Drucken
Mittwoch, März 02 2011 16: 24

Anästhesiegasabfälle

Artikel bewerten
(1 Vote)

Die Verwendung von Inhalationsanästhetika wurde im Jahrzehnt von 1840 bis 1850 eingeführt. Die ersten verwendeten Verbindungen waren Diethylether, Lachgas und Chloroform. Cyclopropan und Trichlorethylen wurden viele Jahre später eingeführt (ca. 1930–1940), und die Verwendung von Fluoroxen, Halothan und Methoxifluran begann in den 1950er Jahren. Ende der 1960er Jahre wurde Enfluran verwendet und schließlich wurde in den 1980er Jahren Isofluran eingeführt. Isofluran gilt heute als das am weitesten verbreitete Inhalationsanästhetikum, obwohl es teurer ist als die anderen. Eine Zusammenfassung der physikalischen und chemischen Eigenschaften von Methoxifluran, Enfluran, Halothan, Isofluran und Lachgas, den am häufigsten verwendeten Anästhetika, ist in Tabelle 1 dargestellt (Wade und Stevens 1981).

Tabelle 1. Eigenschaften inhalierter Anästhetika

 

Isofluran,
Forane

Enfluran,
Ethran

Halothan,
Fluothan

Methoxyfluran,
Penthran

Distickstoffoxid,
Lachgas

Molekulargewicht

184.0

184.5

197.4

165.0

44.0

Siedepunkt

48.5°C

56.5°C

50.2°C

104.7°C

-

Signaldichte

1.50

1.52 (25°C)

1.86 (22°C)

1.41 (25°C)

-

Dampfdruck bei 20 °C

250.0

175.0 (20°C)

243.0 (20°C)

25.0 (20°C)

-

Geruch

Angenehm, scharf

Angenehm, wie Äther

Angenehm, süß

Angenehm, fruchtig

Angenehm, süß

Trennkoeffizienten:

Blut/Gas

1.40

1.9

2.3

13.0

0.47

Gehirn/Gas

3.65

2.6

4.1

22.1

0.50

Fett/Gas

94.50

105.0

185.0

890.0

1.22

Leber/Gas

3.50

3.8

7.2

24.8

0.38

Muskel/Gas

5.60

3.0

6.0

20.0

0.54

Ölbenzin

97.80

98.5

224.0

930.0

1.4

Wasser/Gas

0.61

0.8

0.7

4.5

0.47

Gummi/Gas

0.62

74.0

120.0

630.0

1.2

Stoffwechselrate

0.20

2.4

15-20

50.0

-

 

Alle mit Ausnahme von Lachgas (N2O), sind Kohlenwasserstoffe oder chlorfluorierte flüssige Ether, die durch Aufdampfen aufgebracht werden. Isofluran ist die flüchtigste dieser Verbindungen; es wird am wenigsten verstoffwechselt und ist am wenigsten löslich im Blut, in Fetten und in der Leber.

Normalerweise N2O, ein Gas, wird mit einem halogenierten Anästhetikum gemischt, obwohl sie manchmal separat verwendet werden, abhängig von der Art der erforderlichen Anästhesie, den Eigenschaften des Patienten und den Arbeitsgewohnheiten des Anästhesisten. Die normalerweise verwendeten Konzentrationen sind 50 bis 66 % N2O und bis zu 2 oder 3 % des halogenierten Anästhetikums (der Rest ist normalerweise Sauerstoff).

Die Anästhesie des Patienten wird üblicherweise durch die Injektion eines Beruhigungsmittels gefolgt von einem inhalativen Anästhetikum eingeleitet. Die dem Patienten verabreichten Volumina liegen in der Größenordnung von 4 oder 5 Liter/Minute. Teile des Sauerstoffs und der Anästhesiegase im Gemisch werden vom Patienten zurückgehalten, während der Rest direkt in die Atmosphäre ausgeatmet oder in das Beatmungsgerät zurückgeführt wird, unter anderem je nach verwendetem Maskentyp, ob der Patient intubiert wird und ob ein Recyclingsystem vorhanden ist oder nicht. Wenn Recycling verfügbar ist, kann ausgeatmete Luft recycelt werden, nachdem sie gereinigt wurde, oder sie kann in die Atmosphäre entlüftet, aus dem Operationssaal ausgestoßen oder durch ein Vakuum abgesaugt werden. Recycling (geschlossener Kreislauf) ist kein übliches Verfahren und viele Atemschutzgeräte haben keine Abgassysteme; die gesamte vom Patienten ausgeatmete Luft einschließlich der Anästhesiegasabfälle gelangt daher in die Luft des Operationssaals.

