Mittwoch, März 16 2011 20: 59

Schmelzen und Raffinieren von Kupfer, Blei und Zink

Artikel bewerten
(5 Stimmen)

Adaptiert von EPA 1995.

Kupfer

Kupfer wird je nach Erzgehalt und Art der Erzlagerstätte sowohl im Tagebau als auch im Untertagebau abgebaut. Kupfererz enthält typischerweise weniger als 1 % Kupfer in Form von Sulfidmineralien. Sobald das Erz oberirdisch angeliefert wird, wird es zerkleinert und zu Pulverfeinheit gemahlen und dann zur weiteren Verarbeitung konzentriert. Beim Konzentrationsprozess wird gemahlenes Erz mit Wasser aufgeschlämmt, chemische Reagenzien werden hinzugefügt und Luft wird durch die Aufschlämmung geblasen. Die Luftbläschen lagern sich an den Kupfermineralien an und werden dann von der Oberseite der Flotationszellen abgeschöpft. Das Konzentrat enthält zwischen 20 und 30 % Kupfer. Die Tailings oder Gangminerale aus dem Erz fallen auf den Boden der Zellen und werden entfernt, durch Eindicker entwässert und als Schlamm zu einem Tailings-Teich zur Entsorgung transportiert. Das gesamte bei diesem Vorgang verwendete Wasser aus Entwässerungseindickern und dem Tailings pond wird zurückgewonnen und in den Prozess zurückgeführt.

Kupfer kann entweder pyrometallurgisch oder hydrometallurgisch hergestellt werden, abhängig von der als Charge verwendeten Erzart. Die Erzkonzentrate, die Kupfersulfid- und Eisensulfidmineralien enthalten, werden durch pyrometallurgische Prozesse behandelt, um hochreine Kupferprodukte zu erhalten. Oxiderze, die Kupferoxidmineralien enthalten, die zusammen mit anderen oxidierten Abfallmaterialien in anderen Teilen der Mine vorkommen können, werden durch hydrometallurgische Prozesse behandelt, um hochreine Kupferprodukte zu erhalten.

Die Umwandlung von Kupfer aus dem Erz in Metall erfolgt durch Schmelzen. Während des Schmelzens werden die Konzentrate getrocknet und einem von mehreren verschiedenen Ofentypen zugeführt. Dort werden die Sulfidmineralien teilweise oxidiert und geschmolzen, um eine Schicht aus Stein zu ergeben, eine Mischung aus Kupfer-Eisen-Sulfid und Schlacke, eine obere Abfallschicht.

Die Matte wird durch Konvertieren weiterverarbeitet. Die Schlacke wird aus dem Ofen abgestochen und vor Ort auf Schlackenhaufen gelagert oder entsorgt. Eine kleine Menge Schlacke wird als Gleisschotter und als Sandstrahlmittel verkauft. Ein drittes Produkt des Schmelzprozesses ist Schwefeldioxid, ein Gas, das gesammelt, gereinigt und zu Schwefelsäure zum Verkauf oder zur Verwendung in hydrometallurgischen Auslaugungsvorgängen verarbeitet wird.

Nach dem Schmelzen wird der Kupferstein einem Konverter zugeführt. Dabei wird der Kupferstein in einen liegenden zylindrischen Behälter (ca. 10½4 m) mit einer Reihe von Rohren gegossen. Die als Blasdüsen bezeichneten Rohre ragen in den Zylinder hinein und dienen zum Einbringen von Luft in den Konverter. Dem Kupferstein werden Kalk und Kieselsäure zugesetzt, die mit dem dabei entstehenden Eisenoxid zu Schlacke reagieren. Dem Konverter kann auch Altkupfer zugesetzt werden. Der Ofen wird gedreht, so dass die Düsen eingetaucht sind, und Luft wird in den geschmolzenen Stein geblasen, wodurch der Rest des Eisensulfids mit Sauerstoff reagiert, um Eisenoxid und Schwefeldioxid zu bilden. Dann wird der Konverter gedreht, um die Eisensilikatschlacke abzugießen.

