bandera 13

Categorías Niños

81. Aparatos y equipos eléctricos

81. Aparatos y equipos eléctricos (7)

bandera 13

 

81. Aparatos y equipos eléctricos

Redactor del capítulo: NA Smith


Índice del contenido

Tablas y Figuras

Perfil general
NA Smith

Fabricación de baterías de plomo-ácido
Barry P Kelley

Baterías
NA Smith

Fabricación de cables eléctricos
David A. O'Malley

Fabricación de lámparas y tubos eléctricos
Albert Zielinski

Fabricación de electrodomésticos
NA Smith y W. Klost

Problemas ambientales y de salud pública
Pittmann, Alejandro

Mesas

Haga clic en un enlace a continuación para ver la tabla en el contexto del artículo.

1. Composición de las baterías comunes
2. Fabricación: electrodomésticos

Figuras

Apunte a una miniatura para ver el título de la figura, haga clic para ver la figura en el contexto del artículo.

ELA020F1ELA030F1ELA030F2ELA030F3ELA060F1

Ver los elementos ...
82. Industria de procesamiento y trabajo de metales

82. Industria de procesamiento y trabajo de metales (14)

bandera 13

 

82. Industria de procesamiento y trabajo de metales

Redactor del capítulo: Michael McCann


Índice del contenido

Tablas y Figuras

Perfil general

Operaciones de Fundición y Refinación

Fundición y Refinación
pekkaroto

Fundición y Refinación de Cobre, Plomo y Zinc

Fundición y Refinación de Aluminio
Bertram D. Dinman

Fundición y Refinación de Oro
ID Gadaskina y LA Ryzik

Procesamiento de metales y trabajo de metales

Fundiciones
Franklin E. Mirer

Forja y estampado
parque robert m

Soldadura y Corte Térmico
Philip A. Platcow y GS Lyndon

Tornos
Toni Retsch

Rectificado y pulido
K. Welinder

Lubricantes industriales, fluidos para trabajar metales y aceites automotrices
Richard S Kraus

Tratamiento de superficies de metales
JG Jones, JR Bevan, JA Catton, A. Zober, N. Fish, KM Morse, G. Thomas, MA El Kadeem y Philip A. Platcow

Recuperación de metales
Melvin E. Cassady y Richard D. Ringenwald, Jr.

Cuestiones ambientales en el acabado de metales y revestimientos industriales
stewart forbes

Mesas

Haga clic en un enlace a continuación para ver la tabla en el contexto del artículo.

1. Entradas y salidas para fundición de cobre
2. Entradas y salidas para fundición de plomo
3. Entradas y salidas para fundición de zinc
4. Entradas y salidas para fundición de aluminio
5. Tipos de hornos de fundición.
6. Entradas de materiales de proceso y salidas de contaminación
7. Procesos de soldadura: descripción y peligros
8. Resumen de los peligros
9. Controles para aluminio, por operación
10. Controles para cobre, por funcionamiento
11. Controles de plomo, por funcionamiento
12. Controles para zinc, por operación
13. Controles para magnesio, por operación.
14. Controles de mercurio, por operación
15. Controles para níquel, por funcionamiento
16. Controles para metales preciosos
17. Controles de cadmio, por operación
18. Controles para selenio, por operación
19. Controles para cobalto, por operación
20. Controles para estaño, por operación
21. Controles para titanio, por operación.

Figuras

Apunte a una miniatura para ver el título de la figura, haga clic para ver la figura en el contexto del artículo.

MET030F1MET040F1MET040F2MET050F1MET060F1MET070F1MET110F1


Haga clic para volver a la parte superior de la página

Ver los elementos ...
83. Microelectrónica y Semiconductores

83. Microelectrónica y Semiconductores (7)

bandera 13

 

83. Microelectrónica y Semiconductores

Redactor del capítulo: Michael E Williams


Índice del contenido

Tablas y Figuras

Perfil general
Michael E Williams

Fabricación de semiconductores de silicio
David G. Baldwin, James R. Rubin y Afsaneh Gerami

Pantallas de cristal líquido
David G. Baldwin, James R. Rubin y Afsaneh Gerami

Fabricación de semiconductores III-V
David G. Baldwin, Afsaneh Gerami y James R. Rubin

Tablero de circuito impreso y ensamblaje de computadora
Michael E Williams

Efectos sobre la salud y patrones de enfermedad
Donald V Lassiter

Problemas ambientales y de salud pública
Masticar con corcho

Mesas

Haga clic en un enlace a continuación para ver la tabla en el contexto del artículo.

1. Sistemas fotorresistentes
2. Decapantes fotorresistentes
3. Grabadores químicos húmedos
4. Gases de grabado por plasma y materiales grabados
5. Dopantes de formación de uniones para difusión
6. Principales categorías de epitaxia de silicio
7. Principales categorías de ECV
8. Limpieza de pantallas planas
9. Proceso PWB: medioambiente, salud y seguridad
10. Controles y generación de residuos de PWB
11. Controles y generación de residuos de PCB
12. Generación de residuos y controles
13. Matriz de necesidades prioritarias

Figuras

Apunte a una miniatura para ver el título de la figura, haga clic para ver la figura en el contexto del artículo.

