4 banner

 

Ziele, Prinzipien und Methoden

Montag, März 07 2011 18: 49

Wesen und Ziele der Ergonomie

Definition und Geltungsbereich

Ergonomie bedeutet wörtlich das Studium oder die Messung der Arbeit. In diesem Zusammenhang bedeutet der Begriff Arbeit eine zweckmäßige menschliche Funktion; es erstreckt sich über das engere Konzept der Arbeit als Arbeit für Geldgewinn hinaus und umfasst alle Aktivitäten, mit denen ein rationaler menschlicher Bediener systematisch ein Ziel verfolgt. So umfasst es Sport- und andere Freizeitaktivitäten, Hausarbeit wie Kinderbetreuung und Haushaltsführung, Aus- und Weiterbildung, Gesundheits- und Sozialdienste und entweder die Steuerung technischer Systeme oder die Anpassung an sie, beispielsweise als Beifahrer in einem Fahrzeug.

Der menschliche Bediener, der Schwerpunkt der Studie, kann ein qualifizierter Fachmann sein, der eine komplexe Maschine in einer künstlichen Umgebung bedient, ein Kunde, der zufällig ein neues Gerät für den persönlichen Gebrauch gekauft hat, ein Kind, das in einem Klassenzimmer sitzt, oder eine behinderte Person in einem Rollstuhl. Der Mensch ist sehr anpassungsfähig, aber nicht unendlich. Es gibt Bereiche optimaler Bedingungen für jede Aktivität. Eine der Aufgaben der Ergonomie ist es, diese Bereiche zu definieren und die unerwünschten Wirkungen zu untersuchen, die auftreten, wenn die Grenzen überschritten werden – zum Beispiel, wenn eine Person unter Bedingungen übermäßiger Hitze, Lärm oder Vibrationen arbeiten muss, oder wenn die körperliche oder die geistige Belastung ist zu hoch oder zu niedrig.

Die Ergonomie untersucht nicht nur die passive Umgebungssituation, sondern auch die einzigartigen Vorteile des Menschen und die Beiträge, die geleistet werden können, wenn eine Arbeitssituation so gestaltet ist, dass der Mensch seine Fähigkeiten optimal einsetzen und fördern kann. Menschliche Fähigkeiten können nicht nur in Bezug auf den allgemeinen menschlichen Operator charakterisiert werden, sondern auch in Bezug auf jene spezielleren Fähigkeiten, die in spezifischen Situationen gefordert werden, in denen eine hohe Leistung wesentlich ist. Zum Beispiel wird ein Automobilhersteller den Bereich der körperlichen Größe und Stärke der Bevölkerung von Fahrern berücksichtigen, von denen erwartet wird, dass sie ein bestimmtes Modell verwenden, um sicherzustellen, dass die Sitze bequem sind, dass die Bedienelemente leicht erkennbar und in Reichweite sind, dass es klar ist Sicht nach vorne und hinten und dass die Inneninstrumente gut ablesbar sind. Auch der einfache Ein- und Ausstieg wird berücksichtigt. Der Konstrukteur eines Rennwagens hingegen geht davon aus, dass der Fahrer sportlich ist, so dass es beispielsweise nicht auf den bequemen Ein- und Ausstieg ankommt, sondern auf Designmerkmale insgesamt in Bezug auf den Fahrer zugeschnitten auf die Maße und Vorlieben eines bestimmten Fahrers, um sicherzustellen, dass er oder sie sein oder ihr volles Potenzial und Können als Fahrer entfalten kann.

Bei allen Situationen, Tätigkeiten und Aufgaben steht der oder die beteiligten Personen im Mittelpunkt. Es wird davon ausgegangen, dass die Struktur, die Technik und alle anderen Technologien dem Betreiber dienen und nicht umgekehrt.

Geschichte und Status

Vor etwa einem Jahrhundert wurde erkannt, dass die Arbeitszeiten und -bedingungen in einigen Bergwerken und Fabriken in Bezug auf Sicherheit und Gesundheit nicht tolerierbar waren, und es war offensichtlich, dass Gesetze erlassen werden mussten, um diesbezüglich zulässige Grenzwerte festzulegen. Die Bestimmung und Festlegung dieser Grenzen kann als Beginn der Ergonomie angesehen werden. Sie waren übrigens der Beginn aller Aktivitäten, die heute ihren Ausdruck in der Arbeit der Internationalen Arbeitsorganisation (ILO) finden.

Forschung, Entwicklung und Anwendung gingen bis zum Zweiten Weltkrieg langsam voran. Dies löste eine stark beschleunigte Entwicklung von Maschinen und Instrumenten wie Fahrzeugen, Flugzeugen, Panzern, Kanonen und stark verbesserten Sensor- und Navigationsgeräten aus. Mit fortschreitender Technologie stand eine größere Flexibilität zur Verfügung, um eine Anpassung an den Bediener zu ermöglichen, eine Anpassung, die umso notwendiger wurde, als die menschliche Leistung die Leistung des Systems begrenzte. Wenn ein angetriebenes Fahrzeug mit einer Geschwindigkeit von nur wenigen Kilometern pro Stunde fahren kann, muss man sich um die Leistung des Fahrers keine Sorgen machen, aber wenn die Höchstgeschwindigkeit des Fahrzeugs um den Faktor zehn oder hundert erhöht wird, dann hat der Fahrer es getan schneller reagieren und es bleibt keine Zeit, Fehler zu korrigieren, um eine Katastrophe abzuwenden. In ähnlicher Weise müssen Sie sich mit verbesserter Technologie weniger Gedanken über mechanische oder elektrische Fehler (z. B.) machen und die Aufmerksamkeit wird frei, um über die Bedürfnisse des Fahrers nachzudenken.

So wird Ergonomie im Sinne der Anpassung der Technik an die Bedürfnisse des Bedieners mit fortschreitender Technik gleichzeitig notwendiger und machbarer.

Der Begriff Ergonomie wurde um 1950 verwendet, als die Prioritäten der sich entwickelnden Industrie die Prioritäten des Militärs verdrängten. Die Entwicklung von Forschung und Anwendung für die folgenden dreißig Jahre ist ausführlich in Singleton (1982) beschrieben. Die Organisationen der Vereinten Nationen, insbesondere die ILO und die Weltgesundheitsorganisation (WHO), wurden in den 1960er Jahren auf diesem Gebiet aktiv.

In der unmittelbaren Nachkriegsindustrie war das übergeordnete Ziel, das von der Ergonomie geteilt wurde, eine höhere Produktivität. Dies war ein erreichbares Ziel für die Ergonomie, weil so viel industrielle Produktivität direkt von der körperlichen Anstrengung der beteiligten Arbeiter bestimmt wurde – die Montagegeschwindigkeit und die Hub- und Bewegungsgeschwindigkeit bestimmten das Ausmaß der Leistung. Allmählich ersetzte die mechanische Kraft die menschliche Muskelkraft. Mehr Leistung führt jedoch zu mehr Unfällen nach dem einfachen Prinzip, dass ein Unfall die Folge von Leistung am falschen Ort zur falschen Zeit ist. Wenn es schneller geht, erhöht sich das Unfallpotenzial weiter. So verlagerten sich die Sorge der Industrie und das Ziel der Ergonomie allmählich von der Produktivität zur Sicherheit. Dies geschah in den 1960er und frühen 1970er Jahren. Ungefähr und nach dieser Zeit verlagerte sich ein Großteil der Fertigungsindustrie von der Chargenproduktion auf die Fließ- und Prozessproduktion. Die Rolle des Betreibers verschob sich entsprechend von der direkten Beteiligung hin zur Überwachung und Kontrolle. Dies führte zu einer geringeren Unfallhäufigkeit, da der Bediener weiter vom Einsatzort entfernt war, aber manchmal zu einer größeren Unfallschwere aufgrund der Geschwindigkeit und Kraft, die dem Prozess innewohnen.

Wenn die Leistung von der Geschwindigkeit bestimmt wird, mit der Maschinen arbeiten, dann wird die Produktivität zu einer Frage der Aufrechterhaltung des Systems: Mit anderen Worten, Zuverlässigkeit ist das Ziel. Somit wird der Bediener eher zu einem Überwacher, einem Problemlöser und einem Instandhalter als zu einem direkten Manipulator.

Diese historische Skizze der Veränderungen in der Fertigungsindustrie der Nachkriegszeit könnte darauf hindeuten, dass der Ergonom regelmäßig eine Reihe von Problemen fallen gelassen und eine andere aufgegriffen hat, aber das ist aus mehreren Gründen nicht der Fall. Wie bereits erläutert, sind die Anliegen der Ergonomie viel umfassender als die der Fertigungsindustrie. Neben der Produktionsergonomie gibt es die Produkt- oder Designergonomie, also die Anpassung der Maschine oder des Produkts an den Benutzer. In der Automobilindustrie beispielsweise ist Ergonomie nicht nur für die Komponentenfertigung und die Produktionslinien wichtig, sondern auch für den späteren Fahrer, Beifahrer und Wartungspersonal. Bei der Vermarktung von Autos und bei deren kritischer Bewertung durch andere ist es heute Routine, die Qualität der Ergonomie zu überprüfen, unter Berücksichtigung von Fahrverhalten, Sitzkomfort, Handling, Geräusch- und Vibrationspegel, Benutzerfreundlichkeit der Bedienelemente, Sicht nach innen und außen und so weiter an.

Es wurde oben angedeutet, dass die menschliche Leistung normalerweise innerhalb eines Toleranzbereichs einer relevanten Variablen optimiert wird. Ein Großteil der frühen Ergonomie versuchte, sowohl die Muskelleistung als auch das Ausmaß und die Vielfalt der Bewegung zu reduzieren, indem sichergestellt wurde, dass solche Toleranzen nicht überschritten wurden. Die größte Veränderung in der Arbeitssituation, das Aufkommen von Computern, hat das gegenteilige Problem geschaffen. Ein Computerarbeitsplatz kann, wenn er nicht ergonomisch gut gestaltet ist, zu einer zu starren Körperhaltung, zu wenig Körperbewegung und zu vielen Wiederholungen bestimmter Kombinationen von Gelenkbewegungen führen.

Dieser kurze historische Rückblick soll darauf hinweisen, dass die Ergonomie zwar kontinuierlich weiterentwickelt wurde, jedoch eher die Form des Hinzufügens von immer mehr Problemen als der Änderung der Probleme angenommen hat. Der Wissensschatz wächst jedoch und wird zuverlässiger und gültiger, Energieverbrauchsnormen hängen nicht davon ab, wie oder warum die Energie verbraucht wird, Haltungsprobleme sind in Flugzeugsitzen und vor Computerbildschirmen gleich, viele menschliche Aktivitäten beinhalten jetzt den Konsum Videobildschirme und es gibt etablierte Prinzipien, die auf einer Mischung aus Laborbefunden und Feldstudien basieren.

Ergonomie und verwandte Disziplinen

Die Entwicklung einer wissenschaftsbasierten Anwendung, die zwischen den etablierten Technologien der Ingenieurwissenschaften und der Medizin angesiedelt ist, überschneidet sich zwangsläufig mit vielen verwandten Disziplinen. Was die wissenschaftliche Grundlage anbelangt, stammt ein Großteil des ergonomischen Wissens aus den Geisteswissenschaften: Anatomie, Physiologie und Psychologie. Die Naturwissenschaften leisten beispielsweise auch einen Beitrag zur Lösung von Beleuchtungs-, Heizungs-, Lärm- und Vibrationsproblemen.

Die meisten europäischen Pioniere der Ergonomie waren Mitarbeiter der Humanwissenschaften, und aus diesem Grund ist die Ergonomie gut ausbalanciert zwischen Physiologie und Psychologie. Als Hintergrund zu Problemen wie Energieverbrauch, Körperhaltung und Kraftaufbringung einschließlich Heben ist eine physiologische Orientierung erforderlich. Eine psychologische Orientierung ist erforderlich, um Probleme wie Informationspräsentation und Arbeitszufriedenheit zu untersuchen. Natürlich gibt es viele Probleme, die einen gemischten humanwissenschaftlichen Ansatz erfordern, wie Stress, Müdigkeit und Schichtarbeit.

Die meisten amerikanischen Pioniere auf diesem Gebiet waren entweder in der experimentellen Psychologie oder im Ingenieurwesen tätig, und aus diesem Grund sind ihre typischen Berufsbezeichnungen –Human Engineering und menschliche Faktoren— einen Unterschied in der Betonung (aber nicht in den Kerninteressen) von der europäischen Ergonomie widerspiegeln. Dies erklärt auch, warum die Arbeitshygiene aufgrund ihrer engen Verwandtschaft mit der Medizin, insbesondere der Arbeitsmedizin, in den Vereinigten Staaten als ganz anders angesehen wird als Human Factors oder Ergonomie. Der Unterschied in anderen Teilen der Welt ist weniger ausgeprägt. Die Ergonomie konzentriert sich auf den menschlichen Bediener in Aktion, die Arbeitshygiene konzentriert sich auf die Gefahren für den menschlichen Bediener in der Umgebung. Daher gilt das zentrale Interesse des Arbeitshygienikers toxischen Gefahren, die außerhalb des Aufgabenbereichs des Ergonomen liegen. Der Arbeitshygieniker ist besorgt über die Auswirkungen auf die Gesundheit, entweder lang- oder kurzfristig; Der Ergonom macht sich natürlich Sorgen um die Gesundheit, aber er oder sie macht sich auch Sorgen um andere Folgen wie Produktivität, Arbeitsgestaltung und Arbeitsplatzgestaltung. Sicherheit und Gesundheit sind die übergreifenden Themen, die sich durch Ergonomie, Arbeitshygiene, Arbeitsmedizin und Arbeitsmedizin ziehen. Es ist daher nicht verwunderlich, dass diese Themen in einer großen Forschungs-, Design- oder Produktionsinstitution oft zusammen gruppiert werden. Dies ermöglicht einen Ansatz, der auf einem Team von Experten in diesen getrennten Themen basiert, von denen jedes einen fachlichen Beitrag zum allgemeinen Gesundheitsproblem nicht nur der Beschäftigten in der Einrichtung, sondern auch derjenigen leistet, die von ihren Aktivitäten und Produkten betroffen sind. Im Gegensatz dazu steht der Ergonom in Institutionen, die sich mit Design oder der Erbringung von Dienstleistungen befassen, möglicherweise näher an den Ingenieuren und anderen Technologen.

Aus dieser Diskussion wird deutlich, dass, da die Ergonomie interdisziplinär und noch ziemlich neu ist, ein wichtiges Problem besteht, wie sie am besten in eine bestehende Organisation integriert werden sollte. Es überschneidet sich mit so vielen anderen Bereichen, weil es um Menschen geht und Menschen die grundlegende und alles durchdringende Ressource jeder Organisation sind. Es gibt viele Möglichkeiten, wie es eingefügt werden kann, abhängig von der Geschichte und den Zielen der jeweiligen Organisation. Die Hauptkriterien sind, dass ergonomische Ziele verstanden und geschätzt werden und dass Mechanismen zur Umsetzung von Empfehlungen in die Organisation eingebaut sind.

Ziele der Ergonomie

Es wird bereits klar sein, dass die Vorteile der Ergonomie in vielen verschiedenen Formen auftreten können, in Produktivität und Qualität, in Sicherheit und Gesundheit, in Zuverlässigkeit, in Arbeitszufriedenheit und in der persönlichen Entwicklung.

Der Grund für diese Weite liegt darin, dass ihr grundlegendes Ziel Effizienz in zielgerichtetem Handeln ist – Effizienz im weitesten Sinne, das gewünschte Ergebnis ohne verschwenderischen Aufwand, ohne Fehler und ohne Schaden für die beteiligte Person oder andere zu erreichen. Es ist nicht effizient, unnötig Energie oder Zeit aufzuwenden, weil die Gestaltung des Arbeitsplatzes, des Arbeitsplatzes, der Arbeitsumgebung und der Arbeitsbedingungen nicht ausreichend berücksichtigt wurden. Es ist nicht effizient, das gewünschte Ergebnis trotz des Situationsdesigns zu erreichen, anstatt durch dieses unterstützt zu werden.

Ziel der Ergonomie ist es, dafür zu sorgen, dass die Arbeitssituation im Einklang mit den Tätigkeiten des Arbeiters steht. Dieses Ziel ist selbstverständlich gültig, aber es zu erreichen ist aus verschiedenen Gründen alles andere als einfach. Der menschliche Bediener ist flexibel und anpassungsfähig und es gibt kontinuierliches Lernen, aber es gibt ziemlich große individuelle Unterschiede. Einige Unterschiede, wie körperliche Größe und Kraft, sind offensichtlich, aber andere, wie kulturelle Unterschiede und Unterschiede im Stil und im Niveau der Fähigkeiten, sind weniger leicht zu erkennen.