Sobald das gesamte Eisen entfernt ist, wird der Konverter zurückgedreht und einem zweiten Luftstoß ausgesetzt, während dessen der Rest des Schwefels oxidiert und aus dem Kupfersulfid entfernt wird. Der Konverter wird dann gedreht, um das geschmolzene Kupfer abzugießen, das an diesem Punkt Blasenkupfer genannt wird (so genannt, weil es, wenn es an diesem Punkt erstarren darf, aufgrund des Vorhandenseins von gasförmigem Sauerstoff und Schwefel eine unebene Oberfläche hat). Schwefeldioxid aus den Konvertern wird gesammelt und zusammen mit dem aus dem Schmelzofen in die Gasreinigungsanlage eingespeist und zu Schwefelsäure verarbeitet. Schlacke wird aufgrund ihres Restkupfergehalts wieder dem Schmelzofen zugeführt.

Blisterkupfer, das mindestens 98.5 % Kupfer enthält, wird in zwei Schritten zu hochreinem Kupfer raffiniert. Der erste Schritt ist die Feuerraffination, bei der das geschmolzene Blisterkupfer in einen zylindrischen Ofen gegossen wird, der im Aussehen einem Konverter ähnelt, wo zuerst Luft und dann Erdgas oder Propan durch die Schmelze geblasen werden, um den letzten Schwefel und jeglichen Rest zu entfernen Restsauerstoff aus dem Kupfer. Das geschmolzene Kupfer wird dann in ein Gießrad gegossen, um Anoden zu bilden, die rein genug für die Elektroraffinierung sind.

Bei der Elektroraffination werden die Kupferanoden in Elektrolysezellen geladen und mit Kupferausgangsblechen oder Kathoden in einem Bad aus Kupfersulfatlösung beabstandet. Wenn ein Gleichstrom durch die Zelle geleitet wird, wird das Kupfer von der Anode gelöst, durch den Elektrolyten transportiert und wieder auf den Kathoden-Ausgangsblechen abgeschieden. Wenn sich die Kathoden zu einer ausreichenden Dicke aufgebaut haben, werden sie aus der Elektrolysezelle entfernt und ein neuer Satz Ausgangsbleche wird an ihre Stelle gesetzt. Feste Verunreinigungen in den Anoden fallen als Schlamm auf den Boden der Zelle, wo sie schließlich gesammelt und zur Rückgewinnung von Edelmetallen wie Gold und Silber verarbeitet werden. Dieses Material ist als Anodenschlamm bekannt.

Die aus der Elektrolysezelle entnommenen Kathoden sind das Hauptprodukt des Kupferproduzenten und enthalten 99.99 % Kupfer. Diese können als Kathoden an Drahtwalzwerke verkauft oder zu einem als Walzdraht bezeichneten Produkt weiterverarbeitet werden. Bei der Herstellung von Stangen werden Kathoden in einem Schachtofen geschmolzen und das geschmolzene Kupfer wird auf ein Gießrad gegossen, um eine Stange zu bilden, die zum Walzen zu einer kontinuierlichen Stange mit einem Durchmesser von 3/8 Zoll geeignet ist. Dieses Stangenprodukt wird an Drahtmühlen geliefert, wo es zu Kupferdraht verschiedener Größen extrudiert wird.

Beim hydrometallurgischen Verfahren werden die oxidierten Erze und Abfallstoffe mit Schwefelsäure aus dem Schmelzprozess ausgelaugt. Es wird eine Auslaugung durchgeführt in situ, oder in speziell vorbereiteten Stapeln, indem man Säure über die Oberseite verteilt und sie durch das Material sickern lässt, wo sie gesammelt wird. Der Boden unter den Sickerkissen ist mit einem säurefesten, undurchlässigen Kunststoffmaterial ausgekleidet, um zu verhindern, dass Sickerlauge das Grundwasser verunreinigt. Sobald die kupferreichen Lösungen gesammelt sind, können sie mit einem von zwei Verfahren verarbeitet werden – dem Zementierungsverfahren oder dem Lösungsmittelextraktions-/Elektrogewinnungsverfahren (SXEW). Beim (heute kaum noch angewandten) Zementierverfahren wird das Kupfer in der sauren Lösung im Austausch gegen das Eisen auf der Oberfläche des Eisenschrotts abgeschieden. Wenn ausreichend Kupfer auszementiert ist, wird das kupferreiche Eisen zusammen mit den Erzkonzentraten zur Kupfergewinnung auf pyrometallurgischem Wege in die Schmelze eingebracht.

