Freitag, März 25 2011 05: 48

Handübertragene Vibration

Artikel bewerten
(8 Stimmen)

Exposition durch Beruf

Mechanische Vibrationen, die durch angetriebene Prozesse oder Werkzeuge entstehen und an den Fingern oder der Handfläche in den Körper eindringen, werden als mechanische Vibration bezeichnet handübertragene Vibration. Häufige Synonyme für handübertragene Schwingungen sind Hand-Arm-Schwingungen und lokale oder segmentale Schwingungen. Angetriebene Prozesse und Werkzeuge, die die Hände von Bedienern Vibrationen aussetzen, sind in mehreren industriellen Aktivitäten weit verbreitet. Die berufsbedingte Exposition gegenüber von Hand übertragenen Vibrationen entsteht durch handgeführte angetriebene Werkzeuge, die in der Fertigung (z. B. schlagende Metallbearbeitungswerkzeuge, Schleifmaschinen und andere rotierende Werkzeuge, Schlagschrauber), im Steinbruch, im Bergbau und im Bauwesen (z. B. Gesteinsbohrer, Stein- Hämmer, Spitzhämmer, Vibrationsverdichter), Land- und Forstwirtschaft (z. B. Kettensägen, Freischneider, Entrindungsmaschinen) und öffentliche Versorgungsunternehmen (z. B. Straßen- und Betonbrecher, Bohrhämmer, Handschleifer). Eine Exposition gegenüber von Hand übertragenen Vibrationen kann auch durch vibrierende Werkstücke entstehen, die in den Händen des Bedieners gehalten werden, wie beim Sockelschleifen, und durch in der Hand gehaltene Vibrationssteuerungen, wie beim Bedienen von Rasenmähern oder beim Steuern von vibrierenden Straßenverdichtern. Es wurde berichtet, dass die Zahl der Personen, die bei der Arbeit von Hand übertragenen Vibrationen ausgesetzt sind, in den Niederlanden 150,000, in Großbritannien 0.5 Millionen und in den Vereinigten Staaten 1.45 Millionen übersteigt. Eine übermäßige Belastung durch von Hand übertragene Vibrationen kann zu Erkrankungen der Blutgefäße, Nerven, Muskeln und Knochen und Gelenke der oberen Gliedmaßen führen. Es wurde geschätzt, dass 1.7 bis 3.6 % der Arbeitnehmer in europäischen Ländern und den Vereinigten Staaten potenziell schädlichen handübertragenen Vibrationen ausgesetzt sind (ISSA International Section for Research 1989). Der Begriff Hand-Arm-Vibrationssyndrom (HAV) wird üblicherweise verwendet, um sich auf Anzeichen und Symptome zu beziehen, die mit der Exposition gegenüber von der Hand übertragenen Vibrationen verbunden sind, darunter:

  • Gefäßerkrankungen
  • periphere neurologische Störungen
  • Knochen- und Gelenkerkrankungen
  • Muskelerkrankungen
  • andere Erkrankungen (Ganzkörper, Zentralnervensystem).

 

Freizeitaktivitäten wie Motorradfahren oder die Verwendung von vibrierenden Haushaltswerkzeugen können die Hände gelegentlich Vibrationen mit hoher Amplitude aussetzen, aber nur lange tägliche Expositionen können zu Gesundheitsproblemen führen (Griffin 1990).

Die Beziehung zwischen der berufsbedingten Exposition gegenüber handübertragenen Vibrationen und nachteiligen Auswirkungen auf die Gesundheit ist alles andere als einfach. Tabelle 1 listet einige der wichtigsten Faktoren auf, die zu Verletzungen der oberen Gliedmaßen von Arbeitern führen, die Vibrationen ausgesetzt sind.


Tabelle 1. Einige Faktoren, die möglicherweise mit gesundheitsschädlichen Wirkungen bei von der Hand übertragenen Vibrationsexpositionen zusammenhängen

Schwingungseigenschaften

  • Größe (Effektivwert, Spitze, gewichtet/ungewichtet)
  • Frequenz (Spektren, dominante Frequenzen)
  • Richtung (x-, y-, z-Achse)

 

Werkzeuge oder Prozesse

  • Werkzeugkonstruktion (tragbar, stationär)
  • Werkzeugtyp (schlagend, rotierend, rotierend schlagend)
  • Anforderungen
  • Produktion
  • Material, das bearbeitet wird

 

Belichtungsbedingungen

  • Dauer (tägliche, jährliche Expositionen)
  • Expositionsmuster (kontinuierlich, intermittierend, Ruhezeiten)
  • Kumulierte Expositionsdauer

 

Umweltbedingungen

  • Umgebungstemperatur
  • Airflow
  • Luftfeuchtigkeit
  • Lärm
  • Dynamische Reaktion des Finger-Hand-Arm-Systems
  • Mechanische Impedanz
  • Vibrationsübertragbarkeit
  • Absorbierte Energie

 

Individuelle Eigenschaften

  • Arbeitsweise (Griffkraft, Schubkraft, Hand-Arm-Haltung, Körperhaltung)
  • Gesundheit
  • Ausbildung
  • Fähigkeit
  • Verwendung von Handschuhen
  • Individuelle Verletzungsanfälligkeit 

Biodynamik

Es ist anzunehmen, dass Faktoren, die die Vibrationsübertragung in das Finger-Hand-Arm-System beeinflussen, eine relevante Rolle bei der Entstehung von Vibrationsverletzungen spielen. Die Übertragung von Vibrationen hängt sowohl von den physikalischen Eigenschaften der Vibration (Stärke, Frequenz, Richtung) als auch von der dynamischen Reaktion der Hand ab (Griffin 1990).

