Thursday, 24 March 2011 15:03


Metalworking involves casting, welding, brazing, forging, soldering, fabrication and surface treatment of metal. Metalworking is becoming even more common as artists in developing countries are also starting to use metal as a basic sculptural material. While many art foundries are commercially run, art foundries are also often part of college art programmes.

Hazards and Precautions

Casting and foundry

Artists either send work out to commercial foundries, or can cast metal in their own studios. The lost wax process is often used for casting small pieces. Common metals and alloys used are bronze, aluminium, brass, pewter, iron and stainless steel. Gold, silver and sometimes platinum are used for casting small pieces, particularly for jewellery.

The lost wax process involves several steps:

  1. making the positive form
  2. making the investment mould
  3. burning out of the wax
  4. melting the metal
  5. slagging
  6. pouring the molten metal into the mould
  7. removing the mould


The positive form can be made directly in wax; it can also be made in plaster or other materials, a negative mould made in rubber and then the final positive form cast in wax. Heating the wax can result in fire hazards and in decomposition of the wax from overheating.

The mould is commonly made by applying an investment containing the cristobalite form of silica, creating the risk of silicosis. A 50/50 mixture of plaster and 30-mesh sand is a safer substitute. Moulds can also be made using sand and oil, formaldehyde resins and other resins as binders. Many of these resins are toxic by skin contact and inhalation, requiring skin protection and ventilation.

The wax form is burnt out in a kiln. This requires local exhaust ventilation to remove the acrolein and other irritating wax decomposition products.

Melting the metal is usually done in a gas-fired crucible furnace. A canopy hood exhausted to the outside is needed to remove carbon monoxide and metal fumes, including zinc, copper, lead, aluminium and so on.

The crucible containing the molten metal is then removed from the furnace, the slag on the surface removed and the molten metal poured into the moulds (figure 1). For weights under 80 pounds of metal, manual lifting is normal; for greater weights, lifting equipment is needed. Ventilation is needed for the slagging and pouring operations to remove metal fumes. Resin sand moulds can also produce hazardous decomposition products from the heat. Face shields protecting against infrared radiation and heat, and personal protective clothing resistant to heat and molten metal splashes are essential. Cement floors must be protected against molten metal splashes by a layer of sand.

Figure 1. Pouring molten metal in art foundry.


Ted Rickard

Breaking away the mould can result in exposure to silica. Local exhaust ventilation or respiratory protection is needed. A variation of the lost wax process called the foam vaporization process involves using polystyrene or polyurethane foam instead of wax, and vaporizing the foam during pouring of the molten metal. This can release hazardous decomposition products, including hydrogen cyanide from polyurethane foam. Artists often use scrap metal from a variety of sources. This practice can be dangerous due to possible presence of lead- and mercury-containing paints, and to the possible presence of metals like cadmium, chromium, nickel and so on in the metals.


Metal can be cut, drilled and filed using saws, drills, snips and metal files. The metal filings can irritate the skin and eyes. Electric tools can cause electric shock. Improper handling of these tools can result in accidents. Goggles are needed to protect the eyes from flying chips and filings. All electrical equipment should be properly grounded. All tools should be carefully handled and stored. Metal to be fabricated should be securely clamped to prevent accidents.


Cold forging utilizes hammers, mallets, anvils and similar tools to change the shape of metal. Hot forging involves additionally heating the metal. Forging can create great amounts of noise, which can cause hearing loss. Small metal splinters may damage the skin or eyes if precautions are not taken. Burns are also a hazard with hot forging. Precautions include good tools, eye protection, routine clean-up, proper work clothing, isolation of the forging area and wearing ear plugs or ear muffs.

Hot forging involves the burning of gas, coke or other fuels. A canopy hood for ventilation is needed to exhaust carbon monoxide and possible polycyclic aromatic hydrocarbon emissions, and to reduce heat build-up. Infrared goggles should be worn for protection against infrared radiation.

Surface treatment

Mechanical treatment (chasing, repousse) is done with hammers, engraving with sharp tools, etching with acids, photoetching with acids and photochemicals, electroplating (plating a metallic film onto another metal) and electroforming (plating a metallic film onto a non-metallic object) with acids and cyanide solutions and metal colouring with many chemicals.

Electroplating and electroforming often use cyanide salts, ingestion of which can be fatal. Accidental mixing of acids and the cyanide solution will produce hydrogen cyanide gas. This is hazardous through both skin absorption and inhalation—death can occur within minutes. Disposal and waste management of spent cyanide solutions is strictly regulated in many countries. Electroplating with cyanide solutions should be done in a commercial plant; otherwise use substitutes that do not contain cyanide salts or other cyanide-containing materials.

Acids are corrosive, and skin and eye protection is needed. Local exhaust ventilation with acid-resistant ductwork is recommended.

Anodizing metals such as titanium and tantalum involves oxidizing these at the anode of an electrolytic bath to colour them. Hydrofluoric acid can be used for precleaning. Avoid using hydrofluoric acid or use gloves, goggles and a protective apron.

Patinas used to colour metals can be applied cold or hot. Lead and arsenic compounds are very toxic in any form, and others can give off toxic gases when heated. Potassium ferricyanide solutions will give off hydrogen cyanide gas when heated, arsenic acid solutions give off arsine gas and sulphide solutions give off hydrogen sulphide gas. Very good ventilation is needed for metal colouring (figure 2). Arsenic compounds and heating of potassium ferrocyanide solutions should be avoided.

Figure 2. Applying a patina to metal with slot exhaust hood.


Ken Jones

Finishing processes

Cleaning, grinding, filing, sandblasting and polishing are some final treatments for metal. Cleaning involves the use of acids (pickling). This involves the hazards of handling acids and of the gases produced during the pickling process (such as nitrogen dioxide from nitric acid). Grinding can result in the production of fine metal dusts (which can be inhaled) and heavy flying particles (which are eye hazards).

Sandblasting (abrasive blasting) is very hazardous, particularly with actual sand. Inhalation of fine silica dust from sandblasting can cause silicosis in a short time. Sand should be replaced with glass beads, aluminium oxide or silicon carbide. Foundry slags should be used only if chemical analysis shows no silica or dangerous metals such as arsenic or nickel. Good ventilation or respiratory protection is needed.

Polishing with abrasives such as rouge (iron oxide) or tripoli can be hazardous since rouge can be contaminated with large amounts of free silica, and tripoli contains silica. Good ventilation of the polishing wheel is needed.


Physical hazards in welding include the danger of fire, electric shock from arc-welding equipment, burns caused by molten metal sparks, and injuries caused by excessive exposure to infrared and ultraviolet radiation. Welding sparks can travel 40 feet.

Infrared radiation can cause burns and eye damage. Ultraviolet radiation can cause sunburn; repeated exposure may lead to skin cancer. Electric arc welders in particular are subject to pink eye (conjunctivitis), and some have cornea damage from UV exposure. Skin protection and welding goggles with UV- and IR-protective lenses are needed.

Oxyacetylene torches produce carbon monoxide, nitrogen oxides and unburned acetylene, which is a mild intoxicant. Commercial acetylene contains small amounts of other toxic gases and impurities.

Compressed gas cylinders can be both explosive and fire hazards. All cylinders, connections and hoses must be carefully maintained and inspected. All gas cylinders must be stored in a location which is dry, well ventilated and secure from unauthorized persons. Fuel cylinders must be stored separately from oxygen cylinders.

Arc welding produces enough energy to convert the air’s nitrogen and oxygen to nitrogen oxides and ozone, which are lung irritants. When arc welding is done within 20 feet of chlorinated degreasing solvents, phosgene gas can be produced by the UV radiation.

Metal fumes are generated by the vaporization of metals, metal alloys and the electrodes used in arc welding. Fluoride fluxes produce fluoride fumes.

Ventilation is needed for all welding processes. While dilution ventilation may be adequate for mild steel welding, local exhaust ventilation is necessary for most welding operations. Moveable flanged hoods, or lateral slot hoods should be used. Respiratory protection is needed if ventilation is not available.

Many metal dusts and fumes can cause skin irritation and sensitization. These include brass dust (copper, zinc, lead and tin), cadmium, nickel, titanium and chromium.

In addition, there are problems with welding materials that may be coated with various substances (e.g., lead or mercury paint).



Thursday, 24 March 2011 15:00


Black-and-White Processing

In black-and-white photographic processing, exposed film or paper is removed from a light-tight container in a darkroom and sequentially immersed in trays containing aqueous solutions of developer, stop bath and fixer. After a water washing and drying, the film or paper is ready for use. The developer reduces the light-exposed silver halide to metallic silver. The stop bath is a weakly acidic solution that neutralizes the alkaline developer solution and stops further reduction of the silver halide. The fixer forms a soluble complex with the unexposed silver halide, which, together with various water-soluble salts, buffers and halide ions, is subsequently removed from the emulsion in the washing process. Rolls of film are usually processed in closed canisters to which the various solutions are added.

Potential health hazards

Because of the wide variety of formulae used by various suppliers, and different methods of packaging and mixing photoprocessing chemicals, only a few generalizations can be made regarding the types of chemical hazards in black-and-white photoprocessing. The most frequent health issue is the potential for contact dermatitis, which most frequently arises from skin contact with developer solutions. Developer solutions are alkaline and usually contain hydroquinone; in some cases they may contain p-methylaminophenolsulphate (also known as Metol or KODAK ELON) as well. Developers are skin and eye irritants and may cause an allergic skin reaction in sensitive individuals. Acetic acid is the principal hazardous component in most stop baths. Although concentrated stop baths are strongly acidic and may cause skin and eye burns following direct contact, the working-strength solutions are usually slight to moderate skin and eye irritants. Fixers contain photographic hypo (sodium thiosulphate) and various sulphite salts (e.g., sodium metabisulphite), and present a low health hazard.

In addition to potential skin and eye hazards, gases or vapours emitted from some photoprocessing solutions may present an inhalation hazard, as well as contribute to unpleasant odours, especially in poorly ventilated areas. Some photochemicals (e.g., fixers) may emit gases such as ammonia or sulphur dioxide resulting from the degradation of ammonium or sulphite salts, respectively. These gases may be irritating to the upper respiratory tract and eyes. In addition, acetic acid emitted from stop baths may also be irritating to the upper respiratory tract and eyes. The irritant effect of these gases or vapours is concentration dependent and is usually observed only at concentrations that exceed occupational exposure limits. However, because of a wide variation in individual susceptibility, some individuals (e.g., persons with pre-existing medical conditions such as asthma) may experience effects at concentrations below occupational exposure limits. Some of these chemicals may be detectable by odour because of the chemical’s low odour threshold. Although the odour of a chemical is not necessarily indicative of a health hazard, strong odours or odours that are increasing in intensity may indicate that the ventilation system is inadequate and should be reviewed.

Risk management

The key to working safely with photoprocessing chemicals is to understand the potential health hazards of exposure and to manage the risk to an acceptable level. Recognition and control of potential hazards begins with reading and understanding product labels and safety data sheets.

Avoiding skin contact is an important goal in darkroom safety. Neoprene gloves are particularly useful in reducing skin contact, especially in mixing areas where more concentrated solutions are encountered. Gloves should be of sufficient thickness to prevent tears and leaks, and should be inspected and cleaned frequently—preferably thorough washing of the outer and inner surfaces with a non-alkaline hand cleaner. In addition to gloves, tongs may also be used to prevent skin contact; barrier creams are not appropriate for use with photochemicals because they are not impervious to all photochemicals and may contaminate processing solutions. A protective apron, smock or lab coat should be worn in the darkroom, and frequent laundering of work clothing is desirable. Protective goggles also should be used, especially in areas where concentrated photochemicals are handled.