Beim SXEW-Verfahren wird die ausgelagerte Laugungslösung (PLS) durch Lösungsmittelextraktion konzentriert, wodurch Kupfer, aber keine Metallverunreinigungen (Eisen und andere Verunreinigungen) extrahiert werden. Die mit Kupfer beladene organische Lösung wird dann in einem Absetzbecken vom Sickerwasser getrennt. Schwefelsäure wird der organischen Mischung hinzugefügt, die das Kupfer in eine elektrolytische Lösung abstreift. Das das Eisen und andere Verunreinigungen enthaltende Sickerwasser wird in den Auslaugungsvorgang zurückgeführt, wo seine Säure zum weiteren Auslaugen verwendet wird. Die kupferreiche Striplösung wird in eine Elektrolysezelle geleitet, die als Elektrogewinnungszelle bekannt ist. Eine Elektrogewinnungszelle unterscheidet sich von einer Elektroraffinierungszelle dadurch, dass sie eine permanente, unlösliche Anode verwendet. Das Kupfer in Lösung wird dann auf eine Ausgangsblechkathode in ziemlich derselben Weise wie auf der Kathode in einer Elektroraffinationszelle plattiert. Der kupferarme Elektrolyt wird in den Lösungsmittelextraktionsprozess zurückgeführt, wo er verwendet wird, um mehr Kupfer aus der organischen Lösung zu entfernen. Die aus dem Elektrogewinnungsverfahren hergestellten Kathoden werden dann verkauft oder auf die gleiche Weise wie die aus dem Elektroraffinierungsverfahren hergestellten Stäbe verarbeitet.

Elektrogewinnungszellen werden auch zur Herstellung von Ausgangsblechen sowohl für die Elektroraffinierungs- als auch für die Elektrogewinnungsverfahren verwendet, indem das Kupfer entweder auf Edelstahl- oder Titankathoden plattiert wird und dann das plattierte Kupfer abgezogen wird.

Gefahren und ihre Vermeidung

Die größten Gefahren sind die Exposition gegenüber Erzstäuben während der Erzverarbeitung und dem Schmelzen, Metalldämpfen (einschließlich Kupfer, Blei und Arsen) während des Schmelzens, Schwefeldioxid und Kohlenmonoxid während der meisten Schmelzvorgänge, Lärm von Brech- und Mahlvorgängen und von Öfen sowie Hitzestress die Öfen und Schwefelsäure und elektrische Gefahren während elektrolytischer Prozesse.

Zu den Vorsichtsmaßnahmen gehören: LEV für Stäube während des Transfervorgangs; örtliche Absaugung und Verdünnungslüftung für Schwefeldioxid und Kohlenmonoxid; ein Lärmschutz- und Gehörschutzprogramm; Schutzkleidung und Schilde, Ruhepausen und Flüssigkeiten für Hitzestress; und LEV, PSA und elektrische Vorsichtsmaßnahmen für elektrolytische Prozesse. Atemschutz wird üblicherweise getragen, um sich vor Stäuben, Dämpfen und Schwefeldioxid zu schützen.

Tabelle 1 listet Umweltschadstoffe für verschiedene Schritte beim Schmelzen und Raffinieren von Kupfer auf.

Tabelle 1. Prozessmaterialinput und Schadstoffausstoß beim Schmelzen und Raffinieren von Kupfer

Verfahren

Materialeingang

Luftemissionen

Abfälle verarbeiten

Andere Abfälle

Kupferkonzentration

Kupfererz, Wasser, chemische Reagenzien, Verdickungsmittel

 

Flotationsabwässer

Tailings, die Abfallmineralien wie Kalkstein und Quarz enthalten

Kupferauslaugung

Kupferkonzentrat, Schwefelsäure

 

Unkontrolliertes Sickerwasser

Haufenlaugungsabfälle

Kupferschmelze

Kupferkonzentrat, kieselsäurehaltiges Flussmittel

Schwefeldioxid, arsenhaltiger Feinstaub, Antimon, Cadmium, Blei, Quecksilber und Zink

 

