تحديثات طفيفة على إرشادات IRPA 1985 بشأن حدود التعرض لإشعاع الليزر. صحة فيز 54 (5): 573-573.

-. 1988 ب. إرشادات حول حدود التعرض للمجالات الكهرومغناطيسية للترددات الراديوية في نطاق التردد من 100 كيلو هرتز إلى 300 جيجا هرتز. صحة فيز 54: 115-123.

-. 1989. التغيير المقترح في المبادئ التوجيهية لـ IRPA 1985 حدود التعرض للأشعة فوق البنفسجية. الصحة فيز 56 (6): 971-972.

الرابطة الدولية للحماية من الإشعاع (IRPA) واللجنة الدولية للإشعاع غير المؤين. 1990. مبادئ توجيهية مؤقتة بشأن حدود التعرض للمجالات الكهربائية والمغناطيسية 50/60 هرتز. الصحة فيز 58 (1): 113-122.

Kolmodin-Hedman و B و K Hansson Mild و E Jönsson و MC Anderson و A Eriksson. 1988. المشاكل الصحية بين عمليات ماكينات لحام البلاستيك والتعرض لمجالات التردد الراديوي الكهرومغناطيسية. Int Arch Occup Environ Health 60: 243-247.

Krause، N. 1986. تعرض الناس للمجالات المغناطيسية الثابتة والمتغيرة الزمنية في التكنولوجيا والطب والبحوث والحياة العامة: جوانب قياس الجرعات. في التأثيرات البيولوجية للحقول الساكنة والمغناطيسية ELF ، تم تحريره بواسطة JH Bernhardt. ميونيخ: MMV Medizin Verlag.

Lövsund، P and KH Mild. 1978. مجال كهرومغناطيسي منخفض التردد بالقرب من بعض سخانات الحث. ستوكهولم: مجلس ستوكهولم للصحة والسلامة المهنية.

Lövsund و P و PA Oberg و SEG Nilsson. 1982. المجالات المغناطيسية ELF في صناعات اللحام والكهرباء. راديو Sci 17 (5S): 355-385.

Luckiesh و ML و L Holladay و AH Taylor. 1930. رد فعل جلد الإنسان غير الملون للأشعة فوق البنفسجية. J Optic Soc Am 20: 423-432.

ماكينلي ، AF و B Diffey. 1987. طيف عمل مرجعي للحمامي المستحثة بالأشعة فوق البنفسجية في جلد الإنسان. في التعرض البشري للإشعاع فوق البنفسجي: المخاطر واللوائح ، تم تحريره بواسطة WF Passchier و BFM Bosnjakovic. نيويورك: قسم Excerpta medica ، Elsevier Science Publishers.

McKinlay و A و JB Andersen و JH Bernhardt و M Grandolfo و KA Hossmann و FE van Leeuwen و K Hansson Mild و AJ Swerdlow و L Verschaeve و B Veyret. مقترح لبرنامج بحثي من قبل فريق خبراء تابع للمفوضية الأوروبية. الآثار الصحية المحتملة المتعلقة باستخدام الهواتف اللاسلكية. تقرير غير منشور.

Mitbriet و IM و VD Manyachin. 1984. تأثير المجالات المغناطيسية على ترميم العظام. موسكو ، نوكا ، 292-296.

المجلس الوطني للقياسات والوقاية من الإشعاع (NCRP). 1981. المجالات الكهرومغناطيسية للترددات الراديوية. الخصائص والكميات والوحدات والتفاعل البيوفيزيائي والقياسات. بيثيسدا ، دكتوراه في الطب: NCRP.

-. 1986. التأثيرات البيولوجية ومعايير التعرض للمجالات الكهرومغناطيسية للترددات الراديوية. التقرير رقم 86. Bethesda، MD: NCRP.

المجلس الوطني للحماية من الإشعاع (NRPB). 1992. المجالات الكهرومغناطيسية وخطر الاصابة بالسرطان. المجلد. 3 (1). شيلتون ، المملكة المتحدة: NRPB.

-. 1993. القيود المفروضة على تعرض الإنسان للمجالات والإشعاعات الكهرومغناطيسية المتغيرة والمتغيرة بمرور الوقت. ديدكوت ، المملكة المتحدة: NRPB.

المجلس القومي للبحوث (NRC). 1996. الآثار الصحية المحتملة للتعرض للمجالات الكهربائية والمغناطيسية السكنية. واشنطن: مطبعة ناس. 314.

أولسن ، إي جي وأ رينجفولد. 1982. بطانة القرنية البشرية والأشعة فوق البنفسجية. أكتا أوفثالمول 60: 54-56.

باريش ، جيه إيه ، كيه إف جينيك ، و آر أندرسون. 1982. الحمامي وتكوين الميلانين: أطياف عمل الجلد الطبيعي للإنسان. Photochem Photobiol 36 (2): 187-191.