MIC060F7MICO10F2MIC010F3MIC020F3MIC030F1MIC050F4MICO50F5MIC050F6MIC060F6MIC060F7MIC060F2MIC060F3MIC060F4MIC060F5


Haga clic para volver a la parte superior de la página

Ver los elementos ...
84. Vidrio, Cerámica y Materiales Relacionados

84. Vidrio, Cerámica y Materiales Relacionados (3)

bandera 13

 

84. Vidrio, Cerámica y Materiales Relacionados

Editores de capítulos: Joel Bender y Jonathan P. Hellerstein


Índice del contenido

Tablas y Figuras

Vidrio, Cerámica y Materiales Relacionados
Jonathan P. Hellerstein, Joel Bender, John G. Hadley y Charles M. Hohman

     Estudio de caso: Fibras ópticas
     Jorge R. Osborne

     Estudio de caso: gemas sintéticas
     Albahaca delfín

Mesas

Haga clic en un enlace a continuación para ver la tabla en el contexto del artículo.

1. Constituyentes típicos del cuerpo
2. Procesos de manufactura
3. Aditivos químicos seleccionados
4. Uso de refractarios por industria en los EE. UU.
5. Peligros potenciales para la salud y la seguridad
6. Lesiones y enfermedades ocupacionales no fatales

Figuras

Apunte a una miniatura para ver el título de la figura, haga clic para ver la figura en el contexto del artículo.

POT010F1POT010F2POT010F3POT010F4POT010F5POT010F6POT010F7POT010F8POT010F9POT10F10POT10F25POT10F11POT10F12POT10F13POT10F14POT10F15POT10F16POT10F17POT10F18POT10F19POT10F20POT10F21POT10F22POT10F23POT10F24POT020F2POT020F1

Ver los elementos ...
85. Industria de la imprenta, la fotografía y la reproducción

85. Industria Gráfica, Fotografía y Reproducción (6)

bandera 13

 

85. Industria de la imprenta, la fotografía y la reproducción

Editor del capítulo: David Richardson


Índice del contenido

Tablas y Figuras

Impresión y Publicación
Gordon C Miller

Servicios de reproducción y duplicación
Robert W Kilpper

Problemas de salud y patrones de enfermedad
Barry Friedlander

Descripción general de los problemas ambientales
Daniel R. Inglés

Laboratorios Fotográficos Comerciales
David Richardson

Mesas

Haga clic en un enlace a continuación para ver la tabla en el contexto del artículo.

1. Exposiciones en la industria de la impresión
2. Impresión de riesgos de mortalidad comercial
3. Exposición química en el procesamiento

Figuras

Apunte a una miniatura para ver el título de la figura, haga clic para ver la figura en el contexto del artículo.

PRI020F1PRI040F1PRI100F1PRI100F2PRI100F3PRI100F4

Ver los elementos ...
86. Carpintería

86. Carpintería (5)

bandera 13

 

86. Carpintería

Editor del capítulo: Jon Parish


Índice del contenido

Tablas y Figuras

Perfil general
Debra Osinski

Procesos de carpintería
Parroquia de Jon K.

Máquinas de enrutamiento
Vence a Wegmüller

Cepilladoras de madera
Vence a Wegmüller

Efectos sobre la salud y patrones de enfermedad
leon j warshaw

Mesas

Haga clic en un enlace a continuación para ver la tabla en el contexto del artículo.

1. Variedades de madera venenosas, alergénicas y biológicamente activas

Figuras

Apunte a una miniatura para ver el título de la figura, haga clic para ver la figura en el contexto del artículo.

WDI10F12WDI010F2WDI010F3WDI010F1WDI10F13WDI010F6WDI010F8WDI010F9WDI010F4WDI010F5WDI010F7WDI10F11WDI10F10WDI020F2WDI020F3WDI010F8WDI025F3WDI25F10

Ver los elementos ...
Miércoles, marzo de 16 2011 18: 51

Perfil general

Resumen del Sector

El equipo eléctrico incluye un amplio campo de dispositivos. Sería imposible incluir información sobre todos los elementos del equipo y, por lo tanto, este capítulo se limitará a la cobertura de productos de algunas de las principales industrias. Numerosos procesos están involucrados en la fabricación de tales equipos. En este capítulo se analizan los peligros que pueden encontrar las personas que trabajan en la fabricación de baterías, cables eléctricos, lámparas eléctricas y equipos eléctricos domésticos en general. Se concentra en equipos eléctricos; equipo electrónico se analiza en detalle en el capítulo Microelectrónica y semiconductores.

