Die Epidemiologie umfasst die Messung des Auftretens von Krankheiten und die Quantifizierung von Zusammenhängen zwischen Krankheiten und Expositionen.
Maßnahmen zum Auftreten von Krankheiten
Das Auftreten von Krankheiten kann gemessen werden durch Frequenzen (zählt), wird aber besser beschrieben durch Preise, die sich aus drei Elementen zusammensetzen: der Anzahl der Betroffenen (Zähler), der Anzahl der Personen in der Ausgangs- bzw. Grundgesamtheit (d. h. der Risikopopulation), aus der die betroffenen Personen stammen, und dem abgedeckten Zeitraum. Der Nenner der Rate ist die gesamte Personenzeit, die von der Quellpopulation erfahren wird. Raten ermöglichen aussagekräftigere Vergleiche zwischen Populationen unterschiedlicher Größe als Zählungen allein. Risiko, die Wahrscheinlichkeit, dass eine Person innerhalb eines bestimmten Zeitraums eine Krankheit entwickelt, ist ein Anteil zwischen 0 und 1 und keine Rate an sich. Angriffsgeschwindigkeit, der Anteil der Personen in einer Bevölkerung, die innerhalb eines bestimmten Zeitraums betroffen sind, ist technisch gesehen ein Risikomaß, keine Rate.
Krankheitsspezifische Morbidität umfasst Häufigkeit, die sich auf die Anzahl der Personen bezieht, bei denen die betreffende Krankheit neu diagnostiziert wird. Prävalenz bezieht sich auf die Anzahl der bestehenden Fälle. Sterblichkeit bezieht sich auf die Zahl der Verstorbenen.
Häufigkeit ist definiert als die Anzahl neu diagnostizierter Fälle innerhalb eines bestimmten Zeitraums, während die Inzidenzrate ist diese Zahl geteilt durch die gesamte Personenzeit, die von der Quellpopulation erfahren wird (Tabelle 1). Bei Krebs werden die Raten normalerweise als jährliche Raten pro 100,000 Personen ausgedrückt. Die Raten für andere häufigere Krankheiten können für eine kleinere Anzahl von Personen ausgedrückt werden. Beispielsweise werden Geburtsfehlerraten normalerweise pro 1,000 Lebendgeburten ausgedrückt. Kumulative Inzidenz, der Anteil der Personen, die innerhalb eines bestimmten Zeitraums zu Fällen werden, ist ein Maß für das durchschnittliche Risiko für eine Bevölkerung.
Tabelle 1. Maße für das Auftreten der Krankheit: Hypothetische Population, die über einen Zeitraum von fünf Jahren beobachtet wurde
Neu diagnostizierte Fälle |
10 |
Zuvor diagnostizierte lebende Fälle |
12 |
Todesfälle, alle Ursachen* |
5 |
Todesfälle, Krankheit von Interesse |
3 |
Personen in der Bevölkerung |
100 |
Jahre beobachtet |
5 |
Häufigkeit |
10 Personen |
Jährliche Inzidenzrate |
|
Punktprävalenz (am Ende des 5. Jahres) |
(10 + 12 - 3) = 19 Personen |
Periodenprävalenz (Fünfjahreszeitraum) |
(10 + 12) = 22 Personen |
Jährliche Todesrate |
|
Jährliche Sterblichkeitsrate |
|
*Um die Berechnungen zu vereinfachen, wird in diesem Beispiel davon ausgegangen, dass alle Todesfälle am Ende des Fünfjahreszeitraums eingetreten sind, sodass alle 100 Personen in der Bevölkerung die vollen fünf Jahre am Leben waren.
Prävalenz Dazu gehören Punkt Prävalenz, die Anzahl der Krankheitsfälle zu einem bestimmten Zeitpunkt und Periodenprävalenz, die Gesamtzahl der Fälle einer Krankheit, von denen bekannt ist, dass sie irgendwann während eines bestimmten Zeitraums aufgetreten sind.