Übertragbarkeit und Impedanz

Experimentelle Ergebnisse zeigen, dass das mechanische Verhalten der oberen Extremität des Menschen komplex ist, da die Impedanz des Hand-Arm-Systems – d. und Orientierung der Hand und des Arms in Bezug auf die Stimulusachse. Die Impedanz wird auch durch die Körperkonstitution und strukturelle Unterschiede der verschiedenen Teile der oberen Extremität beeinflusst (z. B. ist die mechanische Impedanz der Finger viel niedriger als die der Handfläche). Im Allgemeinen führen höhere Vibrationspegel sowie engere Handgriffe zu einer höheren Impedanz. Es wurde jedoch festgestellt, dass die Änderung der Impedanz stark von der Frequenz und Richtung des Vibrationsreizes und verschiedenen Quellen von sowohl intra- als auch interindividueller Variabilität abhängt. In mehreren Studien wurde über einen Resonanzbereich für das Finger-Hand-Arm-System im Frequenzbereich zwischen 80 und 300 Hz berichtet.

Messungen der Vibrationsübertragung durch den menschlichen Arm haben gezeigt, dass Vibrationen mit niedrigerer Frequenz (>50 Hz) mit geringer Dämpfung entlang der Hand und des Unterarms übertragen werden. Die Dämpfung am Ellbogen ist abhängig von der Armhaltung, da die Schwingungsübertragung mit zunehmendem Beugewinkel am Ellbogengelenk tendenziell abnimmt. Bei höheren Frequenzen (> 50 Hz) nimmt die Vibrationsübertragung mit zunehmender Frequenz progressiv ab, und oberhalb von 150 bis 200 Hz wird die meiste Vibrationsenergie im Gewebe der Hand und der Finger dissipiert. Aus Transmissionsmessungen wurde gefolgert, dass im hochfrequenten Bereich Vibrationen für Schäden an den weichen Strukturen der Finger und Hände verantwortlich sein können, während niederfrequente Vibrationen mit hoher Amplitude (z. B. von schlagenden Werkzeugen) mit Verletzungen verbunden sein können an Handgelenk, Ellbogen und Schulter.

Faktoren, die die Finger- und Handdynamik beeinflussen

Es kann davon ausgegangen werden, dass die nachteiligen Wirkungen der Vibrationsexposition mit der in den oberen Gliedmaßen dissipierten Energie zusammenhängen. Die Energieabsorption hängt stark von Faktoren ab, die die Kopplung des Finger-Hand-Systems mit der Vibrationsquelle beeinflussen. Variationen des Griffdrucks, der statischen Kraft und der Haltung verändern die dynamische Reaktion von Finger, Hand und Arm und folglich die übertragene und absorbierte Energiemenge. So hat beispielsweise der Griffdruck einen erheblichen Einfluss auf die Energieabsorption und generell gilt: Je höher der Handgriff, desto größer die auf das Hand-Arm-System übertragene Kraft. Dynamische Reaktionsdaten können relevante Informationen liefern, um das Verletzungspotenzial von Werkzeugvibrationen zu bewerten und die Entwicklung von Antivibrationsgeräten wie Handgriffen und Handschuhen zu unterstützen.

Akute Auswirkungen

Subjektives Unbehagen

Vibrationen werden von verschiedenen Hautmechanorezeptoren wahrgenommen, die sich im (epi-)dermalen und subkutanen Gewebe der glatten und nackten (kahlen) Haut der Finger und Hände befinden. Sie werden entsprechend ihrer Anpassungs- und Empfangsfeldeigenschaften in zwei Kategorien eingeteilt – langsam und schnell adaptierend. Merkel-Scheiben und Ruffini-Endungen finden sich in den sich langsam anpassenden mechanorezeptiven Einheiten, die auf statischen Druck und langsame Druckänderungen reagieren und bei niedriger Frequenz (<16 Hz) angeregt werden. Schnell adaptierende Einheiten haben Meissner-Körperchen und Pacini-Körperchen, die auf schnelle Reizänderungen reagieren und für das Vibrationsempfinden im Frequenzbereich zwischen 8 und 400 Hz verantwortlich sind. Die subjektive Reaktion auf von Hand übertragene Vibrationen wurde in mehreren Studien verwendet, um Schwellenwerte, Konturen äquivalenter Empfindungen und unangenehme oder Toleranzgrenzen für Vibrationsreize bei verschiedenen Frequenzen zu erhalten (Griffin 1990). Experimentelle Ergebnisse zeigen, dass die Empfindlichkeit des Menschen gegenüber Vibrationen mit zunehmender Frequenz sowohl für Komfort- als auch Belästigungs-Vibrationspegel abnimmt. Vertikale Vibrationen scheinen unangenehmer zu sein als Vibrationen in anderen Richtungen. Es wurde auch festgestellt, dass das subjektive Unbehagen eine Funktion der spektralen Zusammensetzung der Vibration und der auf den vibrierenden Griff ausgeübten Griffkraft ist.

Aktivitätsstörung

Akute Exposition gegenüber von Hand übertragenen Vibrationen kann aufgrund einer Verringerung der Erregbarkeit der Haut-Mechanorezeptoren zu einem vorübergehenden Anstieg der vibrotaktilen Schwellen führen. Die Größe der vorübergehenden Schwellenverschiebung sowie die Erholungszeit werden von mehreren Variablen beeinflusst, wie z. B. den Eigenschaften des Stimulus (Frequenz, Amplitude, Dauer), der Temperatur sowie dem Alter des Arbeiters und früheren Vibrationsexposition. Die Einwirkung von Kälte verschlimmert die durch Vibrationen induzierte taktile Depression, da niedrige Temperaturen eine vasokonstriktive Wirkung auf die Fingerzirkulation haben und die Hauttemperatur der Finger verringern. Bei vibrationsexponierten Arbeitern, die häufig in einer kalten Umgebung arbeiten, können wiederholte Episoden akuter Beeinträchtigung des Tastempfindens zu einer dauerhaften Verringerung der sensorischen Wahrnehmung und zum Verlust der manipulativen Geschicklichkeit führen, was wiederum die Arbeitstätigkeit beeinträchtigen und das Risiko erhöhen kann für akute Verletzungen durch Unfälle.