Die Zahl der beruflich den Anästhesiegasen ausgesetzten Arbeitnehmer ist hoch, da nicht nur die Anästhesisten und ihre Assistenten exponiert sind, sondern auch alle anderen Personen, die sich in Operationssälen aufhalten (Chirurgen, Schwestern und Hilfspersonal), die Zahnärzte zahnärztliche Eingriffe durchführen, das Personal in Kreißsälen und Intensivstationen, auf denen Patienten möglicherweise unter Inhalationsanästhesie stehen, und Tierärzte. In ähnlicher Weise wird das Vorhandensein von Anästhesiegasabfällen in Aufwachräumen festgestellt, wo sie von Patienten ausgeatmet werden, die sich von einer Operation erholen. Sie werden auch in anderen an Operationssäle angrenzenden Bereichen nachgewiesen, da Operationssäle aus Gründen der Asepsis unter Überdruck gehalten werden und dies die Kontamination der Umgebung begünstigt.

Auswirkungen auf die Gesundheit

Probleme aufgrund der Toxizität von Anästhesiegasen wurden erst in den 1960er Jahren ernsthaft untersucht, obwohl einige Jahre nach der Verwendung von inhalativen Anästhetika der Zusammenhang zwischen den Krankheiten (Asthma, Nephritis), die einige der ersten professionellen Anästhesisten betrafen, und ihren üblich wurde Arbeit als solche wurde bereits vermutet (Ginesta 1989). In dieser Hinsicht war das Erscheinen einer epidemiologischen Studie mit mehr als 300 Anästhesisten in der Sowjetunion, der Vaisman-Umfrage (1967), der Ausgangspunkt für mehrere andere epidemiologische und toxikologische Studien. Diese Studien konzentrierten sich – hauptsächlich in den 1970er und in der ersten Hälfte der 1980er Jahre – auf die Auswirkungen von Anästhesiegasen, in den meisten Fällen Lachgas und Halothan, auf beruflich exponierte Personen.

Die in den meisten dieser Studien beobachteten Wirkungen waren eine Zunahme spontaner Aborte bei Frauen, die während oder vor der Schwangerschaft exponiert waren, und bei weiblichen Partnern exponierter Männer; eine Zunahme angeborener Missbildungen bei Kindern exponierter Mütter; und das Auftreten von Leber-, Nieren- und neurologischen Problemen sowie einiger Krebsarten bei Männern und Frauen (Bruce et al. 1968, 1974; Bruce und Bach 1976). Obwohl die toxischen Wirkungen von Lachgas und Halothan (und wahrscheinlich auch seinen Ersatzstoffen) auf den Körper nicht genau gleich sind, werden sie häufig zusammen untersucht, da die Exposition im Allgemeinen gleichzeitig erfolgt.

Wahrscheinlich besteht eine Korrelation zwischen diesen Expositionen und einem erhöhten Risiko, insbesondere für Spontanaborte und angeborene Missbildungen bei Kindern von Frauen, die während der Schwangerschaft exponiert waren (Stoklov et al. 1983; Spence 1987; Johnson, Buchan und Reif 1987). Infolgedessen haben viele der exponierten Personen große Besorgnis zum Ausdruck gebracht. Strenge statistische Analysen dieser Daten lassen jedoch Zweifel an der Existenz eines solchen Zusammenhangs aufkommen. Neuere Studien verstärken diese Zweifel, während Chromosomenstudien zweideutige Ergebnisse liefern.

Die von Cohen und Kollegen (1971, 1974, 1975, 1980) veröffentlichten Arbeiten, die umfangreiche Studien für die American Society of Anesthetists (ASA) durchführten, bilden eine ziemlich umfangreiche Reihe von Beobachtungen. Folgepublikationen kritisierten einige der technischen Aspekte der früheren Studien, insbesondere im Hinblick auf die Stichprobenmethodik und vor allem die richtige Auswahl einer Kontrollgruppe. Weitere Mängel waren das Fehlen zuverlässiger Informationen über die Konzentrationen, denen die Probanden ausgesetzt waren, die Methodik für den Umgang mit falsch positiven Ergebnissen und das Fehlen von Kontrollen für Faktoren wie Tabak- und Alkoholkonsum, frühere Fortpflanzungsgeschichten und freiwillige Unfruchtbarkeit. Einige der Studien gelten daher inzwischen sogar als ungültig (Edling 1980; Buring et al. 1985; Tannenbaum und Goldberg 1985).