Sterblichkeit, die sich eher auf Todesfälle als auf neu diagnostizierte Krankheitsfälle bezieht, spiegelt Faktoren wider, die Krankheiten verursachen, sowie Faktoren im Zusammenhang mit der Qualität der medizinischen Versorgung, wie z. B. Screening, Zugang zu medizinischer Versorgung und Verfügbarkeit wirksamer Behandlungen. Folglich können hypothesengenerierende Bemühungen und ätiologische Forschung informativer und leichter zu interpretieren sein, wenn sie auf Inzidenzdaten statt auf Mortalitätsdaten basieren. Allerdings sind Sterblichkeitsdaten für große Populationen oft leichter verfügbar als Inzidenzdaten.
Die Todesrate wird allgemein akzeptiert, um die Rate für Todesfälle aus allen Ursachen zusammen zu bezeichnen, wohingegen Sterblichkeitsrate ist die Todesrate aufgrund einer bestimmten Ursache. Für eine bestimmte Krankheit, die Fallsterblichkeitsrate (technisch gesehen ein Anteil, keine Rate) ist die Anzahl der Personen, die während eines bestimmten Zeitraums an der Krankheit sterben, dividiert durch die Anzahl der Personen mit der Krankheit. Das Komplement der Sterblichkeitsrate ist die Überlebensrate. Die Fünf-Jahres-Überlebensrate ist ein allgemeiner Maßstab für chronische Krankheiten wie Krebs.
Das Auftreten einer Krankheit kann zwischen Untergruppen der Bevölkerung oder im Laufe der Zeit variieren. Ein Krankheitsmaß für eine ganze Bevölkerung ohne Berücksichtigung von Untergruppen wird als a bezeichnet Rohsatz. Beispielsweise ist eine Inzidenzrate für alle Altersgruppen zusammen eine grobe Rate. Die Preise für die einzelnen Altersgruppen sind die altersspezifische Tarife. Um zwei oder mehr Populationen mit unterschiedlichen Altersverteilungen zu vergleichen, altersangepasst (oder, altersstandardisiert) Raten sollten für jede Population berechnet werden, indem jede altersspezifische Rate mit dem Prozentsatz der Standardpopulation (z. B. einer der untersuchten Populationen, der US-Bevölkerung von 1970) in dieser Altersgruppe multipliziert und dann über alle Altersgruppen summiert wird eine altersbereinigte Gesamtrate ergeben. Die Tarife können um andere Faktoren als das Alter, wie Rasse, Geschlecht oder Raucherstatus, angepasst werden, wenn die kategoriespezifischen Tarife bekannt sind.
Die Überwachung und Auswertung von deskriptiven Daten kann Hinweise auf die Krankheitsätiologie liefern, Untergruppen mit hohem Risiko identifizieren, die für Interventions- oder Screening-Programme geeignet sein könnten, und Daten über die Wirksamkeit solcher Programme liefern. Zu den Informationsquellen, die für Überwachungstätigkeiten verwendet wurden, gehören Sterbeurkunden, Krankenakten, Krebsregister, andere Krankheitsregister (z. B. Geburtsfehlerregister, Register für Nierenerkrankungen im Endstadium), Verzeichnisse der beruflichen Exposition, Kranken- oder Berufsunfähigkeitsversicherungsunterlagen und Arbeitnehmerentschädigungen Aufzeichnungen.
Maßnahmen der Assoziation
Die Epidemiologie versucht, Faktoren zu identifizieren und zu quantifizieren, die Krankheiten beeinflussen. Im einfachsten Ansatz wird das Auftreten von Krankheiten bei Personen, die einem verdächtigen Faktor ausgesetzt sind, mit dem Auftreten von Personen verglichen, die nicht exponiert sind. Das Ausmaß eines Zusammenhangs zwischen Exposition und Krankheit kann in beiden ausgedrückt werden Absolute or relativ Bedingungen. (Siehe auch „Fallbeispiel: Maßnahmen“).
