Mittwoch, März 16 2011 21: 05

Aluminiumschmelze und Raffination

Artikel bewerten
(32 Stimmen)

Prozessübersicht

Bauxit wird im Tagebau gewonnen. Die reicheren Erze werden wie abgebaut verwendet. Die Erze geringerer Qualität können durch Zerkleinern und Waschen aufbereitet werden, um Ton- und Silica-Abfall zu entfernen. Die Herstellung des Metalls umfasst zwei grundlegende Schritte:

  1. Verfeinerung. Herstellung von Tonerde aus Bauxit nach dem Bayer-Verfahren, bei dem Bauxit bei hoher Temperatur und hohem Druck in einer starken Natronlauge aufgeschlossen wird. Das resultierende Hydrat wird kristallisiert und in einem Ofen oder Wirbelbett-Kalzinator zum Oxid kalziniert.
  2. eingrenzen. Reduktion von Aluminiumoxid zu jungfräulichem Aluminiummetall unter Verwendung des Hall-Heroult-Elektrolyseverfahrens unter Verwendung von Kohleelektroden und Kryolith-Flussmittel.

 

Experimentelle Entwicklungen deuten darauf hin, dass Aluminium in Zukunft durch direkte Reduktion aus dem Erz zu Metall reduziert werden kann.

Gegenwärtig sind zwei Haupttypen von elektrolytischen Hall-Heroult-Zellen in Gebrauch. Das sogenannte "Pre-Bake"-Verfahren verwendet Elektroden, die wie unten angegeben hergestellt sind. In solchen Schmelzhütten tritt die Exposition gegenüber polyzyklischen Kohlenwasserstoffen normalerweise in den Elektrodenherstellungsanlagen auf, insbesondere während Mischmühlen und Formpressen. Schmelzhütten, die die Zelle vom Soderberg-Typ verwenden, benötigen keine Einrichtungen zur Herstellung von gebrannten Kohlenstoffanoden. Vielmehr wird die Mischung aus Koks und Pechbindemittel in Trichter gegeben, deren untere Enden in die geschmolzene Kryolith-Aluminiumoxid-Badmischung eingetaucht sind. Wenn die Mischung aus Pech und Koks durch das geschmolzene Metall-Kryolith-Bad innerhalb der Zelle erhitzt wird, backt diese Mischung zu einer harten graphitischen Masse in situ. In die anodische Masse werden Metallstäbe als Leiter für einen elektrischen Gleichstromfluss eingesetzt. Diese Stäbe müssen regelmäßig ersetzt werden; beim Extrahieren dieser werden beträchtliche Mengen an flüchtigen Bestandteilen von Kohlenteerpech in die Zellenraumumgebung freigesetzt. Zu dieser Exposition werden die flüchtigen Pechbestandteile hinzugefügt, die beim Fortschreiten des Backens der Pechkoksmasse erzeugt werden.

In den letzten zehn Jahren hat die Industrie dazu tendiert, bestehende Reduktionsanlagen vom Typ Soderberg entweder nicht zu ersetzen oder zu modifizieren, als Folge der nachgewiesenen karzinogenen Gefahr, die sie darstellen. Darüber hinaus werden mit der zunehmenden Automatisierung des Betriebs von Reduktionszellen – insbesondere beim Wechseln von Anoden – Aufgaben häufiger von geschlossenen mechanischen Kränen durchgeführt. Folglich nehmen die Belastungen der Arbeitnehmer und das Risiko, die mit der Aluminiumschmelze verbundenen Erkrankungen zu entwickeln, in modernen Anlagen allmählich ab. Im Gegensatz dazu wird in jenen Volkswirtschaften, in denen angemessene Kapitalinvestitionen nicht leicht verfügbar sind, das Fortbestehen älterer, manuell betriebener Reduktionsverfahren weiterhin die Risiken jener Berufskrankheiten (siehe unten) darstellen, die zuvor mit Aluminiumreduktionsanlagen in Verbindung gebracht wurden. Tatsächlich wird diese Tendenz bei solchen älteren, nicht verbesserten Operationen tendenziell noch verstärkt, insbesondere wenn sie älter werden.