Nicht-vaskuläre Wirkungen

Skelett-

Vibrationsbedingte Knochen- und Gelenkverletzungen sind umstritten. Verschiedene Autoren sind der Ansicht, dass Knochen- und Gelenkerkrankungen bei Arbeitern, die mit handgeführten Vibrationswerkzeugen arbeiten, nicht spezifisch sind und denen des Alterungsprozesses und schwerer körperlicher Arbeit ähnlich sind. Andererseits haben einige Forscher berichtet, dass charakteristische Skelettveränderungen in den Händen, den Handgelenken und den Ellbogen resultieren können, wenn sie über längere Zeit von der Hand übertragenen Vibrationen ausgesetzt sind. Frühere Röntgenuntersuchungen hatten eine hohe Prävalenz von Knochenvakuolen und -zysten in Händen und Handgelenken von vibrationsbelasteten Arbeitern gezeigt, neuere Studien zeigten jedoch keine signifikante Zunahme gegenüber Kontrollgruppen von Arbeitern. Bei Kohlebergarbeitern, Straßenbauarbeitern und metallverarbeitenden Arbeitern, die Stößen und niederfrequenten Vibrationen mit hoher Amplitude von pneumatischen Schlagwerkzeugen ausgesetzt waren, wurde über eine übermäßige Prävalenz von Handgelenks-Osteoarthrose und Ellenbogen-Arthrose und Osteophytose berichtet. Im Gegenteil, es gibt kaum Hinweise auf eine erhöhte Prävalenz von degenerativen Knochen- und Gelenkerkrankungen in den oberen Gliedmaßen von Arbeitern, die mittel- oder hochfrequenten Vibrationen von Kettensägen oder Schleifmaschinen ausgesetzt sind. Schwere körperliche Anstrengung, kraftvolles Greifen und andere biomechanische Faktoren können für das häufigere Auftreten von Skelettverletzungen bei Arbeitern verantwortlich sein, die mit Schlagwerkzeugen arbeiten. Lokale Schmerzen, Schwellungen und Gelenksteifheit und -deformitäten können mit radiologischen Befunden einer Knochen- und Gelenkdegeneration einhergehen. In einigen Ländern (darunter Frankreich, Deutschland, Italien) gelten Knochen- und Gelenkerkrankungen bei Arbeitern, die handgeführte Vibrationswerkzeuge verwenden, als Berufskrankheit, und die betroffenen Arbeiter werden entschädigt.

Neurologisch

Arbeiter, die mit vibrierenden Werkzeugen hantieren, können ein Kribbeln und Taubheitsgefühl in ihren Fingern und Händen verspüren. Wenn die Vibrationsbelastung andauert, verschlimmern sich diese Symptome tendenziell und können die Arbeitsfähigkeit und die Lebensaktivitäten beeinträchtigen. Vibrationsexponierte Arbeiter können bei klinischen Untersuchungen erhöhte Vibrations-, Temperatur- und Tastschwellen aufweisen. Es wurde vermutet, dass eine kontinuierliche Vibrationsexposition nicht nur die Erregbarkeit von Hautrezeptoren herabsetzen kann, sondern auch pathologische Veränderungen in den Fingernerven hervorrufen kann, wie z. B. ein perineurales Ödem, gefolgt von Fibrose und Nervenfaserverlust. Epidemiologische Erhebungen bei Arbeitern, die Vibrationen ausgesetzt sind, zeigen, dass die Prävalenz peripherer neurologischer Störungen von wenigen Prozent bis zu mehr als 80 Prozent variiert und dass der sensorische Verlust die Benutzer einer Vielzahl von Werkzeugtypen betrifft. Es scheint, dass sich die Vibrationsneuropathie unabhängig von anderen vibrationsinduzierten Störungen entwickelt. Auf dem Stockholm Workshop 86 (1987) wurde eine Skala der neurologischen Komponente des HAV-Syndroms vorgeschlagen, die aus drei Stufen gemäß den Symptomen und den Ergebnissen der klinischen Untersuchung und objektiven Tests besteht (Tabelle 2).

Tabelle 2. Sensorineurale Stadien der Stockholm-Workshop-Skala für das Hand-Arm-Vibrationssyndrom

Stufe

Anzeichen und Symptome

0SN

Vibrationen ausgesetzt, aber keine Symptome

1SN

Intermittierende Taubheit, mit oder ohne Kribbeln

2SN

Intermittierende oder anhaltende Taubheit, reduzierte sensorische Wahrnehmung

3SN

Intermittierende oder anhaltende Taubheit, reduzierte taktile Diskriminierung und/oder
manipulative Geschicklichkeit

Quelle: Stockholm Workshop 86 1987.

Eine sorgfältige Differentialdiagnose ist erforderlich, um die Vibrationsneuropathie von Einklemmungsneuropathien wie dem Karpaltunnelsyndrom (CTS) zu unterscheiden, einer Störung, die auf eine Kompression des Nervus medianus zurückzuführen ist, wenn dieser durch einen anatomischen Tunnel im Handgelenk verläuft. CTS scheint eine häufige Störung in einigen Berufsgruppen zu sein, die vibrierende Werkzeuge verwenden, wie z. B. Gesteinsbohrer, Beschichter und Forstarbeiter. Es wird angenommen, dass ergonomische Stressoren, die auf die Hand und das Handgelenk einwirken (sich wiederholende Bewegungen, kräftiges Greifen, ungünstige Körperhaltungen), zusätzlich zu Vibrationen CTS bei Arbeitern verursachen können, die mit vibrierenden Werkzeugen umgehen. Die Elektroneuromyographie, die sensorische und motorische Nervengeschwindigkeiten misst, hat sich als nützlich erwiesen, um CTS von anderen neurologischen Erkrankungen zu unterscheiden.