Absolute Effekte werden gemessen durch Tarifunterschiede und Risikounterschiede (Tabelle 2). EIN Tarifunterschied ist eine Rate minus einer zweiten Rate. Wenn zum Beispiel die Inzidenzrate von Leukämie unter Benzol-exponierten Arbeitern 72 pro 100,000 Personenjahre und die Rate unter nicht exponierten Arbeitern 12 pro 100,000 Personenjahre beträgt, dann beträgt die Ratendifferenz 60 pro 100,000 Personenjahre. EIN Risiko Unterschied ist ein Unterschied in den Risiken oder der kumulativen Inzidenz und kann von -1 bis 1 reichen.
Tabelle 2. Assoziationsmaße für eine Kohortenstudie
Projekte |
Personenjahre gefährdet |
Preis pro 100,000 |
|
Ausgesetzt |
100 |
20,000 |
500 |
Unbelichtet |
200 |
80,000 |
250 |
Total |
300 |
100,000 |
300 |
Ratendifferenz (RD) = 500/100,000 - 250/100,000
= 250/100,000 pro Jahr
(146.06/100,000 - 353.94/100,000)*
Ratenverhältnis (oder relatives Risiko) (RR) =
Zurechenbares Risiko bei Exponierten (ARe) = 100/20,000 - 200/80,000
= 250/100,000 pro Jahr
Zurechenbares Risiko in Prozent der Exponierten (ARe%) =
Bevölkerungsbezogenes Risiko (PAR) = 300/100,000 - 200/80,000
= 50/100,000 pro Jahr
Bevölkerungsbezogenes Risiko in Prozent (PAR%) =
* In Klammern 95-%-Konfidenzintervalle, berechnet mit den Formeln in den Kästchen.
Relative Effekte basieren auf Quotenverhältnissen oder Risikomaßen statt auf Differenzen. EIN Ratenverhältnis ist das Verhältnis einer Rate in einer Population zu der Rate in einer anderen. Das Ratenverhältnis wurde auch als das bezeichnet Risikoverhältnis, relatives Risiko, relative Rate und Häufigkeit (oder Sterblichkeit) Ratenverhältnis. Das Maß ist dimensionslos und reicht von 0 bis unendlich. Wenn die Rate in zwei Gruppen ähnlich ist (dh es gibt keine Wirkung von der Exposition), die Ratenverhältnis gleich Eins (1) ist. Eine Exposition, die das Risiko erhöht, würde ein Ratenverhältnis größer als eins ergeben, während ein Schutzfaktor ein Verhältnis zwischen 0 und 1 ergeben würde übermäßiges relatives Risiko ist das relative Risiko minus 1. Beispielsweise kann ein relatives Risiko von 1.4 auch als ein zusätzliches relatives Risiko von 40 % ausgedrückt werden.
In Fall-Kontroll-Studien (auch Fall-Referenz-Studien genannt) werden Personen mit Krankheit identifiziert (Fälle) und Personen ohne Krankheit identifiziert (Kontrollen oder Referenzen). Vergangene Expositionen der beiden Gruppen werden verglichen. Die Wahrscheinlichkeit, ein exponierter Fall zu sein, wird mit der Wahrscheinlichkeit, eine exponierte Kontrolle zu sein, verglichen. Vollständige Zählungen der Quellpopulationen von exponierten und nicht exponierten Personen sind nicht verfügbar, daher können keine Krankheitsraten berechnet werden. Stattdessen können die exponierten Fälle durch Berechnung von mit den exponierten Kontrollen verglichen werden relative ChancenOder das Wahrscheinlichkeit (Tisch 3).