Passchier و WF و BFM Bosnjakovic. 1987. التعرض البشري للأشعة فوق البنفسجية: المخاطر واللوائح. نيويورك: Excerpta Medica Division ، Elsevier Science Publishers.

بيتس ، دي جي. 1974. طيف العمل البشري فوق البنفسجي. Am J Optom Phys Opt 51 (12): 946-960.

بيتس ، دي جي و تي جي تريديسي. 1971. آثار الأشعة فوق البنفسجية على العين. Am Ind Hyg Assoc J 32 (4): 235-246.

بيتس ، و DG ، و AP Cullen ، و PD Hacker. 1977 أ. التأثيرات البصرية للأشعة فوق البنفسجية من 295 إلى 365 نانومتر. استثمر Ophthalmol Vis Sci 16 (10): 932-939.

-. 1977 ب. تأثيرات الأشعة فوق البنفسجية من 295 إلى 400 نانومتر في عين الأرنب. سينسيناتي ، أوهايو: المعهد الوطني للسلامة والصحة المهنية (NIOSH).

بولك ، سي ، وإي بوستو. 1986. دليل اتفاقية حقوق الطفل للتأثيرات البيولوجية للمجالات الكهرومغناطيسية. بوكا راتون: مطبعة اتفاقية حقوق الطفل.

ريباتشولي ، MH. 1985. محطات عرض الفيديو - هل يجب على المشغلين القلق؟ Austalas Phys Eng Sci Med 8 (2): 51-61.

-. 1990. السرطان من التعرض للمجالات الكهربائية والمغناطيسية 50760 هرتز: نقاش علمي كبير. Austalas Phys Eng Sci Med 13 (1): 4-17.

ريباتشولي ، إم ، إيه باستن ، في جيبسكي ، دي نونان ، جي فينيك ، إيه دبليو هاريس. 1997. الأورام اللمفاوية في الفئران المعدلة وراثيا E-Pim1 المعرضة لمجالات كهرومغناطيسية نبضية 900 ميجا هرتز. البحث الإشعاعي ، 147: 631-640.

رايلي ، إم في ، إس سوزان ، ميشيغان بيترز ، وكاي شوارتز. 1987. تأثيرات أشعة UVB على بطانة القرنية. دقة العين بالعملة 6 (8): 1021-1033.

رينجفولد ، 1980 أ. القرنية والأشعة فوق البنفسجية. أكتا أوفثالمول 58: 63-68.

-. 1980 ب. الخلط المائي والأشعة فوق البنفسجية. أكتا أوفثالمول 58: 69-82.

-. 1983. تلف ظهارة القرنية الناجم عن الأشعة فوق البنفسجية. أكتا أوفثالمول 61: 898-907.

رينجفولد ، إيه آند إم دافانجر. 1985. التغييرات في سدى قرنية الأرنب الناجمة عن الأشعة فوق البنفسجية. أكتا أوفثالمول 63: 601-606.

رينجفولد ، إيه ، إم دافانجر ، وإي جي أولسن. 1982. تغييرات في بطانة القرنية بعد الأشعة فوق البنفسجية. أكتا أوفثالمول 60: 41-53.

روبرتس ونيوجيرسي وإس إم مايكلسون. 1985. الدراسات الوبائية لتعرض الإنسان لإشعاع الترددات الراديوية: مراجعة نقدية. Int Arch Occup Environ Health 56: 169-178.

Roy و CR و KH Joyner و HP Gies و MJ Bangay. 1984. قياس الإشعاع الكهرومغناطيسي المنبعث من محطات العرض المرئية (VDTs). راد بروت أوسترال 2 (1): 26-30.

Scotto و J و TR Fears و GB Gori. 1980. قياسات الأشعة فوق البنفسجية في الولايات المتحدة ومقارنات مع بيانات سرطان الجلد. واشنطن العاصمة: مكتب طباعة حكومة الولايات المتحدة.

Sienkiewicz و ZJ و RD Saunder و CI Kowalczuk. 1991. الآثار البيولوجية للتعرض للحقول الكهرومغناطيسية غير المؤينة والإشعاع. 11 المجالات الكهربائية والمغناطيسية منخفضة التردد للغاية. ديدكوت ، المملكة المتحدة: المجلس الوطني للحماية من الإشعاع.

سيلفرمان ، سي 1990. دراسات وبائية للسرطان والمجالات الكهرومغناطيسية. في الفصل. 17 في التأثيرات البيولوجية والتطبيقات الطبية للطاقة الكهرومغناطيسية ، تم تحريره بواسطة OP Gandhi. إنجلوود كليفس ، نيوجيرسي: برنتيس هول.

سليني ، د. 1972. مزايا طيف العمل المغلف لمعايير التعرض للإشعاع فوق البنفسجي. Am Ind Hyg Assoc J 33: 644-653.