Evolución de la Industria

El descubrimiento pionero de la inducción electromagnética fue fundamental en el desarrollo de la vasta industria eléctrica actual. El descubrimiento del efecto electroquímico condujo al desarrollo de las baterías como medio de alimentación de equipos eléctricos a partir de fuentes de energía portátiles que utilizan sistemas de corriente continua. A medida que se inventaron los dispositivos que dependían de la energía de la red eléctrica, se requirió un sistema de transmisión y distribución de electricidad, lo que condujo a la introducción de conductores eléctricos flexibles (cables).

Las primeras formas de iluminación artificial (es decir, arco de carbón e iluminación de gas) fueron reemplazadas por la lámpara de filamento (originalmente con un filamento de carbón, exhibida por Joseph Swan en Inglaterra en enero de 1879). La lámpara de incandescencia disfrutaría de un monopolio sin precedentes en las aplicaciones domésticas, comerciales e industriales antes del estallido de la Segunda Guerra Mundial, momento en el que se introdujo la lámpara fluorescente. Posteriormente se han desarrollado otras formas de iluminación de descarga, todas las cuales dependen del paso de una corriente eléctrica a través de un gas o vapor, y tienen una variedad de aplicaciones en el comercio y la industria.

Constantemente se están desarrollando otros aparatos eléctricos en muchos campos (por ejemplo, audiovisuales, calefacción, cocina y refrigeración), y la gama de tales dispositivos está aumentando. Esto se caracteriza por la introducción de la televisión por satélite y la cocina de microondas.

Si bien la disponibilidad y accesibilidad de las materias primas tuvo un efecto significativo en el desarrollo de las industrias, la ubicación de las industrias no estuvo necesariamente determinada por la ubicación de las fuentes de materias primas. Las materias primas suelen ser procesadas por un tercero antes de ser utilizadas en el montaje de aparatos y equipos eléctricos.

Características de la Fuerza Laboral

Las habilidades y la experiencia que poseen quienes trabajan en la industria ahora son diferentes de las que poseía la fuerza laboral en años anteriores. Los equipos utilizados en la producción y fabricación de baterías, cables, lámparas y electrodomésticos están altamente automatizados.

En muchos casos, aquellos que actualmente están involucrados en la industria requieren capacitación especializada para poder realizar su trabajo. El trabajo en equipo es un factor importante en la industria, ya que muchos procesos involucran sistemas de línea de producción, donde el trabajo de los individuos depende del trabajo de los demás.

Un número cada vez mayor de procesos de fabricación involucrados en la producción de aparatos eléctricos se basan en alguna forma de informatización. Es necesario, por tanto, que la plantilla esté familiarizada con las técnicas informáticas. Es posible que esto no presente ningún problema para la fuerza laboral más joven, pero es posible que los trabajadores mayores no hayan tenido ninguna experiencia previa con la computadora, y es probable que deban volver a capacitarse.

Importancia Económica de la Industria

Algunos países se benefician más que otros de la industria de aparatos y equipos eléctricos. La industria tiene importancia económica para aquellos países de donde se obtienen las materias primas y aquellos en los que se ensamblan y/o construyen los productos finales. El montaje y la construcción tienen lugar en muchos países diferentes.

Las materias primas no tienen disponibilidad infinita. El equipo desechado debe reutilizarse siempre que sea posible. Sin embargo, los costos involucrados en la recuperación de aquellas partes del equipo desechado que pueden reutilizarse pueden, en última instancia, ser prohibitivos.

 

Atrás

Miércoles, marzo de 16 2011 20: 28

Fundición y Refinación

Adaptado de la 3ª edición, Enciclopedia de Salud y Seguridad en el Trabajo.

En la producción y refinación de metales, los componentes valiosos se separan del material sin valor en una serie de reacciones físicas y químicas diferentes. El producto final es metal que contiene cantidades controladas de impurezas. La fundición y refinación primaria produce metales directamente a partir de concentrados de minerales, mientras que la fundición y refinación secundaria produce metales a partir de chatarra y desechos del proceso. La chatarra incluye fragmentos y piezas de piezas metálicas, barras, virutas, láminas y alambres que no cumplen con las especificaciones o están desgastados pero que se pueden reciclar (consulte el artículo “Recuperación de metales” en este capítulo).

Descripción general de los procesos

Generalmente se utilizan dos tecnologías de recuperación de metales para producir metales refinados, pirometalúrgico y hidrometalúrgico. Los procesos pirometalúrgicos usan calor para separar los metales deseados de otros materiales. Estos procesos utilizan diferencias entre los potenciales de oxidación, los puntos de fusión, las presiones de vapor, las densidades y/o la miscibilidad de los componentes del mineral cuando se funden. Las tecnologías hidrometalúrgicas se diferencian de los procesos pirometalúrgicos en que los metales deseados se separan de otros materiales mediante técnicas que aprovechan las diferencias entre las solubilidades de los constituyentes y/o las propiedades electroquímicas en soluciones acuosas.