If photoprocessing chemicals contact the skin, the affected area should be flushed as rapidly as possible with copious amounts of water. Because materials such as developers are alkaline, washing with a non-alkaline hand cleaner (pH of 5.0 to 5.5) may aid in reducing the potential to develop dermatitis. Clothing should be changed immediately if there is any contamination with chemicals, and spills or splashes should be immediately cleaned up. Hand-washing facilities and provisions for rinsing the eyes are particularly important in the mixing and processing areas. If concentrated or glacial acetic acid is used, emergency shower facilities should be available.

Adequate ventilation is also a key factor to safety in the darkroom. The amount of ventilation required varies according to room conditions and processing chemicals. General room ventilation (e.g., 4.25 m3/min supply and 4.8 m3/min exhaust, equivalent to ten air changes per hour in a 3 x 3 x 3 m room), with a minimum outside air replenishment rate of 0.15 m3/min/m2 floor area, is usually adequate for photographers who undertake basic black-and-white photoprocessing. The exhaust air should be discharged outside the building to avoid redistributing potential air contaminants. Special procedures such as toning (which involves the replacement of silver by silver sulphide, selenium or other metals), intensifying (which involves making parts of the image darker by the use of chemicals such as potassium dichromate or potassium chlorochromate) and mixing operations (where concentrated solutions or powders are handled) may require supplementary local exhaust ventilation or respiratory protection.

Colour Processing

There are a number of colour processes that are more complex and also involve the use of potentially hazardous chemicals. Colour processing is described in the chapter Printing, photography, and reproduction industries. As with black-and-white photoprocessing, avoiding skin and eye contact and providing adequate ventilation are key factors to safety in colour processing.



Thursday, 24 March 2011 14:53


In ancient times, the art of sculpture included engraving and carving of stone, wood, bone and other materials. Later, sculpture developed and refined modelling techniques in clay and plaster, and moulding and welding techniques in metals and glass. During the last century various additional materials and techniques have been used for the art of sculpture, including plastic foams, paper, found materials and several sources of energy such as light, kinetic energy and so on. The aim of many modern sculptors is to involve the viewer actively.

Sculpture often utilizes the natural colour of the material or treats its surface to achieve a certain colour or to emphasize the natural characteristics or to modify the light reflections. Such techniques belong to the finishing touches of the art piece. Health and safety risks for artists and their assistants arise from the characteristics of the materials; from the use of tools and equipment; from the various forms of energy (mainly electricity) used for the functioning of tools; and from heat for welding and fusing techniques.

Artists’ lack of information and their focusing on the work lead to underestimating the importance of safety; this can result in serious accidents and the development of occupational diseases.

The risks are sometimes linked to the design of the workplace or to the organization of the work (e.g., carrying out many working operations at the same time). Such risks are common to all workplaces, but in the arts and crafts environment they can have more serious outcomes.

General Precautions

These include: appropriate design of the studio, considering the type of power sources employed and the placement and movement of the artistic material; segregation of hazardous operations controlled with adequate warning displays; installation of exhaust systems for control and removal of powders, gases, fumes, vapours and aerosols; use of well-fitted and convenient personal protective equipment; efficient clean-up facilities, such as showers, sinks, eye-wash fountains and so on; knowledge of the risks associated with the use of chemical substances and of the regulations that govern their use, in order to avoid or at least reduce their potential harm; keeping informed on the possible risks of accidents and on hygiene regulations and being trained in first aid and. Local ventilation to remove airborne dust is necessary at its source, when it is produced in abundance. Daily vacuum cleaning, either wet or dry, or wet mopping of the floor and of work surfaces is highly recommended.

Main Sculpturing Techniques

Stone sculpture involves carving hard and soft stones, precious stones, plaster, cement and so on. Sculpture shaping involves work on more pliable materials—plaster and clay modelling and casting, wood sculpture, metalworking, glassblowing, plastic sculpture, sculpture in other materials and mixed techniques. See also the articles “Metalworking” and “Woodworking”. Glassblowing is discussed in the chapter Glass, ceramics and related materials.

Stone sculptures

Stones used for sculpture can be divided into soft stones and hard stones. The soft stones can be worked manually with tools such as saws, chisels, hammers and rasps, as well as with electric tools.

Hard stones such as granite, and other materials, such as cement blocks, can be used to create works of art and ornaments. This involves working with electric or pneumatic tools. The final stages of the work can be partially executed by hand.


Prolonged inhalation of high quantities of certain stone dusts containing free crystalline silica, which comes out of freshly cut surfaces, can lead to silicosis. Electric and pneumatic tools can cause a higher concentration in the air of dust which is finer than that produced by manual tools. Marble, travertine and limestone are inert materials and not pathogenic to the lungs; plaster (calcium sulphate) is irritating to the skin and to the mucous membranes.

Asbestos fibre inhalation, even in small quantities, can lead to a risk of lung cancer (laryngeal, tracheal, bronchial, lung and pleural malignancies) and probably also cancer of the digestive tract and of other organ systems. Such fibres can be found as impurities in serpentine and in talc. Asbestosis (fibrosis of the lung) can be contracted only through the inhalation of high doses of asbestos fibres, which is unlikely at this type of work. See table  1 for a list of the hazards of common stones.

Table 1. Hazards of common stones.

Hazardous ingredient


Free crystalline silica


Hard stones: Granites, basalt, jasper, porphyry, onyx, pietra serena

Soft stones: steatite (soapstone), sandstone, slate, clays, some limestone

Possible asbestos contamination

Soft stones: soapstone, serpentine

Free silica and asbestos


Hard stones: marble, travertine

Soft stones: alabaster, tufa, marble, plaster


High noise levels can be produced by the use of pneumatic hammers, electric saws and sanders, as well as manual tools. This can result in hearing loss and other effects on the autonomic nervous system (increase of heart rate, gastric disturbances and so on), psychological problems (irritability, attention deficits and so on), as well as general health problems, including headaches.

The use of electric and pneumatic tools can provoke damage to finger micro-circulation with the possibility of Raynaud’s phenomenon, and facilitate degenerative phenomena to the upper arm.

Work in difficult positions and lifting heavy objects can produce low-back pain, muscle strains, arthritis and joint bursitis (knee, elbow).

The risk of accidents is frequently connected with the use of sharp tools moved by powerful forces (manual, electric or pneumatic). Often stone splinters are violently shot into the working environment during the breaking of stones; falling or rolling of improperly fixed blocks or surfaces also occurs. The use of water can lead to slipping on wet floors, and to electric shocks.

Pigment and colourant substances (especially of spray type) used to cover the final layer (paints, lakes) expose the worker to the risk of inhalation of toxic compounds (lead, chromium, nickel) or of irritating or allergenic compounds (acrylic or resins). This can affect the mucous membranes as well as the respiratory tract.

Inhalation of evaporating paints solvents in high quantities over the course of the working day or in lower concentrations for longer periods, can provoke acute or chronic toxic effects on the central nervous system.


Alabaster is a safer substitute for soapstone and other hazardous soft stones.

Pneumatic or electric tools with portable dust collectors should be used. The working environment should be cleaned frequently using vacuum cleaners or wet mopping; adequate general ventilation must be provided.

The respiratory system can be protected from the inhalation of dusts, solvents and aerosol vapours through use of proper respirators. Hearing can be protected with ear plugs and eyes can be protected with proper goggles. To reduce the risk of hand accidents leather gloves (when necessary) or lighter rubber gloves, lined with cotton, should be used to prevent contact with chemical substances. Anti-slipping and safety shoes should be used to prevent damage to the feet caused by the possible fall of heavy objects. During complicated and long operations, proper clothes should be worn; ties, jewellery and clothes which could easily get stuck in the machines should not be worn. Long hair should be put up or under a cap. A shower should be taken at the end of every work period; work clothes and shoes should never be taken home.

Pneumatic tool compressors should be placed out of the work area; noisy areas should be insulated; numerous breaks should be taken in warm areas during the working day. Pneumatic and electric tools equipped with comfortable handles (better if equipped with mechanical shock absorbers) which are able to direct the air away from the hands of the operator should be used; stretching and massage are suggested during the work period.

Sharp tools should be operated as far as possible from hands and body; broken tools should not be used.

Flammable substances (paints, solvents) must be kept far from flames, lit cigarettes and heat sources.

Sculpture shaping

The most common material used for sculpture shaping is clay (mixed with water or naturally soft clay); wax, plaster, concrete and plastic (sometimes reinforced with glass fibres) are also commonly used.

The facility with which a sculpture is shaped is directly proportional to the malleability of the material used. A tool (wood, metal, plastic) is often used.

Some materials, such as clays, can become hard after being heated in a furnace or kiln. Also, talc can be used as semi-liquid clay (slip), which can be poured into moulds and then fired in a kiln after drying.

These types of clays are similar to those used in the ceramic industry and may contain considerable amounts of free crystalline silica. See the article “Ceramics”.

Non-hardening clays, such as plasticine, contain fine particles of clays mixed with vegetable oils, preservatives and sometimes solvents. The hardening clays, also called polymer clays, are actually formed with polyvinyl chloride, with plasticizing materials such as various phthalates.

Wax is usually shaped by pouring it into a mould after it is heated, but it can also be formed with heated tools. Wax can be of natural or synthetic compounds (coloured waxes). Many types of waxes can be dissolved with solvents such as alcohol, acetone, mineral or white spirits, ligroin and carbon tetrachloride.

Plaster, concrete and papier mâché have different characteristics: it is not necessary to heat or to melt them; they are usually worked on a metal or fibreglass frame, or cast in moulds.

Plastic sculpture techniques can be divided into two main areas:

  • work with already polymerized materials (casting, plate or sheet). They can be heated, softened, glued, cut, refined, refurbished and so on.
  • work with non-polymerized plastic. The material is worked with monomers, obtaining a chemical reaction leading to polymerization.


Plastics can be formed by polyester, polyurethane, amino, phenolic, acrylic, epoxy and silicon resins. During polymerization, they can be poured into moulds, applied by hand layup, printed, laminated and skimmed by using catalyzers, accelerators, hardeners, loads and pigments.

See table 2 for a list of the hazards and precautions for common sculpture shaping materials.

Table 2. Main risks associated with material used for sculpture shaping.


Hazards and precautions



Hazards: Free crystalline silica; talc can be contaminated by asbestos; during heating operations, toxic gases can be released.

Precautions: See “Ceramics”.



Hazards: Solvents and preservatives can cause irritation to skin and mucous and allergic reactions in certain individuals.

Precautions: Susceptible individuals should find other materials.

Hard clays


Hazards: Some hardening or polymer clay plasticizers (phthalates) are possible reproductive or carcinogen toxins. During heating operations, hydrogen chloride can be released, especially if overheated.

Precautions: Avoid overheating or using in an oven also used for cooking.



Hazards: Overheated vapours are flammable and explosive. Acrolein fumes, produced by decomposition from overheating wax, are strong respiratory irritants and sensitizers. Wax solvents can be toxic by contact and inhalation; carbon tetrachloride is carcinogenic and highly toxic to the liver and kidneys.

Precautions: Avoid open flames. Do not use electric hot plates with exposed heating elements. Heat to minimum temperature necessary. Do not use carbon tetrachloride.