Herstellung von Kohlenstoffelektroden

Die Elektroden, die für die elektrolytische Reduktion vor dem Einbrennen zu reinem Metall erforderlich sind, werden normalerweise von einer Anlage hergestellt, die mit dieser Art von Aluminiumschmelzanlage verbunden ist. Die Anoden und Kathoden werden am häufigsten aus einer Mischung aus gemahlenem, aus Erdöl gewonnenem Koks und Pech hergestellt. Koks wird zunächst in Kugelmühlen gemahlen, dann gefördert und mechanisch mit dem Pech vermischt und schließlich in Formpressen zu Blöcken gegossen. Diese Anoden- oder Kathodenblöcke werden als nächstes mehrere Tage lang in einem gasbeheizten Ofen erhitzt, bis sie harte Graphitmassen bilden, aus denen im wesentlichen alle flüchtigen Bestandteile ausgetrieben sind. Schließlich werden sie an Anodenstäben befestigt oder gesägt, um die Kathodenstäbe aufzunehmen.

Es sei darauf hingewiesen, dass das zur Bildung solcher Elektroden verwendete Pech ein Destillat darstellt, das aus Kohle oder Erdölteer gewonnen wird. Bei der Umwandlung dieses Teers in Pech durch Erhitzen hat das endgültige Pechprodukt im Wesentlichen alle seine anorganischen Stoffe mit niedrigem Siedepunkt, z. B. SO, abgekocht2sowie aliphatische Verbindungen und ein- und zweikernige aromatische Verbindungen. Daher sollte ein solches Pech bei seiner Verwendung nicht die gleichen Gefahren darstellen wie Kohle- oder Erdölteer, da diese Klassen von Verbindungen nicht vorhanden sein sollten. Es gibt einige Hinweise darauf, dass das karzinogene Potenzial solcher Pechprodukte möglicherweise nicht so groß ist wie das komplexere Gemisch aus Teeren und anderen flüchtigen Stoffen, das mit der unvollständigen Verbrennung von Kohle verbunden ist.

Gefahren und ihre Vermeidung

Die Gefahren und vorbeugenden Maßnahmen für Aluminiumschmelz- und Raffinationsprozesse sind im Grunde die gleichen wie beim Schmelzen und Raffinieren im Allgemeinen; Die einzelnen Prozesse weisen jedoch bestimmte spezifische Gefahren auf.

Bergbau

Obwohl in der Literatur sporadisch auf „Bauxit-Lunge“ Bezug genommen wird, gibt es kaum überzeugende Beweise dafür, dass eine solche Entität existiert. Es sollte jedoch die Möglichkeit des Vorhandenseins von kristallinem Siliziumdioxid in Bauxiterzen in Betracht gezogen werden.

Bayer-Verfahren

Die umfangreiche Verwendung von Natronlauge im Bayer-Prozess birgt häufig die Gefahr von Verätzungen der Haut und der Augen. Das Entkalken von Tanks durch Presslufthämmer ist für eine starke Lärmbelastung verantwortlich. Die potenziellen Gefahren, die mit dem Einatmen übermäßiger Dosen von bei diesem Verfahren erzeugtem Aluminiumoxid verbunden sind, werden nachstehend erörtert.

Alle am Bayer-Prozess beteiligten Arbeiter sollten gut über die Gefahren informiert sein, die mit dem Umgang mit Natronlauge verbunden sind. An allen gefährdeten Standorten sollten Augenspülbrunnen und -becken mit fließendem Wasser und Schwallduschen mit Hinweisen zur Erläuterung ihrer Verwendung bereitgestellt werden. PSA (z. B. Schutzbrillen, Handschuhe, Schürzen und Stiefel) sollten bereitgestellt werden. Duschen und doppelte Schließfächer (ein Schließfach für Arbeitskleidung, das andere für persönliche Kleidung) sollten bereitgestellt werden, und alle Mitarbeiter sollten ermutigt werden, sich am Ende der Schicht gründlich zu waschen. Alle Arbeiter, die mit geschmolzenem Metall umgehen, sollten mit Visieren, Atemschutzmasken, Stulpen, Schürzen, Armbinden und Gamaschen ausgestattet sein, um sie vor Verbrennungen, Staub und Dämpfen zu schützen. Arbeiter, die beim Gadeau-Niedertemperaturverfahren beschäftigt sind, sollten mit speziellen Handschuhen und Anzügen ausgestattet werden, um sie vor Salzsäuredämpfen zu schützen, die beim Anfahren der Zellen freigesetzt werden; Wolle hat sich als beständig gegen diese Dämpfe erwiesen. Atemschutzgeräte mit Aktivkohlepatronen oder mit Aluminiumoxid imprägnierten Masken bieten angemessenen Schutz gegen Pech- und Fluordämpfe; Zum Schutz vor Kohlenstaub sind effiziente Staubmasken erforderlich. Arbeiter mit stärkerer Staub- und Rauchbelastung, insbesondere in Söderberg-Betrieben, sollten mit luftversorgtem Atemschutzgerät ausgestattet werden. Da mechanisierte Potroom-Arbeiten von geschlossenen Kabinen aus ferngesteuert durchgeführt werden, werden diese Schutzmaßnahmen weniger notwendig.