Saurer Klärschlamm/Schlamm, eisensulfidhaltige Schlacke, Kieselsäure

Kupferumwandlung

Kupfermatte, Altkupfer, kieselsäurehaltiges Flussmittel

Schwefeldioxid, arsenhaltiger Feinstaub, Antimon, Cadmium, Blei, Quecksilber und Zink

 

Saurer Klärschlamm/Schlamm, eisensulfidhaltige Schlacke, Kieselsäure

Elektrolytische Kupferraffination

Blasenkupfer, Schwefelsäure

   

Schleim mit Verunreinigungen wie Gold, Silber, Antimon, Arsen, Wismut, Eisen, Blei, Nickel, Selen, Schwefel und Zink

 

Führen (Lead)

Der primäre Herstellungsprozess von Blei besteht aus vier Schritten: Sintern, Schmelzen, Krätzen und pyrometallurgisches Raffinieren. Zu Beginn wird ein Ausgangsmaterial, das hauptsächlich aus Bleikonzentrat in Form von Bleisulfid besteht, in eine Sintermaschine eingeführt. Andere Rohmaterialien können hinzugefügt werden, einschließlich Eisen, Silica, Kalksteinflussmittel, Koks, Soda, Asche, Pyrit, Zink, Ätzmittel und Partikel, die von Verschmutzungskontrollvorrichtungen gesammelt werden. In der Sintermaschine wird das Blei-Ausgangsmaterial Heißluftstößen ausgesetzt, die den Schwefel verbrennen und Schwefeldioxid erzeugen. Das nach diesem Verfahren vorliegende Bleioxidmaterial enthält etwa 9 % seines Gewichts an Kohlenstoff. Der Sinter wird dann zusammen mit Koks, verschiedenen Recycling- und Reinigungsmaterialien, Kalkstein und anderen Flussmitteln in einen Hochofen zum Reduzieren geführt, wo der Kohlenstoff als Brennstoff wirkt und das Bleimaterial schmilzt oder schmilzt. Das geschmolzene Blei fließt zum Boden des Ofens, wo sich vier Schichten bilden: „Speis“ (das leichteste Material, im Wesentlichen Arsen und Antimon); „matt“ (Kupfersulfid und andere Metallsulfide); Hochofenschlacke (hauptsächlich Silikate); und Bleibarren (98 % Blei nach Gewicht). Anschließend werden alle Schichten abgelassen. Der Speis und der Stein werden an Kupferhütten zur Rückgewinnung von Kupfer und Edelmetallen verkauft. Die zink-, eisen-, kieselsäure- und kalkhaltige Hochofenschlacke wird auf Halden gelagert und teilweise recycelt. Schwefeloxidemissionen entstehen in Hochöfen durch geringe Restbleisulfid- und Bleisulfatmengen im Sintergut.

Rohblei aus dem Hochofen erfordert normalerweise eine Vorbehandlung in Kesseln, bevor es raffiniert wird. Beim Schlacken werden die Barren in einem Schlackenkessel gerührt und bis knapp über den Gefrierpunkt (370 bis 425 °C) abgekühlt. Eine Schlacke, die aus Bleioxid zusammen mit Kupfer, Antimon und anderen Elementen besteht, schwimmt nach oben und verfestigt sich über dem geschmolzenen Blei.

Die Krätze wird entfernt und in einen Krätzeofen zur Wiedergewinnung der Nicht-Blei-Nutzmetalle eingeführt. Um die Kupfergewinnung zu verbessern, werden Krätze-Bleibarren behandelt, indem schwefelhaltige Materialien, Zink und/oder Aluminium hinzugefügt werden, wodurch der Kupfergehalt auf etwa 0.01 % gesenkt wird.