Muskulös

Vibrationen ausgesetzte Arbeiter können über Muskelschwäche und Schmerzen in Händen und Armen klagen. Bei einigen Personen kann Muskelermüdung zu Behinderungen führen. In Folgestudien an Holzfällern wurde über eine Abnahme der Handgriffstärke berichtet. Als mögliche ätiologische Faktoren für Muskelsymptome wurden direkte mechanische Verletzungen oder periphere Nervenschäden vorgeschlagen. Bei Arbeitern, die Vibrationen ausgesetzt waren, wurde über andere arbeitsbedingte Störungen berichtet, wie z. B. Tendinitis und Tenosynovitis in den oberen Gliedmaßen und die Dupuytren-Kontraktur, eine Erkrankung des Fasziengewebes der Handfläche. Diese Störungen scheinen mit ergonomischen Stressfaktoren verbunden zu sein, die durch schwere manuelle Arbeit entstehen, und der Zusammenhang mit von der Hand übertragenen Vibrationen ist nicht schlüssig.

Gefäßerkrankungen

Raynauds Phänomen

Giovanni Loriga, ein italienischer Arzt, berichtete erstmals 1911, dass Steinmetze, die pneumatische Hämmer auf Marmor und Steinblöcke in einigen Werften in Rom verwendeten, unter erblassenden Fingern litten, die der von Maurice Raynaud 1862 beschriebenen digitalen vasospastischen Reaktion auf Kälte oder emotionalen Stress ähnelten. Ähnliche Beobachtungen wurden von Alice Hamilton (1918) bei Steinmetzarbeiten in den Vereinigten Staaten und später von mehreren anderen Forschern gemacht. In der Literatur werden verschiedene Synonyme verwendet, um vibrationsinduzierte Gefäßerkrankungen zu beschreiben: toter oder weißer Finger, Raynaud-Phänomen des beruflichen Ursprungs, traumatische vasospastische Erkrankung und in jüngerer Zeit Vibrations-induzierter weißer Finger (VWF). Klinisch ist VWF durch Episoden von weißen oder blassen Fingern gekennzeichnet, die durch einen spastischen Verschluss der digitalen Arterien verursacht werden. Die Attacken werden meist durch Kälte ausgelöst und dauern 5 bis 30 bis 40 Minuten. Während eines Angriffs kann ein vollständiger Verlust der taktilen Sensibilität auftreten. In der Erholungsphase, die üblicherweise durch Wärme oder lokale Massage beschleunigt wird, können an den betroffenen Fingern Rötungen als Folge einer reaktiven Erhöhung des Blutflusses in den Hautgefäßen auftreten. In den seltenen fortgeschrittenen Fällen können wiederholte und schwere digitale vasospastische Attacken zu trophischen Veränderungen (Ulcera oder Gangrän) in der Haut der Fingerspitzen führen. Um das kälteinduzierte Raynaud-Phänomen bei Arbeitern zu erklären, die Vibrationen ausgesetzt sind, berufen sich einige Forscher auf einen übertriebenen zentralen sympathischen Vasokonstriktorreflex, der durch eine längere Exposition gegenüber schädlichen Vibrationen verursacht wird, während andere dazu neigen, die Rolle von vibrationsinduzierten lokalen Veränderungen in den digitalen Gefäßen zu betonen (z. Verdickung der Muskelwand, Endothelschädigung, funktionelle Rezeptorveränderungen). Auf dem Stockholm Workshop 86 (1987) wurde eine Einstufungsskala für die Einstufung von VWF vorgeschlagen (Tabelle 3). Ein numerisches System für VWF-Symptome, das von Griffin entwickelt wurde und auf Scores für das Blanchieren verschiedener Phalangen basiert, ist ebenfalls verfügbar (Griffin 1990). Mehrere Labortests werden verwendet, um VWF objektiv zu diagnostizieren. Die meisten dieser Tests basieren auf Kälteprovokation und der Messung der Fingerhauttemperatur oder des digitalen Blutflusses und -drucks vor und nach dem Abkühlen von Fingern und Händen.

Tabelle 3. Die Stockholm-Workshop-Skala zur Einstufung des kälteinduzierten Raynaud-Phänomens beim Hand-Arm-Vibrationssyndrom

Stufe

Klasse

Symptome

0

-

Keine Angriffe

1

Mild

Gelegentliche Attacken, die nur die Spitzen eines oder mehrerer Finger betreffen

2

Konservativ

Gelegentlich distale und mittlere Attacken (selten auch
proximale) Phalangen eines oder mehrerer Finger

3

Schwer

Häufige Attacken, die alle Phalangen der meisten Finger betreffen

4

Sehr ernst

Wie im Stadium 3, mit trophischen Hautveränderungen an den Fingerkuppen

Quelle: Stockholm Workshop 86 1987.

