Drucken
Sonntag, Januar 16 2011 18: 49

Bewertung der genetischen Toxizität

Artikel bewerten
(1 Vote)

Die Bewertung der genetischen Toxizität ist die Bewertung von Wirkstoffen auf ihre Fähigkeit, eine der drei allgemeinen Arten von Veränderungen (Mutationen) im genetischen Material (DNA) hervorzurufen: Gen, Chromosomen und Genom. In Organismen wie dem Menschen bestehen die Gene aus DNA, die aus einzelnen Einheiten besteht, die Nukleotidbasen genannt werden. Die Gene sind in diskreten physikalischen Strukturen angeordnet, die als Chromosomen bezeichnet werden. Genotoxizität kann erhebliche und irreversible Auswirkungen auf die menschliche Gesundheit haben. Genotoxische Schäden sind ein entscheidender Schritt bei der Entstehung von Krebs und können auch an der Entstehung von Geburtsfehlern und fötalem Tod beteiligt sein. Die drei oben erwähnten Klassen von Mutationen können in jeder der beiden Arten von Geweben auftreten, die Organismen wie Menschen besitzen: Spermien oder Eier (Keimzellen) und das übrige Gewebe (somatische Zellen).

Assays, die Genmutationen messen, sind solche, die die Substitution, Addition oder Deletion von Nukleotiden innerhalb eines Gens nachweisen. Assays, die chromosomale Mutationen messen, sind solche, die Brüche oder chromosomale Umlagerungen nachweisen, an denen ein oder mehrere Chromosomen beteiligt sind. Assays, die genomische Mutationen messen, sind solche, die Veränderungen in der Anzahl der Chromosomen erkennen, ein Zustand, der als Aneuploidie bezeichnet wird. Die Bewertung der genetischen Toxizität hat sich seit der Entwicklung des ersten Assays zum Nachweis genotoxischer (mutagener) Wirkstoffe durch Herman Muller im Jahr 1927 erheblich verändert. Seitdem wurden mehr als 200 Assays entwickelt, die Mutationen in der DNA messen; jedoch werden heute üblicherweise weniger als zehn Assays zur Bewertung der genetischen Toxizität verwendet. Dieser Artikel gibt einen Überblick über diese Assays, beschreibt, was sie messen, und untersucht die Rolle dieser Assays bei der Toxizitätsbewertung.

Identifizierung von KrebsgefahrenVor der Entwicklung des Bereich der genetischen Toxikologie

Die genetische Toxikologie ist zu einem integralen Bestandteil des gesamten Risikobewertungsprozesses geworden und hat in letzter Zeit als zuverlässiger Prädiktor für krebserzeugende Aktivität an Bedeutung gewonnen. Vor der Entwicklung der genetischen Toxikologie (vor 1970) wurden und werden jedoch andere Methoden verwendet, um potenzielle Krebsgefahren für den Menschen zu identifizieren. Es gibt sechs Hauptkategorien von Methoden, die derzeit zur Identifizierung von Krebsrisiken beim Menschen verwendet werden: epidemiologische Studien, langfristige In-vivo-Bioassays, mittelfristige In-vivo-Bioassays, kurzfristige In-vivo- und In-vitro-Bioassays, künstliche Intelligenz (Struktur-Aktivität), und mechanismusbasierte Inferenz.

Tabelle 1 gibt Vor- und Nachteile dieser Methoden an.

Tabelle 1. Vor- und Nachteile aktueller Methoden zur Identifizierung menschlicher Krebsrisiken