Finished plastics


Hazards: Heating, machining, cutting plastics can result in decomposition to hazardous materials such as hydrogen chloride (from polyvinyl chloride), hydrogen cyanide (from polyurethanes and amino plastics), styrene (from polystyrene) and carbon monoxide from the combustion of plastics. Solvents used for gluing plastics are also fire and health hazards.

Precautions: Have good ventilation when working with plastics and solvents.

Plastics resins


Hazards: Most resin monomers (e.g., styrene, methyl methacrylate, formaldehyde) are hazardous by skin contact and inhalation. Methyl ethyl ketone peroxide hardener for polyester resins can cause blindness if splashed in the eyes. Epoxy hardeners are skin and respiratory irritants and sensitizers. Isocyanates used in polyurethane resins can cause severe asthma.

Precautions: Use all resins with proper ventilation, personal protective equipment (gloves, respirators, goggles), fire precautions and so forth. Do not spray polyurethane resins.


See Glass, ceramics and related materials.



Thursday, 24 March 2011 14:48

Drawing, Painting and Printmaking

Drawing involves making marks on a surface to express a feeling, experience or vision. The most commonly used surface is paper; drawing media include dry implements such as charcoal, coloured pencils, crayons, graphite, metalpoint and pastels, and liquids such as inks, markers and paints. Painting refers to processes that apply an aqueous or non-aqueous liquid medium (“paint”) to sized, primed or sealed surfaces such as canvas, paper or panel. Aqueous media include water-colours, tempera, acrylic polymers, latex and fresco; non-aqueous media include linseed or stand oils, dryers, varnish, alkyds, encaustic or molten wax, organic solvent-based acrylics, epoxy, enamels, stains and lacquers. Paints and inks typically consists of colouring agents (pigments and dyes), a liquid vehicle (organic solvent, oil or water), binders, bulking agents, antioxidants, preservatives and stabilizers.

Prints are works of art made by transferring a layer of ink from an image on a printing surface (such as woodblock, screen, metal plate or stone) onto paper, fabric or plastic. The printmaking process involves several steps: (1) preparation of the image; (2) printing; and (3) cleanup. Multiple copies of the image can be made by repeating the printing step. In monoprints, only one print is made.

Intaglio printing involves incising lines by mechanical means (e.g., engraving, drypoint) or etching the metal plate with acid to create depressed areas in the plate, which form the image. Various solvent-containing resists and other materials such as rosin or spray paint (aquatinting) can be used to protect the part of the plate not being etched. In printing, the ink (which is linseed oil based) is rolled onto the plate, and the excess wiped off, leaving ink in the depressed areas and lines. The print is made by placing the paper on the plate and applying pressure by a printing press to transfer the ink image to the paper.

Relief printing involves the cutting away of the parts of woodblocks or linoleum that are not to be printed, leaving a raised image. Water-or linseed oil–based inks are applied to the raised image and the ink image transferred to paper.

Stone lithography involves making an image with a greasy drawing crayon or other drawing materials that will make the image receptive to the linseed oil–based ink, and treating the plate with acids to make non-image areas water receptive and ink repellent. The image is washed out with mineral spirits or other solvents, inked with a roller and then printed. Metal plate lithography can involve a preliminary counteretch that often contains dichromate salts. Metal plates may be treated with vinyl lacquers containing ketone solvents for long print runs.

Screen printing is a stencil process where a negative image is made on the fabric screen by blocking out portions of the screen. For water-based inks, the blockout materials must be water insoluble; for solvent-based inks, the reverse. Cut plastic stencils are frequently used and adhered to the screen with solvents. The prints are made by scraping ink across the screen, forcing the ink through the unblocked parts of the screen onto paper located underneath the screen, thus creating the positive image. Large print runs using solvent-based inks involve the release of large amounts of solvent vapours into the air.

Collagraphs are made using either intaglio or relief printing techniques on a textured surface or collage, which can be made of many materials glued onto the plate.

Photoprintmaking processes can use either presensitized plates (often diazo) for lithography or intaglio, or the photoemulsion can be applied directly to the plate or stone. A mixture of gum arabic and dichromates have often been used on stones (gum printing). The photographic image is transferred to the plate, and then the plate exposed to ultraviolet light (e.g., carbon arcs, xenon lights, sunlight). When developed, the non-exposed portions of the photoemulsion are washed away, and the plate then printed. The coating and developing agents can often contain hazardous solvents and alkalis. In photo screen processes, the screen can be coated with dichromate or diazo photoemulsion directly, or an indirect process can be used, which involves adhering sensitized transfer films to the screen after exposure.

In printmaking techniques using oil-based inks, the ink is cleaned up with solvents or with vegetable oil and dishwashing liquid. Solvents also have to be used for cleaning lithography rollers. For water-based inks, water is used for cleanup. For solvent-based inks, large amounts of solvents are used for cleanup, making this one of the most hazardous processes in printmaking. Photoemulsions can be removed from screens using chlorine bleach or enzyme detergents.

Artists who draw, paint or make prints face significant health and safety hazards. The major sources of hazards for these artists include acids (in lithography and intaglio), alcohols (in paint, shellac, resin and varnish thinners and removers), alkalis (in paints, dye baths, photodevelopers and film cleaners), dusts (in chalks, charcoal and pastels), gases (in aerosols, etching, lithography and photoprocesses), metals (in pigments, photochemicals and emulsions), mists and sprays (in aerosols, air-brushing and aquatinting), pigments (in inks and paints), powders (in dry pigments and photochemicals, rosin, talc and whiting), preservatives (in paints, glues, hardeners and stabilizers) and solvents (such as aliphatic, aromatic and chlorinated hydrocarbons, glycol ethers and ketones). Common routes of exposure associated with these hazards include inhalation, ingestion and skin contact.

Among the well-documented health problems of painters, drawers and printmakers are: n-hexane-induced peripheral nerve damage in art students using rubber cement and spray adhesives; solvent-induced peripheral and central nervous system damage in silk-screen artists; bone marrow suppression related to solvents and glycol ethers in lithographers; onset or aggravation of asthma following exposure to sprays, mists, dusts, moulds and gases; abnormal heart rhythms following exposure to hydrocarbon solvents such as methylene chloride, freon, toluene and 1,1,1-trichloroethane found in glues or correction fluids; acid, alkali or phenol burns or irritation of the skin, eyes and mucous membranes; liver damage induced by organic solvents; and irritation, immune reaction, rashes and ulceration of the skin following exposure to nickel, dichromates and chromates, epoxy hardeners, turpentine or formaldehyde.

Although not well-documented, painting, drawing and printmaking may be associated with an increased risk of leukaemia, kidney tumours and bladder tumours. Suspected carcinogens to which painters, drawers and printmakers may be exposed include chromates and dichromates, polychlorinated biphenyls, trichloroethylene, tannic acid, methylene chloride, glycidol, formaldehyde, and cadmium and arsenic compounds.

The most important precautions in painting, drawing and printmaking include: substitution of water-based materials for materials based on organic solvents; proper use of general dilution ventilation and local exhaust ventilation (see figure 1); proper handling, labelling, storage and disposal of paints, flammable liquids and waste solvents; appropriate use of personal protective equipment such as aprons, gloves, goggles and respirators; and avoidance of products that contain toxic metals, especially lead, cadmium, mercury, arsenic, chromates and manganese. Solvents to be avoided include benzene, carbon tetrachloride, methyl n-butyl ketone, n-hexane and trichloroethylene.

Figure 1. Silk screen printing with slot exhaust hood.


Michael McCann

Additional efforts designed to reduce the risk of adverse health effects associated with painting, drawing and printmaking include early and continuous education of young artists concerning the hazards of art materials, and laws mandating labels on art materials that warn of both short-term and long-term health and safety hazards.



Thursday, 24 March 2011 14:41

Entertainment and the Arts

Entertainment and the arts have been a part of human history ever since prehistoric people drew cave paintings of animals they hunted or acted out in song and dance the success of the hunt. Every culture from earliest times has had its own style of visual and performing arts, and decorated everyday objects like clothing, pottery and furniture. Modern technology and more leisure time has led to a major part of the world’s economy being devoted to satisfying the need for people to see or own beautiful objects and to be entertained.

The entertainment industry is a miscellaneous grouping of non-commercial institutions and commercial companies that provide these cultural, amusement and recreational activities for people. By contrast, artists and craftspeople are workers who create artwork or handicrafts for their own pleasure or for sale. They usually work alone or in groups of fewer than ten people, often organized around families.

The people who make this entertainment and art possible—artists and craftspeople, actors, musicians, circus performers, park attendants, museum conservators, professional sports players, technicians and others—often face occupational hazards that can result in injuries and illnesses. This chapter will discuss the nature of those occupational hazards. It will not discuss the hazards to people doing arts and crafts as hobbies or attending these entertainment events, although in many instances the hazards will be similar.

Entertainment and the arts can be thought of as a microcosm of all industry. The occupational hazards encountered are, in most instances, similar to those found in more conventional industries, and the same types of precautions can be used, although costs may be prohibitive factors for some engineering controls in the arts and crafts. In these instances, emphasis should be on substitution of safer materials and processes. Table 1 lists standard types of precautions associated with the various hazards found in the arts and entertainment industries.

Table 1. Precautions associated with hazards in the arts and entertainment industries.



Chemical hazards


Training in hazards and precautions

Substitution of safer materials

Engineering controls

Adequate storage and handling

No eating, drinking or smoking in work areas

Personal protective equipment

Spill and leak control procedures

Safe disposal of hazardous materials

Airborne contaminants

(vapours, gases, spray mists, fogs, dusts, fumes, smoke)


Dilution or local exhaust ventilation

Respiratory protection


Cover containers

Gloves and other personal protective clothing

Splash goggles and face shields as needed

Eyewash fountain and emergency showers when needed


Purchasing in liquid or paste form

Glove boxes

Local exhaust ventilation

Wet mopping or vacuuming

Respiratory protection



Physical hazards


Quieter machinery

Proper maintenance

Sound dampening

Isolation and enclosure

Hearing protectors

Ultraviolet radiation


Skin protection and UV goggles

Infrared radiation

Skin protection and infrared goggles


Using lowest-power laser possible


Beam restrictions and proper emergency cutoffs

Laser goggles



Light, loose clothing

Rest breaks in cool areas

Adequate liquid intake


Warm clothing

Rest breaks in heated areas

Electrical hazards

Adequate wiring

Properly grounded equipment

Ground fault circuit interrupters where needed

Insulated tools, gloves, etc.

Ergonomic hazards

Ergonomic tools, instruments, etc., of proper size

Properly designed work stations

Proper posture

Rest breaks

Safety hazards


Machine guards

Accessible stop switch

Good maintenance

Flying particles (e.g., grinders)


Eye and face protection as needed

Slips and falls

Clean and dry walking and working surfaces

Fall protection for elevated work

Guardrails and toeboards on scaffolds, catwalks, etc.

Falling objects

Safety hats

Safety shoes

Fire hazards

Proper exit routes

Proper fire extinguishers, sprinklers, etc.

Fire drills

Removal of combustible debris

Fireproofing of exposed materials

Proper storage of flammable liquids and compressed gases

Grounding and bonding when dispensing flammable liquids

Removal of sources of ignition around flammables

Proper disposal of solvent- and oil-soaked rags

Biological hazards


Humidity control

Removal of standing water

Cleanup after flooding

Bacteria, viruses

Vaccination where appropriate

Universal precautions

Disinfection of contaminated materials, surfaces


Arts and Crafts

Artists and craftspeople are usually self-employed, and the work is done in homes, studios or backyards, using small amounts of capital and equipment. Skills are often handed down from generation to generation in an informal apprenticeship system, particularly in developing countries (McCann 1996). In industrialized countries, artists and craftspeople often learn their trade in schools.