Tabelle 3. Assoziationsmaße für Fall-Kontroll-Studien: Exposition gegenüber Holzstaub und Adenokarzinom der Nasenhöhle und der Nasennebenhöhlen
Projekte |
Steuergriffe |
|
Ausgesetzt |
18 |
55 |
Unbelichtet |
5 |
140 |
Total |
23 |
195 |
Relative Quoten (Odds Ratio) (OR) =
Zurechenbares Risiko in Prozent der exponierten () =
Bevölkerungsbezogenes Risiko in Prozent (PAR%) =
woher = Anteil der exponierten Kontrollen = 55/195 = 0.28
* In Klammern 95-%-Konfidenzintervalle, berechnet mit den Formeln im Kasten auf der Rückseite.
Quelle: Adaptiert von Hayes et al. 1986.
Relative Wirkungsmaße werden häufiger als absolute Maße verwendet, um die Stärke eines Zusammenhangs zu beschreiben. Absolute Maße können jedoch einen besseren Hinweis auf die Auswirkungen einer Assoziation auf die öffentliche Gesundheit geben. Ein kleiner relativer Anstieg bei einer häufigen Krankheit wie Herzerkrankungen kann mehr Personen betreffen (großer Risikounterschied) und stärkere Auswirkungen auf die öffentliche Gesundheit haben als ein großer relativer Anstieg (aber kleiner absoluter Unterschied) bei einer seltenen Krankheit wie z Angiosarkom der Leber.
Signifikanztest
Das Testen auf statistische Signifikanz wird häufig an Wirkungsmaßen durchgeführt, um die Wahrscheinlichkeit zu bewerten, dass die beobachtete Wirkung von der Nullhypothese abweicht (dh keine Wirkung). Während viele Studien, insbesondere in anderen Bereichen der biomedizinischen Forschung, ihre Bedeutung zum Ausdruck bringen können p-Werte, typischerweise epidemiologische Studien vorhanden Vertrauensintervalle (CI) (auch genannt Grenzen des Selbstvertrauens). Ein 95-%-Konfidenzintervall ist beispielsweise ein Bereich von Werten für das Effektmaß, das das aus den Studiendaten erhaltene geschätzte Maß und dasjenige umfasst, das mit 95-%-Wahrscheinlichkeit den wahren Wert enthält. Bei Werten außerhalb des Intervalls ist es unwahrscheinlich, dass sie das wahre Maß der Wirkung enthalten. Wenn das KI für ein Ratenverhältnis Eins enthält, gibt es keinen statistisch signifikanten Unterschied zwischen den verglichenen Gruppen.
Konfidenzintervalle sind aussagekräftiger als p-Werte allein. Die Größe eines p-Werts wird durch einen oder beide von zwei Gründen bestimmt. Entweder ist das Assoziationsmaß (z. B. Rate Ratio, Risikodifferenz) groß oder die untersuchten Populationen sind groß. Beispielsweise kann ein kleiner Unterschied in den Krankheitsraten, der in einer großen Population beobachtet wird, zu einem hochsignifikanten p-Wert führen. Aus dem p-Wert allein lassen sich die Gründe für den großen p-Wert nicht erkennen. Konfidenzintervalle ermöglichen es uns jedoch, die beiden Faktoren voneinander zu trennen. Erstens ist die Größe des Effekts durch die Werte des Effektmaßes und die vom Intervall umfassten Zahlen erkennbar. Größere Risikokennzahlen weisen beispielsweise auf eine stärkere Wirkung hin. Zweitens beeinflusst die Größe der Grundgesamtheit die Breite des Konfidenzintervalls. Kleine Populationen mit statistisch instabilen Schätzungen erzeugen breitere Konfidenzintervalle als größere Populationen.
Das zum Ausdrücken der Variabilität der Ergebnisse gewählte Konfidenzniveau (die „statistische Signifikanz“) ist willkürlich, liegt jedoch traditionell bei 95 %, was einem p-Wert von 0.05 entspricht. Ein Konfidenzintervall von 95 % enthält mit einer Wahrscheinlichkeit von 95 % das wahre Maß des Effekts. Gelegentlich werden auch andere Konfidenzniveaus wie 90 % verwendet.
