Drucken
Samstag, Februar 19 2011 00: 08

Struktur des weiblichen Fortpflanzungssystems und Anfälligkeit für Zielorgane

Artikel bewerten
(1 Vote)

Abbildung 1. Das weibliche Fortpflanzungssystem.

REP010F1

Das weibliche Fortpflanzungssystem wird von Komponenten des zentralen Nervensystems gesteuert, einschließlich des Hypothalamus und der Hypophyse. Es besteht aus den Eierstöcken, den Eileitern, der Gebärmutter und der Scheide (Abbildung 1). Die Eierstöcke, die weiblichen Gonaden, sind die Quelle der Eizellen und synthetisieren und sezernieren auch Östrogene und Gestagene, die wichtigsten weiblichen Sexualhormone. Die Eileiter transportieren Eizellen zur und Spermien aus der Gebärmutter. Der Uterus ist ein birnenförmiges Muskelorgan, dessen oberer Teil durch die Eileiter mit der Bauchhöhle in Verbindung steht, während der untere Teil durch den engen Kanal des Gebärmutterhalses mit der nach außen verlaufenden Vagina verbunden ist. Tabelle 1 fasst Verbindungen, klinische Manifestationen, Ort und Wirkungsmechanismen potenzieller reproduktionstoxischer Stoffe zusammen.

 

 

 

 

 

Tabelle 1. Potenzielle Giftstoffe für die weibliche Fortpflanzung

Compounds Klinische Manifestation Site Mechanismus/Ziel
Chemische Reaktivität
Alkylieren
Agenten
Veränderte Menses
Amenorrhoe
Eierstockatrophie

Verminderte Fruchtbarkeit
Vorzeitige Menopause
Eierstock

Gebärmutter
Zytotoxizität von Granulosazellen
Oozyten-Zytotoxizität
Zytotoxizität von Endometriumzellen
Führen (Lead) Abnormale Menstruation
Eierstockatrophie
Verminderte Fruchtbarkeit
Hypothalamus
Hypophyse
Eierstock
Vermindertes FSH
Verringertes Progesteron
Merkur Abnormale Menstruation Hypothalamus

Eierstock
Veränderte Gonadotropinproduktion und -sekretion
Follikeltoxizität
Granulosa-Zellproliferation
Cadmium Follikuläre Atresie
Anhaltender Diöstrus
Eierstock
Hypophyse
Hypothalamus
Vaskuläre Toxizität
Zytotoxizität von Granulosazellen
Zytotoxizität
Strukturelle Ähnlichkeit
Azathioprin Reduzierte Follikelzahlen Eierstock

Oogenese
Purin-Analogon

Störung der DNA/RNA-Synthese
Chlordekon Beeinträchtigte Fruchtbarkeit Hypothalamus Östrogen-Agonist
DDT Veränderte Menses Hypophyse FSH-, LH-Störung
2,4-D Unfruchtbarkeit    
Lindan Amenorrhoe    
Toxaphen Hypermenorrhoe    
PCBs, PBBs Abnormale Menstruation   FSH-, LH-Störung

Quelle: Aus Plowchalk, Meadows und Mattison 1992. Diese Verbindungen werden hauptsächlich auf der Grundlage von Toxizitätstests an Versuchstieren als direkt wirkende reproduktionstoxische Mittel vermutet.

Der Hypothalamus und die Hypophyse

Der Hypothalamus befindet sich im Zwischenhirn, das auf dem Hirnstamm sitzt und von den Gehirnhälften umgeben ist. Der Hypothalamus ist der wichtigste Vermittler zwischen dem Nervensystem und dem endokrinen System, den beiden Hauptkontrollsystemen des Körpers. Der Hypothalamus reguliert die Hypophyse und die Hormonproduktion.