Während des vierten Schritts wird das Bleibarren unter Verwendung von pyrometallurgischen Verfahren raffiniert, um alle verbleibenden verkaufsfähigen Nicht-Blei-Materialien (z. B. Gold, Silber, Wismut, Zink und Metalloxide wie Antimon, Arsen, Zinn und Kupferoxid) zu entfernen. Das Blei wird in einem gusseisernen Kessel in fünf Stufen raffiniert. Antimon, Zinn und Arsen werden zuerst entfernt. Dann wird Zink hinzugefügt und Gold und Silber werden in der Zinkschlacke entfernt. Als nächstes wird das Blei durch Vakuumentfernung (Destillation) von Zink raffiniert. Die Raffination wird mit der Zugabe von Calcium und Magnesium fortgesetzt. Diese beiden Materialien verbinden sich mit Wismut, um eine unlösliche Verbindung zu bilden, die aus dem Kessel abgeschöpft wird. Im letzten Schritt können dem Blei Natronlauge und/oder Nitrate zugesetzt werden, um alle verbleibenden Spuren von Metallverunreinigungen zu entfernen. Das raffinierte Blei hat eine Reinheit von 99.90 bis 99.99 % und kann mit anderen Metallen gemischt werden, um Legierungen zu bilden, oder es kann direkt in Formen gegossen werden.

Gefahren und ihre Vermeidung

Die größten Gefahren sind die Exposition gegenüber Erzstäuben während der Erzverarbeitung und dem Schmelzen, Metalldämpfen (einschließlich Blei, Arsen und Antimon) während des Schmelzens, Schwefeldioxid und Kohlenmonoxid während der meisten Schmelzvorgänge, Lärm durch Mahl- und Zerkleinerungsvorgänge und von Öfen sowie Hitzestress aus den Öfen.

Zu den Vorsichtsmaßnahmen gehören: LEV für Stäube während des Transfervorgangs; örtliche Absaugung und Verdünnungslüftung für Schwefeldioxid und Kohlenmonoxid; ein Lärmschutz- und Gehörschutzprogramm; und Schutzkleidung und Schilde, Ruhepausen und Flüssigkeiten für Hitzestress. Atemschutz wird üblicherweise getragen, um sich vor Stäuben, Dämpfen und Schwefeldioxid zu schützen. Eine biologische Überwachung auf Blei ist unerlässlich.

Tabelle 2 listet Umweltschadstoffe für verschiedene Schritte beim Schmelzen und Raffinieren von Blei auf.

Tabelle 2. Inputs von Prozessmaterialien und Outputs von Schadstoffen beim Schmelzen und Raffinieren von Blei

Verfahren

Materialeingang

Luftemissionen

Abfälle verarbeiten

Andere Abfälle

Sintern von Blei

Bleierz, Eisen, Kieselsäure, Kalksteinflussmittel, Koks, Soda, Asche, Pyrit, Zink, Ätzmittel, Filterstaub

Schwefeldioxid, cadmium- und bleihaltiger Feinstaub

   

Bleiverhüttung

Bleisinter, Koks

Schwefeldioxid, cadmium- und bleihaltiger Feinstaub

Abwasser aus der Anlagenspülung, Schlackengranulationswasser

Schlacke, die Verunreinigungen wie Zink, Eisen, Kieselerde und Kalk enthält, Feststoffe aus Oberflächenstauungen

Bleischlacken

Bleibarren, kalzinierte Soda, Schwefel, Filterstaub, Koks

   

Schlacke, die solche Verunreinigungen wie Kupfer, Feststoffe von Oberflächenstauungen enthält

Bleiveredelung

Bleischlackenbarren

     

 

Zink

Zinkkonzentrat wird hergestellt, indem das Erz, das bis zu 2 % Zink enthalten kann, durch Zerkleinern und Flotation vom Abfallgestein getrennt wird, ein Prozess, der normalerweise am Bergbaustandort durchgeführt wird. Das Zinkkonzentrat wird dann auf zwei Arten zu Zinkmetall reduziert: entweder pyrometallurgisch durch Destillation (Retortenbehandlung in einem Ofen) oder hydrometallurgisch durch Elektrogewinnung. Letztere machen etwa 80 % der gesamten Zinkraffination aus.

Bei der hydrometallurgischen Zinkraffination werden im Allgemeinen vier Verarbeitungsstufen verwendet: Kalzinieren, Auslaugen, Reinigen und Elektrogewinnen. Kalzinieren oder Rösten ist ein Hochtemperaturverfahren (700 bis 1000 °C), das Zinksulfidkonzentrat in ein unreines Zinkoxid namens Kalzinieren umwandelt. Zu den Röstertypen gehören Mehrherd-, Suspensions- oder Fließbettröster. Im Allgemeinen beginnt das Kalzinieren mit dem Mischen von zinkhaltigen Materialien mit Kohle. Diese Mischung wird dann erhitzt oder geröstet, um das Zinkoxid zu verdampfen, das dann mit dem resultierenden Gasstrom aus der Reaktionskammer bewegt wird. Der Gasstrom wird zum Bereich des Filtergehäuses geleitet, wo das Zinkoxid im Staub des Filtergehäuses eingefangen wird.