Elektrolytische Reduktion

Die elektrolytische Reduktion setzt Arbeiter der Gefahr von Hautverbrennungen und Unfällen aufgrund von Spritzern geschmolzenen Metalls, Hitzestressstörungen, Lärm, elektrischen Gefahren, Kryolith- und Flusssäuredämpfen aus. Elektrolytische Reduktionszellen können große Mengen an Fluorid- und Aluminiumoxidstäuben freisetzen.

In Werkstätten zur Herstellung von Kohleelektroden sollten Absauganlagen mit Beutelfiltern installiert werden; Die Einhausung von Pech- und Kohlemahlgeräten minimiert die Exposition gegenüber erhitztem Pech und Kohlenstaub weiter effektiv. Regelmäßige Kontrollen der atmosphärischen Staubkonzentrationen sollten mit einem geeigneten Probenahmegerät durchgeführt werden. Bei staubexponierten Arbeitern sollten regelmäßige Röntgenuntersuchungen durchgeführt werden, denen bei Bedarf klinische Untersuchungen folgen sollten.

Um das Risiko des Umgangs mit Pech zu verringern, sollte der Transport dieses Materials so weit wie möglich mechanisiert werden (z. B. können beheizte Straßentankwagen verwendet werden, um flüssiges Pech zu den Werken zu transportieren, wo es automatisch in beheizte Pechtanks gepumpt wird). Regelmäßige Hautuntersuchungen zur Erkennung von Erythemen, Epitheliomen oder Dermatitis sind ebenfalls ratsam, und durch Schutzcremes auf Alginatbasis kann zusätzlicher Schutz geboten werden.

Arbeiter, die Heißarbeiten verrichten, sollten vor Beginn der Hitze angewiesen werden, die Flüssigkeitsaufnahme zu erhöhen und ihre Nahrung stark zu salzen. Sie und ihre Vorgesetzten sollten auch darin geschult werden, beginnende hitzebedingte Störungen bei sich und ihren Mitarbeitern zu erkennen. Alle hier arbeitenden Personen sollten geschult werden, um die erforderlichen Maßnahmen zu ergreifen, um das Auftreten oder Fortschreiten der Hitzestörungen zu verhindern.

Arbeitnehmer, die hohen Lärmpegeln ausgesetzt sind, sollten mit Gehörschutzausrüstung wie Ohrstöpseln ausgestattet werden, die den Durchgang von niederfrequentem Lärm zulassen (um die Wahrnehmung von Befehlen zu ermöglichen), aber die Übertragung von intensivem, hochfrequentem Lärm reduzieren. Darüber hinaus sollten sich Arbeitnehmer regelmäßig einer audiometrischen Untersuchung unterziehen, um einen Hörverlust festzustellen. Schließlich sollte das Personal auch für die Herz-Lungen-Wiederbelebung von Opfern von Stromschlagunfällen geschult werden.

Das Potenzial für Spritzer geschmolzenen Metalls und schwere Verbrennungen ist an vielen Stellen in Reduktionsanlagen und zugehörigen Betrieben weit verbreitet. Zusätzlich zu Schutzkleidung (z. B. Stulpen, Schürzen, Gamaschen und Gesichtsschutz) sollte das Tragen von synthetischer Kleidung verboten werden, da die Hitze von geschmolzenem Metall dazu führt, dass solche erhitzten Fasern schmelzen und an der Haut haften bleiben, was Hautverbrennungen weiter verstärkt.

Personen, die Herzschrittmacher tragen, sollten wegen des Risikos magnetfeldinduzierter Rhythmusstörungen von Repositionsoperationen ausgeschlossen werden.