Expositionen können dichotom sein (z. B. exponiert und nicht exponiert) oder können viele Expositionsniveaus beinhalten. Wirkungsmaße (dh Reaktion) können je nach Expositionsgrad variieren. Auswerten Expositions-Antwort Beziehungen ist ein wichtiger Teil der Interpretation epidemiologischer Daten. Das Analogon zur Expositions-Wirkung im Tierversuch ist die „Dosis-Wirkung“. Wenn die Reaktion mit der Expositionshöhe zunimmt, ist ein kausaler Zusammenhang wahrscheinlicher, als wenn kein Trend beobachtet wird. Zu den statistischen Tests zur Bewertung von Expositions-Wirkungs-Beziehungen gehören der Mantel-Erweiterungstest und der Chi-Quadrat-Trendtest.
Standardisierung
Um andere Faktoren als die interessierende primäre Exposition und die Krankheit zu berücksichtigen, können Assoziationsmaße verwendet werden standardisiert B. durch Schichtungs- oder Regressionstechniken. Schichtung bedeutet die Einteilung der Populationen in homogene Gruppen in Bezug auf den Faktor (z. B. Geschlechtsgruppen, Altersgruppen, Rauchergruppen). Risikokennzahlen oder Quotenverhältnisse werden für jede Schicht berechnet und gewichtete Gesamtdurchschnitte der Risikokennzahlen oder Quotenverhältnisse werden berechnet. Diese Gesamtwerte spiegeln den um den Stratifizierungsfaktor bereinigten Zusammenhang zwischen der primären Exposition und der Erkrankung wider, dh den Zusammenhang mit den Effekten des Stratifizierungsfaktors herausgerechnet.
A standardisiertes Ratenverhältnis (SRR) ist das Verhältnis zweier standardisierter Zinssätze. Mit anderen Worten, ein SRR ist ein gewichteter Durchschnitt von schichtspezifischen Ratenverhältnissen, wobei die Gewichtungen für jede Schicht die Personen-Zeit-Verteilung der nicht exponierten oder Bezugsgruppe sind. SRRs für zwei oder mehr Gruppen können verglichen werden, wenn dieselben Gewichte verwendet werden. Konfidenzintervalle können für SRRs wie für Ratenverhältnisse konstruiert werden.
Das standardisierte Sterblichkeitsrate (SMR) ist ein gewichteter Durchschnitt von altersspezifischen Quotenverhältnissen, wobei die Gewichtungen (z. B. Person-Time-at-Risk) von der untersuchten Gruppe und die Quoten von der Referenzpopulation stammen, das Gegenteil der Situation in einer SRR. Die übliche Bezugspopulation ist die allgemeine Bevölkerung, deren Sterblichkeitsraten möglicherweise leicht verfügbar sind und auf großen Zahlen basieren und daher stabiler sind als die Verwendung von Raten aus einer nicht exponierten Kohorte oder Untergruppe der untersuchten Berufsgruppe. Die Verwendung der Gewichte der Kohorte anstelle der Referenzpopulation wird als indirekte Standardisierung bezeichnet. Die SMR ist das Verhältnis der beobachteten Anzahl von Todesfällen in der Kohorte zur erwarteten Anzahl, basierend auf den Raten der Referenzpopulation (das Verhältnis wird zur Darstellung typischerweise mit 100 multipliziert). Wenn kein Zusammenhang besteht, beträgt die SMR 100. Es sollte beachtet werden, dass zwei oder mehr SMRs tendenziell nicht vergleichbar sind, da die Raten von der Referenzpopulation und die Gewichtungen von der Studiengruppe stammen. Diese Nicht-Vergleichbarkeit wird bei der Interpretation epidemiologischer Daten oft vergessen und es können falsche Schlussfolgerungen gezogen werden.