  Vorteile Nachteile
Epidemiologische Studien (1) Menschen sind die ultimativen Krankheitsindikatoren;
(2) empfindliche oder anfällige Populationen zu bewerten;
(3) berufliche Expositionskohorten; (4) Umweltwächterwarnungen
(1) im Allgemeinen retrospektiv (Sterbeurkunden, Erinnerungsverzerrungen usw.); (2) unsensibel, kostspielig, langwierig; (3) zuverlässige Expositionsdaten, die manchmal nicht verfügbar oder schwer zu beschaffen sind; (4) kombinierte, mehrfache und komplexe Expositionen; Fehlen geeigneter Kontrollkohorten; (5) Experimente an Menschen nicht durchgeführt; (6) Krebserkennung, nicht Prävention
Langzeit-in-vivo-Bioassays (1) prospektive und retrospektive (Validierungs-)Bewertungen; (2) ausgezeichnete Korrelation mit identifizierten menschlichen Karzinogenen; (3) bekannte Expositionsniveaus und -bedingungen; (4) identifiziert chemische Toxizitäts- und Karzinogenitätswirkungen; (5) relativ schnell erhaltene Ergebnisse; (6) qualitative Vergleiche zwischen chemischen Klassen; (7) integrative und interaktive biologische Systeme, die eng mit dem Menschen verwandt sind (1) selten repliziert, ressourcenintensiv; (3) begrenzte Einrichtungen, die für solche Experimente geeignet sind; (4) Debatte über Artenextrapolation; (5) die verwendeten Expositionen liegen oft weit über denen, denen Menschen ausgesetzt sind; (6) Die Exposition gegenüber einer einzelnen Chemikalie entspricht nicht der Exposition des Menschen, die im Allgemeinen mehreren Chemikalien gleichzeitig ausgesetzt ist
Mittel- und kurzfristige In-vivo- und In-vitro-Bioassays (1) schneller und kostengünstiger als andere Assays; (2) große Proben, die leicht repliziert werden können;
(3) biologisch bedeutsame Endpunkte werden gemessen (Mutation usw.); (4) können als Screening-Assays verwendet werden, um Chemikalien für Langzeit-Bioassays auszuwählen
(1) in vitro nicht vollständig prädiktiv für in vivo; (2) normalerweise organismus- oder organspezifisch; (3) Potenzen, die nicht mit ganzen Tieren oder Menschen vergleichbar sind
Verbindungen zwischen chemischer Struktur und biologischer Aktivität (1) relativ einfach, schnell und kostengünstig; (2) zuverlässig für bestimmte chemische Klassen (z. B. Nitrosamine und Benzidin-Farbstoffe); (3) aus biologischen Daten entwickelt, aber nicht von zusätzlichen biologischen Experimenten abhängig (1) nicht „biologisch“; (2) viele Ausnahmen von formulierten Regeln; (3) retrospektiv und selten (aber zunehmend) prospektiv
Mechanismusbasierte Schlussfolgerungen (1) ziemlich genau für bestimmte Klassen von Chemikalien; (2) erlaubt Verfeinerungen von Hypothesen; (3) können Risikobewertungen auf empfindliche Bevölkerungsgruppen ausrichten (1) Mechanismen der chemischen Karzinogenese undefiniert, mehrfach und wahrscheinlich chemikalien- oder klassenspezifisch; (2) kann es versäumen, Ausnahmen von allgemeinen Mechanismen hervorzuheben

 

Begründung und konzeptionelle Grundlage für genetische Toxikologie-Assays

Obwohl sich die genaue Art und Anzahl der für die Bewertung der genetischen Toxizität verwendeten Assays ständig weiterentwickeln und von Land zu Land unterschiedlich sind, umfassen die gebräuchlichsten Assays für (1) Genmutationen in Bakterien und/oder kultivierten Säugetierzellen und (2) Chromosomenmutationen in kultivierte Säugetierzellen und/oder Knochenmark in lebenden Mäusen. Einige der Assays innerhalb dieser zweiten Kategorie können auch Aneuploidie nachweisen. Obwohl diese Assays keine Mutationen in Keimzellen nachweisen, werden sie hauptsächlich wegen der zusätzlichen Kosten und der Komplexität der Durchführung von Keimzellassays verwendet. Dennoch werden Keimzellassays an Mäusen verwendet, wenn Informationen über Keimzellwirkungen erwünscht sind.

Systematische Studien über einen Zeitraum von 25 Jahren (1970-1995), insbesondere beim US National Toxicology Program in North Carolina, haben zur Verwendung einer diskreten Anzahl von Assays zum Nachweis der mutagenen Aktivität von Mitteln geführt. Die Begründung für die Bewertung der Nützlichkeit der Assays basierte auf ihrer Fähigkeit, Mittel nachzuweisen, die bei Nagetieren Krebs verursachen und die im Verdacht stehen, beim Menschen Krebs zu verursachen (dh Karzinogene). Denn Studien der letzten Jahrzehnte haben gezeigt, dass Krebszellen Mutationen in bestimmten Genen enthalten und dass viele Karzinogene auch Mutagene sind. Daher wird angenommen, dass Krebszellen somatische Zellmutationen enthalten, und Karzinogenese wird als eine Art von somatischer Zellmutagenese angesehen.