Bei allen Kalzinierungsprozessen entsteht Schwefeldioxid, das kontrolliert und als marktfähiges Prozessnebenprodukt in Schwefelsäure umgewandelt wird.

Die elektrolytische Verarbeitung von entschwefeltem Kalzin besteht aus drei grundlegenden Schritten: Auslaugen, Reinigen und Elektrolyse. Auslaugen bezieht sich auf das Auflösen des eingefangenen Calcins in einer Schwefelsäurelösung, um eine Zinksulfatlösung zu bilden. Das Calcin kann ein- oder zweimal ausgelaugt werden. Beim Double-Leach-Verfahren wird das Calcin in einer leicht sauren Lösung gelöst, um die Sulfate zu entfernen. Das Calcin wird dann ein zweites Mal in einer stärkeren Lösung ausgelaugt, die das Zink auflöst. Dieser zweite Auslaugungsschritt ist eigentlich der Beginn des dritten Reinigungsschritts, weil viele der Eisenverunreinigungen ebenso wie das Zink aus der Lösung herausfallen.

Nach dem Auslaugen wird die Lösung in zwei oder mehr Stufen durch Zugabe von Zinkstaub gereinigt. Die Lösung wird gereinigt, da der Staub schädliche Elemente zur Ausfällung zwingt, damit sie herausgefiltert werden können. Die Reinigung erfolgt üblicherweise in großen Rührbehältern. Der Prozess findet bei Temperaturen im Bereich von 40 bis 85 °C und Drücken im Bereich von Atmosphärendruck bis 2.4 Atmosphären statt. Zu den bei der Reinigung zurückgewonnenen Elementen gehören Kupfer als Kuchen und Cadmium als Metall. Nach der Reinigung ist die Lösung bereit für den letzten Schritt, die Elektrogewinnung.

Die elektrolytische Gewinnung von Zink findet in einer Elektrolysezelle statt und beinhaltet das Leiten eines elektrischen Stroms von einer Anode aus einer Blei-Silber-Legierung durch die wässrige Zinklösung. Dieser Prozess lädt das suspendierte Zink auf und zwingt es, sich auf einer Aluminiumkathode abzuscheiden, die in die Lösung eingetaucht ist. Alle 24 bis 48 Stunden wird jede Zelle abgeschaltet, die zinkbeschichteten Kathoden entfernt und gespült und das Zink mechanisch von den Aluminiumplatten abgelöst. Das Zinkkonzentrat wird dann geschmolzen und zu Barren gegossen und hat oft eine Reinheit von bis zu 99.995 %.

Elektrolytische Zinkhütten enthalten bis zu mehreren hundert Zellen. Ein Teil der elektrischen Energie wird in Wärme umgewandelt, wodurch sich die Temperatur des Elektrolyten erhöht. Elektrolysezellen arbeiten in Temperaturbereichen von 30 bis 35°C bei atmosphärischem Druck. Während der Elektrogewinnung durchläuft ein Teil des Elektrolyten Kühltürme, um seine Temperatur zu senken und das während des Prozesses gesammelte Wasser zu verdampfen.

Gefahren und ihre Vermeidung

Die größten Gefahren sind die Exposition gegenüber Erzstäuben während der Erzverarbeitung und dem Schmelzen, Metalldämpfen (einschließlich Zink und Blei) während des Raffinierens und Röstens, Schwefeldioxid und Kohlenmonoxid während der meisten Schmelzvorgänge, Lärm von Brech- und Mahlvorgängen und von Öfen sowie Hitzestress die Öfen und Schwefelsäure und elektrische Gefahren während elektrolytischer Prozesse.