Today, arts and crafts involve millions of people across the world. In many countries, craftwork is a major part of the economy. However, few statistics are available on the number of artists and craftspeople. In the United States, estimates gathered from a variety of sources indicate there are at least 500,000 professional artists, craftspeople and art teachers. In Mexico, it has been estimated that there are 5,000 families involved in the home-based pottery industry alone. The Pan American Health Organization found that 24% of the workforce in Latin America from 1980 to 1990 were self-employed (PAHO 1994). Other studies of the informal sector have found similar or higher percentages (WHO 1976; Henao 1994). What percentage of these are artists and craftspeople is unknown.

Arts and crafts evolve with the technology available and many artists and craftspeople adopt modern chemicals and processes for their work, including plastics, resins, lasers, photography and so on (McCann 1992a; Rossol 1994). Table 2 shows the range of physical and chemical hazards found in art processes.

Table 2. Hazards of art techniques







Lead, cadmium, manganese, cobalt, mercury, etc.

Mineral spirits, turpentine




Fire, wax, decomposition fumes

See Dyeing


Clay dust


Slip casting

Kiln firing


Silica, lead, cadmium and other toxic metals

Talc, asbestiform materials

Sulphur dioxide, carbon monoxide, fluorides, infrared radiation, burns

Commercial art

Rubber cement

Permanent markers

Spray adhesives



Photostats, proofs

N-hexane, heptane, fire

Xylene, propyl alcohol

N-hexane, heptane, 1,1,1-trichloroethane, fire

See Airbrush

See Photography

Alkali, propyl alcohol

Computer art


Video display

Carpal tunnel syndrome, tendinitis, poorly designed work stations

Glare, Elf radiation


Spray fixatives

N-hexane, other solvents




Dyeing assistants

Fibre-reactive dyes, benzidine dyes, naphthol dyes, basic dyes, disperse dyes, vat dyes

Ammonium dichromate, copper sulphate, ferrous sulphate, oxalic acid, etc.

Acids, alkalis, sodium hydrosulphite


Gold, silver

Other metals

Cyanide salts, hydrogen cyanide, electrical hazards

Cyanide salts, acids, electrical hazards



Kiln firing

Lead, cadmium, arsenic, cobalt, etc.

Infrared radiation, burns

Fibre arts

See also Batik, Weaving

Animal fibres

Synthetic fibres

Vegetable fibres


Anthrax and other infectious agents


Moulds, allergens, dust



Hot forge


Carbon monoxide, polycyclic aromatic hydrocarbons, infrared radiation, burns


Batch process





Lead, silica, arsenic, etc.

Heat, infrared radiation, burns

Metal fumes

Hydrofluoric acid, ammonium hydrogen fluoride



(see also Photography)



Non-ionizing radiation, electrical hazards

Bromine, pyrogallol


Acid etching




Hydrochloric and nitric acids, nitrogen dioxide, chlorine gas, potassium chlorate

Alcohol, mineral spirits, kerosene

Rosin dust, dust explosion

Glycol ethers, xylene


Silver soldering

Pickling baths

Gold reclaiming

Cadmium fumes, fluoride fluxes

Acids, sulphur oxides

Mercury, lead, cyanide


Quartz gemstones

Cutting, grinding


Noise, silica






Mineral spirits, isophorone, cyclohexanone, kerosene, gasoline, methylene chloride, etc.

Nitric, phosphoric, hydrofluoric, hydrochloric, etc.

Asbestiform materials

Dichromates, solvents

Lost wax casting


Wax burnout

Crucible furnace

Metal pouring



Wax decomposition fumes, carbon monoxide

Carbon monoxide, metal fumes

Metal fumes, infrared radiation, molten metal, burns




Oil, alkyd


Lead, cadmium, mercury, cobalt, manganese compounds, etc.

Mineral spirits, turpentine

Trace amounts ammonia, formaldehyde


Fibre separation




Boiling alkali

Noise, injuries, electrical

Chlorine bleach

Pigments, dyes, etc.


Pigment dusts

See Painting Pigments


Developing bath

Stop bath

Fixing bath



Colour processes

Platinum printing

Hydroquinone, monomethyl-p-aminophenol sulphate, alkalis

Acetic acid

Sulphur dioxide, ammonia

Dichromates, hydrochloric acid

Selenium compounds, hydrogen sulphide, uranium nitrate, sulphur dioxide, gold salts

Formaldehyde, solvents, colour developers, sulphur dioxide

Platinum salts, lead, acids, oxalates

Relief printing



Mineral spirits

See Painting Pigments

Screen printing




Lead, cadmium, manganese and other pigments

Mineral spirits, toluene, xylene

Ammonium dichromate

Sculpture, clay

See Ceramics


Sculpture, lasers


Non-ionizing radiation, electrical hazards

Sculpture, neon

Neon tubes

Mercury, cadmium phosphors, electrical hazards, ultraviolet radiation

Sculpture, plastics

Epoxy resin

Polyester resin

Polyurethane resins

Acrylic resins

Plastic fabrication

Amines, diglycidyl ethers

Styrene, methyl methacrylate, methyl ethyl ketone peroxide

Isocyanates, organotin compounds, amines, mineral spirits

Methyl methacrylate, benzoyl peroxide

Heat decomposition products (e.g., carbon monoxide, hydrogen chloride, hydrogen cyanide, etc.)

Sculpture, stone



Granite, sandstone

Pneumatic tools

Nuisance dust

Silica, talc, asbestiform materials


Vibration, noise

Stained glass

Lead came





Lead-based compounds

Lead, zinc chloride fumes

Hydrofluoric acid, ammonium hydrogen fluoride




Ergonomic problems

See Dyeing





Metal fumes

Metal fumes, burns, sparks

Carbon monoxide, nitrogen oxides, compressed gases

Ozone, nitrogen dioxide, fluoride and other flux fumes, ultraviolet and infrared radiation, electrical hazards

Oxides of copper, zinc, lead, nickel, etc.




Paint strippers

Paints and finishes


Injuries, wood dust, noise, fire

Formaldehyde, epoxy, solvents

Methylene chloride, toluene, methyl alcohol, etc.

Mineral spirits, toluene, turpentine, ethyl alcohol, etc.

Chromated copper arsenate, pentachlorophenol, creosote

Source: Adapted from McCann 1992a.

The arts and crafts industry, like much of the informal sector, is almost completely unregulated and is often exempted from workers’ compensation laws and other occupational safety and health regulations. In many countries, government agencies responsible for occupational safety and health are unaware of the risks facing artists and craftspeople, and occupational health services do not reach out to this group of workers. Special attention is needed to find ways to educate artists and craftspeople about the hazards and precautions needed with their materials and processes, and to make occupational health services available to them.

Health problems and disease patterns

Few epidemiological studies have been done on workers in the visual arts. This is mostly due to the decentralized and often unregistered nature of most of these industries. Much of the data that are available come from individual case reports in the literature.

The traditional arts and crafts can result in the same occupational diseases and injuries found in larger-scale industry, as evidenced by such old terms as potter’s rot, weaver’s back and painter’s colic. The hazards of such crafts as pottery, metalworking and weaving were first described by Bernardino Ramazzini almost three centuries ago (Ramazzini 1713). Modern materials and processes also are causing occupational illnesses and injuries.

Lead poisoning is still one of the most common occupational illnesses among artists and craftspeople, with examples of lead poisoning being found in:

  • a stained-glass artist in the United States (Feldman and Sedman 1975)
  • potters and their families in Mexico (Ballestros, Zuniga and Cardenas 1983; Cornell 1988) and Barbados (Koplan et al. 1977)
  • families in Sri Lanka recovering gold and silver from jeweller’s waste using a molten lead procedure (Ramakrishna et al. 1982).


Other examples of occupational illnesses in the arts and crafts include:

  • chromium sensitization in a fibre artist (MMWR 1982)
  • neuropathy in a silk-screen artist (Prockup 1978)
  • heart attacks from methylene chloride in a furniture refinisher (Stewart and Hake 1976)
  • respiratory problems in photographers (Kipen and Lerman 1986)
  • mesothelioma in jewellers (Driscoll et al. 1988)
  • silicosis and other respiratory diseases in agate workers in India (Rastogi et al. 1991)
  • asthma from carving ivory from elephant tusks in Africa (Armstrong, Neill and Mossop 1988)
  • respiratory problems and ergonomic problems among carpet weavers in India (Das, Shukla and Ory 1992)
  • as many as 93 cases of peripheral neuropathy from the use of hexane-based adhesives in sandal-making in Japan in the late 1960s (Sofue et al. 1968)
  • paralysis in 44 apprentice shoemakers in Morocco due to glues containing tri-orthocresyl phosphate (Balafrej et al. 1984)
  • leg, arm and back pain and other occupational health problems in home-based workers making ready-made garments in India (Chaterjee 1990).


A major problem in the arts and crafts is the prevalent lack of knowledge of hazards, materials and processes and how to work safely. Individuals who do develop occupational diseases often do not realize the connection between their illness and their exposures to hazardous materials, and are less likely to obtain proper medical assistance. In addition, whole families can be at risk—not only those adults and children actively working with the materials, but also younger children and infants who are present, since these arts and crafts are commonly done in the home (McCann et al. 1986; Knishkowy and Baker 1986).

A proportionate mortality ratio (PMR) study of 1,746 White professional artists by the United States National Cancer Institute found significant elevations in deaths of painters, and to a lesser degree for other artists, from arteriosclerotic heart disease and from cancers of all sites combined. For male painters, rates of leukaemia and cancers of the bladder, kidney and colorectum were significantly elevated. Proportionate cancer mortality rates were also elevated, but to a lesser degree. A case control study of bladder cancer patients found an overall relative risk estimate of 2.5 for artistic painters, confirming the results found in the PMR study (Miller, Silverman and Blair 1986). For other male artists, PMRs for colorectal and kidney cancer were significantly elevated.

Performing and Media Arts

Traditionally, the performing arts include theatre, dance, opera, music, storytelling and other cultural events that people would come to see. With music, the type of performance and their venue can vary widely: individuals performing music on the street, in taverns and bars, or in formalized concert halls; small musical groups playing in small bars and clubs; and large orchestras performing in large concert halls. Theatre and dance companies can be of several types, including: small informal groups associated with schools or universities; non-commercial theatres, which are usually subsidized by governments or private sponsors; and commercial theatres. Performing arts groups may also tour from one location to another.

Modern technology has seen the growth of the media arts, such as the print media, radio, television, motion pictures, videotapes and so on, which enable the performing arts, stories and other events to be recorded or broadcast. Today the media arts are a multi-billion-dollar industry.

Workers in the performing and media arts include the performers themselves—actors, musicians, dancers, reporters and others visible to the public. In addition, there are the technical crews and front office people—stage carpenters, scenic artists, electricians, special effects experts, motion picture or television camera crews, ticket sellers and others—who work backstage, behind the cameras and on other non-performing jobs.

Health effects and disease patterns

Actors, musicians, dancers, singers and other performers are also subject to occupational injuries and illnesses, which can include accidents, fire hazards, repetitive strain injuries, skin irritation and allergies, respiratory irritation, performance anxiety (stage fright) and stress. Many of these types of injuries are specific to particular groups of performers, and are discussed in separate articles. Even minor physical problems can often affect a performer’s peak performance capability, and subsequently end in lost time and even lost jobs. In recent years, the prevention, diagnosis and treatment of injuries to performers has led to the new field of arts medicine, originally an offshoot of sports medicine. (See “History of performing arts medicine” in this chapter.)