Laborstudien haben gezeigt, dass die Exposition von Tieren gegenüber Umgebungskonzentrationen von Anästhesiegasen, die denen in Operationssälen entsprechen, eine Verschlechterung ihrer Entwicklung, ihres Wachstums und ihres Anpassungsverhaltens verursacht (Ferstandig 1978; ACGIH 1991). Diese sind jedoch nicht schlüssig, da einige dieser experimentellen Expositionen mit anästhetischen oder subanästhetischen Konzentrationen verbunden waren, Konzentrationen, die signifikant höher waren als die normalerweise in der Luft von Operationssälen gefundenen Abgaskonzentrationen (Saurel-Cubizolles et al. 1994; Tran et al. 1994).

Selbst wenn man anerkennt, dass ein Zusammenhang zwischen den schädlichen Wirkungen und der Exposition gegenüber Anästhesiegasen nicht endgültig hergestellt wurde, ist es Tatsache, dass das Vorhandensein dieser Gase und ihrer Metaboliten in der Luft von Operationssälen, in der ausgeatmeten Luft und in der Luft leicht nachweisbar ist biologische Flüssigkeiten. Da Bedenken hinsichtlich ihrer potenziellen Toxizität bestehen und dies technisch ohne übermäßigen Aufwand oder Kosten machbar ist, wäre es daher ratsam, Maßnahmen zu ergreifen, um die Konzentrationen von Anästhesiegasabfällen in Operationssälen zu beseitigen oder auf ein Minimum zu reduzieren nahe gelegenen Gebieten (Rosell, Luna und Guardino 1989; NIOSH 1994).

Maximal zulässige Belastungswerte

Die American Conference of Governmental Industrial Hygienists (ACGIH) hat einen zeitlich gewichteten Grenzwert (TLV-TWA) von 50 ppm für Lachgas und Halothan festgelegt (ACGIH 1994). Die TLV-TWA ist die Richtlinie für die Herstellung der Verbindung, und die Empfehlungen für Operationssäle lauten, dass ihre Konzentration niedriger gehalten werden sollte, auf einem Niveau unter 1 ppm (ACGIH 1991). NIOSH legt einen Grenzwert von 25 ppm für Lachgas und von 1 ppm für halogenierte Anästhetika fest, mit der zusätzlichen Empfehlung, dass bei gemeinsamer Anwendung die Konzentration von halogenierten Verbindungen auf einen Grenzwert von 0.5 ppm reduziert werden sollte (NIOSH 1977b).

In Bezug auf die Werte in biologischen Flüssigkeiten liegt der empfohlene Grenzwert für Lachgas im Urin nach 4-stündiger Exposition bei durchschnittlichen Umgebungskonzentrationen von 25 ppm zwischen 13 und 19 μg/L und für 4-stündige Exposition bei durchschnittlichen Umgebungskonzentrationen von 50 ppm liegt der Bereich bei 21 bis 39 μg/L (Guardino und Rosell 1995). Bei einer Exposition gegenüber einem Gemisch aus einem halogenierten Anästhetikum und Distickstoffmonoxid wird die Messung der Werte von Distickstoffmonoxid als Grundlage für die Expositionskontrolle verwendet, da bei höheren Konzentrationen die Quantifizierung einfacher wird.

Analytische Messung

Die meisten der beschriebenen Verfahren zur Messung von Restanästhetika in der Luft basieren auf dem Einfangen dieser Verbindungen durch Adsorption oder in einem inerten Beutel oder Behälter, um später durch Gaschromatographie oder Infrarotspektroskopie analysiert zu werden (Guardino und Rosell 1985). Die Gaschromatographie wird auch zur Messung von Lachgas im Urin eingesetzt (Rosell, Luna und Guardino 1989), während Isofluran nicht leicht metabolisiert wird und daher selten gemessen wird.

Übliche Restkonzentrationen in der Luft von Operationssälen

Ohne vorbeugende Maßnahmen wie das Absaugen von Restgasen und/oder das Einführen einer ausreichenden Frischluftzufuhr in den Operationssaal wurden Personenkonzentrationen von mehr als 6,000 ppm Distickstoffmonoxid und 85 ppm Halothan gemessen (NIOSH 1977 ). In der Raumluft von Operationssälen wurden Konzentrationen von bis zu 3,500 ppm bzw. 20 ppm gemessen. Durch die Umsetzung von Korrekturmaßnahmen können diese Konzentrationen auf Werte unterhalb der zuvor genannten Umweltgrenzwerte reduziert werden (Rosell, Luna und Guardino 1989).