Angesichts dieser Komplexität scheint die Lösung darin zu bestehen, eine flexible Situation bereitzustellen, in der der menschliche Bediener eine spezifisch geeignete Vorgehensweise optimieren kann. Leider ist ein solcher Ansatz manchmal nicht praktikabel, da der effizientere Weg oft nicht offensichtlich ist, mit dem Ergebnis, dass ein Arbeiter jahrelang etwas falsch oder unter den falschen Bedingungen tun kann.

Daher ist es notwendig, systematisch vorzugehen: von einer fundierten Theorie auszugehen, messbare Ziele zu setzen und den Erfolg an diesen Zielen zu überprüfen. Im Folgenden werden die verschiedenen möglichen Ziele betrachtet.

Sicherheit und Gesundheit

Über die Wünschbarkeit von Sicherheits- und Gesundheitsschutzzielen besteht kein Zweifel. Die Schwierigkeit ergibt sich aus der Tatsache, dass beide nicht direkt messbar sind: Ihre Leistung wird eher an ihrer Abwesenheit als an ihrer Anwesenheit gemessen. Die betreffenden Daten beziehen sich immer auf Abweichungen von Sicherheit und Gesundheitsschutz.

Im Gesundheitsbereich sind viele Beweise langfristig, da sie eher auf Populationen als auf Einzelpersonen beruhen. Es ist daher notwendig, sorgfältige Aufzeichnungen über lange Zeiträume zu führen und einen epidemiologischen Ansatz zu verfolgen, durch den Risikofaktoren identifiziert und gemessen werden können. Wie viele Stunden pro Tag oder Jahr sollten beispielsweise maximal für einen Arbeitnehmer an einem Computerarbeitsplatz erforderlich sein? Sie hängt von der Gestaltung des Arbeitsplatzes, der Art der Arbeit und der Person (Alter, Sehvermögen, Fähigkeiten usw.) ab. Die Auswirkungen auf die Gesundheit können vielfältig sein, von Handgelenksproblemen bis hin zu geistiger Apathie, daher ist es notwendig, umfassende Studien durchzuführen, die ziemlich große Populationen abdecken und gleichzeitig die Unterschiede innerhalb der Populationen im Auge behalten.

Direkter messbar ist Sicherheit im negativen Sinne in Art und Häufigkeit von Unfällen und Schäden. Es gibt Probleme, verschiedene Arten von Unfällen zu definieren und die oft multiplen kausalen Faktoren zu identifizieren, und es besteht oft ein weit entfernter Zusammenhang zwischen der Art des Unfalls und dem Ausmaß des Schadens, von keinem bis zu einem Todesfall.

Nichtsdestotrotz wurde in den letzten fünfzig Jahren eine enorme Menge an Beweisen für Sicherheit und Gesundheitsschutz angesammelt und Übereinstimmungen entdeckt, die auf Theorie, Gesetze und Normen und Prinzipien zurückgeführt werden können, die in bestimmten Situationen wirksam sind.

Produktivität und Effizienz

Produktivität wird normalerweise als Output pro Zeiteinheit definiert, während Effizienz andere Variablen umfasst, insbesondere das Verhältnis von Output zu Input. Effizienz umfasst die Kosten dessen, was getan wird, im Verhältnis zur Leistung, und in menschlicher Hinsicht erfordert dies die Berücksichtigung der Strafen für den menschlichen Bediener.

In industriellen Situationen ist die Produktivität relativ einfach zu messen: Die produzierte Menge kann gezählt und die Produktionszeit einfach erfasst werden. Produktivitätsdaten werden häufig in Vorher/Nachher-Vergleichen von Arbeitsmethoden, Situationen oder Bedingungen verwendet. Es beinhaltet Annahmen über die Äquivalenz von Aufwand und anderen Kosten, da es auf dem Prinzip basiert, dass der menschliche Bediener so gut wie möglich unter den gegebenen Umständen arbeitet. Wenn die Produktivität höher ist, müssen die Umstände besser sein. Dieser einfache Ansatz ist sehr zu empfehlen, vorausgesetzt, er wird unter gebührender Berücksichtigung der vielen möglichen erschwerenden Faktoren verwendet, die verschleiern können, was wirklich passiert. Der beste Schutz besteht darin, sicherzustellen, dass sich zwischen der Vorher- und Nachher-Situation nichts geändert hat, außer den untersuchten Aspekten.

Effizienz ist eine umfassendere, aber immer schwierigere Messgröße. Sie muss in der Regel für eine bestimmte Situation spezifisch definiert werden, und bei der Bewertung der Ergebnisse von Studien sollte die Definition auf ihre Relevanz und Gültigkeit im Hinblick auf die gezogenen Schlussfolgerungen überprüft werden. Ist Radfahren beispielsweise effizienter als zu Fuß? Radfahren ist viel produktiver in Bezug auf die Entfernung, die auf einer Straße in einer bestimmten Zeit zurückgelegt werden kann, und es ist effizienter in Bezug auf den Energieverbrauch pro Entfernungseinheit oder für Indoor-Übungen, da die erforderlichen Geräte billiger und einfacher sind . Andererseits kann der Zweck der Übung der Energieverbrauch aus gesundheitlichen Gründen oder das Besteigen eines Berges in schwierigem Gelände sein; Unter diesen Umständen ist das Gehen effizienter. Somit hat ein Effizienzmaß nur in einem wohldefinierten Kontext Bedeutung.

Zuverlässigkeit und Qualität

Wie oben erläutert, wird bei Hochtechnologiesystemen (z. B. Transportflugzeuge, Ölraffination und Energieerzeugung) eher Zuverlässigkeit als Produktivität zum Schlüsselmaß. Die Steuerungen solcher Systeme überwachen die Leistung und leisten ihren Beitrag zur Produktivität und Sicherheit, indem sie Anpassungen vornehmen, um sicherzustellen, dass die automatischen Maschinen online bleiben und innerhalb der Grenzen funktionieren. Alle diese Systeme befinden sich in ihrem sichersten Zustand, entweder wenn sie sich im Ruhezustand befinden oder wenn sie stetig innerhalb des ausgelegten Leistungsbereichs arbeiten. Sie werden gefährlicher, wenn sie sich zwischen Gleichgewichtszuständen bewegen oder bewegt werden, beispielsweise wenn ein Flugzeug abhebt oder ein Prozesssystem heruntergefahren wird. Hohe Zuverlässigkeit ist nicht nur aus Sicherheitsgründen das entscheidende Merkmal, sondern auch, weil ungeplante Abschaltungen oder Stillstände extrem teuer sind. Die Zuverlässigkeit lässt sich einfach nach der Leistung messen, ist jedoch äußerst schwierig vorherzusagen, außer durch Bezugnahme auf die frühere Leistung ähnlicher Systeme. Wenn oder wenn etwas schief geht, trägt menschliches Versagen immer dazu bei, aber es ist nicht unbedingt ein Fehler des Controllers: Menschliches Versagen kann in der Entwurfsphase und während der Einrichtung und Wartung entstehen. Es ist heute anerkannt, dass solche komplexen High-Tech-Systeme einen beträchtlichen und kontinuierlichen ergonomischen Input vom Design bis zur Bewertung auftretender Fehler erfordern.

Qualität hängt mit Zuverlässigkeit zusammen, ist aber sehr schwierig, wenn nicht unmöglich, zu messen. Traditionell wurde in Chargen- und Fließproduktionssystemen die Qualität nach der Ausgabe durch Inspektion überprüft, aber das derzeit etablierte Prinzip besteht darin, Produktion und Qualitätssicherung zu kombinieren. Somit hat jeder Betreiber eine parallele Verantwortung als Inspektor. Dies erweist sich in der Regel als effektiver, kann aber bedeuten, Arbeitsanreize aufzugeben, die lediglich auf der Produktionsrate basieren. Aus ergonomischer Sicht ist es sinnvoll, den Bediener als verantwortliche Person zu behandeln und nicht als eine Art Roboter, der auf sich wiederholende Leistung programmiert ist.

Arbeitszufriedenheit und Persönlichkeitsentwicklung

Aus dem Grundsatz, dass der Arbeiter oder menschliche Bediener als Person und nicht als Roboter anerkannt werden sollte, folgt, dass Verantwortlichkeiten, Einstellungen, Überzeugungen und Werte berücksichtigt werden sollten. Dies ist nicht einfach, da es viele Variablen gibt, die meist nachweisbar, aber nicht quantifizierbar sind, und es große individuelle und kulturelle Unterschiede gibt. Nichtsdestotrotz wird jetzt viel Aufwand in die Gestaltung und Verwaltung der Arbeit gesteckt, um sicherzustellen, dass die Situation so zufriedenstellend ist, wie es aus Sicht des Bedieners vernünftigerweise praktikabel ist. Einige Messungen sind durch den Einsatz von Erhebungstechniken möglich, und einige Prinzipien sind auf der Grundlage von Arbeitsmerkmalen wie Autonomie und Ermächtigung verfügbar.

Selbst wenn man akzeptiert, dass diese Bemühungen Zeit und Geld kosten, kann es dennoch beträchtliche Vorteile bringen, wenn man sich die Vorschläge, Meinungen und Einstellungen der Menschen anhört, die die eigentliche Arbeit leisten. Ihr Ansatz ist möglicherweise nicht derselbe wie der des externen Arbeitsdesigners und nicht derselbe wie die Annahmen des Arbeitsdesigners oder Managers. Diese Meinungsverschiedenheiten sind wichtig und können bei allen Beteiligten für einen erfrischenden Strategiewechsel sorgen.

Es ist allgemein bekannt, dass der Mensch ein kontinuierlich Lernender ist oder sein kann, wenn die entsprechenden Bedingungen gegeben sind. Die wichtigste Bedingung ist die Bereitstellung von Feedback über vergangene und gegenwärtige Leistungen, die zur Verbesserung zukünftiger Leistungen verwendet werden können. Darüber hinaus wirkt ein solches Feedback selbst als Leistungsanreiz. So gewinnen alle, der Performer und die Verantwortlichen im weiteren Sinne für die Performance. Daraus folgt, dass aus der Leistungssteigerung, einschließlich der Selbstentwicklung, viel gewonnen werden kann. Das Prinzip, dass die persönliche Entwicklung ein Aspekt der Anwendung der Ergonomie sein sollte, erfordert größere Designer- und Managerfähigkeiten, kann aber, wenn es erfolgreich angewendet werden kann, alle oben diskutierten Aspekte der menschlichen Leistungsfähigkeit verbessern.

Eine erfolgreiche Anwendung der Ergonomie folgt oft aus der Entwicklung der entsprechenden Einstellung oder Sichtweise. Die beteiligten Menschen sind zwangsläufig der zentrale Faktor jeder menschlichen Anstrengung, und die systematische Berücksichtigung ihrer Vorteile, Einschränkungen, Bedürfnisse und Wünsche ist von Natur aus wichtig.

Fazit

Ergonomie ist die systematische Untersuchung des Menschen bei der Arbeit mit dem Ziel, die Arbeitssituation, die Arbeitsbedingungen und die ausgeführten Aufgaben zu verbessern. Der Schwerpunkt liegt auf dem Erwerb relevanter und zuverlässiger Beweise, auf denen Empfehlungen für Änderungen in spezifischen Situationen basieren können, und auf der Entwicklung allgemeinerer Theorien, Konzepte, Richtlinien und Verfahren, die zu dem sich ständig weiterentwickelnden Fachwissen aus der Ergonomie beitragen.

 

Zurück

Es ist schwierig, von Arbeitsanalyse zu sprechen, ohne sie in die Perspektive der jüngsten Veränderungen in der industriellen Welt zu stellen, da sich die Art der Tätigkeiten und die Bedingungen, unter denen sie ausgeführt werden, in den letzten Jahren erheblich weiterentwickelt haben. Die Faktoren, die zu diesen Veränderungen geführt haben, waren zahlreich, aber es gibt zwei, deren Einfluss sich als entscheidend erwiesen hat. Einerseits haben der technologische Fortschritt mit seinem immer schneller werdenden Tempo und die Umwälzungen durch die Informationstechnologien die Arbeitsplätze revolutioniert (De Keyser 1986). Andererseits erfordert die Unsicherheit des Wirtschaftsmarktes mehr Flexibilität in der Personalführung und Arbeitsorganisation. Wenn die Arbeiter einen weiteren, weniger routinierten und zweifellos systematischeren Blick auf den Produktionsprozess gewonnen haben, haben sie gleichzeitig die exklusive Bindung an eine Umgebung, ein Team, ein Produktionswerkzeug verloren. Es ist schwierig, diese Veränderungen mit Gelassenheit zu betrachten, aber wir müssen der Tatsache ins Auge sehen, dass eine neue Industrielandschaft geschaffen wurde, die manchmal bereichernder für diejenigen Arbeitnehmer ist, die ihren Platz darin finden können, aber auch voller Fallstricke und Sorgen für diejenigen, die es tun können werden ausgegrenzt oder ausgegrenzt. Eine Idee wird jedoch in Unternehmen aufgegriffen und durch Pilotversuche in vielen Ländern bestätigt: Es sollte möglich sein, Veränderungen zu steuern und ihre negativen Auswirkungen abzumildern, indem entsprechende Analysen verwendet werden und alle Ressourcen für Verhandlungen zwischen den verschiedenen Arbeiten genutzt werden Schauspieler. In diesen Kontext müssen wir heute Arbeitsanalysen stellen – als Werkzeuge, die es uns ermöglichen, Aufgaben und Aktivitäten besser zu beschreiben, um Interventionen unterschiedlicher Art zu steuern, wie z. B. Schulungen, die Einrichtung neuer Organisationsformen oder die Gestaltung von Werkzeugen und Arbeit Systeme. Wir sprechen von Analysen und nicht nur von einer Analyse, da es eine große Anzahl davon gibt, abhängig von den theoretischen und kulturellen Kontexten, in denen sie entwickelt werden, den besonderen Zielen, die sie verfolgen, den gesammelten Beweisen oder dem Interesse des Analysators an beiden Spezifität oder Allgemeinheit. In diesem Artikel beschränken wir uns darauf, einige Merkmale von Arbeitsanalysen vorzustellen und die Bedeutung kollektiver Arbeit zu betonen. Unsere Schlussfolgerungen werden andere Wege aufzeigen, die wir aufgrund der Grenzen dieses Textes nicht weiter vertiefen können.

Einige Merkmale von Arbeitsanalysen

Der Kontext

Wenn das primäre Ziel jeder Arbeitsanalyse darin besteht, zu beschreiben, was der Bediener tut die, oder sollte tun, es genauer in seinen Kontext einzuordnen, erschien Forschern oft unabdingbar. Sie erwähnen nach ihren eigenen Ansichten, aber in weitgehend ähnlicher Weise, die Konzepte von Kontext, Situation, Umwelt, Arbeitsdomäne, Arbeitswelt or Arbeitsumgebung. Das Problem liegt weniger in den Nuancen zwischen diesen Begriffen als in der Auswahl der Variablen, die beschrieben werden müssen, um ihnen eine sinnvolle Bedeutung zu geben. Tatsächlich ist die Welt riesig und die Branche komplex, und die Merkmale, auf die man sich beziehen könnte, sind unzählig. Unter Autoren auf diesem Gebiet lassen sich zwei Tendenzen feststellen. Die erste sieht in der Kontextbeschreibung ein Mittel, um das Interesse des Lesers zu wecken und ihm einen adäquaten semantischen Rahmen zu geben. Die zweite hat eine andere theoretische Perspektive: Sie versucht, sowohl Kontext als auch Aktivität zu umfassen, indem sie nur diejenigen Elemente des Kontexts beschreibt, die in der Lage sind, das Verhalten von Bedienern zu beeinflussen.

Der semantische Rahmen

Kontext hat evokative Kraft. Für einen informierten Leser reicht es aus, von einem Bediener in einer Leitwarte zu lesen, der sich in einem kontinuierlichen Prozess befindet, um sich durch Befehle und Überwachung aus der Ferne ein Bild von der Arbeit zu machen, wo die Aufgaben der Erkennung, Diagnose und Regelung vorherrschen. Welche Variablen müssen beschrieben werden, um einen ausreichend aussagekräftigen Zusammenhang herzustellen? Es hängt alles vom Leser ab. Dennoch gibt es in der Literatur einen Konsens über einige Schlüsselvariablen. Das Natur des Wirtschaftszweigs, der Art der Produktion oder Dienstleistung, der Größe und der geografischen Lage des Standorts sinnvoll.