A PMR study of screen and stage actors found significant elevations for lung, oesophagus and bladder cancers in women, with the rate for stage actresses 3.8 times that of screen actresses (Depue and Kagey 1985). Male actors had significant PMR (but not proportionate cancer mortality ratio) increases for pancreatic and colon cancer; testicular cancer was twice the expected rate by both methods. PMRs for suicide and non–motor vehicle accidents were significantly elevated for both men and women, and the PMR for cirrhosis of the liver was elevated in men.

A recent survey of injuries among 313 performers in 23 Broadway shows in New York City found that 55.5% reported at least one injury, with a mean of 1.08 injuries per performer (Evans et al. 1996). For Broadway dancers, the most frequent sites of injury were the lower extremities (52%), back (22%) and neck (12%), with raked or slanted stages being a significant contributing factor. For actors, the most frequent sites of injuries were lower extremities (38%), the lower back (15%) and vocal cords (17%). The use of fogs and smoke on stage was listed as a major cause for the last.

In 1991, the United States National Institute for Occupational Safety and Health investigated the health effects of the use of smoke and fogs in four Broadway shows (Burr et al. 1994). All the shows used glycol-type fogs, although one also used mineral oil. A questionnaire survey of 134 actors in these shows with a control group of 90 actors in five shows not using fogs found significantly higher levels of symptoms in actors exposed to fogs, including upper-respiratory symptoms such as nasal symptoms and irritation of mucous membranes, and lower-respiratory symptoms such as coughing, wheezing, breathlessness and chest tightness. A follow-up study could not demonstrate a correlation between fog exposure and asthma, possibly due to the low number of responses.

The motion picture production industry has a high accident rate, and in California is classified as high risk, mostly as a result of stunts. During the 1980s, there were over 40 fatalities in American-produced motion pictures (McCann 1991). California statistics for 1980–1988 show an incidence of 1.5 fatalities per 1,000 injuries, compared to the California average of 0.5 for the same period.

A large number of studies have shown that dancers have high overuse and acute injury rates. Ballet dancers, for example, have high incidences of overuse syndrome (63%), stress fractures (26%) and major (51%) or minor (48%) problems during their professional careers (Hamilton and Hamilton 1991). One questionnaire study of 141 dancers (80 females), 18 to 37 years old, from seven professional ballet and modern dance companies in the United Kingdom, found that 118 (84%) of the dancers reported at least one dance-related injury that affected their dancing, 59 (42%) in the last six months (Bowling 1989). Seventy-four (53%) reported that they were suffering from at least one chronic injury that was giving them pain. The back, neck and ankles were the most common sites of injury.

As with dancers, musicians have a high incidence of overuse syndrome. A 1986 questionnaire survey by the International Conference of Symphony and Opera Musicians of 4,025 members from 48 American orchestras showed medical problems affecting performance in 76% of the 2,212 respondents, with severe medical problems in 36% (Fishbein 1988). The most common problem was overuse syndrome, reported by 78% of string players. A 1986 study of eight orchestras in Australia, the United States and England found a 64% occurrence of overuse syndrome, 42% of which involved a significant level of symptoms (Frye 1986).

Hearing loss among rock musicians has had significant press coverage. Hearing loss is also found, however, among classical musicians. In one study, sound level measurements at the Lyric Theatre and Concert Hall in Gothenberg, Sweden, averaged 83 to 89 dBA. Hearing tests of 139 male and female musicians from both theatres indicated that 59 musicians (43%) showed worse pure tone thresholds than would be expected for their age, with brass wind instrumentalists showing the greatest loss (Axelsson and Lindgren 1981).

A 1994-1996 study of sound level measurements in the orchestra pits of 9 Broadway shows in New York City showed average sound levels from 84 to 101 dBA, with a normal showtime of 2½ hours (Babin 1996).

The carpenters, scenic artists, electricians, camera crews and other technical support workers face, in addition to many safety hazards, a wide variety of chemical hazards from materials used in scene shops, prop shops and costume shops. Many of the same materials are used in the visual arts. However, there are no available injury or illness statistics on these workers.


The “Entertainment” section of the chapter covers a variety of entertainment industries that are not covered under “Arts and Crafts” and “Performing and Media Arts”, including: museums and art galleries; zoos and aquariums; parks and botanical gardens; circuses, amusement and theme parks; bullfighting and rodeos; professional sports; the sex industry; and nightlife entertainment.

Health effects and disease patterns

There are a wide variety of types of workers involved in the entertainment industry, including performers, technicians, museum conservators, animal handlers, park rangers, restaurant workers, cleaning and maintenance personnel and many more. Many of the hazards found in the arts and crafts and performing and media arts are also found among particular groups of entertainment workers. Additional hazards such as cleaning products, toxic plants, dangerous animals, AIDS, zoonoses, hazardous drugs, violence and so forth are also occupational hazards to particular groups of entertainment workers. Because of the disparateness of the various industries, there are no overall injury and illness statistics. The individual articles include relevant injury and illness statistics, where available.



Monday, 21 March 2011 18:47

Hazardous-Response Personnel

Employees in occupations that respond to hazardous-substance emergencies or incidents can be broadly classified as hazardous-response personnel. A hazardous-substance emergency or incident can be defined as an uncontrolled or illegal release or threatened release of a hazardous material or its hazardous by-products. A hazardous-substance emergency can arise from a transportation-related incident or at a fixed-site facility. Transportation-related incidents can occur as a result of accidents on land, water or in the air. Fixed-site facilities include industrial facilities, commercial office buildings, schools, farms or any other fixed site that contains hazardous materials.

Employees whose primary responsibility is response to hazardous-materials incidents are generally considered members of hazardous materials (HAZMAT) response teams. HAZMAT team professionals include public-sector employees such as fire-fighters, police and transportation officials who have received specialized training in managing hazardous-substance emergencies. Fixed-site facilities such as manufacturing plants, oil refineries or research laboratories often have internal HAZMAT teams who are trained to manage hazardous-materials incidents inside their facilities. Environmental regulations may necessitate that such facilities report incidents to public agencies when the surrounding community is at risk, or if a threshold quantity of a regulated hazardous material has been released. Public health professionals with training in exposure assessment and hazardous materials management, such as industrial (occupational) hygienists, are often members of public- or private-sector HAZMAT teams.

Police and fire personnel are frequently the first professionals to respond to hazardous-substance emergencies, since they may encounter a leak or release of a hazardous substance associated with a transportation accident or structural fire. These employees are typically considered to be first responders, and their primary responsibility is to isolate the public from the release by denying public access to the site of the incident. This is generally achieved through physical control measures such as physical barriers and crowd- and traffic-control measures. First responders typically do not take actions to contain or control the release. First responders may be at greater risk of exposure to hazardous materials than other HAZMAT teams since they may encounter a hazardous-material release without the benefit of full personal protective equipment, or encounter an unexpected exposure. First responders typically notify HAZMAT team members to manage the incident. The specific health concerns of police and fire personnel are described elsewhere in this chapter.

The primary responsibility of the HAZMAT team is to contain and control the release. This activity can be very hazardous when the incident involves explosive or highly toxic materials such as chlorine gas. The incident commander is responsible for deciding what actions should be taken to resolve the emergency. It may take a considerable amount of time to develop a plan of control for complex accidents such as a multiple railroad car derailment or a chemical plant explosion and fire. In some circumstances where mitigation measures involve a significant risk of major injury to HAZMAT personnel, a decision may be reached not to take specific containment measures, and the hazardous material may be released into the environment.

The final phase of a hazardous-substance emergency often involves the clean-up of residual hazardous substances. This is frequently done by labourers. In some jurisdictions, health and safety regulations mandate that such workers receive specialized training in hazardous-material response and participate in a programme of medical surveillance. These employees may be at a greater risk of exposure since clean-up operations can involve close contact with the hazardous materials. Other occupations at risk of chemical exposure from hazardous-substance emergencies are emergency heath-care providers including emergency medical technicians, paramedics, emergency room medical staff and other hospital personnel.

Potential Hazards

The potential hazards associated with a hazardous-substance emergency are incident specific and can include chemical, radiological and biological hazards. These agents can be gases or vapours, aerosols including mists, fumes, dusts or particulates, solids and/or liquids. The potential hazards faced by hazardous-substance response personnel depend on the exposure potential of the agent, reactivity (flammability, explosivity and so on) and toxicity potential.

Information regarding the type of agents involved in hazardous-substance emergencies is available in the United States from the Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Substances Emergency Events Surveillance (HSEES) system. The HSEES system is an active surveillance system which tracks incidents that have a public-health impact (Hall et al. 1994). The HSEES system was developed because of reported deficiencies in other national US systems that track releases of hazardous substances (Binder 1989). HSEES does not identify all releases since limited spills at fixed-site facilities are not recorded. The registry was established in 1990 and initially involved five states, but has grown to include eleven states. In 1993 HSEES recorded 3,945 hazardous-substances emergencies. Other countries and states also have systems that record hazardous-material events (Winder et al. 1992).

HSEES data summarizing the types of chemical substances released during hazardous substance emergencies including those associated with personnel injuries, during the two-year period 1990–1992 showed that the most common chemical classes of substances released were volatile organic compounds, herbicides, acids and ammonia. The greatest risk of developing an injury occurred during incidents involving cyanides, insecticides, chlorine, acids and bases. During 1990–1992, 93% of the incidents involved the release of only one chemical, and 84% of the releases occurred at fixed-site facilities.

Health Outcomes

Hazardous-substance personnel face several distinct types of acute health threats. The first category of health threat relates to the toxicity potential of the agent as well as potential contact with blood and other body fluids of incident victims. The second threat is the risk of sustaining major physical trauma including burns associated with an explosion and/or fire from an unexpected chemical reaction, or with structural collapse of a building or container. The third type of acute health effect is risk of heat stress or exhaustion associated with performing heavy work, often in chemical protective clothing, which impairs the body’s efficiency of evaporative cooling. Employees with pre-existing health problems such as cardiovascular disease, respiratory disease, diabetes, disorders of consciousness, or those who take medications that may impair heat exchange or cardiorespiratory response to exercise, are at additional risk when performing such arduous work.

There is limited information concerning the health outcomes of hazardous-substance personnel responding to hazardous-substance emergencies. The HSEES registry indicated that for 1990 to 1992, 467, or 15%, of 4,034 emergency response events resulted in 446 injuries. Two hundred of the injured persons were classified as first responders, including fire-fighters, law-enforcement personnel, emergency medical response personnel and HAZMAT team members. Nearly one-quarter of first responders (22%) did not utilize any type of personal protective equipment.

The principle reported health effects among all persons sustaining injuries included respiratory irritation (37.3%), eye irritation (22.8%) and nausea (8.9%). Chemical burns were reported in 6.1% of those injured. Heat stress was reported in 2%. Eleven deaths were recorded, including one in a first responder. The causes of death among the entire group were reported as trauma, chemical burns, asphyxiation, thermal burns, heat stress and cardiac arrest. Other reports have suggested that first responders are at risk of being injured in acute responses.

The health risks associated with chronic exposures to a wide array of hazardous-materials incidents have not been characterized. Epidemiological studies have not been completed of HAZMAT team members. Epidemiological studies of fire-fighters who perform first response activities at fire scenes have revealed that they may be at greater risk of developing several types of malignancies (see the article “Firefighting hazards” in this chapter).