-. 1986. العوامل الفيزيائية في تكون الساد: الأشعة فوق البنفسجية المحيطة ودرجة الحرارة. استثمر Ophthalmol Vis Sci 27 (5): 781-790.

-. 1987. تقدير التعرض للأشعة فوق البنفسجية الشمسية لزرع عدسة داخل العين. J جراحة الساد المنكسرة 13 (5): 296-301.

-. 1992. دليل مدير السلامة لمرشحات اللحام الجديدة. اللحام J 71 (9): 45-47.
سليني ، DH و ML Wolbarsht. 1980. الأمان مع الليزر والمصادر البصرية الأخرى. نيويورك: مكتملة النصاب.

Stenson، S. 1982. موجودات العين في جفاف الجلد المصطبغ: تقرير عن حالتين. آن أوفثالمول 14 (6): 580-585.

ستيرنبورغ و HJCM و JC van der Leun. 1987. أطياف العمل لتكوين الأورام بواسطة الأشعة فوق البنفسجية. في التعرض البشري للإشعاع فوق البنفسجي: المخاطر واللوائح ، تم تحريره بواسطة WF Passchier و BFM Bosnjakovic. نيويورك: Excerpta Medica Division ، Elsevier Science Publishers.

بشجاعة ، ماجستير. 1986. تعرض الإنسان للمجالات المغناطيسية الثابتة والمتغيرة بمرور الوقت. صحة فيز 51 (2): 215-225.

Stuchly ، MA و DW Lecuyer. 1985. التسخين بالحث وتعرض المشغل للمجالات الكهرومغناطيسية. فيز الصحة 49: 693-700.

-. 1989. التعرض للمجالات الكهرومغناطيسية في اللحام بالقوس الكهربائي. فيز الصحة 56: 297-302.

Szmigielski و S و M Bielec و S Lipski و G Sokolska. 1988. الجوانب المناعية والسرطانية المتعلقة بالتعرض لمجالات الموجات الدقيقة والموجات اللاسلكية منخفضة المستوى. في الكهرباء الحيوية الحديثة ، تم تحريره بواسطة ماريو AA. نيويورك: مارسيل ديكر.

Taylor و HR و SK West و FS Rosenthal و B Munoz و HS Newland و H Abbey و EA Emmett. 1988. تأثير الأشعة فوق البنفسجية على تكون الساد. New Engl J Med 319: 1429-1433.

قل ، RA. 1983. أدوات قياس المجالات الكهرومغناطيسية: المعدات والمعايرة والتطبيقات المختارة. في التأثيرات البيولوجية وقياس الجرعات للإشعاع غير المؤين والترددات الراديوية وطاقات الميكروويف ، تم تحريره بواسطة M Grandolfo و SM Michaelson و A Rindi. نيويورك: مكتملة النصاب.

أورباخ ، ف. 1969. التأثيرات البيولوجية للإشعاع فوق البنفسجي. نيويورك: بيرغامون.

منظمة الصحة العالمية (WHO). 1981. الترددات الراديوية والميكروويف. معايير الصحة البيئية ، رقم 16. جنيف: منظمة الصحة العالمية.

-. 1982. الليزر والإشعاع البصري. معايير الصحة البيئية ، رقم 23. جنيف: منظمة الصحة العالمية.

-. 1987. المجالات المغناطيسية. معايير الصحة البيئية ، رقم 69. جنيف: منظمة الصحة العالمية.

-. 1989. الحماية من الإشعاع غير المؤين. كوبنهاغن: المكتب الإقليمي لمنظمة الصحة العالمية لأوروبا.

-. 1993. المجالات الكهرومغناطيسية 300 هرتز إلى 300 جيجا هرتز. معايير الصحة البيئية ، رقم 137. جنيف: منظمة الصحة العالمية.

-. 1994. الأشعة فوق البنفسجية. معايير الصحة البيئية ، رقم 160. جنيف: منظمة الصحة العالمية.

منظمة الصحة العالمية (WHO) ، برنامج الأمم المتحدة للبيئة (UNEP) ، والرابطة الدولية للحماية من الإشعاع (IRPA). 1984. التردد المنخفض للغاية (ELF). معايير الصحة البيئية ، رقم 35. جنيف: منظمة الصحة العالمية.

Zaffanella و LE و DW DeNo. 1978. التأثيرات الكهروستاتيكية والكهرومغناطيسية لخطوط النقل عالية الجهد. بالو ألتو ، كاليفورنيا: معهد أبحاث الطاقة الكهربائية.

Zuclich و JA و JS Connolly. 1976. تلف العين الناجم عن أشعة الليزر القريبة من الأشعة فوق البنفسجية. استثمر Ophthalmol Vis Sci 15 (9): 760-764.