Die heute am häufigsten verwendeten genetischen Toxizitätsassays wurden nicht nur wegen ihrer großen Datenbank, relativ niedrigen Kosten und einfachen Durchführung ausgewählt, sondern weil sie gezeigt haben, dass sie viele Nagetier- und vermutlich auch menschliche Karzinogene nachweisen. Folglich werden genetische Toxizitätstests verwendet, um die potenzielle Karzinogenität von Wirkstoffen vorherzusagen.

Eine wichtige konzeptionelle und praktische Entwicklung auf dem Gebiet der genetischen Toxikologie war die Erkenntnis, dass viele Karzinogene durch Enzyme im Körper modifiziert werden, wodurch veränderte Formen (Metaboliten) entstehen, die häufig die ultimative karzinogene und mutagene Form der Ausgangschemikalie darstellen. Um diesen Metabolismus in einer Petrischale zu duplizieren, zeigte Heinrich Malling, dass die Zugabe eines Präparats aus Nagetierleber viele der Enzyme enthielt, die notwendig sind, um diese metabolische Umwandlung oder Aktivierung durchzuführen. Daher verwenden viele genetische Toxizitätsassays, die in Schalen oder Röhrchen (in vitro) durchgeführt werden, die Zugabe ähnlicher Enzympräparate. Einfache Präparate werden als S9-Mix und gereinigte Präparate als Mikrosomen bezeichnet. Einige Bakterien- und Säugetierzellen wurden nun gentechnisch verändert, um einige der Gene von Nagetieren oder Menschen zu enthalten, die diese Enzyme produzieren, wodurch die Notwendigkeit reduziert wird, S9-Mix oder Mikrosomen hinzuzufügen.

Genetische Toxikologie-Assays und -Techniken

Die primären bakteriellen Systeme, die für das genetische Toxizitäts-Screening verwendet werden, sind der Salmonella (Ames)-Mutagenitätstest und, in viel geringerem Ausmaß, der Stamm WP2 von Escherichia coli. Studien Mitte der 1980er Jahre zeigten, dass die Verwendung von nur zwei Stämmen des Salmonella-Systems (TA98 und TA100) ausreichte, um etwa 90 % der bekannten Salmonella-Mutagene nachzuweisen. Somit werden diese zwei Stämme für die meisten Screening-Zwecke verwendet; Es stehen jedoch verschiedene andere Stämme für umfangreichere Tests zur Verfügung.

Diese Assays werden auf verschiedene Weise durchgeführt, aber zwei allgemeine Verfahren sind die Platten-Inkorporations- und Flüssigsuspensions-Assays. Beim Platten-Inkorporations-Assay werden die Zellen, die Testchemikalie und (falls gewünscht) das S9 zusammen in einen verflüssigten Agar gegeben und auf die Oberfläche einer Agar-Petriplatte gegossen. Der Top-Agar härtet innerhalb weniger Minuten aus, und die Platten werden zwei bis drei Tage lang inkubiert. Nach dieser Zeit sind mutierte Zellen gewachsen, um visuell erkennbare Zellcluster, sogenannte Kolonien, zu bilden, die dann gezählt werden. Das Agar-Medium enthält selektive Mittel oder ist aus Bestandteilen zusammengesetzt, so dass nur die neu mutierten Zellen wachsen werden. Der Flüssigkeitsinkubationsassay ist ähnlich, außer dass die Zellen, das Testmittel und S9 zusammen in einer Flüssigkeit inkubiert werden, die keinen verflüssigten Agar enthält, und dann die Zellen von dem Testmittel und S9 freigewaschen und auf dem Agar ausgesät werden.

Mutationen in kultivierten Säugetierzellen werden hauptsächlich in einem von zwei Genen nachgewiesen: hpt und tk. Ähnlich wie bei den bakteriellen Assays werden Säugetierzelllinien (aus Nagetier- oder menschlichen Zellen entwickelt) dem Testmittel in Plastikkulturschalen oder -röhrchen ausgesetzt und dann in Kulturschalen ausgesät, die Medium mit einem selektiven Mittel enthalten, das nur das Wachstum mutierter Zellen zulässt . Die für diesen Zweck verwendeten Assays schließen den CHO/HPRT, den TK6 und das Maus-Lymphom L5178Y/TK ein+/- Tests. Andere Zelllinien, die verschiedene DNA-Reparaturmutationen sowie einige am Stoffwechsel beteiligte menschliche Gene enthalten, werden ebenfalls verwendet. Diese Systeme ermöglichen die Wiederherstellung von Mutationen innerhalb des Gens (Genmutation) sowie von Mutationen, die Bereiche des Chromosoms betreffen, die das Gen flankieren (chromosomale Mutation). Diese letztere Art von Mutation wird jedoch in viel größerem Ausmaß durch die wiederhergestellt tk Gensysteme als durch die hpt Gensysteme aufgrund der Lage der tk Gen.

