Drucken
Sonntag, Januar 16 2011 18: 56

Aktivitätsbeziehungen strukturieren

Artikel bewerten
(0 Stimmen)

Bei der Analyse von Struktur-Aktivitäts-Beziehungen (SAR) werden Informationen über die Molekularstruktur von Chemikalien genutzt, um wichtige Eigenschaften in Bezug auf Persistenz, Verteilung, Aufnahme und Absorption sowie Toxizität vorherzusagen. SAR ist eine alternative Methode zur Identifizierung potenziell gefährlicher Chemikalien, die verspricht, Industrien und Regierungen bei der Priorisierung von Stoffen für die weitere Bewertung oder für die frühzeitige Entscheidungsfindung für neue Chemikalien zu unterstützen. Die Toxikologie ist ein zunehmend teures und ressourcenintensives Unterfangen. Zunehmende Bedenken hinsichtlich des Potenzials von Chemikalien, nachteilige Auswirkungen auf exponierte menschliche Populationen zu verursachen, haben Regulierungs- und Gesundheitsbehörden dazu veranlasst, den Umfang und die Empfindlichkeit von Tests zum Nachweis toxikologischer Gefahren zu erweitern. Gleichzeitig haben die tatsächlichen und vermeintlichen Regulierungslasten für die Industrie Bedenken hinsichtlich der Praktikabilität von Toxizitätstestmethoden und Datenanalysen geweckt. Gegenwärtig hängt die Bestimmung der chemischen Karzinogenität von Lebenszeittests an mindestens zwei Arten beiderlei Geschlechts bei mehreren Dosen mit sorgfältiger histopathologischer Analyse mehrerer Organe sowie dem Nachweis präneoplastischer Veränderungen in Zellen und Zielorganen ab. In den Vereinigten Staaten wird der Krebs-Bioassay auf über 3 Millionen Dollar (1995 Dollar) geschätzt.

Selbst mit unbegrenzten finanziellen Mitteln würde der Testaufwand für die etwa 70,000 existierenden Chemikalien, die heute weltweit hergestellt werden, die verfügbaren Ressourcen ausgebildeter Toxikologen übersteigen. Es würden Jahrhunderte erforderlich sein, um selbst eine Erstbewertung dieser Chemikalien abzuschließen (NRC 1984). In vielen Ländern haben ethische Bedenken hinsichtlich der Verwendung von Tieren in Toxizitätstests zugenommen, was zusätzlichen Druck auf die Verwendung von Standardmethoden für Toxizitätstests ausübt. SAR wurde in der pharmazeutischen Industrie weit verbreitet verwendet, um Moleküle mit einem Potenzial für eine vorteilhafte Verwendung in der Behandlung zu identifizieren (Hansch und Zhang 1993). In der Umwelt- und Arbeitsschutzpolitik wird SAR verwendet, um die Ausbreitung von Verbindungen in der physikalisch-chemischen Umgebung vorherzusagen und neue Chemikalien für eine weitere Bewertung der potenziellen Toxizität zu screenen. Gemäß dem US-amerikanischen Toxic Substances Control Act (TSCA) verwendet die EPA seit 1979 einen SAR-Ansatz als „erstes Screening“ neuer Chemikalien im Premanufacture Notification (PMN)-Prozess; Australien verwendet einen ähnlichen Ansatz im Rahmen seines Verfahrens zur Meldung neuer Chemikalien (NICNAS). In den USA ist die SAR-Analyse eine wichtige Grundlage für die Feststellung, dass eine vernünftige Grundlage für die Schlussfolgerung besteht, dass die Herstellung, Verarbeitung, Verteilung, Verwendung oder Entsorgung des Stoffes ein unzumutbares Verletzungsrisiko für die menschliche Gesundheit oder die Umwelt darstellt, wie in Abschnitt gefordert 5(f) TSCA. Auf der Grundlage dieser Feststellung kann die EPA dann tatsächliche Tests des Stoffes gemäß Abschnitt 6 des TSCA verlangen.