Epidemiologische Studien haben darauf hingewiesen, dass die Prävalenz von VWF sehr breit ist, von weniger als 1 bis 100 Prozent. Es wurde festgestellt, dass VWF mit der Verwendung von schlagenden Metallbearbeitungswerkzeugen, Schleifmaschinen und anderen rotierenden Werkzeugen, schlagenden Hämmern und Bohrern, die bei Ausgrabungen verwendet werden, vibrierenden Maschinen, die im Wald verwendet werden, und anderen angetriebenen Werkzeugen und Prozessen in Verbindung gebracht werden. VWF ist in vielen Ländern als Berufskrankheit anerkannt. Seit 1975–80 wurde bei Forstarbeitern sowohl in Europa als auch in Japan ein Rückgang der Inzidenz neuer VWF-Fälle gemeldet, nachdem Antivibrations-Kettensägen und administrative Maßnahmen zur Verkürzung der Sägenutzungsdauer eingeführt wurden. Ähnliche Erkenntnisse liegen für andere Werkzeugtypen noch nicht vor.

Andere Störungen

Einige Studien weisen darauf hin, dass der Hörverlust bei Arbeitnehmern, die von VWF betroffen sind, größer ist als aufgrund von Alterung und Lärmbelastung durch die Verwendung von vibrierenden Werkzeugen zu erwarten ist. Es wurde vermutet, dass bei VWF-Patienten ein zusätzliches Risiko für eine Hörbeeinträchtigung aufgrund einer vibrationsinduzierten sympathischen Reflexvasokonstriktion der Blutgefäße besteht, die das Innenohr versorgen. Zusätzlich zu den peripheren Störungen wurde von einigen russischen und japanischen Schulen für Arbeitsmedizin über andere nachteilige Auswirkungen auf die Gesundheit des endokrinen und zentralen Nervensystems von Arbeitern berichtet, die Vibrationen ausgesetzt waren (Griffin 1990). Das klinische Bild, das als „Vibrationskrankheit“ bezeichnet wird, umfasst Anzeichen und Symptome im Zusammenhang mit einer Dysfunktion der autonomen Zentren des Gehirns (z. B. anhaltende Müdigkeit, Kopfschmerzen, Reizbarkeit, Schlafstörungen, Impotenz, elektroenzephalografische Anomalien). Diese Ergebnisse sollten mit Vorsicht interpretiert werden, und weitere sorgfältig konzipierte epidemiologische und klinische Forschungsarbeiten sind erforderlich, um die Hypothese eines Zusammenhangs zwischen Störungen des zentralen Nervensystems und der Exposition gegenüber von Hand übertragenen Vibrationen zu bestätigen.

Standards

Mehrere Länder haben Standards oder Richtlinien für die Exposition gegenüber von Hand übertragenen Vibrationen verabschiedet. Die meisten basieren auf dem Internationalen Standard 5349 (ISO 1986). Zur Messung der von der Hand übertragenen Vibrationen empfiehlt ISO 5349 die Verwendung einer Frequenzbewertungskurve, die die frequenzabhängige Empfindlichkeit der Hand auf Vibrationsreize annähert. Die frequenzgewichtete Schwingungsbeschleunigung (ah,w) erhält man mit einem geeigneten Gewichtungsfilter oder durch Summierung gewichteter Beschleunigungswerte gemessen in Oktav- oder Terzbändern entlang eines orthogonalen Koordinatensystems (xh, yh, zh), (Abbildung 1). In ISO 5349 wird die tägliche Exposition gegenüber Vibrationen als energieäquivalente frequenzgewichtete Beschleunigung für einen Zeitraum von vier Stunden ((ah,w)Gleichung(4) in m/s2 rms) nach folgender Gleichung:

(ah,w)Gleichung(4)=(T/ 4)½(ah,w)eq(T)

woher T ist die tägliche Expositionszeit, ausgedrückt in Stunden und (ah,w)eq(T) ist die energieäquivalente frequenzgewichtete Beschleunigung für die tägliche Expositionszeit T. Die Norm bietet eine Anleitung zur Berechnung von (ah,w)eq(T) wenn ein typischer Arbeitstag durch mehrere Expositionen unterschiedlicher Größenordnung und Dauer gekennzeichnet ist. Anhang A zu ISO 5349 (der nicht Bestandteil der Norm ist) schlägt eine Dosis-Wirkungs-Beziehung vor zwischen (ah,w)Gleichung(4) und VWF, die durch die Gleichung angenähert werden können:

C=[(ah,w)Gleichung(4) TF/ 95]2 x 100

woher C ist das Perzentil der exponierten Arbeiter, von denen erwartet wird, dass sie VWF zeigen (im Bereich von 10 bis 50 %), und TF ist die Expositionszeit vor dem Blanchieren der Finger bei den betroffenen Arbeitern (im Bereich von 1 bis 25 Jahren). Zur Berechnung von (ah,w)Gleichung(4), die 50 m/s nicht überschreiten sollte2. Gemäß der ISO-Dosis-Wirkungs-Beziehung ist zu erwarten, dass VWF bei etwa 10 % der Arbeiter auftritt, die einer täglichen Vibrationsbelastung von 3 m/s ausgesetzt sind2 für zehn Jahre.

 

Abbildung 1. Basiszentrisches Koordinatensystem für die Messung von handübertragenen Schwingungen

 

VIB030F1

 