Pirometalurgia

 Durante el procesamiento pirometálico, un mineral, después de ser beneficiado (concentrado por trituración, molienda, flotación y secado), se sinteriza o se tuesta (calcinado) con otros materiales como el polvo de la cámara de filtros y el fundente. Luego, el concentrado se funde, o se derrite, en un alto horno para fusionar los metales deseados en un lingote fundido impuro. Este lingote luego se somete a un tercer proceso pirometálico para refinar el metal al nivel deseado de pureza. Cada vez que se calienta el mineral o el lingote, se crean materiales de desecho. El polvo de la ventilación y los gases del proceso se pueden capturar en una cámara de filtros y se eliminan o se devuelven al proceso, según el contenido de metal residual. También se captura el azufre en el gas, y cuando las concentraciones están por encima del 4% se puede convertir en ácido sulfúrico. Según el origen del mineral y su contenido de metales residuales, también se pueden producir como subproductos varios metales, como el oro y la plata.

El tostado es un importante proceso pirometalúrgico. El tostado por sulfatación se utiliza en la producción de cobalto y zinc. Su propósito es separar los metales para que puedan transformarse en una forma soluble en agua para su posterior procesamiento hidrometalúrgico.

La fundición de minerales sulfurosos produce un concentrado de metal parcialmente oxidado (mata). En la fundición, el material sin valor, generalmente hierro, forma una escoria con el material fundente y se convierte en óxido. Los metales valiosos adquieren la forma metálica en la etapa de conversión, que tiene lugar en hornos de conversión. Este método se utiliza en la producción de cobre y níquel. El hierro, el ferrocromo, el plomo, el magnesio y los compuestos ferrosos se producen por reducción del mineral con carbón vegetal y un fundente (piedra caliza), y el proceso de fundición suele tener lugar en un horno eléctrico. (Véase también el Siderurgia capítulo.) La electrólisis de sal fundida, utilizada en la producción de aluminio, es otro ejemplo de un proceso pirometalúrgico.

La alta temperatura requerida para el tratamiento pirometalúrgico de metales se obtiene quemando combustibles fósiles o usando la reacción exotérmica del propio mineral (por ejemplo, en el proceso de fundición instantánea). El proceso de fundición instantánea es un ejemplo de un proceso pirometalúrgico de ahorro de energía en el que se oxidan el hierro y el azufre del concentrado de mineral. La reacción exotérmica junto con un sistema de recuperación de calor ahorra mucha energía para la fundición. La alta recuperación de azufre del proceso también es beneficiosa para la protección del medio ambiente. La mayoría de las fundiciones de cobre y níquel construidas recientemente utilizan este proceso.

Hidrometalurgia

Ejemplos de procesos hidrometalúrgicos son la lixiviación, la precipitación, la reducción electrolítica, el intercambio iónico, la separación por membranas y la extracción por solventes. La primera etapa de los procesos hidrometalúrgicos es la lixiviación de metales valiosos a partir de materiales menos valiosos, por ejemplo, con ácido sulfúrico. La lixiviación suele ir precedida de un pretratamiento (p. ej., tostado con sulfatación). El proceso de lixiviación a menudo requiere alta presión, la adición de oxígeno o altas temperaturas. La lixiviación también se puede realizar con electricidad. De la solución de lixiviación se recupera el metal deseado o su compuesto por precipitación o reducción utilizando diferentes métodos. La reducción se lleva a cabo, por ejemplo, en la producción de cobalto y níquel con gas.

La electrólisis de metales en soluciones acuosas también se considera un proceso hidrometalúrgico. En el proceso de electrólisis, el ion metálico se reduce al metal. El metal se encuentra en una solución ácida débil de la que precipita sobre cátodos bajo la influencia de una corriente eléctrica. La mayoría de los metales no ferrosos también se pueden refinar mediante electrólisis.

A menudo, los procesos metalúrgicos son una combinación de procesos pirometalúrgicos e hidrometalúrgicos, según el concentrado de mineral a tratar y el tipo de metal a refinar. Un ejemplo es la producción de níquel.

Riesgos y su prevención

La prevención de riesgos para la salud y accidentes en la industria metalúrgica es principalmente una cuestión educativa y técnica. Los exámenes médicos son secundarios y sólo tienen un papel complementario en la prevención de riesgos para la salud. Un armónico intercambio de información y colaboración entre los departamentos de planificación, línea, seguridad y salud ocupacional dentro de la empresa dan el resultado más eficiente en la prevención de riesgos para la salud.