Healthy-Worker-Effekt
Berufskohorten haben sehr häufig eine niedrigere Gesamtmortalität als die allgemeine Bevölkerung, selbst wenn die Arbeitnehmer einem erhöhten Risiko für ausgewählte Todesursachen aufgrund von Expositionen am Arbeitsplatz ausgesetzt sind. Dieses Phänomen, genannt die gesunder Arbeitereffekt, spiegelt die Tatsache wider, dass jede Gruppe von Erwerbstätigen im Durchschnitt wahrscheinlich gesünder ist als die allgemeine Bevölkerung, zu der Arbeitnehmer und Personen gehören, die aufgrund von Krankheiten und Behinderungen nicht arbeiten können. Die Gesamtsterblichkeitsrate in der Allgemeinbevölkerung ist tendenziell höher als die Rate bei Arbeitnehmern. Die Wirkung ist je nach Todesursache unterschiedlich stark. Beispielsweise scheint es bei Krebs im Allgemeinen weniger wichtig zu sein als bei chronisch obstruktiven Lungenerkrankungen. Ein Grund dafür ist, dass sich die meisten Krebserkrankungen wahrscheinlich nicht aus einer Prädisposition für Krebs entwickelt hätten, die der Berufswahl in einem jüngeren Alter zugrunde liegt. Der Gesunde-Arbeiter-Effekt in einer bestimmten Gruppe von Arbeitnehmern nimmt im Laufe der Zeit tendenziell ab.
Proportionale Sterblichkeit
Manchmal ist eine vollständige tabellarische Aufstellung einer Kohorte (dh gefährdete Personenzeit) nicht verfügbar, und es gibt nur Informationen zu den Todesfällen oder einer Teilmenge von Todesfällen in der Kohorte (z. B. Todesfälle unter Rentnern und aktiven Angestellten, aber nicht unter Arbeitnehmern). die ihre Erwerbstätigkeit aufgegeben haben, bevor sie Anspruch auf eine Rente hatten). Die Berechnung von Personenjahren erfordert spezielle Methoden zur Erfassung der Personenzeit, einschließlich Sterbetafelmethoden. Ohne Angaben zur gesamten Personenzeit aller Kohortenmitglieder, unabhängig vom Krankheitsstatus, können SMRs und SRRs nicht berechnet werden. Stattdessen, proportionale Sterblichkeitsverhältnisse (PMRs) verwendet werden. Ein PMR ist das Verhältnis der beobachteten Anzahl von Todesfällen aufgrund einer bestimmten Ursache im Vergleich zu der erwarteten Anzahl, basierend auf dem Anteil der Gesamttodesfälle aufgrund der spezifischen Ursache in der Referenzpopulation, multipliziert mit der Anzahl der Gesamttodesfälle in der Studie Gruppe, multipliziert mit 100.
Da der Anteil der Todesfälle aus allen Todesursachen zusammen 1 (PMR = 100) betragen muss, scheinen einige PMRs zu hoch zu sein, sind aber tatsächlich künstlich aufgeblasen aufgrund echter Defizite bei anderen Todesursachen. In ähnlicher Weise können einige offensichtliche Defizite lediglich tatsächliche Exzesse bei anderen Todesursachen widerspiegeln. Wenn beispielsweise Pestizidausbringer aus der Luft einen großen realen Überschuss an Todesfällen aufgrund von Unfällen haben, kann die mathematische Anforderung, dass der PMR für alle Ursachen zusammen gleich 100 ist, dazu führen, dass die eine oder andere Todesursache mangelhaft erscheint, selbst wenn die Sterblichkeit zu hoch ist. Um dieses potenzielle Problem zu lindern, können Forscher, die sich hauptsächlich für Krebs interessieren, kalkulieren proportionale Krebssterblichkeitsraten (PCMR). PCMRs vergleichen die beobachtete Zahl der Krebstodesfälle mit der erwarteten Zahl basierend auf dem Anteil der gesamten Krebstodesfälle (anstelle aller Todesfälle) für den interessierenden Krebs in der Referenzpopulation multipliziert mit der Gesamtzahl der Krebstodesfälle in der Studiengruppe, multipliziert mit 100. Somit wird die PCMR nicht durch eine Abweichung (Überschuss oder Mangel) bei einer nicht krebsbedingten Todesursache wie Unfällen, Herzerkrankungen oder nicht bösartigen Lungenerkrankungen beeinflusst.