Zu den Vorsichtsmaßnahmen gehören: LEV für Stäube während des Transfervorgangs; örtliche Absaugung und Verdünnungslüftung für Schwefeldioxid und Kohlenmonoxid; ein Lärmschutz- und Gehörschutzprogramm; Schutzkleidung und Schilde, Ruhepausen und Flüssigkeiten für Hitzestress; und LEV, PSA und elektrische Vorsichtsmaßnahmen für elektrolytische Prozesse. Atemschutz wird üblicherweise getragen, um sich vor Stäuben, Dämpfen und Schwefeldioxid zu schützen.

Tabelle 3 listet Umweltschadstoffe für verschiedene Schritte beim Schmelzen und Raffinieren von Zink auf.

Tabelle 3. Prozessmaterialinputs und Umweltverschmutzungsoutputs für das Schmelzen und Raffinieren von Zink

Verfahren

Materialeingang

Luftemissionen

Abfälle verarbeiten

Andere Abfälle

Zink kalzinieren

Zinkerz, Koks

Schwefeldioxid, zink- und bleihaltige Partikel

 

Saurer Pflanzenschlammschlamm

Zinkauslaugung

Zinkkalzin, Schwefelsäure, Kalkstein, verbrauchter Elektrolyt

 

Schwefelsäurehaltige Abwässer

 

Zinkreinigung

Zinksäurelösung, Zinkstaub

 

Schwefelsäurehaltige Abwässer, Eisen

Kupferkuchen, Cadmium

Zinkelektrogewinnung

Zink in schwefelsaurer/wässriger Lösung, Anoden aus Blei-Silber-Legierungen, Aluminiumkathoden, Bariumcarbonat oder Strontium, kolloidale Zusätze

 

Verdünnte Schwefelsäure

Schleime/Schlämme von Elektrolytzellen

 

Zurück

Lesen Sie mehr 21813 mal Zuletzt geändert am Mittwoch, 10. August 2011, 23:11 Uhr

HAFTUNGSAUSSCHLUSS: Die ILO übernimmt keine Verantwortung für auf diesem Webportal präsentierte Inhalte, die in einer anderen Sprache als Englisch präsentiert werden, der Sprache, die für die Erstproduktion und Peer-Review von Originalinhalten verwendet wird. Bestimmte Statistiken wurden seitdem nicht aktualisiert die Produktion der 4. Auflage der Encyclopaedia (1998)."

Inhalte

Referenzen für die metallverarbeitende und metallverarbeitende Industrie

Buonicore, AJ und WT Davis (Hrsg.). 1992. Technisches Handbuch zur Luftverschmutzung. New York: Van Nostrand Reinhold/Air and Waste Management Association.

Umweltschutzbehörde (EPA). 1995. Profil der NE-Metallindustrie. EPA/310-R-95-010. Washington, DC: EPA.

Internationale Vereinigung für Krebsforschung (IARC). 1984. Monographien zur Bewertung krebserzeugender Risiken für den Menschen. Vol. 34. Lyon: IARC.

Johnson A, CY Moira, L MacLean, E Atkins, A Dybunico, F Cheng und D Enarson. 1985. Atemanomalien bei Arbeitern in der Eisen- und Stahlindustrie. Brit J Ind Med 42: 94–100.

Kronenberg RS, JC Levin, RF Dodson, JGN Garcia und DE Griffith. 1991. Asbestbedingte Krankheit bei Angestellten eines Stahlwerks und einer Fabrik zur Herstellung von Glasflaschen. Ann NY Acad Sci 643: 397–403.

Landrigan, PJ, MG Cherniack, FA Lewis, LR Catlett und RW Hornung. 1986. Silikose in einer Graugussgießerei. Die Persistenz einer alten Krankheit. Scand J Work Environ Health 12: 32–39.

Nationales Institut für Sicherheit und Gesundheitsschutz am Arbeitsplatz (NIOSH). 1996. Kriterien für einen empfohlenen Standard: Berufliche Exposition gegenüber Metallbearbeitungsflüssigkeiten. Cincinatti, OH: NIOSH.

Palheta, D und A Taylor. 1995. Quecksilber in Umwelt- und biologischen Proben aus einem Goldminengebiet im Amazonasgebiet von Brasilien. Wissenschaft der gesamten Umwelt 168: 63-69.

Thomas, PR und D. Clarke. 1992 Vibration weißer Finger und Dupuytren-Kontraktur: Sind sie verwandt? Occup Med 42(3):155–158.