Um das Risiko vibrationsinduzierter Gesundheitsschäden zu minimieren, wurden von anderen Komitees oder Organisationen Aktionsniveaus und Grenzwerte (TLVs) für die Vibrationsexposition vorgeschlagen. Die American Conference of Governmental Industrial Hygienists (ACGIH) hat TLVs für handübertragene Vibrationen, gemessen nach dem ISO-Frequenzgewichtungsverfahren (American Conference of Governmental Industrial Hygienists 1992), veröffentlicht (Tabelle 4). Laut ACGIH betreffen die TLV-Vorschläge Vibrationsbelastungen, denen „fast alle Arbeitnehmer wiederholt ausgesetzt sein können, ohne über Stufe 1 des Stockholmer Werkstatt-Klassifizierungssystems für VWF hinauszukommen“. In jüngerer Zeit wurden von der Kommission der Europäischen Gemeinschaften im Rahmen eines Vorschlags für eine Richtlinie zum Schutz der Arbeitnehmer vor der Gefährdung durch physikalische Einwirkungen (Rat der Europäischen Union 1994) Expositionsgrenzwerte für von Hand übertragene Schwingungen vorgelegt (Tabelle 5 ). In der vorgeschlagenen Richtlinie wird die für die Bewertung der Vibrationsgefährdung verwendete Größe als achtstündige energieäquivalente frequenzgewichtete Beschleunigung ausgedrückt, A(8)=(T/ 8)½ (ah,w)eq(T), indem die in orthogonalen Koordinaten bestimmte Vektorsumme der gewichteten Beschleunigungen verwendet wird aSumme=(ax,h,w2+aj,h,w2+az,h,w2)½ am vibrierenden Werkzeuggriff oder Werkstück. Die in der Richtlinie angegebenen Methoden zur Messung und Bewertung der Vibrationsexposition sind im Wesentlichen vom British Standard (BS) 6842 (BSI 1987a) abgeleitet. Der BS-Standard empfiehlt jedoch keine Expositionsgrenzwerte, sondern liefert einen informativen Anhang zum Kenntnisstand der Dosis-Wirkungs-Beziehung für handübertragene Schwingungen. Die geschätzten frequenzgewichteten Beschleunigungsgrößen, die bei 10 % der Arbeitnehmer, die Vibrationen gemäß dem BS-Standard ausgesetzt sind, VWF verursachen können, sind in Tabelle 6 aufgeführt.

___________________________________________________________________________

Tabelle 4. Schwellenwerte für von Hand übertragene Schwingungen

Tägliche Gesamtexposition (Stunden)              

  Frequenzbewertete Effektivbeschleunigung in der dominierenden Richtung, die nicht überschritten werden sollte

 

g*

 4-8

 4

 0.40

 2-4 

 6

 0.61

 1-2

 8

 0.81

 1

 12

 1.22

* 1 g = 9.81 .

Quelle: Nach Angaben der American Conference of Government Industrial Hygienists 1992.

___________________________________________________________________________

Tabelle 5. Vorschlag des Rates der Europäischen Union für eine Richtlinie des Rates über physikalische Einwirkungen: Anhang II A. Handübertragene Schwingungen (1994)

 Stufen ()

  A(8)*   

Definitionen

 Schwelle

  1

Der Belichtungswert, unterhalb dessen kontinuierlich und/oder wiederholt

Die Exposition hat keine nachteiligen Auswirkungen auf die Gesundheit und Sicherheit der Arbeitnehmer

 Action

  2.5

Der Wert, über dem eine oder mehrere der Maßnahmen**

die in den jeweiligen Anhängen angegeben sind, durchzuführen

 Expositionsgrenzwert  

  5

Der Expositionswert, über dem sich eine ungeschützte Person befindet

unannehmbaren Risiken ausgesetzt. Das Überschreiten dieses Niveaus ist

verboten und muss durch die Umsetzung verhindert werden

der Bestimmungen der Richtlinie***

* A(8) = 8 h energieäquivalente frequenzgewichtete Beschleunigung.

** Information, Schulung, technische Maßnahmen, Gesundheitsüberwachung.

*** Geeignete Maßnahmen zum Schutz von Gesundheit und Sicherheit.

___________________________________________________________________________

Tabelle 6. Frequenzbewertete Schwingungsbeschleunigungsgrößen ( rms), von dem erwartet werden kann, dass es bei 10 % der exponierten Personen zu erbleichenden Fingern führt*

  Tägliche Exposition (Stunden)    

               Lebenslange Exposition (Jahre)

 

 0.5      

 1         

 2        

 4        

 8        

 16     

 0.25

 256.0     

 128.0     

 64.0     

 32.0     

 16.0     

 8.0     

 0.5

 179.2

 89.6

 44.8

 22.4

 11.2

 5.6

 1

 128.0

 64.0

 32.0

 16.0

 8.0

 4.0

 2

 89.6

 44.8

 22.4

 11.2

 5.6

 2.8

 4

 64.0

 32.0

 16.0

 8.0

 4.0

 2.0

 8

 44.8

 22.4

 11.2

 5.6

 2.8

 1.4

* Bei kurzzeitiger Exposition sind die Ausmaße hoch und Gefäßstörungen sind möglicherweise nicht das erste nachteilige Symptom, das sich entwickelt.

Quelle: Gemäß British Standard 6842. 1987, BSI 1987a.