PMR-Studien können besser analysiert werden mit Sterblichkeit Odds Ratios (MORs), wobei die Daten im Wesentlichen so analysiert werden, als ob sie aus einer Fall-Kontroll-Studie stammen würden. Die „Kontrollen“ sind die Todesfälle aus einer Untergruppe aller Todesfälle, von denen angenommen wird, dass sie in keinem Zusammenhang mit der untersuchten Exposition stehen. Wenn beispielsweise das Hauptinteresse der Studie Krebs war, könnten die Sterblichkeitswahrscheinlichkeitsverhältnisse berechnet werden, indem die Exposition bei den Krebstoten mit der Exposition bei den kardiovaskulären Todesfällen verglichen wird. Dieser Ansatz vermeidet wie die PCMR die Probleme mit der PMR, die entstehen, wenn eine Schwankung bei einer Todesursache das offensichtliche Risiko einer anderen beeinflusst, einfach weil die Gesamt-PMR gleich 100 sein muss. Die Wahl der Kontrolltodesursachen ist jedoch kritisch . Wie oben erwähnt, müssen sie nicht mit der Exposition zusammenhängen, aber die mögliche Beziehung zwischen Exposition und Krankheit ist möglicherweise für viele potenzielle Kontrollkrankheiten nicht bekannt.
Zurechenbares Risiko
Es stehen Maßzahlen zur Verfügung, die das Krankheitsausmaß ausdrücken, das einer Exposition zuzuschreiben wäre, wenn der beobachtete Zusammenhang zwischen der Exposition und der Krankheit kausal wäre. Das zurechenbares Risiko im Exponierten (ARe) ist die Krankheitsrate bei den Exponierten minus der Rate bei den Nicht-Exponierten. Da Krankheitsraten in Fall-Kontroll-Studien nicht direkt gemessen werden können, ist der ARe ist nur für Kohortenstudien berechenbar. Eine verwandte, intuitivere Maßnahme, die zurechenbaren Risikoprozentsatz im Exponierten (ARe%), können aus beiden Studiendesigns gewonnen werden. Die ARe% ist der Anteil der in der exponierten Bevölkerung aufgetretenen Fälle, der auf die Exposition zurückzuführen ist (Formel siehe Tabelle 2 und Tabelle 3). Die ARe% ist das Quotenverhältnis (oder Odds Ratio) minus 1, geteilt durch das Quotenverhältnis (oder Odds Ratio), multipliziert mit 100.
Das der Bevölkerung zuzurechnendes Risiko (PAR) und die der Bevölkerung zuzurechnendes Risiko in Prozent (PAR%) oder ätiologische Fraktion, drücken das Ausmaß der Erkrankung in der Gesamtbevölkerung aus, die sich aus exponierten und nicht exponierten Personen zusammensetzt, die auf die Exposition zurückzuführen ist, wenn der beobachtete Zusammenhang kausal ist. Der PAR kann aus Kohortenstudien erhalten werden (Tabelle 28.3) und der PAR% kann sowohl in Kohorten- als auch in Fall-Kontroll-Studien berechnet werden (Tabelle 2 und Tabelle 3).
Repräsentativität
Es gibt mehrere Risikomaße, die beschrieben wurden. Jeder übernimmt zugrunde liegende Methoden zum Zählen von Ereignissen und in die Repräsentanten dieser Ereignisse zu einer definierten Gruppe. Wenn Ergebnisse studienübergreifend verglichen werden, ist ein Verständnis der verwendeten Methoden unerlässlich, um beobachtete Unterschiede zu erklären.