Die Produktionsprozesse, die Werkzeuge oder Maschinen und ihre Grad der Automatisierung gewisse Einschränkungen und gewisse notwendige Qualifikationen erahnen lassen. Das Personalstruktur, zusammen mit Alter, Qualifikationsniveau und Erfahrung sind entscheidende Daten, wenn es um Aspekte der Ausbildung oder der organisatorischen Flexibilität geht. Das Arbeitsorganisation etabliert, hängt mehr von der Firmenphilosophie als von der Technologie ab. Seine Beschreibung umfasst insbesondere Arbeitszeitpläne, den Grad der Zentralisierung von Entscheidungen und die Art der Kontrolle, die über die Arbeitnehmer ausgeübt wird. Andere Elemente können in anderen Fällen hinzugefügt werden. Sie sind mit der Geschichte und Kultur des Unternehmens, seiner wirtschaftlichen Situation, den Arbeitsbedingungen und etwaigen Umstrukturierungen, Fusionen und Investitionen verbunden. Es gibt mindestens so viele Klassifikationssysteme wie Autoren, und es sind zahlreiche deskriptive Listen im Umlauf. In Frankreich wurden besondere Anstrengungen unternommen, um einfache beschreibende Methoden zu verallgemeinern, insbesondere um eine Rangfolge bestimmter Faktoren danach zu ermöglichen, ob sie für den Bediener zufriedenstellend sind oder nicht (RNUR 1976; Guelaud et al. 1977).

Die Beschreibung relevanter Faktoren in Bezug auf die Aktivität

Die von Rasmussen, Pejtersen und Schmidts (1990) beschriebene Taxonomie komplexer Systeme stellt einen der ehrgeizigsten Versuche dar, gleichzeitig den Kontext und seinen Einfluss auf den Bediener zu erfassen. Seine Hauptidee besteht darin, die verschiedenen Elemente, aus denen es besteht, systematisch zu integrieren und die Freiheitsgrade und Zwänge herauszustellen, innerhalb derer individuelle Strategien entwickelt werden können. Sein erschöpfendes Ziel macht es schwierig, es zu manipulieren, aber die Verwendung mehrerer Darstellungsweisen, einschließlich Graphen, zur Veranschaulichung der Beschränkungen hat einen heuristischen Wert, der für viele Leser sicherlich attraktiv sein wird. Andere Ansätze sind gezielter. Was die Autoren suchen, ist die Auswahl von Faktoren, die eine bestimmte Aktivität beeinflussen können. Daher schlägt Brehmer (1990) mit seinem Interesse an der Steuerung von Prozessen in einer sich ändernden Umgebung eine Reihe von zeitlichen Merkmalen des Kontexts vor, die die Steuerung und Antizipation des Bedieners beeinflussen (siehe Abbildung 1). Die Typologie dieses Autors wurde aus „Mikrowelten“ entwickelt, computerisierten Simulationen dynamischer Situationen, aber der Autor selbst hat sie zusammen mit vielen anderen seitdem für die kontinuierliche Prozessindustrie verwendet (Van Daele 1992). Bei bestimmten Aktivitäten ist der Einfluss der Umgebung bekannt, und die Auswahl der Faktoren ist nicht allzu schwierig. Wenn wir uns also für die Herzfrequenz im Arbeitsumfeld interessieren, beschränken wir uns oft darauf, die Lufttemperaturen, die körperlichen Einschränkungen der Aufgabe oder das Alter und die Ausbildung des Probanden zu beschreiben – obwohl wir wissen, dass wir damit vielleicht abbrechen relevante Elemente heraus. Anderen fällt die Wahl schwerer. Studien über menschliches Versagen zeigen zum Beispiel, dass die Faktoren, die dazu in der Lage sind, sie hervorzurufen, zahlreich sind (Reason 1989). Manchmal, wenn das theoretische Wissen nicht ausreicht, erlaubt uns nur eine statistische Verarbeitung, die Kontext- und Aktivitätsanalyse kombiniert, die relevanten kontextuellen Faktoren herauszuarbeiten (Fadier 1990).

Abbildung 1. Die Kriterien und Unterkriterien der von Brehmer (1990) vorgeschlagenen Taxonomie von Mikrowelten

ERG040T1

Die Aufgabe oder die Aktivität?

Die Aufgabe

Die Aufgabe wird durch ihre Ziele, ihre Beschränkungen und die Mittel, die sie zu ihrer Erfüllung erfordert, definiert. Eine Funktion im Unternehmen ist in der Regel durch eine Reihe von Aufgaben gekennzeichnet. Die realisierte Aufgabe weicht aus einer Vielzahl von Gründen von der vom Unternehmen geplanten Aufgabe ab: Die Strategien der Bediener variieren innerhalb und zwischen den Individuen, die Umgebung schwankt und zufällige Ereignisse erfordern Antworten, die oft außerhalb des vorgeschriebenen Rahmens liegen. Endlich, das Auftrag wird nicht immer mit der richtigen Kenntnis seiner Ausführungsbedingungen geplant, daher die Notwendigkeit von Anpassungen in Echtzeit. Aber auch wenn die Aufgabe während der Aktivität aktualisiert wird, manchmal bis hin zur Transformation, bleibt sie dennoch die zentrale Referenz.

Fragebögen, Bestandsverzeichnisse und Taxonomien von Aufgaben sind zahlreich, insbesondere in der englischsprachigen Literatur – hervorragende Übersichten findet der Leser bei Fleishman und Quaintance (1984) sowie bei Greuter und Algera (1989). Einige dieser Instrumente sind lediglich Listen von Elementen – zum Beispiel die Aktionsverben zur Veranschaulichung von Aufgaben –, die entsprechend der untersuchten Funktion abgehakt werden. Andere haben ein hierarchisches Prinzip angenommen, das eine Aufgabe als ineinandergreifende Elemente charakterisiert, die vom Globalen zum Besonderen geordnet sind. Diese Methoden sind standardisiert und können auf eine Vielzahl von Funktionen angewendet werden; sie sind einfach anzuwenden und die Analysephase wird erheblich verkürzt. Aber wo es darum geht, spezifische Arbeit zu definieren, sind sie zu statisch und zu allgemein, um nützlich zu sein.

Als nächstes gibt es jene Instrumente, die mehr Geschick seitens des Forschers erfordern; Da die Elemente der Analyse nicht vordefiniert sind, ist es Sache des Forschers, sie zu charakterisieren. Zu dieser Gruppe gehört die bereits überholte Critical-Incident-Technik von Flanagan (1954), bei der der Beobachter eine Funktion anhand ihrer Schwierigkeiten beschreibt und die Vorfälle identifiziert, denen das Individuum ausgesetzt sein wird.

Dies ist auch der Weg der kognitiven Aufgabenanalyse (Roth und Woods 1988). Diese Technik zielt darauf ab, die kognitiven Anforderungen eines Jobs ans Licht zu bringen. Eine Möglichkeit, dies zu tun, besteht darin, die Aufgabe in Ziele, Einschränkungen und Mittel zu unterteilen. Abbildung 2 zeigt, wie die zunächst durch ein sehr globales Ziel des Überlebens des Patienten gekennzeichnete Aufgabe eines Anästhesisten in eine Reihe von Unterzielen zerlegt werden kann, die ihrerseits als einzusetzende Maßnahmen und Mittel klassifiziert werden können. Mehr als 100 Stunden Beobachtung im Operationssaal und anschließende Gespräche mit Anästhesisten waren notwendig, um dieses zusammenfassende „Foto“ der Anforderungen der Funktion zu erhalten. Obwohl diese Technik ziemlich mühsam ist, ist sie in der Ergonomie dennoch nützlich, um festzustellen, ob alle Ziele einer Aufgabe mit den Mitteln zu ihrer Erreichung versehen sind. Es ermöglicht auch ein Verständnis für die Komplexität einer Aufgabe (z. B. ihre besonderen Schwierigkeiten und widersprüchlichen Ziele) und erleichtert die Interpretation bestimmter menschlicher Fehler. Aber sie leidet, wie auch andere Methoden, unter dem Fehlen einer beschreibenden Sprache (Grant und Mayes 1991). Außerdem erlaubt es keine Hypothesen über die Art der kognitiven Prozesse, die zum Erreichen der fraglichen Ziele eingesetzt werden.

Abbildung 2. Kognitive Analyse der Aufgabe: Vollnarkose

ERG040F1

Andere Ansätze haben die mit gegebenen Aufgaben verbundenen kognitiven Prozesse analysiert, indem sie Hypothesen über die Informationsverarbeitung aufstellten, die zu ihrer Bewältigung erforderlich ist. Ein häufig verwendetes kognitives Modell dieser Art ist das von Rasmussen (1986), das je nach Art der Aufgabe und Vertrautheit mit dem Subjekt drei mögliche Aktivitätsebenen vorsieht, die entweder auf fähigkeitsbasierten Gewohnheiten und Reflexen oder auf erlernten Regeln basieren -basierten Verfahren oder auf wissensbasierten Verfahren. Aber andere Modelle oder Theorien, die in den 1970er Jahren den Höhepunkt ihrer Popularität erreichten, werden weiterhin verwendet. Daher wird die Theorie der optimalen Kontrolle, die den Menschen als Kontrolleur von Diskrepanzen zwischen zugewiesenen und beobachteten Zielen betrachtet, manchmal immer noch auf kognitive Prozesse angewendet. Und die Modellierung mittels Netzwerken miteinander verbundener Aufgaben und Flussdiagrammen inspiriert weiterhin die Autoren der kognitiven Aufgabenanalyse; Abbildung 3 bietet eine vereinfachte Beschreibung der Verhaltenssequenzen in einer Energiekontrollaufgabe, wobei eine Hypothese über bestimmte mentale Operationen aufgestellt wird. All diese Versuche spiegeln das Anliegen der Forscher wider, nicht nur Elemente des Kontexts, sondern auch die Aufgabe selbst und die ihr zugrunde liegenden kognitiven Prozesse in derselben Beschreibung zusammenzuführen – und auch den dynamischen Charakter der Arbeit widerzuspiegeln.

Abbildung 3. Eine vereinfachte Beschreibung der Determinanten eines Verhaltensablaufs bei Energiesteuerungsaufgaben: ein Fall von inakzeptablem Energieverbrauch

ERG040F2

Seit dem Aufkommen der wissenschaftlichen Arbeitsorganisation ist das Konzept der vorgeschriebenen Aufgabe negativ kritisiert worden, weil es so angesehen wurde, dass es den Arbeitnehmern Aufgaben auferlegte, die nicht nur ohne Rücksprache mit ihren Bedürfnissen entworfen wurden, sondern oft mit einer bestimmten Ausführungszeit einhergingen , eine Einschränkung, die von vielen Arbeitnehmern nicht begrüßt wird. Auch wenn der Auferlegungsaspekt heute eher flexibler geworden ist und auch wenn sich die Mitarbeiter häufiger an der Gestaltung von Aufgaben beteiligen, bleibt eine Aufgabenzuweisung für die Terminplanung notwendig und bleibt ein wesentlicher Bestandteil der Arbeitsorganisation. Die Quantifizierung von Zeit sollte nicht immer negativ empfunden werden. Sie ist ein wertvoller Indikator für die Arbeitsbelastung. Eine einfache, aber gängige Methode zur Messung des Zeitdrucks, der auf einen Arbeiter ausgeübt wird, besteht darin, den Quotienten aus der für die Erledigung einer Aufgabe benötigten Zeit dividiert durch die zur Verfügung stehende Zeit zu bestimmen. Je näher dieser Quotient an Eins liegt, desto größer ist der Druck (Wickens 1992). Darüber hinaus kann die Quantifizierung in einem flexiblen, aber angemessenen Personalmanagement eingesetzt werden. Nehmen wir den Fall von Krankenschwestern, wo die Technik der prädiktiven Analyse von Aufgaben verallgemeinert wurde, beispielsweise in der kanadischen Verordnung Planung der erforderlichen Pflege (PRN 80) (Kepenne 1984) oder eine seiner europäischen Varianten. Dank solcher Aufgabenlisten, begleitet von ihrer Bearbeitungszeit, kann man jeden Morgen unter Berücksichtigung der Anzahl der Patienten und ihres Gesundheitszustands einen Pflegeplan und eine Personalverteilung erstellen. Weit davon entfernt, eine Einschränkung zu sein, hat PRN 80 in einer Reihe von Krankenhäusern gezeigt, dass ein Mangel an Pflegepersonal besteht, da die Technik es ermöglicht, einen Unterschied (siehe Abbildung 4) zwischen dem Gewünschten und dem Beobachteten, d. h. zwischen, festzustellen die Anzahl der erforderlichen und der verfügbaren Mitarbeiter und sogar zwischen den geplanten Aufgaben und den durchgeführten Aufgaben. Die berechneten Zeiten sind nur Durchschnittswerte, und die Schwankungen der Situation machen sie nicht immer anwendbar, aber dieser negative Aspekt wird durch eine flexible Organisation minimiert, die Anpassungen akzeptiert und das Personal an diesen Anpassungen beteiligen lässt.

Abbildung 4. Diskrepanzen zwischen der Anzahl vorhandener und erforderlicher Mitarbeiter auf der Grundlage von PRN80

ERG040F3

Die Aktivität, die Beweise und die Leistung

Eine Aktivität ist definiert als eine Reihe von Verhaltensweisen und Ressourcen, die vom Bediener verwendet werden, damit Arbeit stattfindet – das heißt, die Umwandlung oder Produktion von Gütern oder die Erbringung einer Dienstleistung. Diese Aktivität kann durch Beobachtung auf unterschiedliche Weise verstanden werden. Faverge (1972) hat vier Formen der Analyse beschrieben. Die erste ist eine Analyse in Bezug auf Gesten und haltungen, wo der Beobachter innerhalb der sichtbaren Tätigkeit des Bedieners Verhaltensklassen lokalisiert, die während der Arbeit erkennbar und wiederholt werden. Diese Aktivitäten sind oft mit einer genauen Reaktion gekoppelt: zum Beispiel der Herzfrequenz, die es uns ermöglicht, die mit jeder Aktivität verbundene körperliche Belastung einzuschätzen. Die zweite Form der Analyse bezieht sich auf Informationsaufnahme. Was durch direkte Beobachtung – oder mit Hilfe von Kameras oder Augenbewegungsaufzeichnern – entdeckt wird, ist die Reihe von Signalen, die der Bediener in dem ihn umgebenden Informationsfeld aufnimmt. Diese Analyse ist in der kognitiven Ergonomie besonders nützlich, um zu versuchen, die vom Bediener durchgeführte Informationsverarbeitung besser zu verstehen. Die dritte Art der Analyse bezieht sich auf Regulierung. Die Idee besteht darin, die vom Bediener durchgeführten Anpassungen der Aktivität zu identifizieren, um entweder mit Schwankungen in der Umgebung oder mit Änderungen seines eigenen Zustands fertig zu werden. Dort finden wir das direkte Eingreifen des Kontextes in die Analyse. Eines der am häufigsten zitierten Forschungsprojekte auf diesem Gebiet ist das von Sperandio (1972). Dieser Autor untersuchte die Tätigkeit von Fluglotsen und identifizierte wichtige Strategieänderungen während einer Zunahme des Flugverkehrs. Er interpretierte sie als Versuch, die Tätigkeit zu vereinfachen, indem er darauf abzielte, ein akzeptables Belastungsniveau beizubehalten und gleichzeitig den Anforderungen der Aufgabe gerecht zu werden. Die vierte ist eine Analyse in Bezug auf Denkprozesse. Diese Art der Analyse ist in der Ergonomie von hochautomatisierten Posts weit verbreitet. Tatsächlich erfordert die Gestaltung computergestützter Hilfen und insbesondere intelligenter Hilfen für den Bediener ein gründliches Verständnis der Art und Weise, wie der Bediener argumentiert, um bestimmte Probleme zu lösen. Die Argumentation bei der Planung, Antizipation und Diagnose war Gegenstand von Analysen, von denen ein Beispiel in Abbildung 5 zu finden ist. Hinweise auf geistige Aktivität können jedoch nur gefolgert werden. Abgesehen von bestimmten beobachtbaren Verhaltensaspekten wie Augenbewegungen und Problemlösungszeit greifen die meisten dieser Analysen auf die verbale Reaktion zurück. Besonderes Augenmerk wurde in den letzten Jahren auf das Wissen gelegt, das zur Durchführung bestimmter Aktivitäten erforderlich ist, wobei die Forscher versuchten, diese nicht von vornherein zu postulieren, sondern durch die Analyse selbst sichtbar zu machen.