Andere gesundheitliche Auswirkungen

Über die Gefährdung von Arbeitern, der allgemeinen Bevölkerung und der Umwelt durch die Emission von fluoridhaltigen Gasen, Rauch und Stäuben bei der Verwendung von Kryolith-Flussmittel wurde vielfach berichtet (siehe Tabelle 1). Bei Kindern, die in der Nähe schlecht kontrollierter Aluminiumhütten leben, wurde über unterschiedliche Grade von Fleckenbildung der bleibenden Zähne berichtet, wenn die Exposition während der Entwicklungsphase des Wachstums der bleibenden Zähne erfolgte. Bei Hüttenarbeitern vor 1950 oder dort, wo eine unzureichende Kontrolle der Fluoridabwässer andauerte, wurden knöcherne Fluorose in unterschiedlichem Ausmaß beobachtet. Das erste Stadium dieses Zustands besteht aus einer einfachen Zunahme der Knochendichte, die besonders in den Wirbelkörpern und im Becken ausgeprägt ist. Wenn Fluorid weiter in den Knochen absorbiert wird, ist als nächstes eine Verkalkung der Bänder des Beckens zu sehen. Schließlich werden bei extremer und längerer Fluoridbelastung Verkalkungen der paraspinalen und anderer Bandstrukturen sowie Gelenke festgestellt. Während dieses letzte Stadium in seiner schweren Form in Kryolith-Verarbeitungsanlagen beobachtet wurde, wurden solche fortgeschrittenen Stadien selten, wenn überhaupt, bei Arbeitern in Aluminiumhütten beobachtet. Offensichtlich sind die weniger schwerwiegenden Röntgenveränderungen in knöchernen und ligamentären Strukturen nicht mit Veränderungen der architektonischen oder metabolischen Funktion des Knochens verbunden. Durch ordnungsgemäße Arbeitspraktiken und angemessene Atemkontrolle können Arbeiter in solchen Reduktionsoperationen leicht daran gehindert werden, trotz 25 bis 40 Jahren solcher Arbeit eine der vorstehenden Röntgenveränderungen zu entwickeln. Schließlich sollte die Mechanisierung von Potroom-Operationen alle mit Fluorid verbundenen Gefahren minimieren, wenn nicht sogar vollständig eliminieren.

Tabelle 1. Prozessmaterialinput und Schadstoffausstoß beim Schmelzen und Raffinieren von Aluminium

Verfahren

Materialeingang

Luftemissionen

Abfälle verarbeiten

Andere Abfälle

Raffination von Bauxit

Bauxit, Natriumhydroxid

Partikel, Ätzmittel/Wasser
Dampf

 

Rückstände, die Silizium, Eisen, Titan, Calciumoxide und Ätzmittel enthalten

Klärung und Ausfällung von Aluminiumoxid

Tonerdeschlamm, Stärke, Wasser

 

Stärke-, sand- und ätzmittelhaltiges Abwasser

 

Aluminiumoxid-Kalzinierung

Aluminiumhydrat

Feinstaub und Wasserdampf

   

Primär elektrolytisch
Aluminiumschmelzen

Tonerde, Kohlenstoffanoden, Elektrolysezellen, Kryolith

Fluorid – sowohl gasförmig als auch Partikel, Kohlendioxid, Schwefeldioxid, Kohlenmonoxid, C2F6 ,CF4 und perfluorierte Kohlenstoffe (PFC)

 

Verbrauchte Potliner

 

Seit den frühen 1980er Jahren wurde ein Asthma-ähnlicher Zustand bei Arbeitern in Aluminiumreduktions-Potrooms eindeutig nachgewiesen. Diese Abweichung, die als berufsbedingtes Asthma im Zusammenhang mit Aluminiumschmelzen (OAAAS) bezeichnet wird, ist durch variablen Luftstromwiderstand, bronchiale Hyperreaktivität oder beides gekennzeichnet und wird nicht durch Stimuli außerhalb des Arbeitsplatzes ausgelöst. Seine klinischen Symptome bestehen aus Keuchen, Engegefühl in der Brust und Atemlosigkeit sowie unproduktivem Husten, die normalerweise einige Stunden nach einer Exposition am Arbeitsplatz verzögert auftreten. Die Latenzzeit zwischen Beginn der Arbeitsexposition und dem Beginn von OAAAS ist sehr unterschiedlich und reicht von 1 Woche bis zu 10 Jahren, je nach Intensität und Art der Exposition. Der Zustand bessert sich normalerweise mit der Entfernung vom Arbeitsplatz nach den Ferien usw., wird jedoch häufiger und schwerwiegender bei fortgesetzter Arbeitsexposition.