Faktoren, die die Konzentration von Anästhesiegasabfällen beeinflussen

Die Faktoren, die das Vorhandensein von Anästhesiegasabfällen in der Umgebung des Operationssaals am direktesten beeinflussen, sind die folgenden.

Methode der Anästhesie. Die erste zu berücksichtigende Frage ist die Methode der Anästhesie, zum Beispiel, ob der Patient intubiert ist oder nicht, und welche Art von Gesichtsmaske verwendet wird. Bei Zahn-, Kehlkopf- oder anderen Formen der Chirurgie, bei denen eine Intubation ausgeschlossen ist, wäre die ausgeatmete Luft des Patienten eine wichtige Emissionsquelle für Abgase, es sei denn, eine speziell zum Auffangen dieser Ausatmungen ausgelegte Ausrüstung wird ordnungsgemäß in der Nähe des Atembereichs des Patienten platziert. Dementsprechend gelten Zahn- und Kieferchirurgen als besonders gefährdet (Cohen, Belville und Brown 1975; NIOSH 1977a) sowie Tierärzte (Cohen, Belville und Brown 1974; Moore, Davis und Kaczmarek 1993).

Nähe zum Fokus der Emission. Wie in der Arbeitshygiene üblich, ist bei bekannter Schadstoffemission zunächst die Nähe zur Quelle zu berücksichtigen, wenn es um die persönliche Belastung geht. In diesem Fall sind die Anästhesisten und ihre Assistenten die Personen, die am unmittelbarsten von der Emission von Anästhesiegasabfällen betroffen sind, und es wurden persönliche Konzentrationen in der Größenordnung des Zweifachen der durchschnittlichen Werte in der Luft von Operationssälen gemessen (Guardino und Rosell 1985 ).

Art der Schaltung. Es versteht sich von selbst, dass in den wenigen Fällen, in denen geschlossene Kreisläufe verwendet werden, mit Reinspiration nach der Reinigung der Luft und der Wiederzufuhr von Sauerstoff und den erforderlichen Anästhetika keine Emissionen auftreten, außer bei Gerätestörungen oder Leckagen existiert. In anderen Fällen hängt es von den Eigenschaften des verwendeten Systems ab sowie davon, ob es möglich ist, dem Kreislauf ein Absaugsystem hinzuzufügen oder nicht.

Die Konzentration von Anästhesiegasen. Ein weiterer zu berücksichtigender Faktor sind die Konzentrationen der verwendeten Anästhetika, da diese Konzentrationen und die in der Luft des Operationssaals gefundenen Mengen offensichtlich in direktem Zusammenhang stehen (Guardino und Rosell 1985). Dieser Faktor ist besonders wichtig, wenn es um chirurgische Eingriffe von langer Dauer geht.

Art der chirurgischen Eingriffe. Die Dauer der Operationen, die Zeit, die zwischen den im selben Operationssaal durchgeführten Eingriffen vergangen ist, und die spezifischen Merkmale der einzelnen Eingriffe – die häufig bestimmen, welche Anästhetika verwendet werden – sind weitere zu berücksichtigende Faktoren. Die Dauer der Operation wirkt sich direkt auf die Restkonzentration von Anästhetika in der Luft aus. In Operationssälen, in denen Eingriffe nacheinander geplant sind, wirkt sich auch die Zeit zwischen ihnen auf das Vorhandensein von Restgasen aus. Untersuchungen in großen Krankenhäusern mit ununterbrochener Nutzung der OP-Säle oder mit Not-OP-Sälen, die außerhalb der üblichen Arbeitszeiten genutzt werden, oder in OP-Sälen, die für längere Eingriffe (Transplantationen, Laryngotomien) genutzt werden, zeigen, dass erhebliche Mengen an Abgasen schon vorher festgestellt werden die erste Prozedur des Tages. Dies trägt zu erhöhten Mengen an Abgasen in nachfolgenden Verfahren bei. Andererseits gibt es Verfahren, die eine vorübergehende Unterbrechung der Inhalationsnarkose erfordern (z. B. wenn eine extrakorporale Zirkulation erforderlich ist), wodurch auch die Emission von Anästhesiegasabfällen in die Umgebung unterbrochen wird (Guardino und Rosell 1985).