Preventive Measures

Several measures can reduce the incident of hazardous-substance emergencies. These are described in figure 1. First, prevention through the adoption and enforcement of regulations involving production, storage, transportation and use of hazardous substances can lessen the potential for unsafe work practices. Training of employees in proper workplace practices and hazard management is critical in preventing accidents.

Figure 1. Preventive guidelines.


Second, proper management and supervision of the incident can lessen the impact of an incident. The management of the activities of the first responders and clean-up workers by the incident commander is critical. There must be supervision and evaluation of the progress of the emergency response to ensure that the response objectives are being met safely, effectively and efficiently.

The third measure includes health-related actions that are taken during and after an incident. These actions include the provision of appropriate first aid at the scene and proper decontamination procedures. Failure to properly decontaminate a victim may result in ongoing absorption of the hazardous agent and place the HAZMAT or medical staff at risk of exposure from direct patient contact (Cox 1994). Medical personnel should also be trained regarding specific treatment and personal protective measures for unusual chemical events.

Participation in a medical surveillance programme by workers is a measure that can be utilized to prevent health problems among hazardous-response personnel. Medical surveillance can potentially detect conditions at an early stage before significant adverse health effects have occurred in workers. In addition, medical conditions which may place employees at significantly greater risk from performing the work, such as cardiovascular disease, can be identified and monitored. Sensory impairments that can interfere with field communications, including hearing and vision defects, can also be identified to determine whether they would pose a significant threat during hazardous emergency response.

Most of the identified preventive measures are based upon community awareness of local hazards. Implementation of hazardous-substance emergency plans by adequately trained staff and the wise allocation of resources are imperative. Community awareness of hazards includes informing communities of hazardous materials which are at fixed facilities or materials that are being transported through a community (e.g., by road, rail, airport or water). This information should enable fire departments and other agencies to plan for emergency incidents. Fixed facilities and transporters of hazardous materials should also have individual response plans developed that include specific provisions for notification of public agencies in a timely manner. Emergency medical personnel should have the necessary knowledge of the potential hazards in their local community. Trained medical staff should be available to provide appropriate treatment and diagnosis for the symptoms, signs and specific treatment recommendations for hazardous substances in their communities. Fixed site facilities should establish liaisons with local emergency departments and inform them of potential hazards in the workplace and the need for special supplies or mediations needed to manage potential incidents at these facilities. Planning and training should help enhance the provision of appropriate medical care and decrease the number of injuries and deaths from incidents.

The potential also exists for hazardous-substance emergencies to occur as a result of a natural disaster such as floods, earthquakes, lightning, hurricanes, winds or severe storms. Although the number of such events appears to be increasing, planning and preparation for these potential emergencies is very limited (Showalter and Myers 1994). Planning efforts need to include natural causes of emergency incidents.



Paramedical personnel, including emergency medical technicians (EMTs) and ambulance attendants, provide the initial medical response at the scene of an accident, disaster or acute illness, and transport patients to the point where more definitive treatment can be rendered. Advances in medical equipment and communications have increased the capabilities of these workers to resuscitate and stabilize victims en route to an emergency centre. The increased capabilities of EMTs is matched by the increase in hazards which they now face in performance of their duties. The emergency medical responder works as a member of a small unit, usually two to three persons. Job tasks must often be performed rapidly in poorly equipped locations with limited access. The work environment may present unanticipated or uncontrolled biological, physical and chemical hazards. Dynamic, rapidly changing situations and hostile patients and surroundings magnify the dangers of the work. A consideration of the health risks to paramedical personnel is important in the design of strategies to reduce and prevent injury at work.

Risks to paramedical personnel fall broadly into four main categories: physical hazards, inhalation risks, infectious exposures and stress. Physical hazards involve both musculoskeletal injuries related to job tasks, and effects of the environment in which the work takes place. Heavy and awkward lifting is the predominant physical hazard for these workers, accounting for over one-third of injuries. Back strains constitute the most common type of injury; one retrospective survey found 36% of all reported injuries were due to lower-back strain (Hogya and Ellis 1990). Patient and equipment lifting appear to be the main factors in lower-back injury; nearly two-thirds of back injuries occur at the scene of response. Recurrent back injuries are common and may lead to prolonged or permanent disability and early retirement of experienced workers. Other frequent injuries include contusions of the head, neck, trunk, legs and arms, ankle sprains, wrist and hand sprains and finger wounds. Falls, assaults (both by patients and by bystanders) and motor vehicle accidents are additional major sources of injury. Collisions account for the majority of motor vehicle accidents; associated factors may be heavy work schedules, time pressures, poor weather conditions and inadequate training.

Thermal injury from both cold and hot environments has been reported. Local climate and weather conditions, along with improper clothing and equipment, may contribute to heat stress and cold injury. Accelerated hearing loss from exposure to sirens, which produce ambient noise levels exceeding mandated thresholds, has also been observed in ambulance personnel.

Smoke inhalation and poisoning by gases, including carbon monoxide, represent significant respiratory hazards for paramedics. Though occurring infrequently, these exposures can have dire consequences. Responders arriving on the scene may initially be inadequately prepared for rescue work, and can be overcome by smoke or toxic gases before additional help and equipment are available.

In common with other health-care workers, paramedical personnel are at increased risk of infection with blood-borne pathogenic viruses, especially hepatitis B virus (HBV) and presumably hepatitis C. Serologic markers for HBV infection were found in 13 to 22% of emergency medical technicians, a prevalence level three to four times that of the general population (Pepe et al. 1986). In one survey, evidence of infection was found to correlate with years worked as an EMT. Measures for protection against HBV and HIV transmission established for health-care workers apply to paramedical technicians, and are outlined elsewhere in this Encyclopaedia. As a sidelight, use of latex gloves for protection against blood-borne pathogens may lead to an increased risk for contact urticaria and other manifestations of allergy to rubber products similar to those noted in health-care workers in hospital settings.

Paramedical and ambulance work, which involves work in uncontrolled and hazardous environments as well as responsibility for important decisions with limited equipment and time pressures, leads to high levels of occupational stress. Impaired professional performance, work dissatisfaction and loss of concern for patients, all of which may arise from the effects of stress, endanger both providers and the public. Intervention by mental health workers after major disasters and other traumatic incidents, along with other strategies to reduce burnout among emergency workers, have been proposed to mitigate the destructive effects of stress in this field (Neale 1991).

Few specific recommendations exist for screening and preventive measures in paramedical workers. Blood-borne pathogen training and immunization to HBV should be undertaken in all employees with exposure to infectious fluids and materials. In the United States, health-care facilities are required to inform an emergency response employee who sustains an unprotected exposure to a blood-borne disease or to an airborne, uncommon or rare infectious disease, including tuberculosis (NIOSH 1989). Similar guidelines and statutes exist for other countries (Laboratory Center for Disease Control 1995). Compliance with standard immunization practices for infectious agents (e.g., measles-mumps-rubella vaccine) and tetanus is essential. Periodic screening for tuberculosis is recommended if the potential for high-risk exposure is present. Properly designed equipment, instruction in body mechanics and scene hazard education have been proposed to reduce lifting injuries, although the setting in which much ambulance work is performed may render the most well-designed controls ineffective. The environment in which paramedical work occurs should be considered carefully, and appropriate clothing and protective equipment provided when necessary. Respirator training is appropriate for personnel who may be exposed to toxic gases and smoke. Finally, the erosive effects of stress on paramedical workers and emergency technicians must be borne in mind, and strategies for counselling and intervention should be developed to lessen its impact.



Oceans, lakes, rivers and other large bodies of water present extremes of environmental conditions demanding the maximum in human performance. The defining attribute that characterizes health and safety hazards of maritime rescues is the pervasive presence of the water itself.

Maritime rescues share many of the health and safety hazards experienced in land-based rescues. The risk of communicable disease transmission, exposure to toxic substances, threat of interpersonal violence and exposure to various physical agents (e.g., noise, vibration, radiation) are examples of commonly shared hazards of water and land rescues. The maritime environment, however, presents several unique or exaggerated hazards compared to the land-based environment. This article will focus on those health and safety hazards most identified with at-sea rescues.

Modes of Response

Before discussing specific health and safety hazards it is important to understand that maritime rescues can take place by either surface vessel or aircraft, or a combination of both. The importance of understanding the mode of response is that characteristics of hazard exposure are determined, in part, by the mode.

Surface vessels typically used in maritime rescues travel at speeds under 40 knots (74.1 km/h), have a relatively limited operational range (under 200 miles (320 km)), are heavily influenced by water surface and weather conditions, are subject to damage by floating debris and generally are not sensitive to weight consideration. Helicopters, the most commonly used aircraft in maritime rescue, can travel in excess of 150 knots (278 km/h), may have an effective operational range of 300 miles (480 km) (more with in-flight refuelling), are more influenced by weather than water conditions and are very sensitive to weight concerns.

Factors that determine the mode of response include distance, urgency, geographic location, resource availability, environmental conditions and character of the responding rescue organization. Factors that tend to favour surface vessel response are closer proximity, lower urgency, proximity to metropolitan or developed regions, milder water surface conditions and a less well developed aviation system and infrastructure. Rescue by air tends to be favoured by longer distances, higher urgency, remoteness from metropolitan or developed regions, harsher water surface conditions, and regions with better-developed aviation systems and infrastructure. Figure 1 and figure 2  show both types of rescue.

Figure 1. Maritime rescue by ship.


US Army

Figure 2. Maritime rescue by helicopter.


US Army

Maritime Hazards

The dominant hazards of maritime rescues are those intrinsic to the watery environment. Rescue personnel are directly exposed to maritime elements and must be prepared for survival themselves.

Drowning is the most common cause of occupation-related death in the maritime environment. People require specialized flotation equipment to survive in water for any length of time. Even the best swimmers require flotation assistance to survive in rough weather. Prolonged (more that several hours) survival in stormy weather is usually impossible without specialized survival suits or rafts. Injuries, reduced level of consciousness, confusion and panic or uncontrolled fear will reduce the likelihood of water survival.

Water is more efficient than air at conducting away body heat. The risk of death due to hypothermia or hypothermia-induced drowning increases rapidly as water temperature decreases below 24 °C. As water temperatures approach freezing, effective survival time is measured in minutes. Prolonged survival in cold water, even when the surface is calm, is possible only with the assistance of specialized survival suits or rafts.

The maritime environment exhibits the extremes of weather conditions. Wind, rain, fog, snow and icing can be severe. Visibility and the ability to communicate can be seriously restricted. Rescuers are constantly at risk for getting wet through wave and splash action, wind-driven rain or spray, and vessel- or aircraft-generated spray. Water, especially salt water, can damage mechanical and electrical equipment essential for vessel or flight operations.

Exposure to salt water can result in skin, mucosal and eye irritation. Ingestion of water-borne infectious micro-organisms (e.g., Vibrio spp.) increases the likelihood of gastro-intestinal disease. The water around rescue sites can be contaminated with pollutants (e.g., sewage) or substances hazardous to human health (e.g., petroleum products). Potential envenomation by water snakes and by various coelenterates (e.g., jellyfish) can occur in areas supporting these organisms. Water and thermal protective clothing is often cumbersome, restrictive and prone to promote heat stress. During sunny conditions, rescuers can experience skin and eye damage due to reflected ultraviolet light.