Ähnlich wie der Flüssiginkubationsassay auf bakterielle Mutagenität umfassen Mutagenitätsassays von Säugetierzellen im Allgemeinen das mehrstündige Aussetzen der Zellen in Kulturschalen oder -röhrchen in Gegenwart des Testmittels und S9. Die Zellen werden dann gewaschen, für einige weitere Tage kultiviert, damit die normalen (Wildtyp-)Genprodukte abgebaut und die neu mutierten Genprodukte exprimiert und angereichert werden können, und dann werden sie in Medium ausgesät, das ein selektives Mittel enthält, das dies zulässt nur die mutierten Zellen wachsen. Wie bei den bakteriellen Assays wachsen die mutierten Zellen zu visuell nachweisbaren Kolonien heran, die dann gezählt werden.

Chromosomenmutationen werden hauptsächlich durch zytogenetische Assays identifiziert, bei denen Nagetiere und/oder Nagetier- oder menschliche Zellen in Kulturschalen einer Testchemikalie ausgesetzt werden, eine oder mehrere Zellteilungen stattfinden können, die Chromosomen gefärbt werden und die Chromosomen dann visuell durch ein Mikroskop untersucht werden um Veränderungen in der Struktur oder Anzahl der Chromosomen zu erkennen. Obwohl eine Vielzahl von Endpunkten untersucht werden können, sind die beiden, die derzeit von den Aufsichtsbehörden als die aussagekräftigsten akzeptiert werden, Chromosomenaberrationen und eine Unterkategorie namens Mikronuklei.

Um Zellen auf das Vorhandensein von Chromosomenaberrationen zu untersuchen, sind erhebliche Schulungen und Fachkenntnisse erforderlich, was dies zu einem zeit- und kostenintensiven Verfahren macht. Im Gegensatz dazu erfordern Mikronuklei wenig Training und ihre Erkennung kann automatisiert werden. Mikrokerne erscheinen als kleine Punkte innerhalb der Zelle, die sich vom Kern unterscheiden, der die Chromosomen enthält. Mikrokerne entstehen entweder durch Chromosomenbruch oder durch Aneuploidie. Aufgrund der Leichtigkeit, Mikrokerne im Vergleich zu Chromosomenaberrationen zu bestimmen, und weil neuere Studien darauf hindeuten, dass Mittel, die Chromosomenaberrationen im Knochenmark von lebenden Mäusen induzieren, im Allgemeinen Mikrokerne in diesem Gewebe induzieren, werden Mikrokerne heute allgemein als Hinweis auf die Fähigkeit einer gemessen Mittel zur Induktion chromosomaler Mutationen.

Keimzellassays werden zwar weitaus seltener eingesetzt als die anderen oben beschriebenen Assays, sind aber unverzichtbar, um festzustellen, ob ein Agens ein Risiko für die Keimzellen darstellt, deren Mutationen zu gesundheitlichen Auswirkungen auf nachfolgende Generationen führen können. Die am häufigsten verwendeten Keimzellen-Assays finden bei Mäusen statt und umfassen Systeme, die (1) erbliche Translokationen (Austausche) zwischen Chromosomen (erblicher Translokations-Assay), (2) Gen- oder Chromosomenmutationen nachweisen, an denen spezifische Gene (sichtbarer oder biochemischer spezifischer Locus) beteiligt sind Assays) und (3) Mutationen, die die Lebensfähigkeit beeinträchtigen (Dominant-Letal-Assay). Wie bei den somatischen Zellassays besteht die Arbeitsannahme bei den Keimzellassays darin, dass in diesen Assays positive Mittel als potenzielle humane Keimzellmutagene angesehen werden.