Spezifische Merkmale des Operationssaals. Studien, die in Operationssälen unterschiedlicher Größe, Gestaltung und Belüftung durchgeführt wurden (Rosell, Luna und Guardino 1989), haben gezeigt, dass diese Eigenschaften die Konzentration von Anästhesiegasabfällen im Raum stark beeinflussen. Große und nicht unterteilte Operationssäle haben tendenziell die niedrigsten gemessenen Konzentrationen von Anästhesiegasabfällen, während in kleinen Operationssälen (z. B. Kinderoperationssälen) die gemessenen Konzentrationen von Abgasen normalerweise höher sind. Das allgemeine Belüftungssystem des Operationssaals und sein ordnungsgemäßer Betrieb ist ein grundlegender Faktor für die Verringerung der Konzentration von Anästhetikaabfällen; Die Auslegung der Lüftungsanlage beeinflusst auch die Zirkulation der Abgase innerhalb des Operationssaals und die Konzentrationen an verschiedenen Orten und in verschiedenen Höhen, was durch sorgfältige Probennahme leicht überprüft werden kann.

Besonderheiten der Anästhesiegeräte. Die Emission von Gasen in die Umgebung des Operationssaals hängt direkt von den Eigenschaften der verwendeten Anästhesiegeräte ab. Das Design des Systems, ob es ein System zur Rückführung überschüssiger Gase enthält, ob es an ein Vakuum angeschlossen oder aus dem Operationssaal entlüftet werden kann, ob es Undichtigkeiten, getrennte Leitungen usw. aufweist, ist immer zu berücksichtigen Bestimmung des Vorhandenseins von Anästhesiegasabfällen im Operationssaal.

Faktoren, die für den Anästhesisten und sein Team spezifisch sind. Der Anästhesist und sein Team sind das letzte zu berücksichtigende Element, aber nicht unbedingt das unwichtigste. Die Kenntnis der Anästhesiegeräte, ihrer potenziellen Probleme und des Wartungsaufwands – sowohl durch das Team als auch durch das Wartungspersonal im Krankenhaus – sind Faktoren, die sich sehr direkt auf die Emission von Abgasen in die Luft des Operationssaals auswirken ( Guardino und Rosell 1995). Es hat sich eindeutig gezeigt, dass eine Reduzierung der Umgebungskonzentrationen von Anästhesiegasen auch mit adäquater Technologie nicht erreicht werden kann, wenn eine präventive Philosophie im Arbeitsalltag von Anästhesisten und ihren Assistenten fehlt (Guardino und Rosell 1992).

Vorsichtsmaßnahmen

Die grundlegenden vorbeugenden Maßnahmen, die erforderlich sind, um die berufliche Exposition gegenüber Anästhesiegasabfällen wirksam zu reduzieren, lassen sich in den folgenden sechs Punkten zusammenfassen:

  1. Anästhesiegase sollten als Berufsrisiko betrachtet werden. Auch wenn aus wissenschaftlicher Sicht nicht eindeutig belegt ist, dass Anästhesiegase eine schwerwiegende gesundheitsschädliche Wirkung auf beruflich strahlenexponierte Personen haben, stehen einige der hier genannten Wirkungen mit hoher Wahrscheinlichkeit in direktem Zusammenhang mit der Abfallexposition anästhetische Gase. Aus diesem Grund ist es eine gute Idee, sie als toxische Gefahren am Arbeitsplatz zu betrachten.
  2. Für Abgase sollten Scavenger-Systeme verwendet werden. Scavenger-Systeme sind die effektivste technische Hardware zur Reduzierung von Abgasen in der Luft des Operationssaals (NIOSH 1975). Diese Systeme müssen zwei Grundprinzipien erfüllen: Sie müssen die gesamte vom Patienten ausgeatmete Luftmenge speichern und/oder adäquat eliminieren, und sie müssen so konstruiert sein, dass weder die Atmung des Patienten noch die ordnungsgemäße Funktion der Anästhesiegeräte beeinträchtigt werden betroffen – mit separaten Sicherheitseinrichtungen für jede Funktion. Die am häufigsten verwendeten Techniken sind: eine direkte Verbindung zu einem Vakuumauslass mit einer flexiblen Regulierungskammer, die eine diskontinuierliche Emission von Gasen des Atmungszyklus ermöglicht; Leiten des Stroms der vom Patienten ausgeatmeten Gase ohne direkte Verbindung zum Vakuum; und Leiten des vom Patienten kommenden Gasstroms zum Rücklauf des im Operationssaal installierten Belüftungssystems und Ausstoßen dieser Gase aus dem Operationssaal und aus dem Gebäude. Alle diese Systeme sind technisch einfach zu realisieren und sehr kosteneffizient; Die Verwendung von installierten Atemschutzgeräten als Teil der Konstruktion wird empfohlen. In Fällen, in denen Systeme mit direkter Abgasableitung aufgrund der Besonderheiten eines Verfahrens nicht eingesetzt werden können, kann eine lokale Absaugung in der Nähe der Emissionsquelle eingesetzt werden, sofern die allgemeine Belüftungsanlage oder der Überdruck im Operationssaal nicht beeinträchtigt werden .
  3. Eine allgemeine Belüftung mit mindestens 15 Erneuerungen/Stunde im Operationssaal sollte gewährleistet sein. Die allgemeine Belüftung des Operationssaals sollte perfekt geregelt sein. Es sollte nicht nur den Überdruck aufrechterhalten und auf die thermohygrometrischen Eigenschaften der Umgebungsluft reagieren, sondern auch mindestens 15 bis 18 Erneuerungen pro Stunde ermöglichen. Außerdem sollte ein Überwachungsverfahren vorhanden sein, um dessen ordnungsgemäßes Funktionieren sicherzustellen.
  4. Die vorbeugende Wartung des Anästhesiekreislaufs sollte geplant und regelmäßig durchgeführt werden. Es sollten Verfahren zur vorbeugenden Wartung eingerichtet werden, die regelmäßige Inspektionen der Atemschutzgeräte umfassen. Die Überprüfung, dass keine Gase an die Umgebungsluft abgegeben werden, sollte Teil des Protokolls sein, das beim ersten Einschalten des Geräts befolgt wird, und seine ordnungsgemäße Funktion im Hinblick auf die Sicherheit des Patienten sollte überprüft werden. Die ordnungsgemäße Funktion des Anästhesiekreislaufs sollte überprüft werden, indem auf Lecks geprüft, Filter regelmäßig ausgetauscht und die Sicherheitsventile überprüft werden.
  5. Umwelt- und biologische Kontrollen sollten verwendet werden. Die Durchführung von umwelt- und biologischen Kontrollen gibt nicht nur Aufschluss über die ordnungsgemäße Funktion der verschiedenen technischen Elemente (Gasabsaugung, allgemeine Belüftung), sondern auch darüber, ob die Arbeitsverfahren geeignet sind, die Emission von Abgasen in die Luft zu verringern. Diese Steuerungen sind heute technisch unproblematisch und wirtschaftlich realisierbar, weshalb sie zu empfehlen sind.
  6. Die Ausbildung und Schulung des exponierten Personals ist von entscheidender Bedeutung. Um eine wirksame Verringerung der berufsbedingten Exposition gegenüber Anästhesiegasabfällen zu erreichen, muss das gesamte OP-Personal über die potenziellen Risiken aufgeklärt und in den erforderlichen Verfahren geschult werden. Dies gilt insbesondere für Anästhesisten und ihre Assistenten, die am unmittelbarsten involviert sind, und diejenigen, die für die Wartung der Anästhesie- und Klimageräte verantwortlich sind.

 

Fazit

Obwohl nicht endgültig bewiesen, gibt es genügend Beweise dafür, dass die Exposition gegenüber Anästhesiegasen für medizinisches Personal schädlich sein kann. Totgeburten und angeborene Missbildungen bei Säuglingen von Arbeiterinnen und Ehegatten männlicher Arbeiter sind die Hauptformen der Toxizität. Da es technisch und kostengünstig machbar ist, ist es wünschenswert, die Konzentration dieser Gase in der Umgebungsluft von Operationssälen und angrenzenden Bereichen auf ein Minimum zu reduzieren. Dies erfordert nicht nur den Einsatz und die korrekte Wartung von Anästhesiegeräten und Lüftungs-/Klimaanlagen, sondern auch die Schulung und Schulung aller beteiligten Personen, insbesondere der Anästhesisten und ihrer Assistenten, die in der Regel höheren Konzentrationen ausgesetzt sind. Angesichts der besonderen Arbeitsbedingungen in Operationssälen ist die Einweisung in die richtigen Arbeitsgewohnheiten und -verfahren sehr wichtig, um die Menge an Anästhetika-Abgasen in der Luft auf ein Minimum zu reduzieren.

 

Zurück

Lesen Sie mehr 6866 mal Zuletzt geändert am Samstag, den 13. August 2011 um 17:53 Uhr