Begründung für SAR

Die wissenschaftliche Begründung für SAR basiert auf der Annahme, dass die Molekularstruktur einer Chemikalie wichtige Aspekte ihres Verhaltens in physikalisch-chemischen und biologischen Systemen vorhersagt (Hansch und Leo 1979).

SAR-Prozess

Der SAR-Überprüfungsprozess umfasst die Identifizierung der chemischen Struktur, einschließlich empirischer Formulierungen, sowie der reinen Verbindung; Identifizierung strukturanaloger Substanzen; Durchsuchen von Datenbanken und Literatur nach Informationen über strukturelle Analoga; und Analyse von Toxizität und anderen Daten zu Strukturanaloga. In einigen seltenen Fällen können Informationen über die Struktur der Verbindung allein ausreichen, um eine SAR-Analyse zu unterstützen, die auf gut verstandenen Toxizitätsmechanismen basiert. Mehrere Datenbanken zu SAR wurden zusammengestellt, ebenso wie computergestützte Methoden zur Vorhersage der Molekülstruktur.

Mit diesen Informationen können die folgenden Endpunkte mit SAR geschätzt werden:

  • Physikalisch-chemische Parameter: Siedepunkt, Dampfdruck, Wasserlöslichkeit, Oktanol/Wasser-Verteilungskoeffizient
  • biologische/ökologische Verbleibsparameter: biologischer Abbau, Bodensorption, Photoabbau, Pharmakokinetik
  • Toxizitätsparameter: Toxizität für Wasserorganismen, Resorption, akute Toxizität für Säugetiere (Limit-Test oder LD50), Haut-, Lungen- und Augenreizung, Sensibilisierung, subchronische Toxizität, Mutagenität.

 

Es ist zu beachten, dass für so wichtige Gesundheitsendpunkte wie Karzinogenität, Entwicklungstoxizität, Reproduktionstoxizität, Neurotoxizität, Immuntoxizität oder andere Zielorganwirkungen keine SAR-Methoden existieren. Dies ist auf drei Faktoren zurückzuführen: das Fehlen einer großen Datenbank zum Testen von SAR-Hypothesen, das Fehlen von Kenntnissen über strukturelle Determinanten der toxischen Wirkung und die Vielzahl von Zielzellen und Mechanismen, die an diesen Endpunkten beteiligt sind (siehe „Die Vereinigten Staaten Ansatz zur Risikobewertung von reproduktionstoxischen und neurotoxischen Stoffen“). Einige begrenzte Versuche, SAR zur Vorhersage der Pharmakokinetik unter Verwendung von Informationen über Verteilungskoeffizienten und Löslichkeit zu verwenden (Johanson und Naslund 1988). Umfangreichere quantitative SAR wurden durchgeführt, um den P450-abhängigen Metabolismus einer Reihe von Verbindungen und die Bindung von Dioxin- und PCB-ähnlichen Molekülen an den zytosolischen „Dioxin“-Rezeptor vorherzusagen (Hansch und Zhang 1993).

Es hat sich gezeigt, dass SAR für einige der oben aufgeführten Endpunkte eine unterschiedliche Vorhersagbarkeit aufweist, wie in Tabelle 1 gezeigt. Diese Tabelle enthält Daten aus zwei Vergleichen der vorhergesagten Aktivität mit tatsächlichen Ergebnissen, die durch empirische Messungen oder Toxizitätstests erhalten wurden. SAR, durchgeführt von Experten der US EPA, schnitt bei der Vorhersage physikalisch-chemischer Eigenschaften schlechter ab als bei der Vorhersage der biologischen Aktivität, einschließlich des biologischen Abbaus. Bei Toxizitätsendpunkten schnitt SAR am besten ab, um Mutagenität vorherzusagen. Ashby und Tennant (1991) stellten in einer umfassenderen Studie bei ihrer Analyse von NTP-Chemikalien ebenfalls eine gute Vorhersagbarkeit der kurzfristigen Genotoxizität fest. Diese Ergebnisse sind angesichts des derzeitigen Verständnisses der molekularen Mechanismen der Genotoxizität (siehe „Gentoxikologie“) und der Rolle der Elektrophilie bei der DNA-Bindung nicht überraschend. Im Gegensatz dazu neigte SAR dazu, die systemische und subchronische Toxizität bei Säugetieren zu unterschätzen und die akute Toxizität für Wasserorganismen zu überschätzen.