The surface of large bodies of water, such as the oceans, typically has undulant wave motion with coexistent surface chop. Rescue personnel, therefore, conduct work on a moving platform, which complicates any movement or procedures. Motion sickness is a constant threat. Surface vessels travelling through rough conditions can experience severe pounding and instability which promotes fatigue, an increased likelihood of falls or being struck by falling objects and equipment failure. Aircraft operating in stormy weather experience turbulence that can induce motion sickness, accelerate fatigue and compound the risks of surface-to-air evacuation.

Planning and Prevention

The maritime environment can be extremely hostile. However, the health and safety hazards associated with maritime rescues can be controlled or minimized through careful planning and prevention efforts. Safe and effective rescues can take place.

Rescue organizations must be acutely aware of the nature of the maritime environment, understand the operational characteristics and limitations of response equipment and personnel, practice system safety and provide suitable equipment, training and leadership. Rescue personnel must be in good physical and mental condition, know their equipment and procedures, stay alert, be prepared, remain proficient and understand the specifics of the situation they are dealing with.

Rescue personnel can be involved in vessel or aviation mishaps. The difference between being a rescuer and needing to be rescued can be only a matter of moments. Ultimate mishap survival is dependent on:

  • survival of the impact itself
  • successful egress
  • enduring post-mishap until rescued.


Each stage of mishap survival has its own set of necessary training, equipment, ergonomics and procedures to maximize survival. Maritime rescue personnel usually act in isolation, without immediate backup, and often at long distances from shore. A rule of thumb is for rescuers to have the necessary resources to survive the time it takes to be rescued themselves in the event of their own mishap. Rescuers need to be trained, equipped and prepared to survive in the worst of conditions.



Monday, 21 March 2011 18:33

Armed Forces

Nations maintain military forces to deter aggression, discourage conflict and, should the need arise, to be prepared to fight and win their wars. Military forces are also used in non-combat roles that are referred to as “peacetime engagements” or “operations other than war”. These include: humanitarian missions such as emergency disaster assistance; peacemaking and peacekeeping operations; counter-drug and counter-terrorism work; and security assistance.

Men and women of the armed forces work under the sea, on surface ships, above the earth, on all kinds of terrain, in extremes of temperature and at high elevations. Many military jobs relate to maintaining the skills needed to operate equipment unique to the military (like submarines, fighter aircraft and tanks) in action against an armed enemy. The military also has a large number of uniformed people who perform maintenance, repair, administrative, medical and other functions to support those who fight battles.

All military people maintain proficiency in basic military skills, such as marksmanship, and a high level of physical fitness so that they may react appropriately if they become involved in warfare. Exercise programmes are used extensively to develop and maintain strength and aerobic fitness. If used in excess or poorly managed, these programmes may cause excessive injuries.

In addition to their job exposures, uniformed people are often at enhanced risk of acquiring infectious diseases. Basic training camp environments and close living spaces, as found on ships, may contribute to outbreaks of acute respiratory and other infectious diseases. Noise is a universal problem. Also, service in many parts of the world brings with it exposure to contaminated food and water, and to disease vectors carrying protozoan, viral and bacterial agents.

The armed forces rely on many civilian employees to do research and development and provide maintenance, administrative and other support services. Some civilians are paid by the military; others work for companies under contract to the military. In the past, civilian workers did not routinely accompany members of the armed forces into hostile areas. Recently, civilians have been performing many support functions in close proximity to deployed military forces, and may face similar occupational and environmental exposures.

The Fixed Workplace

In many fixed military facilities (such as repair depots, administrative offices and hospitals) uniformed members and civilians perform operations that are similar to those found in non-military workplaces. These include painting; degreasing; welding; grinding; chipping; electroplating; handling hydraulic fluids, fuels and cleaning agents; using microcomputers; and managing patients with infectious diseases. However, performing industrial operations in confined spaces in ships and submarines, or inside armoured vehicles, increases the risk of overexposure to toxicants. Additionally, some work must be done by divers at various depths.

In some fixed facilities, militarily unique items are developed, manufactured, serviced or stored. These items may include: nerve and mustard agent munitions; military explosives, propellants and special fuels, such as hydroxylammonium nitrate; laser range finders and target designators; microwave radiation sources in radar and communications equipment; and ionizing radiation from munitions, armour and nuclear power plants. Composite materials are not militarily unique but are common in military equipment. Where older military equipment is used, workers may be exposed to polychlorinated biphenyls in electrical systems, asbestos in the lagging around steam pipes and lead-based paints.

The Militarily Unique Workplace

People in the armed forces are always on duty, but commanders try to maintain acceptable work-rest cycles. However, battles are not fought on prearranged schedules, and military forces train as they expect to fight. During intense training, fatigue and sleep deprivation are common. The situation is worsened by quickly transporting military forces across time zones and having them perform their jobs immediately upon arrival. In all military operations, and particularly large operations that cover wide areas and involve air, land and sea forces from different countries, there is considerable pressure to maintain effective coordination and communication among the various elements to reduce the risk of accidents, such as placing weapons fire upon a friendly target. Stress is increased if operations result in long family separations, or if the possibility of hostile action exists.

Naval Vessels

On naval vessels, the tight spaces, multiple doors and ladders and narrow passageways close to operating equipment are hazardous. The confined spaces also restrict movement during work and contribute to ergonomic injuries (see figure 1). In submarines, air quality is a major concern that requires constant monitoring and the restriction of unnecessary contaminants. In all military environments where exposure to nuclear power plants, nuclear weapons or other radioactive material may occur, exposures are assessed, controls are implemented and monitoring is conducted as appropriate.

Figure 1.  On aircraft carriers, naval flight deck personnel must work in extremely close proximity to operating fixed-wing jets and helicopters, and their associated safety hazards, exhaust combustion products and noise.


US Army


Flight operations in the aerospace environment involve a variety of fixed-wing and rotary-wing (helicopter) aircraft. Military air crews experience exposures that are different from those in the civilian environment. Many military aircraft are unique in their design, flight characteristics and mission performance. Air crew members are frequently at risk of exposure to excessive accelerative forces (centrifugal and gravitational), decompression sickness, circadian desynchrony resulting from long missions or night operations and spatial disorientation. Vibration originating from the aircraft and/or atmospheric turbulence may affect vision, result in motion sickness, produce fatigue and contribute to the development of disorders of the lumbar spine, particularly in helicopter pilots. Exposure to products of combustion from engine exhaust, overheating or burning of aircraft components may pose a toxic hazard if the aircraft is damaged during combat operations. Fatigue is a major concern when flight operations occur over extended periods of time, or involve long distances. Spatial disorientation and illusionary sensations of aircraft attitude and motion can be causes of mishaps, particularly when flights occur at high speeds in close proximity to the ground. Ground crews may be under considerable time pressure to perform maintenance and resupply (often with aircraft engines running) under difficult working conditions.

Helicopters are used extensively in the military as low-altitude weapons systems and observation platforms, and as medical evacuation and utility vehicles. These rotary-wing aircraft are associated with unique physical hazards, mission profiles and physiological implications for air crews. Helicopters have the ability to fly forward, sideward and rearward, but are inherently unstable flight platforms. Consequently, helicopter air crews must maintain constant concentration and have exceptional vision and muscle coordination to operate flight control systems and avoid collisions with terrain and other obstructions during low-level flight.

Fatigue is a serious concern for crew members involved in extended flights, large numbers of short missions and/or low-level, nap-of-the-earth (NOE) flights in which pilots fly as close to terrain contours as the speed and performance contours will allow. Low-level flights at night are particularly challenging. Night vision goggles are commonly used by helicopter pilots in military aviation and law enforcement; however, their use may restrict depth perception, field of view and colour differentiation. Engines, transmissions and rotors of helicopters produce unique vibration spectra which can adversely affect visual acuity and contribute to muscle strain and fatigue. These aircraft components also produce intense noise levels which can disrupt cockpit communications and contribute to hearing loss. Shrouds enclosing noisy components, acoustic blankets as insulation in cockpit/cabin areas and hearing protective devices are used to reduce the risk of hearing loss. Heat stress may be a special problem for helicopter air crews given the lower altitudes at which helicopters operate. Helicopter crashes tend to involve vertical impacts with the ground, often at relatively low forward speeds (in contrast to the longitudinal pattern of fixed-wing aircraft). Compression fractures of the spine and basilar skull fractures are common injuries in crash victims. Design features employed to prevent and control injuries include protective helmets, crash-worthy fuel systems, strengthened cockpit areas to prevent intrusion of the rotor system or transmission, and special seats and restraint systems utilizing shock-absorbing devices.

Ground Forces

Ground troops fire rifles, large guns and rockets, and ride in vehicles over rough terrain. At times they work under the cover of smokes produced from fog oil, diesel fuel or other chemicals (see figure 2). Exposures to noise, blast overpressure from large guns, vibration and propellant combustion products are common. Ballistic eye injuries occur but can be prevented by protective eyewear. The possibility of adverse health effects is increased when rockets and large guns are fired in enclosed areas, as in buildings. Armoured vehicle crew compartments are closed spaces where carbon monoxide concentrations may reach thousands of parts per million after weapons firing, and require effective ventilation systems. Heat stress in some vehicles may necessitate the use of cooling vests. Troops may also experience heat stress from wearing special clothing, hoods and masks to protect against chemical and biological agent attacks. These personal protective measures may contribute to accidents because of interference with vision and mobility. In field medical facilities, infection control practices and containment of waste anaesthetic gases may present unique challenges.

Figure 2.  This mechanized smoke generator produces a curtain of fog oil smoke through heat evaporation; fog oil may cause a slipping hazard.


US Army

Military personnel face injury and illness from a variety of weapons. The more conventional weapons produce casualties using projectiles and fragments, blast effects (which may result in lung contusion trauma) and flame and incendiary devices, such as those containing napalm and phosphorus. Eye injuries from lasers may occur accidentally or when lasers are used as offensive weapons. Other weapons systems employ biological material, such as anthrax spores, or chemicals like anticholinesterase agents.

Extensive use of mines has caused concern because of the casualties that have occurred in civilian non-combatants. Narrowly defined, a mine is an explosive ordinance designed to be buried in the ground. In reality, a mine is any hidden explosive that lies in wait and may be detonated by enemy forces, friendly forces, non-combatants or animals. Mines may be employed against matériel or people. Anti-matériel mines are directed at military vehicles and may contain about 5 to 10 kg of explosive, but require 135 kg or more of compressive force to be activated. Antipersonnel mines are designed to maim rather than to kill. Less than 0.2 kg of explosive buried in the ground can blow off a foot. The dirt particles surrounding a mine become missiles that grossly contaminate wounds. The radius in which a mine can produce casualties was expanded with the development of the “pop-up mine”. In these mines a small explosive charge sends a canister about a metre into the air. The canister immediately detonates, spraying fragments to a distance of 35 m. Modern mine designs, like the “Claymore”, can be detonated electrically, by timed fuse or by a trip wire, and can send hundreds of steel spheres, each weighing 0.75 g, over a 60° arc for distances up to 250 m. Within 50 m, gross mutilation and lethal injuries are common.

A range of chemical agents have been employed in warfare. Herbicides (e.g., 2,4-D n-butyl ester mixed with 2,4,5-T n-butyl ester, also known as Agent Orange) were used in Vietnam to control terrain. Some chemicals (e.g., tear gas) have been used as incapacitating agents to produce transient physical or mental effects, or both. Other chemicals are extremely toxic and capable of producing serious injury or death. This category includes the anticholinesterase agents (e.g., Tabun and Sarin), the vesicants or blister agents (e.g., mustard and arsenicals), the lung-damaging or “choking” agents (e.g., phosgene and chlorine) and the blood agents that block the oxidative processes (e.g., hydrogen cyanide and cyanogen chloride).