Während das Auftreten dieses Zustands mit den Fluoridkonzentrationen im Potroom korreliert wurde, ist nicht klar, dass die Ätiologie der Störung speziell auf die Exposition gegenüber diesem chemischen Mittel zurückzuführen ist. Angesichts des komplexen Staub-Rauch-Gemischs (z. B. partikuläre und gasförmige Fluoride, Schwefeldioxid sowie geringe Konzentrationen der Oxide von Vanadium, Nickel und Chrom) ist es wahrscheinlicher, dass solche Fluoridmessungen ein Ersatz für dieses komplexe Rauchgemisch darstellen. Gase und Partikel in Potrooms gefunden.

Es scheint gegenwärtig, dass dieser Zustand zu einer zunehmend wichtigen Gruppe von Berufskrankheiten gehört: Berufsasthma. Der kausale Prozess, der zu dieser Störung führt, ist im Einzelfall schwer zu bestimmen. Anzeichen und Symptome von OAAAS können folgende Ursachen haben: vorbestehendes allergisches Asthma, unspezifische bronchiale Hyperreagibilität, reaktives Atemwegsdysfunktionssyndrom (RADS) oder echtes Berufsasthma. Die Diagnose dieses Zustands ist derzeit problematisch und erfordert eine kompatible Anamnese, das Vorhandensein einer variablen Luftstrombegrenzung oder, falls dies nicht der Fall ist, die Erzeugung einer pharmakologisch induzierten bronchialen Hyperreaktivität. Aber wenn letzteres nicht nachweisbar ist, ist diese Diagnose unwahrscheinlich. (Dieses Phänomen kann jedoch schließlich verschwinden, nachdem die Störung mit der Entfernung von Arbeitsbelastungen abgeklungen ist.)

Da diese Störung bei fortgesetzter Exposition tendenziell immer schwerer wird, müssen betroffene Personen in der Regel von fortgesetzten Arbeitsexpositionen entfernt werden. Während Personen mit vorbestehendem atopischem Asthma anfangs von Zellenräumen mit Aluminiumreduktion ausgeschlossen werden sollten, kann das Fehlen einer Atopie nicht vorhersagen, ob dieser Zustand nach einer Exposition am Arbeitsplatz auftritt.

Derzeit gibt es Berichte, die darauf hindeuten, dass Aluminium bei Arbeitern, die dieses Metall schmelzen und schweißen, mit Neurotoxizität in Verbindung gebracht werden kann. Es wurde eindeutig gezeigt, dass Aluminium über die Lunge aufgenommen und in höheren Konzentrationen als normal mit dem Urin ausgeschieden wird, insbesondere bei Arbeitern in Reduktionszellen. Ein Großteil der Literatur zu neurologischen Wirkungen bei solchen Arbeitern leitet sich jedoch von der Annahme ab, dass die Aluminiumabsorption zu einer Neurotoxizität beim Menschen führt. Dementsprechend muss der Zusammenhang zwischen Aluminium und beruflicher Neurotoxizität zum jetzigen Zeitpunkt als spekulativ angesehen werden, bis solche Assoziationen besser reproduzierbar nachweisbar sind.

Da beim Anodenwechsel oder bei anderen anstrengenden Arbeiten in Gegenwart von geschmolzenem Kryolith und Aluminium zeitweise mehr als 300 kcal/h verbraucht werden müssen, kann es bei Hitzeperioden zu Überhitzungsstörungen kommen. Solche Episoden treten am wahrscheinlichsten auf, wenn das Wetter anfänglich von gemäßigten zu heißen, feuchten Bedingungen des Sommers wechselt. Außerdem prädisponieren auch Arbeitspraktiken, die zu einem beschleunigten Anodenwechsel oder einer Beschäftigung über zwei aufeinanderfolgende Arbeitsschichten bei heißem Wetter führen, Arbeiter für solche Hitzestörungen. Arbeiter, die unzureichend hitzeakklimatisiert oder körperlich konditioniert sind, deren Salzaufnahme unzureichend ist oder die zwischenzeitlich oder kürzlich erkrankt sind, sind besonders anfällig für die Entwicklung von Hitzeerschöpfung und/oder Hitzekrämpfen, während sie solche anstrengenden Aufgaben ausführen. Hitzschlag ist bei Arbeitern in Aluminiumschmelzen aufgetreten, aber selten, außer bei denen mit bekannten prädisponierenden Gesundheitsveränderungen (z. B. Alkoholismus, Alterung).