Aktueller Stand und Zukunftsaussichten

Jüngste Studien haben gezeigt, dass nur drei Informationen erforderlich waren, um etwa 90 % einer Reihe von 41 Nagetier-Karzinogenen (dh mutmaßliche menschliche Karzinogene und somatische Zellmutagene) nachzuweisen. Dazu gehörten (1) Kenntnisse der chemischen Struktur des Mittels, insbesondere wenn es elektrophile Einheiten enthält (siehe Abschnitt über Struktur-Wirkungs-Beziehungen); (2) Salmonella-Mutagenitätsdaten; und (3) Daten aus einem 90-Tage-Test auf chronische Toxizität bei Nagetieren (Mäuse und Ratten). Tatsächlich sind im Wesentlichen alle von der IARC deklarierten menschlichen Karzinogene allein mit dem Salmonella-Assay und dem Maus-Knochenmark-Mikronukleus-Assay als Mutagen nachweisbar. Die Verwendung dieser Mutagenitätstests zum Nachweis potenzieller menschlicher Karzinogene wird weiter gestützt durch die Erkenntnis, dass die meisten menschlichen Karzinogene sowohl bei Ratten als auch bei Mäusen karzinogen sind (trans-species Karzinogene) und dass die meisten trans-species Karzinogene bei Salmonellen mutagen sind und/oder Mikronuklei induzieren im Knochenmark der Maus.

Mit Fortschritten in der DNA-Technologie, dem Humangenomprojekt und einem besseren Verständnis der Rolle von Mutationen bei Krebs werden neue Genotoxizitätsassays entwickelt, die wahrscheinlich in Standard-Screening-Verfahren integriert werden. Dazu gehören die Verwendung von transgenen Zellen und Nagetieren. Transgene Systeme sind solche, bei denen ein Gen einer anderen Spezies in eine Zelle oder einen Organismus eingeführt wurde. Zum Beispiel werden jetzt transgene Mäuse experimentell verwendet, die den Nachweis von Mutationen in jedem Organ oder Gewebe des Tieres ermöglichen, basierend auf der Einführung eines bakteriellen Gens in die Maus. Bakterienzellen wie Salmonella und Säugetierzellen (einschließlich menschlicher Zelllinien) sind jetzt verfügbar, die Gene enthalten, die am Metabolismus von karzinogenen/mutagenen Stoffen beteiligt sind, wie die P450-Gene. Molekulare Analyse der tatsächlichen Mutationen, die im Transgen innerhalb transgener Nagetiere oder innerhalb nativer Gene wie z hpt, oder der Zielgene in Salmonella können jetzt durchgeführt werden, so dass die genaue Art der durch die Chemikalien induzierten Mutationen bestimmt werden kann, Einblicke in den Wirkungsmechanismus der Chemikalie erhalten und Vergleiche mit Mutationen bei Menschen ermöglichen, die mutmaßlich dem Agens ausgesetzt waren .

Molekulare Fortschritte in der Zytogenetik erlauben jetzt eine detailliertere Bewertung chromosomaler Mutationen. Dazu gehört die Verwendung von Sonden (kleine DNA-Stücke), die an bestimmte Gene binden (hybridisieren). Neuanordnungen von Genen auf dem Chromosom können dann durch die veränderte Position der Sonden aufgedeckt werden, die fluoreszieren und leicht als farbige Sektoren auf den Chromosomen sichtbar gemacht werden. Der Einzelzell-Gelelektrophorese-Assay für DNA-Brüche (allgemein als „Comet“-Assay bezeichnet) ermöglicht den Nachweis von DNA-Brüchen innerhalb einzelner Zellen und kann in Kombination mit zytogenetischen Techniken zu einem äußerst nützlichen Werkzeug zum Nachweis von Chromosomenschäden werden.

Nach vielen Jahren der Nutzung und dem Aufbau einer großen und systematisch aufgebauten Datenbank kann die genetische Toxizitätsbewertung nun mit nur wenigen Assays zu relativ geringen Kosten in kurzer Zeit (wenige Wochen) durchgeführt werden. Die erzeugten Daten können verwendet werden, um die Fähigkeit eines Mittels vorherzusagen, ein Nagetier und vermutlich menschliches Karzinogen/Mutagen somatischer Zellen zu sein. Eine solche Fähigkeit ermöglicht es, das Einbringen von mutagenen und karzinogenen Stoffen in die Umwelt zu begrenzen und alternative, nicht mutagene Stoffe zu entwickeln. Zukünftige Studien sollten zu noch besseren Methoden mit größerer Vorhersagekraft als die derzeitigen Assays führen.

 

Zurück

Lesen Sie mehr 9104 mal 23: Letzter am Freitag, 2011 September 16 42 modifiziert