___________________________________________________________________________

Messung und Bewertung der Exposition

Vibrationsmessungen werden durchgeführt, um die Entwicklung neuer Werkzeuge zu unterstützen, die Vibration von Werkzeugen beim Kauf zu überprüfen, die Wartungsbedingungen zu überprüfen und die menschliche Exposition gegenüber Vibrationen am Arbeitsplatz zu bewerten. Schwingungsmessgeräte bestehen im Allgemeinen aus einem Wandler (normalerweise ein Beschleunigungsmesser), einem Verstärkungsgerät, einem Filter (Bandpassfilter und/oder Frequenzbewertungsnetzwerk) und einem Amplituden- oder Pegelanzeiger oder -schreiber. Vibrationsmessungen sollten am Werkzeuggriff oder Werkstück nahe der Oberfläche der Hand(en) durchgeführt werden, wo die Vibration in den Körper eintritt. Eine sorgfältige Auswahl der Beschleunigungsmesser (z. B. Typ, Masse, Empfindlichkeit) und geeignete Verfahren zur Befestigung des Beschleunigungsmessers auf der vibrierenden Oberfläche sind erforderlich, um genaue Ergebnisse zu erhalten. Auf die Hand übertragene Schwingungen sollten gemessen und in den entsprechenden Richtungen eines orthogonalen Koordinatensystems angegeben werden (Abbildung 1). Die Messung sollte über einen Frequenzbereich von mindestens 5 bis 1,500 Hz erfolgen, und der Beschleunigungsfrequenzgehalt der Schwingung in einer oder mehreren Achsen kann in Oktavbändern mit Mittenfrequenzen von 8 bis 1,000 Hz oder in Terzbändern dargestellt werden mit Mittenfrequenzen von 6.3 bis 1,250 Hz. Die Beschleunigung kann auch als frequenzbewertete Beschleunigung ausgedrückt werden, indem ein Bewertungsnetzwerk verwendet wird, das den in ISO 5349 oder BS 6842 festgelegten Merkmalen entspricht. Messungen am Arbeitsplatz zeigen, dass unterschiedliche Schwingungsgrößen und Frequenzspektren an Werkzeugen des gleichen Typs oder wann auftreten können dasselbe Werkzeug wird anders bedient. Abbildung 2 gibt den Mittelwert und den Verteilungsbereich der gewichteten Beschleunigungen wieder, die in der dominanten Achse von kraftbetriebenen Werkzeugen gemessen wurden, die in Forstwirtschaft und Industrie verwendet werden (ISSA International Section for Research 1989). In mehreren Normen wird die von Hand übertragene Vibrationsexposition in Form einer vierstündigen oder achtstündigen energieäquivalenten frequenzgewichteten Beschleunigung bewertet, die mit Hilfe der obigen Gleichungen berechnet wird. Das Verfahren zum Erhalten der energieäquivalenten Beschleunigung geht davon aus, dass die tägliche Expositionszeit, die erforderlich ist, um gesundheitsschädliche Wirkungen hervorzurufen, umgekehrt proportional zum Quadrat der frequenzgewichteten Beschleunigung ist (z vier). Diese Zeitabhängigkeit wird für Standardisierungszwecke als angemessen angesehen und ist für die Instrumentierung geeignet, aber es sollte beachtet werden, dass sie nicht vollständig durch epidemiologische Daten belegt ist (Griffin 1990).

Abbildung 2. Mittelwerte und Verteilungsbereich der frequenzgewichteten Effektivbeschleunigung in der dominanten Achse, gemessen an dem/den Griff(en) einiger Elektrowerkzeuge, die in Forstwirtschaft und Industrie verwendet werden

 VIB030F2

abwehr

Die Vermeidung von Verletzungen oder Störungen durch handübertragene Schwingungen erfordert die Umsetzung administrativer, technischer und medizinischer Verfahren (ISO 1986; BSI 1987a). Auch Hersteller und Anwender vibrierender Werkzeuge sollten entsprechend beraten werden. Zu den administrativen Maßnahmen sollten angemessene Informationen und Schulungen gehören, um die Bediener vibrierender Maschinen anzuweisen, sichere und korrekte Arbeitspraktiken anzuwenden. Da davon ausgegangen wird, dass eine kontinuierliche Exposition gegenüber Vibrationen die Vibrationsgefahr erhöht, sollten Arbeitspläne so gestaltet werden, dass sie Ruhezeiten enthalten. Technische Maßnahmen sollten die Auswahl von Werkzeugen mit den geringsten Vibrationen und mit geeigneter ergonomischer Gestaltung beinhalten. Gemäß der EG-Richtlinie für die Sicherheit von Maschinen (Rat der Europäischen Gemeinschaften 1989) muss der Hersteller veröffentlichen, ob die frequenzbewertete Beschleunigung von handübertragenen Schwingungen 2.5 m/s überschreitet2, bestimmt durch geeignete Testcodes, wie sie in der Internationalen Norm ISO 8662/1 und ihren Begleitdokumenten für spezifische Werkzeuge (ISO 1988) angegeben sind. Die Wartungsbedingungen der Werkzeuge sollten sorgfältig durch regelmäßige Vibrationsmessungen überprüft werden. Bei schwingungsexponierten Arbeitnehmern sollten in regelmäßigen Abständen arbeitsmedizinische Vorsorgeuntersuchungen und anschließende klinische Untersuchungen durchgeführt werden. Die Ziele der ärztlichen Überwachung sind die Aufklärung des Arbeitnehmers über mögliche Gefährdungen durch Vibrationsexposition, die Beurteilung des Gesundheitszustandes und die frühzeitige Diagnose von vibrationsbedingten Störungen. Bei der ersten Screening-Untersuchung sollte besonders auf Erkrankungen geachtet werden, die durch Vibrationen verschlimmert werden können (z. B. konstitutionelle Neigung zum weißen Finger, einige Formen des sekundären Raynaud-Phänomens, frühere Verletzungen der oberen Extremitäten, neurologische Störungen). Die Vermeidung oder Verringerung der Vibrationsexposition für den betroffenen Arbeitnehmer sollte nach Berücksichtigung sowohl der Schwere der Symptome als auch der Merkmale des gesamten Arbeitsprozesses entschieden werden. Dem Arbeiter sollte geraten werden, angemessene Kleidung zu tragen, um den ganzen Körper warm zu halten, und das Rauchen von Tabak und den Konsum einiger Drogen, die den peripheren Kreislauf beeinträchtigen können, zu vermeiden oder zu minimieren. Handschuhe können nützlich sein, um die Finger und Hände vor Verletzungen zu schützen und sie warm zu halten. Sogenannte Antivibrationshandschuhe können eine gewisse Isolation der hochfrequenten Vibrationskomponenten einiger Werkzeuge bieten.