Las mejores y menos costosas medidas preventivas son las que se toman en la etapa de planificación de una nueva planta o proceso. En la planificación de nuevas instalaciones de producción, se deben tener en cuenta como mínimo los siguientes aspectos:

  • Las fuentes potenciales de contaminantes del aire deben encerrarse y aislarse.
  • El diseño y la ubicación del equipo de proceso deben permitir un fácil acceso para fines de mantenimiento.
  • Las áreas en las que pueda ocurrir un peligro repentino e inesperado deben monitorearse continuamente. Deben incluirse avisos de advertencia adecuados. Por ejemplo, las áreas en las que la exposición a arsina o cianuro de hidrógeno podría ser posible deben estar bajo monitoreo continuo.
  • La adición y el manejo de químicos de proceso tóxicos deben planificarse de modo que se pueda evitar el manejo manual.
  • Siempre que sea posible, se deben utilizar dispositivos de muestreo de higiene ocupacional personal para evaluar la exposición real del trabajador individual. El monitoreo fijo regular de gases, polvo y ruido brinda una visión general de la exposición, pero solo tiene un papel complementario en la evaluación de la dosis de exposición.
  • En la planificación del espacio se deben tener en cuenta los requerimientos de futuros cambios o ampliaciones del proceso para que no empeoren los estándares de higiene ocupacional de la planta.
  • Debe haber un sistema continuo de capacitación y educación para el personal de seguridad y salud, así como para los capataces y trabajadores. En particular, los nuevos trabajadores deben estar bien informados sobre los posibles riesgos para la salud y cómo prevenirlos en sus propios entornos de trabajo. Además, la capacitación debe realizarse siempre que se introduzca un nuevo proceso.
  • Las prácticas de trabajo son importantes. Por ejemplo, la higiene personal deficiente al comer y fumar en el lugar de trabajo puede aumentar considerablemente la exposición personal.
  • La gerencia debe tener un sistema de monitoreo de seguridad y salud que produzca datos adecuados para la toma de decisiones técnicas y económicas.

 

Los siguientes son algunos de los peligros y precauciones específicos que se encuentran en la fundición y el refinado.

lesiones

La industria de fundición y refinación tiene una tasa más alta de lesiones que la mayoría de las otras industrias. Las fuentes de estas lesiones incluyen: salpicaduras y derrames de metal fundido y escoria que resultan en quemaduras; explosiones de gas y explosiones por contacto de metal fundido con agua; colisiones con locomotoras, vagones, grúas viajeras y otros equipos móviles en movimiento; caídas de objetos pesados; cae desde una altura (p. ej., al acceder a la cabina de una grúa); y lesiones por resbalones y tropiezos debido a la obstrucción de pisos y pasillos.

Las precauciones incluyen: capacitación adecuada, equipo de protección personal (PPE) apropiado (por ejemplo, cascos, zapatos de seguridad, guantes de trabajo y ropa protectora); buen almacenamiento, limpieza y mantenimiento de equipos; reglas de tránsito para equipo en movimiento (incluidas rutas definidas y un sistema efectivo de señales y advertencias); y un programa de protección contra caídas.

PROCESADOR

Las enfermedades de estrés por calor, como el golpe de calor, son un peligro común, principalmente debido a la radiación infrarroja de los hornos y el metal fundido. Esto es especialmente un problema cuando se debe realizar un trabajo extenuante en ambientes calurosos.

La prevención de enfermedades por calor puede implicar pantallas de agua o cortinas de aire frente a los hornos, enfriamiento puntual, cabinas cerradas con aire acondicionado, ropa protectora contra el calor y trajes enfriados por aire, que permitan suficiente tiempo para la aclimatación, pausas para trabajar en áreas frescas y un suministro adecuado. de bebidas para consumo frecuente.

Peligros químicos

La exposición a una amplia variedad de polvos, humos, gases y otros productos químicos peligrosos puede ocurrir durante las operaciones de fundición y refinación. La trituración y molienda del mineral, en particular, puede resultar en una alta exposición a sílice y polvos metálicos tóxicos (p. ej., que contienen plomo, arsénico y cadmio). También puede haber exposición al polvo durante las operaciones de mantenimiento del horno. Durante las operaciones de fundición, los humos metálicos pueden ser un problema importante.

Las emisiones de polvo y humo se pueden controlar mediante el encierro, la automatización de procesos, la ventilación por extracción local y por dilución, el humedecimiento de los materiales, la manipulación reducida de materiales y otros cambios en los procesos. Cuando estos no sean adecuados, se necesitará protección respiratoria.

Muchas operaciones de fundición implican la producción de grandes cantidades de dióxido de azufre a partir de minerales sulfurados y monóxido de carbono a partir de procesos de combustión. La dilución y la ventilación de escape local (LEV) son esenciales.

El ácido sulfúrico se produce como subproducto de las operaciones de fundición y se utiliza en el refinado electrolítico y la lixiviación de metales. La exposición puede ocurrir tanto al líquido como a las nieblas de ácido sulfúrico. Se necesita protección para la piel y los ojos y LEV.

La fundición y el refinado de algunos metales pueden tener riesgos especiales. Los ejemplos incluyen carbonilo de níquel en la refinación de níquel, fluoruros en la fundición de aluminio, arsénico en la fundición y refinación de cobre y plomo, y exposiciones al mercurio y cianuro durante la refinación de oro. Estos procesos requieren sus propias precauciones especiales.