Abbildung 5. Analyse der geistigen Aktivität. Strategien zur Steuerung von Prozessen mit langen Reaktionszeiten: Die Notwendigkeit computergestützter Unterstützung bei der Diagnose

ERG040T2

Solche Bemühungen haben die Tatsache ans Licht gebracht, dass nahezu identische Leistungen mit sehr unterschiedlichem Kenntnisstand erzielt werden können, solange sich die Bediener ihrer Grenzen bewusst sind und an ihre Fähigkeiten angepasste Strategien anwenden. Daher wurden in unserer Studie über die Inbetriebnahme einer thermoelektrischen Anlage (De Keyser und Housiaux 1989) die Inbetriebnahmen sowohl von Ingenieuren als auch von Bedienern durchgeführt. Das mittels Interviews und Fragebögen erhobene theoretische und prozedurale Wissen dieser beiden Gruppen war sehr unterschiedlich. Insbesondere die Bediener hatten manchmal ein falsches Verständnis der Variablen in den funktionalen Verknüpfungen des Prozesses. Trotzdem waren die Leistungen der beiden Gruppen sehr eng. Die Betreiber berücksichtigten jedoch mehr Variablen, um die Kontrolle des Starts zu überprüfen, und führten häufigere Überprüfungen durch. Zu solchen Ergebnissen kam auch Amalberti (1991), der die Existenz von Metawissen erwähnte, das es Experten ermöglicht, ihre eigenen Ressourcen zu verwalten.

Was Nachweis der Tätigkeit ist angemessen zu entlocken? Ihre Art hängt, wie wir gesehen haben, eng von der geplanten Analyseform ab. Ihre Form variiert je nach methodischer Sorgfalt des Betrachters. Provoziert Beweise werden unterschieden spontan Beweise u begleitend für Folge Beweis. Generell sind, wenn es die Art der Arbeit zulässt, Begleit- und Spontanbeweise zu bevorzugen. Sie sind frei von verschiedenen Nachteilen wie der Unzuverlässigkeit des Gedächtnisses, der Störung durch den Beobachter, dem Effekt einer rationalisierenden Rekonstruktion seitens des Subjekts und so weiter. Um diese Unterscheidungen zu veranschaulichen, nehmen wir das Beispiel von Verbalisierungen. Spontane Verbalisierungen sind verbaler Austausch oder Monologe, die spontan geäußert werden, ohne vom Beobachter aufgefordert zu werden; Provozierte Verbalisierungen sind solche, die auf ausdrücklichen Wunsch des Beobachters erfolgen, wie etwa die in der kognitiven Literatur wohlbekannte Aufforderung an das Subjekt, „laut zu denken“. Beide Arten können in Echtzeit während der Arbeit durchgeführt werden und sind somit gleichzeitig.

Sie können auch nachträglich sein, wie in Interviews, oder die Verbalisierungen der Probanden, wenn sie sich Videobänder ihrer Arbeit ansehen. Was die Gültigkeit der Verbalisierungen betrifft, so sollte der Leser die Zweifel nicht ignorieren, die in dieser Hinsicht durch die Kontroverse zwischen Nisbett und De Camp Wilson (1977) und White (1988) aufgeworfen wurden, und die Vorsichtsmaßnahmen, die von zahlreichen Autoren vorgeschlagen wurden, die sich ihrer Bedeutung für die Studie bewusst waren der geistigen Aktivität angesichts der aufgetretenen methodischen Schwierigkeiten (Ericson und Simon 1984; Savoyant und Leplat 1983; Caverni 1988; Bainbridge 1986).

Die Organisation dieser Beweise, ihre Verarbeitung und ihre Formalisierung erfordern beschreibende Sprachen und manchmal Analysen, die über die Feldbeobachtung hinausgehen. Hypothetisch bleiben beispielsweise jene geistigen Aktivitäten, die aus den Beweisen erschlossen werden. Heute werden sie oft mit Sprachen beschrieben, die von künstlicher Intelligenz abgeleitet sind, wobei Repräsentationen in Form von Schemata, Produktionsregeln und verbindenden Netzwerken verwendet werden. Darüber hinaus ist der Einsatz computergestützter Simulationen – von Mikrowelten – zur Lokalisierung bestimmter mentaler Aktivitäten weit verbreitet, auch wenn die Gültigkeit der Ergebnisse solcher computergestützter Simulationen angesichts der Komplexität der industriellen Welt umstritten ist. Schließlich müssen wir die kognitiven Modelle bestimmter mentaler Aktivitäten erwähnen, die aus dem Feld extrahiert wurden. Zu den bekanntesten gehört die in ISPRA durchgeführte Diagnose des Betreibers eines Kernkraftwerks (Decortis und Cacciabue 1990) und die darin perfektionierte Planung des Kampfpiloten Centre d'études et de recherches de médecine aérospatiale (CERMA) (Amalberti et al. 1989).

Die Messung der Diskrepanzen zwischen der Leistung dieser Modelle und der von realen, lebenden Bedienern ist ein fruchtbares Gebiet in der Aktivitätsanalyse. Leistung ist das Ergebnis der Aktivität, die endgültige Antwort des Subjekts auf die Anforderungen der Aufgabe. Sie drückt sich auf der Ebene der Produktion aus: Produktivität, Qualität, Fehler, Vorfälle, Unfälle – und sogar, auf globalerer Ebene, Fehlzeiten oder Fluktuation. Sie muss aber auch auf individueller Ebene identifiziert werden: Auch der subjektive Ausdruck von Zufriedenheit, Stress, Müdigkeit oder Arbeitsbelastung und viele physiologische Reaktionen sind Leistungsindikatoren. Nur die Gesamtheit der Daten erlaubt eine Interpretation der Aktivität, also die Beurteilung, ob sie die angestrebten Ziele fördert oder nicht, während sie innerhalb menschlicher Grenzen bleibt. Es gibt eine Reihe von Normen, die den Betrachter bis zu einem gewissen Punkt leiten. Aber diese Normen sind es nicht gelegen– sie berücksichtigen nicht den Kontext, seine Schwankungen und den Zustand des Arbeitnehmers. Deshalb wird in der Designergonomie, auch wenn es Regeln, Normen und Modelle gibt, Designern empfohlen, das Produkt so früh wie möglich anhand von Prototypen zu testen und die Aktivität und Leistung der Benutzer zu evaluieren.

Einzel- oder Kollektivarbeit?

Während Arbeit in den allermeisten Fällen ein kollektiver Akt ist, konzentrieren sich die meisten Arbeitsanalysen auf Aufgaben oder individuelle Aktivitäten. Tatsache ist jedoch, dass die technologische Entwicklung ebenso wie die Arbeitsorganisation heute auf verteilte Arbeit setzt, sei es zwischen Arbeitern und Maschinen oder einfach innerhalb einer Gruppe. Welche Wege wurden von Autoren beschritten, um dieser Verteilung Rechnung zu tragen (Rasmussen, Pejtersen und Schmidts 1990)? Sie konzentrieren sich auf drei Aspekte: Struktur, Art des Austauschs und strukturelle Labilität.

Struktur

Unabhängig davon, ob wir Strukturen als Elemente der Analyse von Personen oder von Dienstleistungen oder sogar von verschiedenen Zweigen eines Unternehmens betrachten, die in einem Netzwerk arbeiten, bleibt die Beschreibung der sie verbindenden Verbindungen ein Problem. Wir sind sehr vertraut mit den Organigrammen innerhalb von Firmen, die die Autoritätsstruktur anzeigen und deren verschiedene Formen die Organisationsphilosophie der Firma widerspiegeln – sehr hierarchisch organisiert für eine Taylor-Struktur oder abgeflacht wie ein Rechen, sogar matrixartig für a flexiblere Struktur. Andere Beschreibungen verteilter Aktivitäten sind möglich: Ein Beispiel ist in Abbildung 6 dargestellt. In jüngerer Zeit hat die Notwendigkeit für Unternehmen, ihren Informationsaustausch auf globaler Ebene darzustellen, zu einem Umdenken in Bezug auf Informationssysteme geführt. Dank bestimmter Beschreibungssprachen – zum Beispiel Designschemata oder Entity-Relations-Attribute-Matrizen – kann die Beziehungsstruktur auf kollektiver Ebene heute sehr abstrakt beschrieben werden und als Sprungbrett für die Erstellung computergestützter Managementsysteme dienen .

Abbildung 6. Integriertes Lebenszyklusdesign

ERG040F5

Das Wesen des Austauschs

Einfach nur eine Beschreibung der Links zu haben, die die Entitäten vereinen, sagt wenig über den Inhalt des Austauschs selbst aus; Natürlich kann die Art der Beziehung spezifiziert werden – Bewegung von Ort zu Ort, Informationstransfer, hierarchische Abhängigkeit und so weiter –, aber das ist oft ziemlich unzureichend. Die Analyse der Kommunikation innerhalb von Teams ist zu einem bevorzugten Mittel geworden, um das eigentliche Wesen der kollektiven Arbeit zu erfassen, einschließlich der erwähnten Themen, der Schaffung einer gemeinsamen Sprache in einem Team, der Änderung der Kommunikation unter kritischen Umständen und so weiter (Tardieu, Nanci und Pascot 1985; Rolland 1986; Navarro 1990; Van Daele 1992; Lacoste 1983; Moray, Sanderson und Vincente 1989). Die Kenntnis dieser Wechselwirkungen ist besonders nützlich für die Erstellung von Computerwerkzeugen, insbesondere Entscheidungshilfen zum Verständnis von Fehlern. Die verschiedenen Stadien und die methodologischen Schwierigkeiten im Zusammenhang mit der Verwendung dieser Nachweise wurden von Falzon (1991) gut beschrieben.

Strukturelle Labilität

Es ist eher die Arbeit an Aktivitäten als an Aufgaben, die das Feld der strukturellen Labilität eröffnet hat – das heißt, der ständigen Neukonfigurationen kollektiver Arbeit unter dem Einfluss kontextueller Faktoren. Studien wie die von Rogalski (1991), die über einen langen Zeitraum die kollektiven Aktivitäten im Umgang mit Waldbränden in Frankreich analysierten, und Bourdon und Weill Fassina (1994), die die Organisationsstruktur untersuchten, die für den Umgang mit Eisenbahnunfällen eingerichtet wurde, sind beides sehr informativ. Sie zeigen deutlich, wie der Kontext die Struktur des Austauschs, die Anzahl und Art der beteiligten Akteure, die Art der Kommunikation und die Anzahl der für die Arbeit wesentlichen Parameter prägt. Je mehr dieser Kontext schwankt, desto weiter entfernen sich die fixierten Aufgabenbeschreibungen von der Realität. Die Kenntnis dieser Labilität und ein besseres Verständnis der darin ablaufenden Phänomene sind unerlässlich, um für das Unvorhersehbare zu planen und um diejenigen, die in einer Krise an kollektiver Arbeit beteiligt sind, besser zu schulen.

Schlussfolgerungen

Die verschiedenen beschriebenen Phasen der Arbeitsanalyse sind ein iterativer Teil jedes Human-Factors-Designzyklus (siehe Abbildung 6). Bei diesem Entwurf eines technischen Objekts, sei es ein Werkzeug, eine Arbeitsstation oder eine Fabrik, bei der menschliche Faktoren berücksichtigt werden, werden rechtzeitig bestimmte Informationen benötigt. Im Allgemeinen ist der Beginn des Entwurfszyklus durch einen Bedarf an Daten gekennzeichnet, die Umweltbeschränkungen, die Art der auszuführenden Arbeiten und die verschiedenen Merkmale der Benutzer betreffen. Diese ersten Informationen ermöglichen es, die Spezifikationen des Objekts zu erstellen, um die Arbeitsanforderungen zu berücksichtigen. Aber das ist in gewisser Weise nur ein grobes Modell im Vergleich zur realen Arbeitssituation. Dies erklärt, warum Modelle und Prototypen notwendig sind, die von Anfang an nicht die Arbeitsplätze selbst, sondern die Aktivitäten der zukünftigen Nutzer evaluieren lassen. Folglich kann die Gestaltung der Bilder auf einem Monitor in einem Kontrollraum zwar auf einer gründlichen kognitiven Analyse der zu erledigenden Arbeit basieren, aber nur eine datenbasierte Analyse der Aktivität ermöglicht eine genaue Bestimmung, ob der Prototyp tatsächlich funktioniert in der konkreten Arbeitssituation von Nutzen sein (Van Daele 1988). Ist das fertige technische Objekt in Betrieb genommen, wird mehr Wert auf die Leistungsfähigkeit der Nutzer und auf dysfunktionale Situationen wie Unfälle oder menschliches Versagen gelegt. Das Sammeln dieser Art von Informationen ermöglicht es, die letzten Korrekturen vorzunehmen, die die Zuverlässigkeit und Verwendbarkeit des fertiggestellten Objekts erhöhen. Sowohl die Nuklearindustrie als auch die Luftfahrtindustrie dienen als Beispiel: Bei der betrieblichen Rückmeldung geht es darum, jeden auftretenden Vorfall zu melden. Auf diese Weise schließt sich der Designkreislauf.

 

Zurück

Montag, März 07 2011 19: 01

Ergonomie und Standardisierung

Origins

Die Normung im Bereich der Ergonomie hat eine relativ kurze Geschichte. Es begann Anfang der 1970er Jahre mit der Gründung erster Gremien auf nationaler Ebene (z. B. in Deutschland innerhalb des Normungsinstituts DIN) und setzte sich nach der Gründung der ISO (International Organization for Standardization) TC auf internationaler Ebene fort (Technisches Komitee) 159 „Ergonomie“, 1975. Inzwischen findet die Normung der Ergonomie auch auf regionaler Ebene statt, beispielsweise auf europäischer Ebene im Rahmen des CEN (Europäische Kommission für Normalisierung), das 122 sein TC 1987 „Ergonomics“ einrichtete. Die Existenz des letztgenannten Komitees unterstreicht die Tatsache, dass einer der wichtigen Gründe für die Einrichtung von Komitees zur Standardisierung ergonomischer Kenntnisse und Grundsätze in rechtlichen (und quasi-rechtlichen) Vorschriften, insbesondere zu Sicherheit und Gesundheit, die die Anwendung ergonomischer Prinzipien und Erkenntnisse bei der Gestaltung von Produkten und Arbeitssystemen erfordern. Nationale Gesetze, die die Anwendung bewährter Erkenntnisse der Ergonomie vorschreiben, waren Anlass für die Gründung des Deutschen Ergonomieausschusses im Jahr 1970, und europäische Richtlinien, insbesondere die Maschinenrichtlinie (mit Bezug auf Sicherheitsnormen), waren für die Einrichtung eines Ergonomieausschusses auf europäischer Ebene verantwortlich Niveau. Da gesetzliche Regelungen in der Regel wenig spezifisch sind, können und sollen, wurde die Aufgabe, festzulegen, welche ergonomischen Prinzipien und Erkenntnisse anzuwenden sind, an Arbeitsnormungsgremien vergeben bzw. von diesen übernommen. Gerade auf europäischer Ebene ist zu erkennen, dass die Ergonomie-Normung dazu beitragen kann, für breite und vergleichbare Bedingungen der Maschinensicherheit zu sorgen und damit Barrieren für den freien Handel mit Maschinen innerhalb des Kontinents abzubauen.

Perspectives

Die Normung der Ergonomie startete also mit einem starken Schutz-, wenn auch präventive Perspektive, wobei Ergonomiestandards mit dem Ziel entwickelt werden, Arbeitnehmer auf verschiedenen Ebenen des Gesundheitsschutzes vor negativen Auswirkungen zu schützen. Ergonomiestandards wurden daher mit folgenden Absichten erstellt:

  • sicherzustellen, dass die übertragenen Aufgaben die Grenzen der Leistungsfähigkeit des Arbeitnehmers nicht überschreiten
  • um dauerhafte oder vorübergehende, kurz- oder langfristige Verletzungen oder Gesundheitsschäden des Arbeitnehmers zu vermeiden, selbst wenn die betreffenden Aufgaben, wenn auch nur für kurze Zeit, ohne negative Auswirkungen durchgeführt werden können
  • dafür zu sorgen, dass Aufgaben und Arbeitsbedingungen nicht zu Beeinträchtigungen führen, auch wenn eine Erholung mit der Zeit möglich ist.

 

Die nicht so eng an die Gesetzgebung gekoppelte internationale Normung hat dagegen immer auch versucht, eine Perspektive in Richtung einer Normenbildung zu eröffnen, die über die Vermeidung und den Schutz vor Beeinträchtigungen hinausgeht (z Werte) und stattdessen proaktiv optimale Arbeitsbedingungen zu schaffen, um das Wohlbefinden und die persönliche Entwicklung des Arbeitnehmers sowie die Effektivität, Effizienz, Zuverlässigkeit und Produktivität des Arbeitssystems zu fördern.