Tabelle 1. Vergleich von SAR- und Testdaten: OECD/NTP-Analysen

Endpunkt Zustimmung (%) Ablehnung (%) Nummer
Siedepunkt 50 50 30
Dampfdruck 63 37 113
Wasserlöslichkeit 68 32 133
Verteilungskoeffizient 61 39 82
Bioabbau 93 7 107
Fischtoxizität 77 22 130
Daphnientoxizität 67 33 127
Akute Säugetiertoxizität (LD50 ) 80 201 142
Hautreizung 82 18 144
Augen Irritation 78 22 144
Hautsensibilisierung 84 16 144
Subchronische Toxizität 57 32 143
Mutagenität2 88 12 139
Mutagenität3 82-944 1-10 301
Kanzerogenität3 : Zweijähriger Bioassay 72-954 - 301

Quelle: Daten der OECD, persönliche Mitteilung C. Auer, US EPA. In dieser Analyse wurden nur diejenigen Endpunkte verwendet, für die vergleichbare SAR-Vorhersagen und tatsächliche Testdaten verfügbar waren. NTP-Daten stammen von Ashby und Tennant 1991.

1 Besorgniserregend war das Versäumnis von SAR, die akute Toxizität bei 12 % der getesteten Chemikalien vorherzusagen.

2 OECD-Daten, basierend auf Ames-Test-Konkordanz mit SAR

3 NTP-Daten, basierend auf Gentox-Assays im Vergleich zu SAR-Vorhersagen für mehrere Klassen von „strukturell alarmierenden Chemikalien“.

4 Die Übereinstimmung variiert mit der Klasse; höchste Übereinstimmung war mit aromatischen Amino/Nitro-Verbindungen; am niedrigsten bei „verschiedenen“ Strukturen.

Für andere toxische Endpunkte hat SAR, wie oben erwähnt, einen weniger nachweisbaren Nutzen. Vorhersagen zur Säugetiertoxizität werden durch das Fehlen von SAR für die Toxikokinetik komplexer Moleküle erschwert. Dennoch wurden einige Versuche unternommen, SAR-Prinzipien für komplexe Endpunkte der Toxizität bei Säugetieren vorzuschlagen (siehe beispielsweise Bernstein (1984) für eine SAR-Analyse potenzieller reproduktionstoxischer Stoffe für Männer). In den meisten Fällen ist die Datenbank zu klein, um strukturbasierte Vorhersagen gründlich zu testen.

An dieser Stelle kann der Schluss gezogen werden, dass SAR hauptsächlich nützlich sein kann, um die Investition in Toxizitätstestressourcen zu priorisieren oder um frühzeitig Bedenken hinsichtlich potenzieller Gefahren zu äußern. Nur im Fall von Mutagenität ist es wahrscheinlich, dass die SAR-Analyse selbst zuverlässig verwendet werden kann, um andere Entscheidungen zu informieren. Für keinen Endpunkt ist es wahrscheinlich, dass SAR die Art von quantitativen Informationen liefern kann, die für Risikobewertungszwecke erforderlich sind, wie an anderer Stelle in diesem Kapitel und erörtert Enzyklopädie.

 

Zurück

Lesen Sie mehr 8635 mal 23: Letzter am Freitag, 2011 September 17 33 modifiziert