Otros peligros

El deslumbramiento y la radiación infrarroja de los hornos y el metal fundido pueden causar daños en los ojos, incluidas cataratas. Se deben usar gafas protectoras y protectores faciales adecuados. Los altos niveles de radiación infrarroja también pueden causar quemaduras en la piel a menos que se use ropa protectora.

Los altos niveles de ruido de la trituración y molienda del mineral, los sopladores de descarga de gas y los hornos eléctricos de alta potencia pueden causar pérdida de audición. Si la fuente del ruido no se puede encerrar o aislar, se deben usar protectores auditivos. Debe instituirse un programa de conservación de la audición que incluya pruebas audiométricas y capacitación.

Los peligros eléctricos pueden ocurrir durante los procesos electrolíticos. Las precauciones incluyen el mantenimiento eléctrico adecuado con procedimientos de bloqueo/etiquetado; guantes, ropa y herramientas aislantes; e interruptores de circuito de falla a tierra donde sea necesario.

El levantamiento y manejo manual de materiales puede causar lesiones en la espalda y las extremidades superiores. Las ayudas mecánicas de elevación y la capacitación adecuada en los métodos de elevación pueden reducir este problema.

Contaminación y Protección del Medio Ambiente

Las emisiones de gases irritantes y corrosivos como el dióxido de azufre, el sulfuro de hidrógeno y el cloruro de hidrógeno pueden contribuir a la contaminación del aire y provocar la corrosión de los metales y el hormigón dentro de la planta y en el entorno circundante. La tolerancia de la vegetación al dióxido de azufre varía según el tipo de bosque y suelo. En general, los árboles de hoja perenne toleran concentraciones más bajas de dióxido de azufre que los de hoja caduca. Las emisiones de partículas pueden contener partículas no específicas, fluoruros, plomo, arsénico, cadmio y muchos otros metales tóxicos. Los efluentes de aguas residuales pueden contener una variedad de metales tóxicos, ácido sulfúrico y otras impurezas. Los desechos sólidos pueden estar contaminados con arsénico, plomo, sulfuros de hierro, sílice y otros contaminantes.

La gestión de la fundición debe incluir la evaluación y el control de las emisiones de la planta. Este es un trabajo especializado que debe ser realizado únicamente por personal completamente familiarizado con las propiedades químicas y toxicidades de los materiales descargados de los procesos de la planta. El estado físico del material, la temperatura a la que sale del proceso, otros materiales en la corriente de gas y otros factores deben tenerse en cuenta al planificar medidas para controlar la contaminación del aire. También es deseable mantener una estación meteorológica, llevar registros meteorológicos y estar preparado para reducir la producción cuando las condiciones climáticas no sean favorables para la dispersión de los efluentes de la chimenea. Los viajes de campo son necesarios para observar el efecto de la contaminación del aire en las áreas residenciales y agrícolas.

El dióxido de azufre, uno de los principales contaminantes, se recupera como ácido sulfúrico cuando está presente en cantidad suficiente. De lo contrario, para cumplir con los estándares de emisión, el dióxido de azufre y otros desechos gaseosos peligrosos se controlan mediante depuración. Las emisiones de partículas se controlan comúnmente mediante filtros de tela y precipitadores electrostáticos.

Grandes cantidades de agua se utilizan en procesos de flotación como la concentración de cobre. La mayor parte de esta agua se recicla de nuevo en el proceso. Los relaves del proceso de flotación se bombean como lodos a estanques de sedimentación. El agua se recicla en el proceso. El agua de proceso que contiene metales y el agua de lluvia se limpian en plantas de tratamiento de agua antes de su descarga o reciclaje.

Los desechos en fase sólida incluyen escorias de fundición, lodos de purga de la conversión de dióxido de azufre en ácido sulfúrico y lodos de embalses superficiales (p. ej., estanques de sedimentación). Algunas escorias se pueden reconcentrar y devolver a las fundiciones para su reprocesamiento o recuperación de otros metales presentes. Muchos de estos desechos en fase sólida son desechos peligrosos que deben almacenarse de acuerdo con las normas ambientales.

 

Atrás

Miércoles, marzo de 16 2011 18: 52

Fabricación de baterías de plomo-ácido

El primer diseño práctico de una batería de plomo-ácido fue desarrollado por Gaston Planté en 1860 y, desde entonces, la producción no ha dejado de crecer. Las baterías automotrices representan el principal uso de la tecnología de plomo-ácido, seguidas de las baterías industriales (energía de reserva y tracción). Más de la mitad de la producción mundial de plomo se destina a baterías.

El bajo costo y la facilidad de fabricación de las baterías de plomo-ácido en relación con otros pares electroquímicos deberían garantizar una demanda continua de este sistema en el futuro.