An dieser Stelle wird deutlich, dass Ergonomie und insbesondere Ergonomienormung sehr ausgeprägte gesellschaftliche und politische Dimensionen hat. Während der Schutzansatz in Bezug auf Sicherheit und Gesundheit allgemein akzeptiert und zwischen den beteiligten Parteien (Arbeitgeber, Gewerkschaften, Verwaltung und Ergonomieexperten) für alle Standardisierungsebenen vereinbart wird, wird der proaktive Ansatz nicht von allen Parteien gleichermaßen akzeptiert . Dies könnte darauf zurückzuführen sein, dass einige Parteien das Gefühl haben, dass solche Standards ihre Handlungs- oder Verhandlungsfreiheit einschränken könnten, insbesondere wenn die Gesetzgebung die Anwendung ergonomischer Grundsätze (und damit entweder explizit oder implizit die Anwendung von ergonomischen Standards) vorschreibt. Da internationale Normen weniger überzeugend sind (deren Überführung in das nationale Normenwerk liegt im Ermessen der nationalen Normungsgremien), ist der proaktive Ansatz auf der internationalen Ebene der Ergonomienormung am weitesten entwickelt.

Die Tatsache, dass bestimmte Vorschriften den Ermessensspielraum ihrer Adressaten tatsächlich einschränken würden, wirkte einer Standardisierung in bestimmten Bereichen entgegen, beispielsweise im Zusammenhang mit den europäischen Richtlinien nach Artikel 118a der Einheitlichen Europäischen Akte über Sicherheit und Gesundheitsschutz bei der Verwendung und Bedienung von Maschinen am Arbeitsplatz sowie bei der Gestaltung von Arbeitssystemen und Arbeitsplatzgestaltung. Andererseits wird im Rahmen der nach Artikel 100a erlassenen Richtlinien über Sicherheit und Gesundheitsschutz bei der Konstruktion von Maschinen im Hinblick auf den freien Handel mit diesen Maschinen innerhalb der Europäischen Union (EU) eine europäische Ergonomienormung von der Europäischen Kommission in Auftrag gegeben.

Aus ergonomischer Sicht ist jedoch schwer nachvollziehbar, warum sich die Ergonomie bei der Gestaltung von Maschinen von derjenigen bei der Nutzung und Bedienung von Maschinen innerhalb eines Arbeitssystems unterscheiden sollte. Es ist daher zu hoffen, dass die Unterscheidung in Zukunft aufgegeben wird, da sie der Entwicklung eines einheitlichen Ergonomie-Normenwerks eher abträglich als förderlich zu sein scheint.

Arten von Ergonomiestandards

Als erste internationale Ergonomienorm (basierend auf einer deutschen DIN-Landesnorm) wurde die 6385 erschienene ISO 1981 „Ergonomische Grundsätze bei der Gestaltung von Arbeitssystemen“ entwickelt. Sie ist die Grundnorm der Ergonomie-Normenreihe und setzt die Stufe für die Normen, gefolgt von der Definition der Grundbegriffe und der Festlegung der allgemeinen Prinzipien der ergonomischen Gestaltung von Arbeitssystemen, einschließlich Aufgaben, Werkzeugen, Maschinen, Arbeitsplätzen, Arbeitsraum, Arbeitsumgebung und Arbeitsorganisation. Diese internationale Norm, die derzeit überarbeitet wird, ist a Richtwert, und stellt als solche Richtlinien zur Verfügung, die befolgt werden müssen. Sie enthält jedoch keine technischen oder physikalischen Spezifikationen, die eingehalten werden müssen. Diese können in einer anderen Art von Standards gefunden werden, nämlich Spezifikationsstandards, zum Beispiel solche zur Anthropometrie oder zu thermischen Bedingungen. Beide Arten von Standards erfüllen unterschiedliche Funktionen. Während Richtwerte beabsichtigen, ihren Benutzern zu zeigen, „was zu tun ist und wie es zu tun ist“ und darauf hinzuweisen, welche Grundsätze eingehalten werden müssen oder sollten, z die eingehalten werden müssen und wo die Einhaltung dieser Vorschriften durch festgelegte Verfahren geprüft werden kann. Bei Leitlinienstandards ist dies nicht immer möglich, obwohl trotz relativ geringer Spezifität meist nachgewiesen werden kann, wann und wo gegen Leitlinien verstoßen wurde. Eine Untergruppe von Spezifikationsnormen sind „Datenbank“-Normen, die dem Benutzer relevante Ergonomiedaten liefern, beispielsweise Körpermaße.

CEN-Normen werden je nach Geltungsbereich und Anwendungsbereich als A-, B- und C-Typ-Normen klassifiziert. Typ-A-Normen sind allgemeine Grundnormen, die für alle Arten von Anwendungen gelten, Typ-B-Normen sind spezifisch für einen Anwendungsbereich (was bedeutet, dass die meisten Ergonomienormen innerhalb des CEN von diesem Typ sein werden) und C- Typennormen sind spezifisch für eine bestimmte Art von Maschinen, z. B. handgeführte Bohrmaschinen.

Normungsausschüsse

Ergonomienormen werden wie andere Normen in den entsprechenden Technischen Komitees (TCs), deren Unterkomitees (SCs) oder Arbeitsgruppen (WGs) erarbeitet. Für die ISO ist dies das TC 159, für das CEN das TC 122 und auf nationaler Ebene die jeweiligen nationalen Komitees. Neben den Ergonomie-Ausschüssen wird die Ergonomie auch in TCs behandelt, die sich mit Maschinensicherheit befassen (z. B. CEN TC 114 und ISO TC 199), mit denen Verbindung und enge Zusammenarbeit gepflegt werden. Es werden auch Verbindungen zu anderen Gremien hergestellt, für die Ergonomie relevant sein könnte. Die Verantwortung für Ergonomiestandards bleibt jedoch den Ergonomieausschüssen selbst vorbehalten.

Eine Reihe anderer Organisationen befasst sich mit der Erstellung von Ergonomienormen, wie z. B. die IEC (International Electrotechnical Commission); CENELEC oder die jeweiligen nationalen Komitees im elektrotechnischen Bereich; CCITT (Comité Consultative International des Organizations téléphoniques et télégraphiques) oder ETSI (European Telecommunication Standards Institute) im Bereich Telekommunikation; ECMA (European Computer Manufacturers Association) im Bereich Computersysteme; und CAMAC (Computer Assisted Measurement and Control Association) im Bereich neuer Technologien in der Fertigung, um nur einige zu nennen. Mit einigen von ihnen haben die Ergonomieausschüsse Verbindungen, um Doppelarbeit oder widersprüchliche Spezifikationen zu vermeiden; mit einigen Organisationen (z. B. der IEC) werden sogar gemeinsame technische Komitees für die Zusammenarbeit in Bereichen von gemeinsamem Interesse eingerichtet. Mit anderen Gremien hingegen gibt es überhaupt keine Koordination oder Kooperation. Der Hauptzweck dieser Ausschüsse besteht darin, (ergonomische) Standards zu erarbeiten, die für ihren Tätigkeitsbereich spezifisch sind. Da die Anzahl solcher Organisationen auf den verschiedenen Ebenen ziemlich groß ist, wird es ziemlich kompliziert (wenn nicht unmöglich), einen vollständigen Überblick über die Ergonomie-Normung zu erhalten. Die vorliegende Übersicht beschränkt sich daher auf die Ergonomie-Normung in den internationalen und europäischen Ergonomie-Gremien.

Struktur der Normungsausschüsse

Ergonomie-Normungsausschüsse sind einander recht ähnlich aufgebaut. Üblicherweise ist ein TC innerhalb einer Normungsorganisation für Ergonomie zuständig. Dieses Komitee (z. B. ISO TC 159) hat hauptsächlich mit Entscheidungen darüber zu tun, was standardisiert werden soll (z. B. Arbeitsaufgaben) und wie die Standardisierung innerhalb des Komitees organisiert und koordiniert wird, aber normalerweise werden auf dieser Ebene keine Standards erstellt. Unterhalb der TC-Ebene befinden sich weitere Gremien. Beispielsweise hat die ISO Unterkomitees (SCs), die für einen definierten Bereich der Normung zuständig sind: SC 1 für allgemeine ergonomische Leitprinzipien, SC 3 für Anthropometrie und Biomechanik, SC 4 für Mensch-System-Interaktion und SC 5 für die körperliche Arbeit Umgebung. CEN TC 122 hat Arbeitsgruppen (WGs) unterhalb der TC-Ebene, die so zusammengesetzt sind, dass sie sich mit bestimmten Bereichen innerhalb der Ergonomie-Normung befassen. SCs innerhalb des ISO TC 159 fungieren als Lenkungsausschüsse für ihren Verantwortungsbereich und führen die erste Abstimmung durch, aber sie bereiten normalerweise nicht auch Standards vor. Dies geschieht in ihren Arbeitsgruppen, die sich aus Experten zusammensetzen, die von ihren nationalen Ausschüssen ernannt werden, während SC- und TC-Sitzungen von nationalen Delegationen besucht werden, die nationale Standpunkte vertreten. Innerhalb des CEN werden die Aufgaben auf WG-Ebene nicht scharf getrennt; Arbeitsgruppen fungieren sowohl als Lenkungs- als auch als Produktionsausschüsse, obwohl ein Großteil der Arbeit in Ad-hoc-Gruppen geleistet wird, die sich aus Mitgliedern der Arbeitsgruppe zusammensetzen (von ihren nationalen Ausschüssen nominiert) und eingerichtet wurden, um die Entwürfe für eine Norm vorzubereiten. WGs innerhalb eines ISO SC werden eingerichtet, um die praktische Normungsarbeit zu leisten, d. h. Entwürfe zu erstellen, Kommentare zu bearbeiten, Normungsbedarf zu ermitteln und Vorschläge an SC und TC auszuarbeiten, die dann die entsprechenden Entscheidungen oder Maßnahmen treffen.

Erarbeitung von Ergonomiestandards

Die Erarbeitung von Ergonomienormen hat sich in den letzten Jahren angesichts der stärkeren Betonung europäischer und anderer internationaler Entwicklungen deutlich verändert. Zu Beginn wurden nationale Normen, die von Experten eines Landes in ihrem nationalen Komitee erarbeitet und von den interessierten Kreisen der Öffentlichkeit dieses Landes in einem festgelegten Abstimmungsverfahren vereinbart wurden, als Input an das zuständige SC und die WG übergeben von ISO TC 159, nachdem eine formelle Abstimmung auf TC-Ebene stattgefunden hatte, dass eine solche internationale Norm erstellt werden sollte. Die Arbeitsgruppe, bestehend aus Ergonomie-Experten (und Experten aus politisch interessierten Kreisen) aller beteiligten Mitgliedsorganisationen (dh der nationalen Normungsorganisationen) des TC 159, die bereit waren, an diesem Arbeitsprojekt mitzuarbeiten, würde dann alle Beiträge bearbeiten und vorbereiten ein Arbeitsentwurf (WD). Nachdem dieser Vorschlagsentwurf in der Arbeitsgruppe vereinbart wurde, wird er zu einem Ausschussentwurf (CD), der an die Mitgliedsgremien des SC zur Genehmigung und Kommentierung verteilt wird. Wenn der Entwurf von den SC-Mitgliedsgremien substantiell unterstützt wird (dh wenn mindestens zwei Drittel dafür stimmen) und nachdem Kommentare der nationalen Komitees von der AG in die verbesserte Version eingearbeitet wurden, ist ein Draft International Standard (DIS) gültig allen Mitgliedern des TC 159 zur Abstimmung vorgelegt. Wenn bei diesem Schritt von den Mitgliedsgremien des TC substanzielle Unterstützung erreicht wird (und vielleicht nach Einarbeitung redaktioneller Änderungen), wird diese Version dann als Internationaler Standard (IS) von veröffentlicht die ISO. Die Abstimmung der Mitgliedsgremien auf TC- und SC-Ebene basiert auf der Abstimmung auf nationaler Ebene, und über die Mitgliedsgremien können Experten oder interessierte Parteien in jedem Land Kommentare abgeben. Im CEN TC 122 ist die Vorgehensweise in etwa äquivalent, mit der Ausnahme, dass es keine SCs unterhalb der TC-Ebene gibt und dass die Abstimmung mit gewichteten Stimmen (je nach Größe des Landes) erfolgt, während innerhalb der ISO die Regel one country, one gilt Abstimmung. Wenn ein Entwurf bei irgendeinem Schritt fehlschlägt und die AG nicht entscheidet, dass eine zufriedenstellende Überarbeitung nicht erreicht werden kann, muss er überarbeitet werden und muss dann das Abstimmungsverfahren erneut durchlaufen.

Internationale Normen werden dann in nationale Normen überführt, wenn die nationalen Gremien entsprechend stimmen. Europäische Normen (EN) hingegen müssen von den CEN-Mitgliedern in nationale Normen überführt und entgegenstehende nationale Normen zurückgezogen werden. Das bedeutet, dass harmonisierte EN in allen CEN-Ländern gelten werden (und aufgrund ihres Einflusses auf den Handel für Hersteller in allen anderen Ländern relevant sein werden, die beabsichtigen, Waren an einen Kunden in einem CEN-Land zu verkaufen).

ISO-CEN-Kooperation

Um widersprüchliche Normen und Doppelarbeit zu vermeiden und Nicht-CEN-Mitgliedern die Möglichkeit zu geben, sich an Entwicklungen im CEN zu beteiligen, wurde eine Kooperationsvereinbarung zwischen ISO und CEN geschlossen (die sog Wiener Abkommen), der die Formalitäten regelt und ein sogenanntes paralleles Abstimmungsverfahren vorsieht, das es ermöglicht, im CEN und in der ISO parallel über dieselben Entwürfe abzustimmen, wenn die zuständigen Gremien dem zustimmen. Bei den Ergonomieausschüssen ist die Tendenz ganz klar: Doppelarbeit vermeiden (Personal- und Finanzmittel sind zu begrenzt), widersprüchliche Vorgaben vermeiden und versuchen, ein einheitliches und arbeitsteiliges Ergonomienormenwerk zu erreichen. Während das CEN TC 122 an die Entscheidungen der EU-Verwaltung gebunden ist und Arbeitsaufgaben erhält, um die Spezifikationen europäischer Richtlinien festzulegen, steht es dem ISO TC 159 frei, alles zu standardisieren, was es auf dem Gebiet der Ergonomie für notwendig oder angemessen hält. Dies hat zu einer Verschiebung des Schwerpunkts beider Ausschüsse geführt, wobei sich das CEN auf maschinen- und sicherheitsbezogene Themen konzentriert und das ISO sich auf Bereiche konzentriert, die breitere Marktinteressen als Europa betreffen (z. B. Arbeit mit Bildschirmen und Kontrollraumdesign für Prozesse und verwandte Branchen); in Bereichen, in denen es um die Bedienung von Maschinen geht, wie bei der Gestaltung von Arbeitssystemen; und auch in Bereichen wie Arbeitsumfeld und Arbeitsorganisation. Beabsichtigt ist jedoch, Arbeitsergebnisse vom CEN in die ISO und umgekehrt zu transferieren, um ein tatsächlich weltweit wirksames Korpus einheitlicher Ergonomienormen aufzubauen.

Das formale Verfahren zur Erstellung von Standards ist bis heute gleich geblieben. Da sich der Schwerpunkt aber immer mehr auf die internationale bzw. europäische Ebene verlagert hat, werden immer mehr Aktivitäten in diese Gremien verlagert. Entwürfe werden heute meist direkt in diesen Gremien ausgearbeitet und orientieren sich nicht mehr an bestehenden nationalen Normen. Nachdem entschieden wurde, dass ein Standard entwickelt werden soll, beginnt die Arbeit direkt auf einer dieser supranationalen Ebenen, basierend auf allen verfügbaren Inputs, manchmal von Null. Dadurch ändert sich die Rolle der nationalen Ergonomieausschüsse ganz dramatisch. Während sie bisher formal ihre eigenen nationalen Standards nach ihren nationalen Regeln entwickelt haben, haben sie nun die Aufgabe, die Standardisierung auf supranationaler Ebene zu beobachten und zu beeinflussen – über die Experten, die die Standards erarbeiten, oder durch Kommentare in den verschiedenen Abstimmungsschritten (innerhalb von des CEN wird ein nationales Normungsprojekt gestoppt, wenn gleichzeitig ein vergleichbares Projekt auf CEN-Ebene bearbeitet wird). Dies macht die Aufgabe noch komplizierter, da dieser Einfluss nur indirekt ausgeübt werden kann und da die Erarbeitung von Ergonomienormen nicht nur eine Frage der reinen Wissenschaft ist, sondern eine Frage des Aushandelns, Konsens und Einvernehmens (nicht zuletzt aufgrund der politischen Implikationen, die die Standard haben könnte). Dies ist natürlich einer der Gründe, warum der Prozess zur Erarbeitung einer internationalen oder europäischen Ergonomienorm in der Regel mehrere Jahre dauert und Ergonomienormen nicht den neuesten Stand der Ergonomie widerspiegeln können. Internationale Ergonomienormen müssen daher alle fünf Jahre überprüft und gegebenenfalls überarbeitet werden.