Zu den Mechanismen, durch die eine Chemikalie die Reproduktionsfunktion des Hypothalamus stören könnte, gehören im Allgemeinen alle Ereignisse, die die pulsierende Freisetzung von Gonadotropin-Releasing-Hormon (GnRH) verändern könnten. Dies kann eine Veränderung entweder der Frequenz oder der Amplitude von GnRH-Pulsen beinhalten. Die Prozesse, die für chemische Verletzungen anfällig sind, sind diejenigen, die an der Synthese und Sekretion von GnRH beteiligt sind – genauer gesagt, Transkription oder Translation, Verpackung oder axonaler Transport und Sekretionsmechanismen. Diese Prozesse stellen Orte dar, an denen direkt wirkende chemisch reaktive Verbindungen die hypothalmische Synthese oder Freisetzung von GnRH stören könnten. Eine veränderte Frequenz oder Amplitude von GnRH-Impulsen könnte aus Störungen in stimulierenden oder hemmenden Signalwegen resultieren, die die Freisetzung von GnRH regulieren. Untersuchungen zur Regulation des GnRH-Pulsgenerators haben gezeigt, dass Katecholamine, Dopamin, Serotonin, γ-Aminobuttersäure und Endorphine alle ein gewisses Potenzial haben, die Freisetzung von GnRH zu verändern. Daher könnten Xenobiotika, die Agonisten oder Antagonisten dieser Verbindungen sind, die GnRH-Freisetzung modifizieren und so die Kommunikation mit der Hypophyse stören.

Prolaktin, follikelstimulierendes Hormon (FSH) und luteinisierendes Hormon (LH) sind drei Proteinhormone, die vom Hypophysenvorderlappen ausgeschieden werden und für die Fortpflanzung unerlässlich sind. Diese spielen eine entscheidende Rolle bei der Aufrechterhaltung des Ovarialzyklus, der Rekrutierung und Reifung der Follikel, der Steroidogenese, dem Abschluss der Eizellreifung, dem Eisprung und der Luteinisierung.

Die präzise, ​​fein abgestimmte Steuerung des Fortpflanzungssystems wird durch den Hypophysenvorderlappen als Reaktion auf positive und negative Rückkopplungssignale von den Keimdrüsen erreicht. Die angemessene Freisetzung von FSH und LH während des Ovarialzyklus steuert die normale Follikelentwicklung, und das Fehlen dieser Hormone wird von Amenorrhoe und Gonadenatrophie gefolgt. Die Gonadotropine spielen eine entscheidende Rolle bei der Initiierung von Veränderungen in der Morphologie von Ovarialfollikeln und in ihrer steroidalen Mikroumgebung durch die Stimulierung der Steroidproduktion und die Induktion von Rezeptorpopulationen. Eine rechtzeitige und ausreichende Freisetzung dieser Gonadotropine ist auch für ovulatorische Ereignisse und eine funktionierende Lutealphase unerlässlich. Da Gonadotropine für die Funktion der Eierstöcke unerlässlich sind, kann eine veränderte Synthese, Speicherung oder Sekretion die Fortpflanzungsfähigkeit ernsthaft stören. Eine Störung der Genexpression – sei es bei Transkription oder Translation, posttranslationalen Ereignissen oder Verpackung oder sekretorischen Mechanismen – kann die Menge an Gonadotropinen verändern, die die Keimdrüsen erreichen. Chemikalien, die durch strukturelle Ähnlichkeit oder veränderte endokrine Homöostase wirken, könnten Wirkungen durch Störung normaler Feedback-Mechanismen hervorrufen. Steroid-Rezeptor-Agonisten und -Antagonisten können eine unangemessene Freisetzung von Gonadotropinen aus der Hypophyse induzieren, wodurch Steroid-metabolisierende Enzyme induziert werden, die Steroid-Halbwertszeit und anschließend der zirkulierende Spiegel von Steroiden, der die Hypophyse erreicht, verringert werden.

Der Eierstock

Das Ovar bei Primaten ist für die Steuerung der Fortpflanzung durch seine Hauptprodukte, Eizellen und Steroid- und Proteinhormone, verantwortlich. Die Follikulogenese, an der sowohl intraovarielle als auch extraovarielle Regulationsmechanismen beteiligt sind, ist der Prozess, durch den Eizellen und Hormone produziert werden. Der Eierstock selbst besteht aus drei funktionellen Untereinheiten: dem Follikel, der Eizelle und dem Gelbkörper. Während des normalen Menstruationszyklus wirken diese Komponenten unter dem Einfluss von FSH und LH zusammen, um eine lebensfähige Eizelle für die Befruchtung und eine geeignete Umgebung für die Implantation und die anschließende Schwangerschaft zu erzeugen.