Es wurde gezeigt, dass die Exposition gegenüber polyzyklischen Aromaten, die mit dem Einatmen von Pechdämpfen und Partikeln verbunden sind, insbesondere das Personal der Reduktionszelle vom Soderberg-Typ einem übermäßigen Risiko aussetzt, Harnblasenkrebs zu entwickeln. das überschüssige Krebsrisiko ist weniger gut etabliert. Es wird davon ausgegangen, dass Arbeiter in Kohleelektrodenfabriken, in denen Mischungen aus erhitztem Koks und Teer erhitzt werden, ebenfalls einem solchen Risiko ausgesetzt sind. Nach mehrtägigem Einbrennen von Elektroden bei ca. 1,200 °C sind polyzyklische aromatische Verbindungen jedoch praktisch vollständig verbrannt bzw. verflüchtigt und gehen nicht mehr mit solchen Anoden oder Kathoden einher. Daher wurde nicht so deutlich gezeigt, dass die Reduktionszellen, die vorgebackene Elektroden verwenden, ein übermäßiges Risiko für die Entwicklung dieser bösartigen Erkrankungen darstellen. Andere Neoplasien (z. B. nicht-granulozytäre Leukämie und Hirntumoren) wurden bei Aluminiumreduktionsoperationen vermutet; derzeit sind solche Beweise fragmentarisch und widersprüchlich.

In der Nähe der Elektrolysezellen erzeugt die Verwendung von pneumatischen Krustenbrechern in den Potrooms Geräuschpegel in der Größenordnung von 100 dBA. Die elektrolytischen Reduktionszellen werden in Reihe von einer Niederspannungs-Hochstromversorgung betrieben, und folglich sind Fälle von Stromschlägen normalerweise nicht schwerwiegend. Im Kraftwerkshaus jedoch, wo die Hochspannungsversorgung in das Reihenschaltungsnetz der Töpferei mündet, kann es zu schweren Unfällen mit elektrischen Schlägen kommen, insbesondere da die elektrische Versorgung ein Wechselstrom mit hoher Spannung ist.

Da Gesundheitsbedenken in Bezug auf Expositionen im Zusammenhang mit elektromagnetischen Feldern geäußert wurden, wurde die Exposition von Arbeitern in dieser Branche in Frage gestellt. Es muss beachtet werden, dass die den elektrolytischen Reduktionszellen zugeführte Leistung Gleichstrom ist; Dementsprechend sind die in den Potrooms erzeugten elektromagnetischen Felder hauptsächlich vom statischen oder stehenden Feldtyp. Im Gegensatz zu niederfrequenten elektromagnetischen Feldern zeigen solche Felder noch weniger leicht konsistente oder reproduzierbare biologische Wirkungen, entweder experimentell oder klinisch. Außerdem wird festgestellt, dass die in heutigen Zellenräumen gemessenen Flusspegel der Magnetfelder im Allgemeinen innerhalb der derzeit vorgeschlagenen vorläufigen Schwellenwerte für statische Magnetfelder, Sub-Hochfrequenz- und statische elektrische Felder liegen. Exposition gegenüber ultraniederfrequenten elektromagnetischen Feldern tritt auch in Reduktionsanlagen auf, insbesondere an den entfernten Enden dieser Räume neben Gleichrichterräumen. Die in den nahe gelegenen Potrooms gefundenen Flusswerte sind jedoch minimal und liegen weit unter den gegenwärtigen Standards. Schließlich wurden keine kohärenten oder reproduzierbaren epidemiologischen Beweise für gesundheitsschädliche Auswirkungen durch elektromagnetische Felder in Aluminiumreduktionsanlagen überzeugend nachgewiesen.