Bereiche der Ergonomie-Normung

Die internationale Ergonomie-Normung begann mit Leitlinien zu den allgemeinen Grundsätzen der Ergonomie bei der Gestaltung von Arbeitssystemen; sie wurden in der ISO 6385 festgelegt, die derzeit überarbeitet wird, um neue Entwicklungen aufzunehmen. Das CEN hat eine ähnliche Grundnorm (EN 614, Teil 1, 1994) erstellt – diese ist eher maschinen- und sicherheitsorientiert – und bereitet als zweiten Teil dieser Grundnorm eine Norm mit Leitlinien zur Aufgabengestaltung vor. Das CEN betont damit die Bedeutung von Bedieneraufgaben bei der Konstruktion von Maschinen oder Arbeitssystemen, für die geeignete Werkzeuge oder Maschinen konstruiert werden müssen.

Ein weiterer Bereich, in dem Konzepte und Richtlinien in Normen festgehalten wurden, ist der Bereich der psychischen Belastung. ISO 10075, Teil 1, definiert Begriffe und Konzepte (z. B. Ermüdung, Monotonie, reduzierte Wachsamkeit), und Teil 2 (im Stadium eines DIS in der zweiten Hälfte der 1990er Jahre) gibt Richtlinien für die Gestaltung von Arbeitssystemen in Bezug auf geistige Belastung, um Beeinträchtigungen zu vermeiden.

SC 3 des ISO TC 159 und WG 1 des CEN TC 122 erstellen Normen zu Anthropometrie und Biomechanik, die unter anderem Methoden der anthropometrischen Messung, Körpermaße, Sicherheitsabstände und Zugangsmaße, die Bewertung von Arbeitshaltungen und die Gestaltung von Arbeitsplätzen behandeln in Bezug auf Maschinen, empfohlene Grenzen der körperlichen Kraft und Probleme der manuellen Handhabung.

SC 4 von ISO 159 zeigt, wie sich technologische und gesellschaftliche Veränderungen auf die Ergonomienormung und das Programm eines solchen Unterkomitees auswirken. SC 4 begann als „Signals and Controls“ mit der Standardisierung von Prinzipien für die Anzeige von Informationen und dem Entwurf von Steueraktuatoren, wobei eines seiner Arbeitselemente die visuelle Anzeigeeinheit (VDU) war, die für Büroaufgaben verwendet wird. Es zeigte sich jedoch bald, dass eine Standardisierung der Ergonomie von Bildschirmgeräten nicht ausreichen würde und eine Standardisierung „um“ diesen Arbeitsplatz herum – im Sinne von a Arbeitssystem– war erforderlich und umfasste Bereiche wie Hardware (z. B. die VDU selbst, einschließlich Displays, Tastaturen, Nicht-Tastatur-Eingabegeräte, Arbeitsstationen), Arbeitsumgebung (z. B. Beleuchtung), Arbeitsorganisation (z. B. Aufgabenanforderungen) und Software ( zB Dialogprinzipien, Menü- und Direktmanipulationsdialoge). Dies führte zu einer mehrteiligen Norm (ISO 9241) zu „ergonomischen Anforderungen an die Büroarbeit mit Bildschirmen“ mit derzeit 17 Teilen, von denen 3 bereits den Status einer IS erreicht haben. Diese Norm wird an das CEN (als EN 29241) übertragen, das Anforderungen für die Bildschirmgeräterichtlinie (90/270 EWG) der EU festlegen wird – obwohl dies eine Richtlinie nach Artikel 118a der Einheitlichen Europäischen Akte ist. Diese Normenreihe enthält Richtlinien sowie Spezifikationen, je nach Thema des jeweiligen Teils der Norm, und führt ein neues Normungskonzept ein, den Benutzerleistungsansatz, der zur Lösung einiger Probleme der Ergonomienormung beitragen könnte. Es wird im Kapitel ausführlicher beschrieben Visuelle Anzeigeeinheiten .

Der User-Performance-Ansatz basiert auf der Überlegung, dass das Ziel der Normung darin besteht, Beeinträchtigungen vorzubeugen und optimale Arbeitsbedingungen für den Bediener zu schaffen, nicht aber die Festlegung technischer Spezifikationen per se. Die Spezifikation wird daher nur als Mittel zum Zweck einer ungestörten, optimalen Benutzerleistung angesehen. Wichtig ist, diese uneingeschränkte Leistungsfähigkeit des Bedieners zu erreichen, unabhängig davon, ob eine bestimmte körperliche Vorgabe erfüllt ist. Dies erfordert, dass erstens die zu erreichende ungestörte Bedienerleistung, beispielsweise die Leseleistung auf einem Bildschirm, spezifiziert werden muss und zweitens technische Spezifikationen entwickelt werden, anhand derer die gewünschte Leistung erreicht werden kann die verfügbaren Beweise. Dem Hersteller steht es dann frei, diese technischen Spezifikationen zu befolgen, die sicherstellen, dass das Produkt den ergonomischen Anforderungen entspricht. Oder er kann durch Vergleich mit einem Produkt, von dem bekannt ist, dass es die Anforderungen erfüllt (entweder durch Einhaltung der technischen Spezifikationen der Norm oder durch nachgewiesene Leistung), nachweisen, dass mit dem neuen Produkt die Leistungsanforderungen gleich oder besser erfüllt werden als mit der Referenzprodukt, mit oder ohne Einhaltung der technischen Spezifikationen der Norm. Ein Prüfverfahren, das zum Nachweis der Konformität mit den Benutzerleistungsanforderungen der Norm zu befolgen ist, ist in der Norm festgelegt.

Dieser Ansatz hilft, zwei Probleme zu überwinden. Normen können durch ihre Festlegungen, die auf dem Stand der Technik (und Technik) zum Zeitpunkt der Normerstellung beruhen, Neuentwicklungen einschränken. Spezifikationen, die auf einer bestimmten Technologie basieren (z. B. Kathodenstrahlröhren), können für andere Technologien ungeeignet sein. Unabhängig von der Technologie soll jedoch der Benutzer beispielsweise eines Anzeigegeräts die angezeigten Informationen unabhängig von der verwendeten Technik effektiv und effizient ohne Beeinträchtigung lesen und verstehen können. Die Leistung darf sich in diesem Fall jedoch nicht auf die reine Leistung (gemessen an Geschwindigkeit oder Genauigkeit) beschränken, sondern muss auch Überlegungen zu Komfort und Anstrengung beinhalten.

Das zweite Problem, das mit diesem Ansatz behandelt werden kann, ist das Problem der Wechselwirkungen zwischen Bedingungen. Die physikalische Spezifikation ist normalerweise eindimensional und lässt andere Bedingungen außer Betracht. Bei interaktiven Effekten kann dies jedoch irreführend oder sogar falsch sein. Indem man andererseits Leistungsanforderungen spezifiziert und die Mittel zu deren Erreichung dem Hersteller überlässt, ist jede Lösung, die diese Leistungsanforderungen erfüllt, akzeptabel. Spezifikation als Mittel zum Zweck zu behandeln, repräsentiert somit eine genuin ergonomische Perspektive.

Eine weitere Norm mit einem Arbeitssystemansatz ist in SC 4 in Vorbereitung, die sich auf die Gestaltung von Leitwarten beispielsweise für die Prozessindustrie oder Kraftwerke bezieht. Als Ergebnis soll eine mehrteilige Norm (ISO 11064) erstellt werden, deren verschiedene Teile sich mit Aspekten der Leitwartengestaltung wie Layout, Gestaltung von Bedienerarbeitsplätzen und Gestaltung von Anzeigen und Eingabegeräten für die Prozesssteuerung befassen. Da diese Workitems und der gewählte Ansatz deutlich über Probleme der Gestaltung von „Anzeigen und Bedienelementen“ hinausgehen, wurde SC 4 in „Mensch-System-Interaktion“ umbenannt.

Umweltprobleme, insbesondere solche in Bezug auf thermische Bedingungen und Kommunikation in lauter Umgebung, werden in SC 5 behandelt, wo Standards zu Messmethoden, Methoden zur Abschätzung von Hitzestress, thermischen Behaglichkeitsbedingungen und metabolischer Wärmeproduktion erstellt wurden oder werden , sowie auf akustische und optische Gefahrensignale, Sprachstörpegel und die Bewertung der Sprachkommunikation.

CEN TC 122 deckt ungefähr die gleichen Bereiche der Ergonomie-Normung ab, jedoch mit anderen Schwerpunkten und einer anderen Struktur seiner Arbeitsgruppen. Es ist jedoch beabsichtigt, dass durch Arbeitsteilung zwischen den Ergonomie-Ausschüssen und gegenseitige Anerkennung der Arbeitsergebnisse ein allgemeines und anwendbares Ergonomie-Standardwerk entwickelt wird.

 

Zurück

Montag, März 07 2011 19: 04

Prüflisten

Arbeitssysteme umfassen organisatorische Variablen auf Makroebene wie das Personalsubsystem, das technologische Subsystem und die externe Umgebung. Die Analyse von Arbeitssystemen ist daher im Wesentlichen ein Versuch, die Funktionsverteilung zwischen dem Arbeiter und der technischen Einrichtung und die Arbeitsteilung zwischen Menschen in einem soziotechnischen Umfeld zu verstehen. Eine solche Analyse kann dabei helfen, fundierte Entscheidungen zu treffen, um die Systemsicherheit, die Arbeitseffizienz, die technologische Entwicklung und das geistige und körperliche Wohlbefinden der Arbeitnehmer zu verbessern.

Forscher untersuchen Arbeitssysteme nach unterschiedlichen Ansätzen (mechanistisch, biologisch, perzeptiv/motorisch, motivational) mit entsprechenden individuellen und organisationalen Ergebnissen (Campion und Thayer 1985). Die Auswahl der Methoden in der Arbeitssystemanalyse wird von den spezifischen Ansätzen und der jeweiligen Zielsetzung, dem organisatorischen Kontext, den beruflichen und menschlichen Eigenschaften und der technologischen Komplexität des untersuchten Systems bestimmt (Drury 1987). Checklisten und Fragebögen sind die üblichen Mittel zum Aufbau von Datenbanken für Organisationsplaner bei der Priorisierung von Aktionsplänen in den Bereichen Personalauswahl und -einstellung, Leistungsbeurteilung, Sicherheits- und Gesundheitsmanagement, Arbeiter-Maschine-Gestaltung und Arbeitsgestaltung oder -umgestaltung. Erhebungsmethoden von Checklisten, zum Beispiel der Position Analysis Questionnaire oder PAQ (McCormick 1979), das Job Components Inventory (Banks und Miller 1984), die Job Diagnostic Survey (Hackman und Oldham 1975) und der Multi-method Job Design Questionnaire ( Campion 1988) sind die populäreren Instrumente und zielen auf eine Vielzahl von Zielen ab.

Der PAQ hat sechs Hauptabteilungen, die 189 Verhaltenselemente umfassen, die für die Bewertung der Arbeitsleistung erforderlich sind, und sieben ergänzende Elemente, die sich auf die finanzielle Vergütung beziehen:

  • Informationsinput (wo und wie bekommt man Informationen über die auszuführenden Tätigkeiten) (35 Items)
  • mentaler Prozess (Informationsverarbeitung und Entscheidungsfindung bei der Ausübung der Tätigkeit) (14 Items)
  • Arbeitsleistung (erledigte körperliche Arbeit, benutzte Werkzeuge und Geräte) (50 Items)
  • zwischenmenschliche Beziehungen (36 Artikel)
  • Arbeitssituation und Arbeitskontext (physische/soziale Kontexte) (18 Items)
  • andere Arbeitsmerkmale (Arbeitspläne, Arbeitsanforderungen) (36 Items).

 

Das Job Components Inventory Mark II enthält sieben Abschnitte. Der einleitende Teil befasst sich mit den Details der Organisation, Stellenbeschreibungen und biografischen Daten des Stelleninhabers. Andere Abschnitte sind wie folgt:

  • Werkzeuge und Ausrüstung – Verwendung von über 200 Werkzeugen und Ausrüstung (26 Artikel)
  • körperliche und wahrnehmungsbezogene Anforderungen – Kraft, Koordination, selektive Aufmerksamkeit (23 Items)
  • mathematische Voraussetzungen – Umgang mit Zahlen, Trigonometrie, praktische Anwendungen, z. B. Arbeiten mit Plänen und Zeichnungen (127 Items)
  • Kommunikationsanforderungen – das Verfassen von Briefen, die Verwendung von Kodiersystemen, das Befragen von Personen (19 Items)
  • Entscheidungsfindung und Verantwortung – Entscheidungen über Methoden, Arbeitsabläufe, Standards und verwandte Themen (10 Items)
  • Arbeitsbedingungen und wahrgenommene Arbeitsmerkmale.

 

Die Profilmethoden haben gemeinsame Elemente, nämlich (1) ein umfassendes Set von Berufsfaktoren, die zur Auswahl des Arbeitsspektrums verwendet werden, (2) eine Bewertungsskala, die die Bewertung von Arbeitsanforderungen ermöglicht, und (3) die Gewichtung von Arbeitsmerkmalen basierend auf Organisationsstruktur und soziotechnischen Anforderungen. Les Profile des Posts, ein weiteres Aufgabenprofil-Instrument, das in der Renault Organisation (RNUR 1976) entwickelt wurde, enthält eine Tabelle mit Einträgen von Variablen, die die Arbeitsbedingungen darstellen, und stellt den Befragten eine Fünf-Punkte-Skala zur Verfügung, auf der sie den Wert einer Variablen auswählen können, die von sehr bis reicht befriedigend bis sehr schlecht durch die Registrierung standardisierter Antworten. Die Variablen umfassen (1) die Gestaltung des Arbeitsplatzes, (2) die physische Umgebung, (3) die physischen Belastungsfaktoren, (4) nervöse Anspannung, (5) Arbeitsautonomie, (6) Beziehungen, (7) Wiederholungshäufigkeit und ( 8) Inhalt der Arbeit.

Die AET (Ergonomische Arbeitsplatzanalyse) (Rohmert und Landau 1985) wurde auf der Grundlage des Belastungs-Belastungs-Konzepts entwickelt. Jedes der 216 Elemente des AET ist codiert: Ein Code definiert die Stressoren und gibt an, ob ein Arbeitselement als Stressor qualifiziert ist oder nicht; andere Codes definieren den mit einem Job verbundenen Stressgrad; und wieder andere beschreiben die Dauer und Häufigkeit von Stress während der Arbeitsschicht.

Der AET besteht aus drei Teilen:

  • Teil A. Das Man-at-Work-System (143 Punkte) umfasst die Arbeitsgegenstände, Werkzeuge und Ausrüstung sowie die Arbeitsumgebung, die die physischen, organisatorischen, sozialen und wirtschaftlichen Bedingungen der Arbeit bilden.
  • Teil B. Die Aufgabenanalyse (31 Items), klassifiziert sowohl nach den verschiedenen Arten von Arbeitsobjekten, wie materielle und abstrakte Objekte, als auch nach arbeitsbezogenen Aufgaben.
  • Teil C. Die Arbeitsbedarfsanalyse (42 Items) umfasst die Elemente Wahrnehmung, Entscheidung und Reaktion/Aktivität. (Die AET-Ergänzung H-AET behandelt Körperhaltungen und -bewegungen bei industriellen Montagetätigkeiten).

 

Im Großen und Ganzen verfolgen die Checklisten einen von zwei Ansätzen, (1) den berufsorientierten Ansatz (z. B. den AET, Les Profile des Posts) und (2) der arbeitnehmerorientierte Ansatz (z. B. der PAQ). Die Aufgabenverzeichnisse und -profile bieten einen subtilen Vergleich komplexer Aufgaben und Berufsprofile von Jobs und bestimmen die Aspekte der Arbeit, die a priori als unvermeidliche Faktoren zur Verbesserung der Arbeitsbedingungen angesehen werden. Der Schwerpunkt des PAQ liegt auf der Klassifizierung von Job-Familien oder -Clustern (Fleishman und Quaintence 1984; Mossholder und Arvey 1984; Carter und Biersner 1987), auf der Ableitung von Jobkomponentenvalidität und Jobstress (Jeanneret 1980; Shaw und Riskind 1983). Aus medizinischer Sicht erlauben sowohl die AET- als auch die Profilmethoden bei Bedarf einen Vergleich von Einschränkungen und Eignungen (Wagner 1985). Der nordische Fragebogen ist eine anschauliche Darstellung der ergonomischen Arbeitsplatzanalyse (Ahonen, Launis und Kuorinka 1989), die folgende Aspekte abdeckt:

  • Arbeitsraum
  • allgemeine körperliche Aktivität
  • Hebetätigkeit
  • Arbeitshaltungen und Bewegungen
  • Unfallrisiko
  • Arbeitsinhalte
  • Arbeitsbeschränkung
  • Mitarbeiterkommunikation und persönliche Kontakte
  • Entscheidungsfindung
  • Wiederholbarkeit der Arbeit
  • Aufmerksamkeit
  • Lichtverhältnisse
  • thermische Umgebung
  • Lärm.