La batería de plomo-ácido tiene un electrodo positivo de peróxido de plomo (PbO2) y un electrodo negativo de plomo esponjoso (Pb) de alta superficie. El electrolito es una solución de ácido sulfúrico con una gravedad específica en el rango de 1.21 a 1.30 (28 a 39% en peso). En la descarga, ambos electrodos se convierten en sulfato de plomo, como se muestra a continuación:

Proceso de manufactura

El proceso de fabricación, que se muestra en el diagrama de flujo del proceso (figura 1), se describe a continuación:

Figura 1. Proceso de fabricación de baterías de plomo-ácido

ELA020F1

Fabricación de óxido: El óxido de plomo se fabrica a partir de cerdos de plomo (masas de plomo de los hornos de fundición) mediante uno de dos métodos: una olla Barton o un proceso de molienda. En el proceso Barton Pot, se sopla aire sobre el plomo fundido para producir una fina corriente de gotas de plomo. Las gotitas reaccionan con el oxígeno del aire para formar el óxido, que consiste en un núcleo de plomo con una capa de óxido de plomo (PbO).

En el proceso de molienda, el plomo sólido (que puede variar en tamaño desde pequeñas bolas hasta cerdos completos) se introduce en un molino rotatorio. La acción de volteo del plomo genera calor y la superficie del plomo se oxida. A medida que las partículas ruedan en el tambor, las capas superficiales de óxido se eliminan para exponer más plomo limpio para la oxidación. La corriente de aire lleva el polvo a un filtro de bolsa, donde se recoge.

Producción de rejilla: Las rejillas se fabrican principalmente por fundición (tanto automática como manual) o, en particular para las baterías de automóviles, por expansión a partir de una aleación de plomo forjado o fundido.

Pegado: La pasta de batería se fabrica mezclando el óxido con agua, ácido sulfúrico y una variedad de aditivos patentados. La pasta se presiona a máquina o a mano en la red de rejilla y las placas generalmente se secan instantáneamente en un horno de alta temperatura.

Las placas empastadas se curan almacenándolas en hornos bajo condiciones cuidadosamente controladas de temperatura, humedad y tiempo. El plomo libre en la pasta se convierte en óxido de plomo.

Formación, corte y montaje de chapas: Las placas de batería se someten a un proceso de formación eléctrica en una de dos formas. En la formación del tanque, las placas se cargan en grandes baños de ácido sulfúrico diluido y se pasa una corriente continua para formar las placas positiva y negativa. Después del secado, las placas se cortan y ensamblan, con separadores entre ellas, en cajas de baterías. Las placas de polaridad similar se conectan soldando las orejetas de las placas.

En la formación de jarras, las placas se forman eléctricamente después de ensamblarse en cajas de baterías.

Riesgos y controles de salud ocupacional

Lidera

El plomo es el principal peligro para la salud asociado con la fabricación de baterías. La principal vía de exposición es por inhalación, pero la ingestión también puede plantear un problema si no se presta suficiente atención a la higiene personal. La exposición puede ocurrir en todas las etapas de producción.

La fabricación de óxido de plomo es potencialmente muy peligrosa. Las exposiciones se controlan automatizando el proceso, eliminando así a los trabajadores del peligro. En muchas fábricas el proceso es operado por una sola persona.

En la fundición de rejilla, las exposiciones a los humos de plomo se minimizan mediante el uso de ventilación de escape local (LEV) junto con el control termostático de las ollas de plomo (las emisiones de humo de plomo aumentan notablemente por encima de 500 C). La escoria que contiene plomo, que se forma sobre el plomo fundido, también puede causar problemas. La escoria contiene una gran cantidad de polvo muy fino y se debe tener mucho cuidado al desecharla.

Las áreas pegajosas han resultado tradicionalmente en altas exposiciones al plomo. El método de fabricación a menudo da como resultado salpicaduras de lodo de plomo en la maquinaria, el piso, los delantales y las botas. Estas salpicaduras se secan y producen polvo de plomo en el aire. El control se logra manteniendo el piso permanentemente mojado y lavando con frecuencia los delantales.

Las exposiciones al plomo en otros departamentos (formado, corte y montaje de placas) se producen a través de la manipulación de placas secas y polvorientas. Las exposiciones son minimizadas por LEV junto con el uso apropiado de equipo de protección personal.

Muchos países cuentan con legislación para limitar el grado de exposición ocupacional y existen estándares numéricos para los niveles de plomo en el aire y en la sangre.

Normalmente se contrata a un profesional de la salud en el trabajo para que tome muestras de sangre de los trabajadores expuestos. La frecuencia de los análisis de sangre puede variar desde anual para trabajadores de bajo riesgo hasta trimestral para aquellos en departamentos de alto riesgo (p. ej., emplasto). Si el nivel de plomo en la sangre de un trabajador excede el límite legal, entonces el trabajador debe ser retirado de cualquier exposición laboral al plomo hasta que el plomo en la sangre caiga a un nivel que el asesor médico considere aceptable.