Während der präovulatorischen Periode des Menstruationszyklus erfolgt die Follikelrekrutierung und -entwicklung unter dem Einfluss von FSH und LH. Letzteres stimuliert die Produktion von Androgenen durch Thekalzellen, während Ersteres die Aromatisierung von Androgenen zu Östrogenen durch die Granulosazellen und die Produktion von Inhibin, einem Proteinhormon, stimuliert. Inhibin wirkt am Hypophysenvorderlappen, um die Freisetzung von FSH zu verringern. Dies verhindert eine übermäßige Stimulation der Follikelentwicklung und ermöglicht die kontinuierliche Entwicklung des dominanten Follikels – des Follikels, der zum Eisprung bestimmt ist. Die Östrogenproduktion steigt und stimuliert sowohl den LH-Anstieg (der zum Eisprung führt) als auch die zellulären und sekretorischen Veränderungen in Vagina, Gebärmutterhals, Gebärmutter und Eileiter, die die Lebensfähigkeit und den Transport der Spermien verbessern.

In der postovulatorischen Phase bilden Thekal- und Granulosazellen, die in der Follikelhöhle der ovulierten Eizelle verbleiben, das Corpus luteum und sezernieren Progesteron. Dieses Hormon stimuliert die Gebärmutter, um eine geeignete Umgebung für die Einnistung des Embryos bereitzustellen, wenn eine Befruchtung eintritt. Anders als die männliche Keimdrüse hat die weibliche Keimdrüse bei der Geburt eine endliche Anzahl von Keimzellen und ist daher einzigartig empfindlich gegenüber reproduktionstoxischen Stoffen. Eine solche Exposition der Frau kann zu verminderter Fruchtbarkeit, erhöhtem Schwangerschaftsverlust, vorzeitiger Menopause oder Unfruchtbarkeit führen.

Als grundlegende reproduktive Einheit des Eierstocks hält der Follikel die empfindliche hormonelle Umgebung aufrecht, die notwendig ist, um das Wachstum und die Reifung einer Eizelle zu unterstützen. Wie bereits erwähnt, ist dieser komplexe Prozess als Follikulogenese bekannt und umfasst sowohl eine intraovarielle als auch eine extraovarielle Regulation. Zahlreiche morphologische und biochemische Veränderungen treten auf, wenn sich ein Primordialfollikel zu einem präovulatorischen Follikel entwickelt (der eine sich entwickelnde Oozyte enthält), und jedes Stadium des Follikelwachstums weist einzigartige Muster der Gonadotropin-Empfindlichkeit, Steroidproduktion und Rückkopplungswege auf. Diese Eigenschaften deuten darauf hin, dass eine Reihe von Stellen für xenobiotische Wechselwirkungen verfügbar sind. Außerdem gibt es unterschiedliche Follikelpopulationen innerhalb des Eierstocks, was die Situation weiter verkompliziert, indem eine unterschiedliche Follikeltoxizität ermöglicht wird. Dies schafft eine Situation, in der die durch einen chemischen Wirkstoff induzierten Unfruchtbarkeitsmuster vom betroffenen Follikeltyp abhängen würden. Zum Beispiel würde eine Toxizität für Primordialfollikel keine unmittelbaren Anzeichen von Unfruchtbarkeit hervorrufen, sondern letztendlich die reproduktive Lebensdauer verkürzen. Andererseits würde eine Toxizität für antrale oder präovulatorische Follikel zu einem sofortigen Verlust der Fortpflanzungsfunktion führen. Der Follikelkomplex besteht aus drei Grundkomponenten: Granulosazellen, Thekalzellen und der Eizelle. Jede dieser Komponenten hat Eigenschaften, die sie besonders anfällig für chemische Verletzungen machen können.