 

Zu den Mängeln des universellen Checklistenformats, das bei der ergonomischen Arbeitsanalyse verwendet wird, gehören die folgenden:

  • Mit einigen Ausnahmen (z. B. dem AET und dem nordischen Fragebogen) gibt es einen allgemeinen Mangel an Ergonomienormen und Bewertungsprotokollen in Bezug auf die verschiedenen Aspekte von Arbeit und Umwelt.
  • Unterschiede bestehen im Gesamtaufbau der Checklisten hinsichtlich der Mittel zur Ermittlung der Merkmale der Arbeitsbedingungen, des Angebotsformulars, der Kriterien und der Prüfmethoden.
  • Die Bewertung von körperlicher Belastung, Arbeitshaltungen und Arbeitsweisen ist aufgrund mangelnder Präzision bei der Analyse der Arbeitsvorgänge in Bezug auf die Skala der relativen Belastungen eingeschränkt.
  • Die Hauptkriterien für die Beurteilung der geistigen Belastung des Arbeitnehmers sind der Grad der Komplexität der Aufgabe, die für die Aufgabe erforderliche Aufmerksamkeit und die Ausführung geistiger Fähigkeiten. Die vorhandenen Checklisten beziehen sich weniger auf die Unterbeanspruchung abstrakter Denkmechanismen als auf die Überbeanspruchung konkreter Denkmechanismen.
  • In den meisten Checklisten legen die Analysemethoden den Stellenwert der Position im Gegensatz zur Analyse der Arbeit, der Mensch-Maschine-Verträglichkeit etc. in den Vordergrund. Die psychosoziologischen Determinanten, die grundsätzlich subjektiv und kontingent sind, werden in den Ergonomie-Checklisten weniger betont.

 

Eine systematisch aufgebaute Checkliste verpflichtet uns, die sichtbaren oder leicht zu verändernden Faktoren der Arbeitsbedingungen zu untersuchen und erlaubt uns, in einen sozialen Dialog zwischen Arbeitgebern, Stelleninhabern und anderen Betroffenen einzutreten. Man sollte eine gewisse Vorsicht walten lassen gegenüber der Illusion von Einfachheit und Effizienz der Checklisten sowie gegenüber ihren quantifizierenden und technischen Ansätzen. Vielseitigkeit in einer Checkliste oder einem Fragebogen kann erreicht werden, indem spezifische Module für spezifische Ziele aufgenommen werden. Daher ist die Auswahl der Variablen sehr stark mit dem Zweck verknüpft, für den die Arbeitssysteme analysiert werden sollen, und dies bestimmt die allgemeine Vorgehensweise zum Erstellen einer benutzerfreundlichen Checkliste.

Die vorgeschlagene „Ergonomie-Checkliste“ kann für verschiedene Anwendungen übernommen werden. Die Datenerfassung und die computergestützte Verarbeitung der Checklistendaten sind relativ einfach, indem auf die primären und sekundären Aussagen reagiert wird (siehe dort).

 


ERGONOMIE-CHECKLISTE

Hier wird ein grober Leitfaden für eine Checkliste für modular aufgebaute Arbeitssysteme vorgeschlagen, die fünf Hauptaspekte (mechanistisch, biologisch, perzeptiv/motorisch, technisch und psychosozial) abdeckt. Die Gewichtung der Module hängt von der Art der zu analysierenden Tätigkeit(en), den Besonderheiten des untersuchten Landes oder der untersuchten Bevölkerung, den organisatorischen Prioritäten und der beabsichtigten Verwendung der Analyseergebnisse ab. Die Befragten markieren die „Hauptaussage“ mit Ja/Nein. „Ja“-Antworten weisen darauf hin, dass offensichtlich kein Problem vorliegt, obwohl die Ratsamkeit einer weiteren sorgfältigen Prüfung nicht ausgeschlossen werden sollte. „Nein“-Antworten weisen auf die Notwendigkeit einer ergonomischen Bewertung und Verbesserung hin. Antworten auf „sekundäre Aussagen“ werden durch eine einzelne Ziffer auf der unten dargestellten Skala für den Schweregrad der Zustimmung/Ablehnung angezeigt.

0 Weiß nicht oder trifft nicht zu

1 Stimme überhaupt nicht zu

2 Stimme nicht zu

3 Weder zustimmen noch nicht zustimmen

4 Stimme zu

5 Stimme voll und ganz zu

A. Organisation, Arbeiter und die Aufgabe Ihre Antworten/Bewertungen

Der Checklisten-Designer kann eine Musterzeichnung/ein Foto der Arbeit zur Verfügung stellen und
Arbeitsplatz im Studium.

1. Beschreibung der Organisation und Funktionen.

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

2. Arbeitnehmereigenschaften: Ein kurzer Bericht über die Arbeitsgruppe.

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

3. Aufgabenbeschreibung: Aktivitäten und verwendete Materialien auflisten. Geben Sie einen Hinweis auf 
die Arbeitsgefahren.

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

B. Mechanistischer Aspekt Ihre Antworten/Bewertungen

I. Berufliche Spezialisierung

4.Aufgaben/Arbeitsmuster sind einfach und unkompliziert. Ja Nein

If Nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

4.1 Die Aufgabenzuweisung ist spezifisch für den Mitarbeiter.        

4.2 Werkzeuge und Arbeitsmethoden sind auf den Zweck der Arbeit spezialisiert.  

4.3 Produktionsvolumen und Arbeitsqualität.  

4.4 Stelleninhaber führt mehrere Aufgaben aus.   

II. Fähigkeitsanforderung

5. Der Job erfordert eine einfache motorische Handlung. Ja Nein

If Nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

5.1 Der Beruf erfordert Wissen und handwerkliches Geschick.    

5.2 Job erfordert Training zum Erwerb von Fähigkeiten.     

5.3 Arbeiter machen bei der Arbeit häufig Fehler.    

5.4 Der Job erfordert einen häufigen Wechsel, wie angewiesen.   

5.5 Der Arbeitsablauf ist maschinengetaktet/automatisierungsunterstützt.   

Anmerkungen und Verbesserungsvorschläge. Punkte 4 bis 5.5:

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

q Analysten-Rating Arbeiter-Rating q

C. Biologische Aspekte Ihre Antworten/Bewertungen

III. Allgemeine körperliche Aktivität

6. Körperliche Aktivität ist vollständig bestimmt und
vom Arbeitnehmer geregelt. Ja Nein

If Nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

6.1 Der Arbeiter behält ein zielorientiertes Tempo bei.   

6.2 Arbeit impliziert häufig wiederholte Bewegungen.   

6.3 Kardiorespiratorische Anforderung der Arbeit:   

sitzend/leicht/mäßig/schwer/extrem schwer. 

(Was sind die schweren Arbeitselemente?):

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

(Geben Sie 0-5 ein)

6.4 Die Arbeit erfordert eine hohe Muskelkraftanstrengung.   

6.5 Arbeit (Bedienung von Griff, Lenkrad, Pedalbremse) ist überwiegend statische Arbeit.   

6.6. Der Beruf erfordert eine feste Arbeitsposition (sitzend oder stehend).   

 

IV. Manuelle Materialhandhabung (MMH)

Art der behandelten Objekte: belebt/unbelebt, Größe und Form.

_______________________________________________________________

_______________________________________________________________

7. Job erfordert minimale MMH-Aktivität. Ja Nein

If Nein, geben Sie die Arbeit an:

7.1 Arbeitsweise: (Eins einkreisen)

ziehen/schieben/drehen/heben/senken/tragen

(Wiederholungszyklus angeben):

_______________________________________________________________

_______________________________________________________________


7.2 Ladegewicht (kg): (Eins einkreisen)

5-10, 10-20, 20-30, 30-40, >>40.

7.3 Horizontaler Abstand Subjekt-Last (cm): (Eins einkreisen)

<25, 25-40, 40-55, 55-70, >70.

7.4 Gegenstandsladehöhe: (Kreis eins)

Boden, Knie, Taille, Brust, Schulterhöhe.

(Geben Sie 0-5 ein)

7.5 Kleidung schränkt MMH-Aufgaben ein.   

8. Die Arbeitssituation ist frei von Verletzungsgefahren. Ja Nein

If Nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)        

8.1 Die Aufgabe kann modifiziert werden, um die zu handhabende Last zu reduzieren.   

8.2 Materialien können in Standardgrößen verpackt werden.   

8.3 Größe/Position von Griffen an Objekten kann verbessert werden.   

8.4 Arbeiter wenden keine sichereren Methoden der Lasthandhabung an.   

8.5 Mechanische Hilfsmittel können körperliche Belastungen reduzieren.
Listen Sie jeden Artikel auf, wenn Hebezeuge oder andere Handhabungshilfen verfügbar sind.   

Verbesserungsvorschläge Punkte 6 bis 8.5:

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

V. Arbeitsplatz-/Arbeitsraumgestaltung

Der Arbeitsplatz kann schematisch dargestellt werden und zeigt die menschliche Reichweite und
Spielraum:

9. Der Arbeitsplatz ist mit menschlichen Dimensionen kompatibel. Ja Nein

If Nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

9.1 Der Arbeitsabstand liegt außerhalb der normalen Reichweite in der horizontalen oder vertikalen Ebene (>60 cm).   

9.2 Die Höhe des Arbeitstisches/Geräts ist fest oder minimal verstellbar.   

9.3 Kein Platz für Nebentätigkeiten (z. B. Inspektion und Wartung).   

9.4 Arbeitsplätze haben Hindernisse, hervorstehende Teile oder scharfe Kanten.   

9.5 Die Böden der Arbeitsfläche sind rutschig, uneben, unordentlich oder instabil.   

10. Die Sitzordnung ist angemessen (z. B. bequemer Stuhl,
gute Haltungsunterstützung). Ja Nein

If Nein, die Ursachen sind: (0-5 eingeben)

10.1 Sitzmaße (z. B. Sitzhöhe, Rückenlehne) stimmen nicht mit den menschlichen Maßen überein.   

10.2 Minimale Einstellbarkeit des Sitzes.   

10.3 Der Arbeitssitz bietet keinen Halt/Stütze (z. B. durch senkrechte Kanten/extra steife Bespannung) zum Arbeiten mit der Maschine.   

10.4 Fehlender Vibrationsdämpfungsmechanismus im Arbeitssitz.   

11. Aus Sicherheitsgründen ist ausreichend Hilfsunterstützung vorhanden
am Arbeitsplatz. Ja Nein

If Nein, erwähnen Sie Folgendes: (Geben Sie 0-5 ein)

11.1 Nichtverfügbarkeit von Lagerraum für Werkzeuge, persönliche Gegenstände.   

11.2 Türen, Ein-/Ausgänge oder Korridore sind eingeschränkt.  

11.3 Gestaltungsunterschiede bei Griffen, Leitern, Treppen, Handläufen.   

11.4 Griffe und Tritte erfordern eine ungünstige Position der Gliedmaßen.   

11.5 Stützen sind an Ort, Form oder Konstruktion nicht erkennbar.   

11.6 Eingeschränkte Verwendung von Handschuhen/Schuhen zum Arbeiten und Bedienen von Gerätesteuerungen.   

Verbesserungsvorschläge Punkte 9 bis 11.6:

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

VI. Arbeitshaltung

12. Job ermöglicht eine entspannte Arbeitshaltung. Ja Nein

If Nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

12.1 Arbeiten mit den Armen über der Schulter und/oder vom Körper weg.   

12.2 Überstreckung des Handgelenks und hohe Kraftanforderung.   

12.3 Hals/Schulter werden nicht in einem Winkel von etwa 15° gehalten.   

12.4 Rücken gebeugt und verdreht.   

12.5 Hüften und Beine werden in sitzender Position nicht gut gestützt.   

12.6 Einseitige und asymmetrische Bewegung des Körpers.   

12.7 Gründe für Zwangshaltung nennen:
(1) Maschinenstandort
(2) Sitzdesign,
(3) Gerätehandhabung,
(4) Arbeitsplatz/Arbeitsplatz

12.8 Geben Sie den OWAS-Code an. (Für eine detaillierte Beschreibung des OWAS
Methode siehe Karhu et al. 1981.)

_______________________________________________________________

_______________________________________________________________

Verbesserungsvorschläge Punkte 12 bis 12.7:

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

VII. Arbeitsumgebung

(Maße wenn möglich angeben)

NOISE

[Lärmquellen, Art und Dauer der Exposition identifizieren; siehe ILO-Code 1984].

13. Der Geräuschpegel liegt unter dem Höchstwert Ja/Nein
Schallpegel empfohlen. (Verwenden Sie die folgende Tabelle.)

Rating

Arbeit, die keine verbale Kommunikation erfordert

Arbeit, die verbale Kommunikation erfordert

Arbeit, die Konzentration erfordert

1

unter 60 dBA

unter 50 dBA

unter 45 dBA

2

60-70 dBA

50-60 dBA

45-55 dBA

3

70-80 dBA

60-70 dBA

55-65 dBA

4

80-90 dBA

70-80 dBA

65-75 dBA

5

über 90 dBA

über 80 dBA

über 75 dBA

Quelle: Ahonen et al. 1989.

Geben Sie Ihre Zustimmungs-/Ablehnungspunktzahl an (0-5)  

14. Schädliche Geräusche werden an der Quelle unterdrückt. Ja Nein

Wenn nein, Gegenmaßnahmen bewerten: (0-5 eingeben)

14.1 Keine wirksame Schalldämmung vorhanden.   

14.2 Lärm-Notfallmaßnahmen werden nicht ergriffen (z. B. Einschränkung der Arbeitszeit, Verwendung von persönlichem Gehörschutz/Gehörschutz).   

15 KLIMA

Klimabedingungen angeben.

Temperatur ____

Feuchtigkeit ____

Strahlungstemperatur ____

Entwürfe ____

16. Das Klima ist angenehm. Ja Nein

If Nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

16.1 Temperaturempfindung (Kreis eins):

kühl/leicht kühl/neutral/warm/sehr heiß

16.2 Lüftungsgeräte (z. B. Ventilatoren, Fenster, Klimaanlagen) sind nicht ausreichend.   

16.3 Nichtdurchführung regulatorischer Maßnahmen zu Expositionsgrenzwerten (falls vorhanden, bitte erläutern).   

16.4 Arbeiter tragen keine Hitzeschutz-/Hilfskleidung.   

16.5 Trinkbrunnen mit kühlem Wasser sind nicht in der Nähe vorhanden.   

17 LIGHTING

Arbeitsplatz/Maschine(n) sind jederzeit ausreichend beleuchtet. Ja Nein

If Nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

17.1 Die Beleuchtung ist ausreichend intensiv.   

17.2 Die Beleuchtung des Arbeitsbereichs ist ausreichend gleichmäßig.   

17.3 Flimmerphänomene sind minimal oder fehlen.   

17.4 Schattenbildung ist unproblematisch.   

17.5 Störende Reflexblendungen sind minimal oder nicht vorhanden.   

17.6 Farbdynamik (visuelle Akzentuierung, Farbwärme) ist ausreichend.   

18 STAUB, RAUCH, GIFTSTOFFE

Die Umgebung ist frei von übermäßigem Staub, 
Dämpfe und giftige Substanzen. Ja Nein

Wenn nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

18.1 Unwirksame Belüftungs- und Abgassysteme zum Abführen von Dämpfen, Rauch und Schmutz.   

18.2 Fehlende Schutzmaßnahmen gegen Notentriegelung und Kontakt mit gefährlichen/giftigen Stoffen.   

Listen Sie die chemischen Giftstoffe auf:

_______________________________________________________________

_______________________________________________________________

18.3 Die Überwachung des Arbeitsplatzes auf chemische Giftstoffe erfolgt nicht regelmäßig.   

18.4 Nichtverfügbarkeit von persönlichen Schutzmaßnahmen (z. B. Handschuhe, Schuhe, Maske, Schürze).   

19 STRAHLUNG

Arbeiter werden wirksam vor Strahlenbelastung geschützt. Ja Nein

Wenn nein, erwähnen Sie die Expositionen 
(siehe IVSS-Checkliste, Ergonomie): (Geben Sie 0-5 ein)

19.1 UV-Strahlung (200 nm – 400 nm).   

19.2 IR-Strahlung (780 nm – 100 μm).   

19.3 Radioaktivität/Röntgenstrahlung (<200 nm).   

19.4 Mikrowellen (1 mm – 1 m).   

19.5 Laser (300 nm – 1.4 μm).   

19.6 Sonstiges (erwähnen):

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________


20. VIBRATION

Maschine kann ohne Schwingungsübertragung betrieben werden
zum Körper des Bedieners. Ja Nein

If Nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

20.1 Vibrationen werden über die Füße auf den ganzen Körper übertragen.   

20.2 Die Schwingungsübertragung erfolgt über den Sitz (z. B. mobile Maschinen, die mit sitzendem Bediener gefahren werden).   