In addition to armed conflict, other potential sources of exposure to chemical agents include: terrorist activities; storage sites for old military chemical stocks, where leaking containers may occur; sites where military chemical stocks are being destroyed through incineration or other means; and the accidental unearthing of old, forgotten chemical disposal sites.

The Medical Care System

Medical care for the armed forces and civilian workers is focused on prevention. Often, medical personnel study military vehicles and equipment during development to identify potential health hazards to users and maintainers so that these can be controlled. Training and user manuals and educational programmes address protection against hazards. Medical care includes initial medical screening, periodic medical assessment, health education and promotion, and disability evaluations, in addition to primary care and emergency services. Medical personnel also participate in accident investigations. When people deploy to areas presenting new health risks, medical risk assessments are used to identify threats and interventions like vaccines, prophylactic drugs, personnel protective measures and educational programmes.

Medical personnel who provide preventive and primary care to members of the armed forces must be knowledgeable about the characteristics of weapons used in training and on the battlefield to: predict and prepare for the casualties that may occur; take preventive actions that may reduce morbidity and/or mortality; and provide appropriate treatment when casualties do occur. Personal protective equipment is important in defending against chemical and biological agents and eye injuries from missiles and lasers. Other measures to be considered are vaccines and chemoprophylactic drugs for biological agents, and drug pre-treatment and antidotes for chemical agents. Training medical personnel in the early detection and management of illnesses and injuries caused by weapons is critical. Early recognition can result in rapid initiation of appropriate therapy and possibly a reduction in future morbidity and mortality. Also, military surgical staffs are better prepared to take care of their patients and themselves if they are knowledgeable about the wounds they are treating. For example: wounds made by high-velocity rifles often do not require extensive debridement for soft-tissue destruction; wounds made by fragmentation bullets may require extensive exploration; and wounds may contain unexploded munitions.



Growing security needs as a result of generally rising criminal activity, the opening of the borders to the East and within the European Union, as well as the accession of the former German Democratic Republic, have led to a disproportionate growth in the number of commercial guard and security companies as well as the number of employees of these companies in Germany.

At the start of 1995 the number of employees in the more than 1,200 guard and security companies stood at over 155,000. The mid-sized companies have mostly 20 to 200 employees. There are also companies, however, with fewer than 10 employees and others with several thousand. Company mergers are increasingly common.

The Administration Trade Organization is responsible for legal accident insurance for these companies and their employees.

Accident Prevention Regulations

Background of the accident prevention regulations and their scope of application

With the rising occurrence of accidents, the “Guard and Security Services” (VBG 68) Accident Prevention Regulation that had been in force since May 1964 in guard and security work became outdated. It has therefore been reworked and completely redrafted, with the participation of representatives of the affected employers, employees, accident insurance companies, manufacturers’ and trade organizations as well as representatives of the Federal Minister of Labour and Social Questions, the state industrial oversight authorities, the Federal Minister of Defence, the Federal Crime Office, the state police authorities, other institutions and a specialized committee. This committee is an organ of the central office of the Safety and Health Trade Organization of the industrial trade organizations, under the responsibility of the Administration Trade Organization.

The newly drafted accident regulation went into effect 1 October 1990, after several years of consultations. The regulation is the legal standard for all employers and employees in guard and security companies. It lays out duties and lines of authority upon which newly drafted governmental ordinances specific to each specialty are based.

Guard and security work to protect persons and valuables includes:

  • private guard duty, such as gate-keepers and park watchmen
  • security at construction sites and rail yards
  • guarding private property, including factory guards
  • guarding military installations and atomic power plants
  • ranger and patrol duty on various properties
  • security service for performances, trade fairs and expositions
  • crowd control
  • courier service
  • investigative services
  • money and valuables transport
  • personal protection
  • staffing alarm centres
  • responding to alarms.


General responsibilities of the employer

The employer or his or her agent may employ only persons who are currently qualified and adequately instructed for the desired guard and security activity. These qualifications are set out in writing.

The conduct of the personnel, including notification of deficiencies and particular dangers, must be regulated with detailed service instructions.

If particular dangers result from guard and security work, adequate supervision of the personnel must be ensured.

Guard and security tasks should be taken on only when avoidable dangers in the working area have been eliminated or secured. To this end, the scope and course of the security, including known side activities, must be set out in writing.

The employer or his or her agent, independent of the client’s duties, must ensure that the property to be secured has been inspected for dangers. Records of these inspections must be kept. These inspections must take place on a regular basis and also immediately when the occasion warrants.

The employer or his or her agent must require of the client that avoidable dangers be eliminated or dangerous locations be secured. Until these security measures are implemented, regulations should be formulated that guarantee the safety of the guard and security personnel in another manner. Inadequately secured danger zones should be excluded from surveillance.

The guard and security personnel must be instructed on the property to be secured and its specific dangers during the time period when the guard and safety activity will take place.

The guard and security personnel must be supplied with all necessary facilities, equipment and resources, especially appropriate footwear, effective flashlights in darkness, as well as personal protective gear in good condition, as needed. The personnel must be adequately instructed in the use of such resources. Equipment and other resources that are worn must not unduly restrict freedom of movement, especially of the hands.

General duties of the employee

Employees must abide by all occupational safety measures and follow the service instructions. They should not accede to any directives from the client that contravene the safety instructions.

Deficiencies and dangers that are discovered, as well as corrective measures taken, must be reported to the employer or his or her agent.

The employees must use the equipment and resources provided appropriately. They may not use or enter installations if not authorized.

Employees must not use alcoholic beverages or other intoxicants while on duty. This also applies for an appropriate time period before work: the employee must start work sober.

Employees who must wear glasses to correct their vision during guard or security work must secure these against loss or bring a replacement pair. This also applies to contact lenses.

Use of dogs

In general, only dogs tested and approved by appropriately certified and competent dog handlers are to be used for guard and security work. Untested dogs should be used only for warning tasks when they are clearly under the control of their handler, but not for additional security tasks. Dogs that have vicious tendencies or that are no longer sufficiently competent must not be used.

Excessive demands should not be put on the dogs. Adequate education and training based on the results of research on animal behaviour must be provided. Proper limits for period of service, minimum rest times and total daily service times need to be set.

The competence of the dog handler must be regularly certified. If the handler is no longer adequately qualified, authorization to handle dogs should be withdrawn.

Regulations must be formulated to guarantee smooth and safe handling of dogs, contact with the dog, the taking over and turning over of the dog, leashing and unleashing, a uniform set of commands used by different handlers, the handling of the leash and conduct when third persons are encountered.

Minimal requirements are prescribed for dog kennels concerning condition and equipping as well as setting access authorization.

When transporting dogs, a separation between transport area and passenger area must be maintained. Car trunks are not suitable under any circumstances. Separate facilities for each dog must be provided.

Use of firearms

Employees must use firearms only on express instructions of the employer or his or her agent, in accordance with all legal requirements and only when the employee is appropriately reliable, suited and trained.

Those carrying firearms must regularly participate in target practice at authorized firing ranges and prove their skill and knowledge. Corresponding records must be kept. If an employee no longer fulfils the requirements, firearms must be withdrawn.

Only officially tested and approved firearms are to be used. The firearms should be tested by experts periodically, and also whenever an inadequacy is suspected; they must be repaired by trained and officially approved persons.

Guards and security personnel must not have or use blank- or gas-firing weapons. In confrontations with armed perpetrators, these weapons provide a false sense of security that leads to extreme danger without adequate possibility of self-defence.

Strict regulations guarantee the flawless and safe use, carrying, transfer, loading and unloading, and storage of firearms and ammunition.

Transporting money and valuables

Due to the high risk of robbery, at least two couriers must be employed for transporting money in publicly accessible areas. One of these must be exclusively occupied with security. This applies also to the couriers’ movements between money transport vehicles and the locations where the money is picked up or delivered.

Exceptions are permitted only if: (1) the money transport is not recognizable by outsiders as a transport of money either from the clothing or equipment of the personnel, or from the vehicle used, the route taken or the course of the transport; (2) the incentive for robbery is significantly reduced by technical equipment that must be clearly recognizable by outsiders; or (3) only coin is being transported, and this is clearly recognizable by outsiders from the conduct and course of the transport.

Technical equipment that considerably reduces the incentive for robbery includes, for example, devices that either constantly or during the entire transport are firmly attached to the money transport container and that, in the case of a forced conveyance or snatching during delivery, automatically either immediately or after a timed delay set off an optical alarm by means of a release of coloured smoke. Additional devices such as simultaneous acoustic alarms are advisable.

The design, form, size and weight of money transport containers must be adequately manageable for carrying. They must not be attached to the courier, as this poses an increased risk.

Money transport with vehicles should in general be carried out only in vehicles specially secured for this purpose. These vehicles are adequately secured when their construction and equipment meet the requirements of Accident Prevention Regulation “Vehicles” (VBG 12) and especially the “Safety Rules for Money Transport Vehicles” (ZH1/209).

Money transport in unsecured vehicles is permissible only when exclusively coin, clearly recognizable as such, is being transported, or it is completely unrecognizable as a transport of money. In this case neither the clothing nor equipment of the personnel, nor the construction, equipping or markings of the vehicle used should indicate that money is being transported.

Transport times and routes as well as loading and unloading locations needs to be varied. Money transport vehicles must also be constantly occupied by at least one person behind barred doors during loading and unloading in public areas.

Alarm centres and vaults

Alarm centres and vaults must be adequately secured against assault. The minimal requirements are the Accident Prevention Regulation “Tellers’ windows” (VBG 120), which governs securing and equipping credit and money-changing institutions that deal with cash.

Final Considerations

There are practical limits in all attempts to improve occupational safety. This is especially clear in guard and security work. Whereas in other areas, structural measures and improvements lead to success, these play only a secondary role in guard and security work. Significant improvements in this area ultimately can be achieved only by changing the company organizational structure and human conduct. The newly drafted Accident Prevention Regulation “Guard and Security Services” (VBG 68), which may seem exaggerated and too detailed on superficial viewing, nevertheless takes this basic knowledge into very particular consideration.

Thus it is not surprising that since regulations have taken effect, the reportable accidents and occupational diseases in commercial guard and security companies have declined by about 20%, despite the generally increasing crime rate. Some companies which have especially conscientiously implemented the Accident Prevention Regulation, and additionally have voluntarily applied supplementary security measures based on a criteria catalogue that is available, were able to register decreases in occurrences of accidents and occupational diseases of up to 50%. This was especially true in the use of dogs.

Furthermore, the totality of the measures taken led to a reduction in the mandatory premiums for legal accident insurance for commercial guard and security companies, despite rising costs.

Overall it is clear that secure conduct can be achieved in the long run only with precise norms and organizational regulations, as well as through constant training and checking.



Page 10 of 16

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."


Part I. The Body
Part II. Health Care
Part III. Management & Policy
Part IV. Tools and Approaches
Part V. Psychosocial and Organizational Factors
Part VI. General Hazards
Part VII. The Environment
Part VIII. Accidents and Safety Management
Part IX. Chemicals
Part X. Industries Based on Biological Resources
Part XI. Industries Based on Natural Resources
Part XII. Chemical Industries
Part XIII. Manufacturing Industries
Part XIV. Textile and Apparel Industries
Part XV. Transport Industries
Part XVI. Construction
Part XVII. Services and Trade
Part XVIII. Guides