Elektrodenherstellung

Arbeiter, die mit Pechdämpfen in Kontakt kommen, können Hautrötungen entwickeln; Sonneneinstrahlung führt zu einer Photosensibilisierung mit erhöhter Reizung. Fälle von lokalisierten Hauttumoren sind bei Kohleelektrodenarbeitern aufgetreten, bei denen eine unzureichende persönliche Hygiene praktiziert wurde; nach Exzision und Arbeitsplatzwechsel wird in der Regel keine weitere Ausbreitung oder Rezidive festgestellt. Bei der Elektrodenherstellung können erhebliche Mengen an Kohle- und Pechstaub entstehen. Wo solche Staubexpositionen schwerwiegend und unzureichend kontrolliert waren, gab es gelegentlich Berichte, dass Hersteller von Kohleelektroden eine einfache Pneumokoniose mit fokalem Emphysem entwickeln können, die durch die Entwicklung massiver fibrotischer Läsionen kompliziert wird. Sowohl die einfache als auch die komplizierte Pneumokoniose sind nicht von der entsprechenden Erkrankung der Kohlenarbeiter-Pneumokoniose zu unterscheiden. Beim Mahlen von Koks in Kugelmühlen entstehen Geräuschpegel von bis zu 100 dBA.

Anmerkung der Redaktion: Die Aluminium produzierende Industrie wurde von der International Agency for Research on Cancer (IARC) als bekannter Verursacher von Krebserkrankungen der Gruppe 1 eingestuft. Eine Vielzahl von Expositionen wurde mit anderen Krankheiten in Verbindung gebracht (z. B. „Potroom-Asthma“), die an anderer Stelle in diesem Dokument beschrieben werden Enzyklopädie.

 

Zurück

Lesen Sie mehr 14308 mal Zuletzt geändert am Mittwoch, 10. August 2011, 23:13 Uhr

HAFTUNGSAUSSCHLUSS: Die ILO übernimmt keine Verantwortung für auf diesem Webportal präsentierte Inhalte, die in einer anderen Sprache als Englisch präsentiert werden, der Sprache, die für die Erstproduktion und Peer-Review von Originalinhalten verwendet wird. Bestimmte Statistiken wurden seitdem nicht aktualisiert die Produktion der 4. Auflage der Encyclopaedia (1998)."

Inhalte

Referenzen für die metallverarbeitende und metallverarbeitende Industrie

Buonicore, AJ und WT Davis (Hrsg.). 1992. Technisches Handbuch zur Luftverschmutzung. New York: Van Nostrand Reinhold/Air and Waste Management Association.

Umweltschutzbehörde (EPA). 1995. Profil der NE-Metallindustrie. EPA/310-R-95-010. Washington, DC: EPA.

Internationale Vereinigung für Krebsforschung (IARC). 1984. Monographien zur Bewertung krebserzeugender Risiken für den Menschen. Vol. 34. Lyon: IARC.

Johnson A, CY Moira, L MacLean, E Atkins, A Dybunico, F Cheng und D Enarson. 1985. Atemanomalien bei Arbeitern in der Eisen- und Stahlindustrie. Brit J Ind Med 42: 94–100.

Kronenberg RS, JC Levin, RF Dodson, JGN Garcia und DE Griffith. 1991. Asbestbedingte Krankheit bei Angestellten eines Stahlwerks und einer Fabrik zur Herstellung von Glasflaschen. Ann NY Acad Sci 643: 397–403.

Landrigan, PJ, MG Cherniack, FA Lewis, LR Catlett und RW Hornung. 1986. Silikose in einer Graugussgießerei. Die Persistenz einer alten Krankheit. Scand J Work Environ Health 12: 32–39.

Nationales Institut für Sicherheit und Gesundheitsschutz am Arbeitsplatz (NIOSH). 1996. Kriterien für einen empfohlenen Standard: Berufliche Exposition gegenüber Metallbearbeitungsflüssigkeiten. Cincinatti, OH: NIOSH.

Palheta, D und A Taylor. 1995. Quecksilber in Umwelt- und biologischen Proben aus einem Goldminengebiet im Amazonasgebiet von Brasilien. Wissenschaft der gesamten Umwelt 168: 63-69.

Thomas, PR und D. Clarke. 1992 Vibration weißer Finger und Dupuytren-Kontraktur: Sind sie verwandt? Occup Med 42(3):155–158.