20.3 Vibrationen werden durch das Hand-Arm-System übertragen (z. B. kraftbetriebene Handwerkzeuge, Maschinen, die im Gehen angetrieben werden).   

20.4 Längere Exposition gegenüber einer kontinuierlichen/wiederholten Vibrationsquelle.   

20.5 Vibrationsquellen können nicht isoliert oder beseitigt werden.   

20.6 Identifizieren Sie die Vibrationsquellen.

Kommentare und Anregungen, Punkte 13 bis 20:

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

VIII. Arbeitszeitplan

Arbeitszeit angeben: Arbeitsstunden/Tag/Woche/Jahr, einschließlich Saisonarbeit und Schichtsystem.

21. Der Arbeitszeitdruck ist minimal. Ja Nein

If Nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

21.1 Job erfordert Nachtarbeit.   

21.2 Der Job beinhaltet Überstunden/zusätzliche Arbeitszeiten.   

Durchschnittliche Dauer angeben:

_______________________________________________________________

21.3 Schwere Aufgaben sind ungleichmäßig über die Schicht verteilt.   

21.4 Personen arbeiten in einem vorgegebenen Tempo/Zeitlimit.   

21.5 Ermüdungszulagen/Arbeits-Ruhe-Muster sind nicht ausreichend berücksichtigt (verwenden Sie kardiorespiratorische Kriterien für die Arbeitsschwere).   

Kommentare und Anregungen, Punkte 21 bis 21.5:

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

 

   Analystenrating Worker's ratin   

 

D. Wahrnehmungs-/motorischer Aspekt Ihre Antworten/Bewertungen

IX. Anzeigen

22. Visuelle Anzeigen (Pegel, Meter, Warnsignale) 
sind leicht zu lesen. Ja Nein

Wenn nein, bewerten Sie die Schwierigkeiten: (Geben Sie 0-5 ein)

22.1 Unzureichende Beleuchtung (siehe Punkt Nr. 17).   

22.2 Ungeschickte Kopf-/Augenpositionierung für Sichtlinie.   

22.3 Der Darstellungsstil von Zahlen/Zahlenreihen führt zu Verwirrung und zu Lesefehlern.   

22.4 Digitale Anzeigen sind nicht zum genauen Ablesen verfügbar.   

22.5 Großer Sehabstand für Lesepräzision.   

22.6 Angezeigte Informationen sind nicht leicht verständlich.   

23. Notsignale/Impulse sind gut erkennbar. Ja Nein

Wenn nein, bewerten Sie die Gründe:

23.1 Signale (visuell/auditiv) entsprechen nicht dem Arbeitsprozess.   

23.2 Blinksignale sind außerhalb des Sichtfeldes.   

23.3 Akustische Anzeigesignale sind nicht hörbar.   

24. Gruppierungen der Anzeigemerkmale sind logisch. Ja Nein

Wenn nein, bewerten Sie Folgendes:

24.1 Displays unterscheiden sich nicht durch Form, Position, Farbe oder Ton.   

24.2 Häufig genutzte und kritische Anzeigen werden aus der zentralen Sichtlinie entfernt.   

X. Kontrollen

25. Bedienelemente (z. B. Schalter, Knöpfe, Kräne, Antriebsräder, Pedale) sind einfach zu handhaben. Ja Nein

Wenn Nein, sind die Ursachen: (Geben Sie 0-5 ein)

25.1 Die Positionen der Hand-/Fußsteuerung sind ungünstig.   

25.2 Händigkeit der Bedienelemente/Werkzeuge ist falsch.   

25.3 Abmessungen der Bedienelemente stimmen nicht mit dem Bedienkörperteil überein.   

25.4 Bedienelemente erfordern eine hohe Betätigungskraft.   

25.5 Kontrollen erfordern hohe Präzision und Geschwindigkeit.   

25.6 Die Kontrollen sind nicht formkodiert für guten Grip.   

25.7 Kontrollen sind zur Identifizierung nicht farb-/symbolcodiert.   

25.8 Steuerungen verursachen ein unangenehmes Gefühl (Wärme, Kälte, Vibration).   

26. Anzeigen und Bedienelemente (kombiniert) sind mit einfachen und bequemen menschlichen Reaktionen kompatibel. Ja Nein

Wenn nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

26.1 Platzierungen liegen nicht nahe genug beieinander.   

26.2 Anzeige/Bedienelemente sind nicht sequentiell nach Funktionen/Nutzungshäufigkeit angeordnet.   

26.3 Anzeige-/Steuerungsvorgänge sind aufeinanderfolgend, ohne ausreichende Zeitspanne, um den Vorgang abzuschließen (dadurch entsteht eine Reizüberflutung).   

26.4 Disharmonie in der Bewegungsrichtung der Anzeige/Steuerung (z. B. führt eine Steuerbewegung nach links nicht zu einer Bewegung der Einheit nach links).   

Kommentare und Anregungen, Punkte 22 bis 26.4:

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

 

   Analysten-Rating Arbeiter-Rating   

E. Technischer Aspekt Ihre Antworten/Bewertungen

XI. Maschinen

27. Maschine (z. B. Förderwagen, Hubwagen, Werkzeugmaschine) 
ist einfach zu fahren und damit zu arbeiten. Ja Nein

Wenn nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

27.1 Maschine ist im Betrieb instabil.   

27.2 Schlechte Wartung der Maschinen.   

27.3 Fahrgeschwindigkeit der Maschine nicht regulierbar.   

27.4 Lenkräder/Griffe werden aus dem Stand bedient.   

27.5 Betätigungsmechanismen behindern Körperbewegungen im Arbeitsbereich.   

27.6 Verletzungsgefahr durch fehlenden Maschinenschutz.   

27.7 Maschinen sind nicht mit Warnsignalen ausgestattet.   

27.8 Maschine ist zur Schwingungsdämpfung schlecht ausgestattet.   

27.9 Maschinengeräuschpegel liegen über den gesetzlichen Grenzwerten (siehe Punkt 13 und 14)   

27.10 Schlechte Sicht auf Maschinenteile und angrenzende Bereiche (siehe Punkt 17 und 22).   

XII. Kleine Werkzeuge/Geräte

28. Den Mitarbeitern zur Verfügung gestellte Werkzeuge/Geräte sind 
bequem damit zu arbeiten. Ja Nein

Wenn nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

28.1 Werkzeug/Gerät hat keinen Tragegurt/Rückenrahmen.   

28.2 Das Werkzeug kann nicht mit anderen Händen verwendet werden.   

28.3 Das hohe Gewicht des Werkzeugs verursacht eine Überstreckung des Handgelenks.   

28.4 Form und Position des Griffs sind nicht für bequemes Greifen ausgelegt.   

28.5 Kraftbetriebenes Werkzeug ist nicht für Zweihandbedienung ausgelegt.   

28.6 Scharfe Kanten/Kanten des Werkzeugs/der Ausrüstung können Verletzungen verursachen.      

28.7 Auffanggurte (Handschuhe usw.) werden nicht regelmäßig beim Betrieb von vibrierenden Werkzeugen verwendet.   

28.8 Der Geräuschpegel des kraftbetriebenen Werkzeugs liegt über den akzeptablen Grenzwerten 
(siehe Punkt Nr. 13).   

Verbesserungsvorschläge Punkt 27 bis 28.8:

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

XIII. Arbeitssicherheit

29. Maschinensicherheitsmaßnahmen sind ausreichend, um zu verhindern 
Unfälle und Gesundheitsgefahren. Ja Nein

Wenn nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

29.1 Maschinenzubehör kann nicht einfach befestigt und entfernt werden.   

29.2 Gefahrenstellen, bewegliche Teile und elektrische Anlagen sind nicht ausreichend geschützt.   

29.3 Direkter/indirekter Kontakt von Körperteilen mit Maschinen kann Gefahren verursachen.   

29.4 Schwierigkeiten bei der Inspektion und Wartung der Maschine.   

29.5 Keine klaren Anweisungen für Maschinenbetrieb, Wartung und Sicherheit verfügbar.   

Verbesserungsvorschläge, Punkte 29 bis 29. 5:

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

 

   Analysten-Rating Arbeiter-Rating   

F. Psychosozialer Aspekt Ihre Antworten/Bewertungen

XIV. Berufliche Autonomie

30. Job erlaubt Autonomie (z. B. Freiheit bezüglich Arbeitsweise, 
Leistungsbedingungen, Zeitplan, Qualitätskontrolle). Ja Nein

Wenn Nein, sind die möglichen Ursachen: (Geben Sie 0-5 ein)

30.1 Kein Ermessen hinsichtlich der Anfangs-/Endzeiten des Auftrags.   

30.2 Keine organisatorische Unterstützung bei der Hilfeleistung am Arbeitsplatz.   

30.3 Unzureichende Personenzahl für die Aufgabe (Teamwork).   

30.4 Rigidität der Arbeitsmethoden und -bedingungen.   

XV. Job-Feedback (intrinsisch und extrinsisch)

31. Job erlaubt direkte Rückmeldung von Informationen über die Qualität 
und Quantität der eigenen Leistung. Ja Nein

Wenn Nein, sind die Gründe: (Geben Sie 0-5 ein)

31.1 Keine partizipative Rolle bei Aufgabeninformationen und Entscheidungsfindung.   

31.2 Einschränkungen des sozialen Kontakts aufgrund physischer Barrieren.   

31.3 Kommunikationsschwierigkeiten aufgrund des hohen Geräuschpegels.   

31.4 Erhöhter Aufmerksamkeitsbedarf bei der maschinellen Stimulation.   

31.5 Andere Personen (Manager, Mitarbeiter) informieren den Arbeitnehmer über seine/ihre Effektivität bei der Arbeitsleistung.   

XVI. Aufgabenvielfalt/Klarheit

32. Der Job hat eine Vielzahl von Aufgaben und erfordert Spontaneität seitens des Arbeitnehmers. Ja Nein

Wenn nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

32.1 Berufliche Rollen und Ziele sind mehrdeutig.   

32.2 Arbeitsbeschränkungen werden durch eine Maschine, einen Prozess oder eine Arbeitsgruppe auferlegt.   

32.3 Die Beziehung zwischen Arbeiter und Maschine führt zu Konflikten hinsichtlich des vom Bediener zu zeigenden Verhaltens.   

32.4 Eingeschränktes Stimulationsniveau (z. B. unveränderte visuelle und auditive Umgebung).   

32.5 Hohes Maß an Langeweile am Arbeitsplatz.   

32.6 Begrenzter Spielraum für Arbeitsplatzerweiterung.   

XVIII. Identität/Bedeutung der Aufgabe

33. Die Arbeitskraft erhält einen Stapel Aufgaben Ja/Nein
und arrangiert seinen oder ihren eigenen Zeitplan, um die Arbeit abzuschließen
(z. B. man plant und führt die Arbeit aus und inspiziert und
verwaltet die Produkte).

Geben Sie Ihre Zustimmungs-/Ablehnungspunktzahl an (0-5)   

34. Job ist in der Organisation von Bedeutung. Ja Nein
Es bietet Bestätigung und Anerkennung von anderen.

(Geben Sie Ihre Zustimmungs-/Ablehnungspunktzahl an)

XVIII. Geistige Über-/Unterforderung

35. Job besteht aus Aufgaben, für die eine klare Kommunikation und 
Eindeutige Informationsunterstützungssysteme sind verfügbar. Ja Nein

Wenn nein, bewerten Sie Folgendes: (Geben Sie 0-5 ein)

35.1 Die im Zusammenhang mit der Stelle bereitgestellten Informationen sind umfangreich.   

35.2 Der Umgang mit Informationen unter Druck ist erforderlich (z. B. Notmanöver in der Prozesssteuerung).   

35.3 Hohe Informationsverarbeitungsbelastung (z. B. schwierige Positionierungsaufgabe – keine besondere Motivation erforderlich).   

35.4 Gelegentliche Aufmerksamkeit wird auf andere Informationen als die für die eigentliche Aufgabe benötigten gelenkt.   

35.5 Die Aufgabe besteht aus sich wiederholenden einfachen motorischen Handlungen, wobei oberflächliche Aufmerksamkeit erforderlich ist.   

35.6 Werkzeuge/Ausrüstung sind nicht vorpositioniert, um mentale Verzögerungen zu vermeiden.   

35.7 Bei der Entscheidungsfindung und Risikobeurteilung sind Mehrfachauswahlen erforderlich.   

(Kommentare und Anregungen, Punkte 30 bis 35.7)

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

XIX. Ausbildung und Förderung

36. Der Job bietet Möglichkeiten für ein damit verbundenes Kompetenzwachstum 
und Aufgabenerfüllung. Ja Nein

Wenn Nein, sind die möglichen Ursachen: (Geben Sie 0-5 ein)

36.1 Keine Aufstiegschancen auf höhere Ebenen.   

36.2 Keine regelmäßigen arbeitsplatzspezifischen Schulungen für Bediener.   

36.3 Schulungsprogramme/-tools sind nicht leicht zu erlernen und anzuwenden.   

36.4 Keine Anreizsysteme.   

XX. Organisatorische Verpflichtung

37. Definiertes Engagement für organisatorisches Ja/Nein
Leistungsfähigkeit sowie körperliches, geistiges und soziales Wohlbefinden.

Bewerten Sie den Grad der Bereitstellung: (Geben Sie 0-5 ein)

37.1 Organisatorische Rolle bei individuellen Rollenkonflikten und Mehrdeutigkeiten.   

37.2 Ärztlicher/administrativer Dienst zum vorbeugenden Eingreifen bei Arbeitsgefahren.   

37.3 Werbemaßnahmen zur Kontrolle von Fehlzeiten in der Arbeitsgruppe.   

37.4 Geltende Sicherheitsvorschriften.   

37.5 Arbeitsaufsicht und Überwachung besserer Arbeitspraktiken.   

37.6 Folgemaßnahmen für das Unfall-/Verletzungsmanagement.   

 


 

 

 

Der zusammenfassende Bewertungsbogen kann für die Profilerstellung und Gruppierung einer ausgewählten Gruppe von Elementen verwendet werden, die die Grundlage für Entscheidungen über Arbeitssysteme bilden können. Der Analyseprozess ist oft zeitintensiv und die Anwender dieser Instrumente müssen eine fundierte Ausbildung in Ergonomie sowohl theoretisch als auch praktisch bei der Bewertung von Arbeitssystemen haben.

 


 

ZUSAMMENFASSENDES BEWERTUNGSBLATT

A. Kurze Beschreibung der Organisation, Arbeitnehmermerkmale und Aufgabenbeschreibung

................................................. ................................................. ................................................. ................................................. ....................

................................................. ................................................. ................................................. ................................................. ....................

     

Schweregradvereinbarung

   

Module

Abschnitte

Anzahl der
Nenn
Artikel



0



1



2



3



4



5

Relativ
Schwere
(%)

Artikelnummer(n).
für Sofort
Intervention

B. Mechanistik

I. Berufliche Spezialisierung

II. Fähigkeitsanforderung

4

5

               

C. Biologisch

III. Allgemeine körperliche Aktivität

IV. Manuelle Materialhandhabung

V. Arbeitsplatz/Arbeitsplatzgestaltung

VI. Arbeitshaltung

VII. Arbeitsumgebung

VIII. Arbeitszeitplan

5

6

15

6

28

5

               

D. Wahrnehmend/motorisch

IX. Anzeigen

X. Kontrollen

12

10

               

E. Technisch

XI. Maschinen

XII. Kleine Werkzeuge/Geräte

XIII. Arbeitssicherheit

10

8

5

               

F. Psychosozial

XIV. Berufliche Autonomie

XV. Job-Feedback

XVI. Aufgabenvielfalt/Klarheit

XVII. Identität/Bedeutung der Aufgabe

XVIII. Geistige Über-/Unterforderung

XIX. Ausbildung und Förderung

XX. Organisatorische Verpflichtung

5

5

6

2

7

4

6

               

Gesamtbeurteilung

Severity Agreement der Module

Bemerkungen

A

 

B

 

C

 

D

 

E

 

F

 
 

Arbeitsanalyst:

 

 

 

Zurück

HAFTUNGSAUSSCHLUSS: Die ILO übernimmt keine Verantwortung für auf diesem Webportal präsentierte Inhalte, die in einer anderen Sprache als Englisch präsentiert werden, der Sprache, die für die Erstproduktion und Peer-Review von Originalinhalten verwendet wird. Bestimmte Statistiken wurden seitdem nicht aktualisiert die Produktion der 4. Auflage der Encyclopaedia (1998)."

Inhalte