 

Zurück

Lesen Sie mehr 15499 mal Zuletzt geändert am Donnerstag, den 13. Oktober 2011 um 21:31 Uhr
Mehr in dieser Kategorie: « Ganzkörpervibration Bewegungskrankheit "

HAFTUNGSAUSSCHLUSS: Die ILO übernimmt keine Verantwortung für auf diesem Webportal präsentierte Inhalte, die in einer anderen Sprache als Englisch präsentiert werden, der Sprache, die für die Erstproduktion und Peer-Review von Originalinhalten verwendet wird. Bestimmte Statistiken wurden seitdem nicht aktualisiert die Produktion der 4. Auflage der Encyclopaedia (1998)."

Inhalte

Vibrationsreferenzen

Alexander, SJ, M Cotzin, JB Klee und GR Wendt. 1947. Studien zur Reisekrankheit XVI: Die Auswirkungen von Wellen und verschiedenen Frequenzen auf die Krankheitsraten bei identischer Beschleunigung. J Exp Psy 37: 440-447.

Amerikanische Konferenz staatlicher Industriehygieniker (ACGIH). 1992. Hand-Arm (segmentale) Vibration. In Schwellenwerten und biologischen Expositionsindizes für 1992-1993. Cincinnati, Ohio: ACGIH.

Bongers, PM und HC Boshuizen. 1990. Rückenerkrankungen und Ganzkörpervibrationen bei der Arbeit. These. Amsterdam: Universität Amsterdam.

British Standards Institution (BSI). 1987a. Messung und Bewertung der Exposition des Menschen gegenüber Vibrationen, die auf die Hand übertragen werden. BS 6842. London: BSI.

—. 1987b. Messung und Bewertung der Exposition des Menschen gegenüber mechanischen Ganzkörpervibrationen und wiederholten Schocks. BS 6841. London: BSI.

Rat der Europäischen Gemeinschaften (CEC). 1989. Richtlinie des Rates vom 14. Juni 1989 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Maschinen. Off J Eur Communities L 183:9-32.

Rat der Europäischen Union. 1994. Geänderter Vorschlag für eine Richtlinie des Rates über Mindestvorschriften zum Schutz von Sicherheit und Gesundheit der Arbeitnehmer vor der Gefährdung durch physikalische Einwirkungen. Off J Eur Communities C230 (19. August):3-29.

Dupuis, H. und G. Zerlett. 1986. Die Auswirkungen von Ganzkörpervibrationen. Berlin: Springer-Verlag.

Griffin, MJ. 1990. Handbuch der Humanschwingung. London: Akademische Presse.

Hamilton, A. 1918. Eine Studie über spastische Anämie in den Händen von Steinmetzen. Reihe Arbeitsunfälle und Hygiene Nr. 19. Bulletin Nr. 236. Washington, DC: Department of Labor Statistics.

Hasan, J. 1970. Biomedizinische Aspekte niederfrequenter Schwingungen. Gesundheit am Arbeitsplatz 6(1):19-45.

Internationale Organisation für Normung (ISO). 1974. Guide for the Evaluation of Human Exposure to Whole-Body Vibrations. Genf: ISO.

—. 1985. Bewertung der Exposition des Menschen gegenüber Ganzkörpervibrationen. Teil 1: Allgemeine Anforderungen. ISO 2631/1. Genf: ISO.

—. 1986. Mechanische Vibrationsrichtlinien für die Messung und Bewertung der menschlichen Exposition gegenüber handübertragenen Vibrationen. ISO 5349. Genf: ISO.

—. 1988. Handgehaltene tragbare Elektrowerkzeuge - Messung von Vibrationen am Handgriff. Teil 1: Allgemeines. ISO 8662/1. Genf: ISO.

IVSS Internationale Sektion für Forschung. 1989. Vibration bei der Arbeit. Paris: INRS.

Lawther, A und MJ Griffin. 1986. Vorhersage des Auftretens von Reisekrankheit aus der Stärke, Frequenz und Dauer der vertikalen Schwingung. J Acoust Soc Am 82: 957-966.

McCauley, ME, JW Royal, CD Wilie, JF O’Hanlon und RR Mackie. 1976. Motion Sickness Incidence: Exploratory Studies of Habituation Pitch and Roll, and the Refinement of a Mathematical Model. Technischer Bericht Nr. 1732-2. Golets, Kalifornien: Human Factors Research.

Rumjancev, GI. 1966. Gigiena truda v proizvodstve sbornogo shelezobetona [Arbeitshygiene bei der Herstellung von Stahlbeton]. Medicina (Moskau):1-128.

Schmidt, M. 1987. Die gemeinsame Einwirkung von Lärm und Ganzkörpervibration und deren Auswirkungen auf den Höverlust bei Agrotechnikern. Dissertation A. Halle, Deutschland: Landwirtschaftliche Fakultät der Martin-Luther-Universität.

Seidel, H. 1975. Systematische Darstellung physiologischer Reaktionen auf Ganzkörperschwingungen in vertikaler Richtung (Z-Achse) zur Ermittlung von biologischen Bewertungsparametern. Ergonomische Berichte 15:18-39.

Seidel, H. und R. Heide. 1986. Langzeitwirkungen von Ganzkörpervibrationen: Eine kritische Literaturübersicht. Int Arch Occup Environ Health 58:1-26.

Seidel, H., R. Blüthner, J. Martin, G. Menzel, R. Panuska und P. Ullsperger. 1992. Auswirkungen von isolierten und kombinierten Expositionen gegenüber Ganzkörpervibrationen und Lärm auf hörereignisbezogene Gehirnpotentiale und psychophysische Bewertung. Eur. J. Appl. Physiol. Occup. Phys. 65: 376–382.

Stockholm Workshop 86. 1987. Symptomatologie und diagnostische Methoden beim Hand-Arm-Vibrationssyndrom. Scand J Work Environ Health 13:271-388.