Mehrere Forscher haben Methoden zum Screenen von Xenobiotika auf Granulosazellen-Toxizität erforscht, indem sie die Wirkungen auf die Progesteronproduktion durch Granulosazellen in Kultur gemessen haben. Die Unterdrückung der Progesteronproduktion durch Östradiol durch Granulosazellen wurde verwendet, um die Ansprechbarkeit der Granulosazellen zu verifizieren. Das Pestizid p,p'-DDT und sein o,p'-DDT-Isomer bewirken eine Unterdrückung der Progesteronproduktion, offenbar mit Potenzen, die denen von Östradiol entsprechen. Dagegen sind die Pestizide Malathion, Arathion und Dieldrin sowie das Fungizid Hexachlorbenzol wirkungslos. Eine weitere detaillierte Analyse der Reaktionen isolierter Granulosazellen auf Xenobiotika ist erforderlich, um die Nützlichkeit dieses Testsystems zu definieren. Die Attraktivität von isolierten Systemen wie diesem liegt in der Wirtschaftlichkeit und Benutzerfreundlichkeit; Es ist jedoch wichtig, sich daran zu erinnern, dass Granulosazellen nur eine Komponente des Fortpflanzungssystems darstellen.

Thekalzellen liefern Vorläufer für Steroide, die von Granulosazellen synthetisiert werden. Es wird angenommen, dass Thekalzellen während der Follikelbildung und des Follikelwachstums aus ovariellen Stromazellen rekrutiert werden. Die Rekrutierung kann eine stromale Zellproliferation sowie eine Migration in Regionen um den Follikel beinhalten. Xenobiotika, die die Zellproliferation, -migration und -kommunikation beeinträchtigen, wirken sich auf die Zellfunktion aus. Xenobiotika, die die thekale Androgenproduktion verändern, können auch die Follikelfunktion beeinträchtigen. Beispielsweise werden die Androgene, die von Granulosazellen zu Östrogenen metabolisiert werden, von Thekalzellen bereitgestellt. Es wird erwartet, dass Veränderungen in der Androgenproduktion der Thekalzellen, entweder erhöht oder verringert, eine signifikante Auswirkung auf die Follikelfunktion haben. Beispielsweise wird angenommen, dass eine übermäßige Produktion von Androgenen durch Thekalzellen zu Follikelatresie führt. Darüber hinaus kann eine beeinträchtigte Produktion von Androgenen durch Thekalzellen zu einer verringerten Östrogenproduktion durch Granulosazellen führen. Beide Umstände wirken sich eindeutig auf die Fortpflanzungsleistung aus. Derzeit ist wenig über die Anfälligkeit der Thekalzellen gegenüber Xenobiotika bekannt.

Obwohl es eine Fülle von Informationen gibt, die die Anfälligkeit von Ovarialzellen gegenüber Xenobiotika definieren, gibt es Daten, die eindeutig zeigen, dass Eizellen durch solche Mittel beschädigt oder zerstört werden können. Alkylierungsmittel zerstören Oozyten bei Menschen und Versuchstieren. Blei führt zu einer ovariellen Toxizität. Quecksilber und Cadmium verursachen auch Eierstockschäden, die durch Oozytentoxizität vermittelt werden können.

Befruchtung bis Implantation

Gametogenese, Freisetzung und Vereinigung von männlichen und weiblichen Keimzellen sind alles vorbereitende Ereignisse, die zu einer Zygote führen. In der Vagina abgelagerte Spermien müssen in den Gebärmutterhals gelangen und sich durch die Gebärmutter und in den Eileiter bewegen, um auf die Eizelle zu treffen. Das Eindringen von Spermien in die Eizelle und die Verschmelzung ihrer jeweiligen DNA umfassen den Prozess der Befruchtung. Nach der Befruchtung wird die Zellteilung eingeleitet und in den nächsten drei oder vier Tagen fortgesetzt, wobei eine feste Zellmasse entsteht, die als Morula bezeichnet wird. Die Zellen der Morula teilen sich weiter, und wenn der sich entwickelnde Embryo die Gebärmutter erreicht, ist er eine hohle Kugel, die als Blastozyste bezeichnet wird.

Nach der Befruchtung wandert der sich entwickelnde Embryo durch den Eileiter in die Gebärmutter. Die Blastozyste dringt etwa sieben Tage nach dem Eisprung in die Gebärmutter ein und nistet sich im Endometrium ein. Zu diesem Zeitpunkt befindet sich das Endometrium in der postovulatorischen Phase. Die Implantation ermöglicht der Blastozyste, Nährstoffe oder Giftstoffe aus den Drüsen und Blutgefäßen des Endometriums aufzunehmen.

 

Zurück

Lesen Sie mehr 19927 mal 11: Zuletzt am Dienstag, Oktober 2011 20 45 geändert