El muestreo de plomo en el aire es complementario a la prueba de plomo en sangre. El muestreo personal, en lugar del estático, es el método preferido. Por lo general, se requiere una gran cantidad de muestras de plomo en el aire debido a la variabilidad inherente en los resultados. El uso de los procedimientos estadísticos correctos en el análisis de los datos puede brindar información sobre las fuentes de plomo y puede proporcionar una base para realizar mejoras en el diseño de ingeniería. El muestreo de aire regular se puede utilizar para evaluar la eficacia continua de los sistemas de control.

Las concentraciones permitidas de plomo en el aire y las concentraciones de plomo en la sangre varían de un país a otro y actualmente oscilan entre 0.05 y 0.20 mg/m3 y 50 a 80 mg/dl respectivamente. Hay una tendencia continua a la baja en estos límites.

Además de los controles de ingeniería normales, se necesitan otras medidas para minimizar la exposición al plomo. No se debe comer, fumar, beber o masticar chicle en ninguna área de producción.

Deben proporcionarse instalaciones adecuadas para lavarse y cambiarse de ropa para permitir que la ropa de trabajo se guarde en un área separada de la ropa y el calzado personales. Las instalaciones de lavado/ducha deben ubicarse entre las áreas limpias y sucias.

ácido sulfurico

Durante el proceso de formación, el material activo de las placas se convierte en PbO.2 en el electrodo positivo y Pb en el negativo. A medida que las placas se cargan por completo, la corriente de formación comienza a disociar el agua del electrolito en hidrógeno y oxígeno:

Positivo:        

Negativo:      

La gasificación genera neblina de ácido sulfúrico. La erosión dental fue, en un momento, una característica común entre los trabajadores en las áreas de formación. Las compañías de baterías han empleado tradicionalmente los servicios de un dentista y muchas continúan haciéndolo.

Estudios recientes (IARC 1992) han sugerido un posible vínculo entre la exposición a neblinas de ácidos inorgánicos (incluido el ácido sulfúrico) y el cáncer de laringe. La investigación continúa en esta área.

El estándar de exposición ocupacional en el Reino Unido para neblina de ácido sulfúrico es de 1 mg/m3. Las exposiciones se pueden mantener por debajo de este nivel con LEV sobre los circuitos de formación.

La exposición de la piel al ácido sulfúrico líquido corrosivo también es motivo de preocupación. Las precauciones incluyen equipo de protección personal, fuentes lavaojos y duchas de emergencia.

Talco

El talco se utiliza en ciertas operaciones de fundición a mano como agente de desmoldeo. La exposición a largo plazo al polvo de talco puede causar neumoconiosis, y es importante que el polvo se controle mediante medidas adecuadas de ventilación y control del proceso.

Fibras minerales artificiales (MMF)

Los separadores se utilizan en las baterías de plomo-ácido para aislar eléctricamente las placas positivas de las negativas. Se han utilizado varios tipos de materiales a lo largo de los años (p. ej., caucho, celulosa, cloruro de polivinilo (PVC), polietileno), pero, cada vez más, se utilizan separadores de fibra de vidrio. Estos separadores se fabrican con MMF.

Se demostró un mayor riesgo de cáncer de pulmón entre los trabajadores en los primeros días de la industria de la lana mineral (HSE 1990). Sin embargo, esto puede haber sido causado por otros materiales cancerígenos en uso en ese momento. Sin embargo, es prudente asegurarse de que cualquier exposición a los MMF se mantenga al mínimo, ya sea mediante el encierro total o LEV.

Estibina y arsina

El antimonio y el arsénico se usan comúnmente en aleaciones de plomo y la estibina (SbH3) o arsina (AsH3) puede producirse en determinadas circunstancias:

    • cuando una celda recibe una sobrecarga excesiva
    • cuando la escoria de una aleación de plomo-calcio se mezcla con la escoria de una aleación de plomo-antimonio o plomo-arsénico. Las dos escorias pueden reaccionar químicamente para formar estibido de calcio o arseniuro de calcio que, al humedecerse posteriormente, puede generar SbH.3 o ceniza3.

       

      La estibina y la arsina son gases altamente tóxicos que actúan destruyendo los glóbulos rojos. Los estrictos controles de proceso durante la fabricación de baterías deberían evitar cualquier riesgo de exposición a estos gases.

      Peligros físicos

      También existe una variedad de peligros físicos en la fabricación de baterías (p. ej., ruido, salpicaduras de ácido y metal fundido, peligros eléctricos y manipulación manual), pero los riesgos derivados de estos pueden reducirse mediante controles de proceso e ingeniería adecuados.

      Cuestiones ambientales

      El efecto del plomo en la salud de los niños ha sido ampliamente estudiado. Por lo tanto, es muy importante que las liberaciones ambientales de plomo se mantengan al mínimo. Para las fábricas de baterías, se deben filtrar las emisiones al aire más contaminantes. Todos los desechos del proceso (por lo general, una suspensión acuosa ácida que contiene plomo) deben procesarse en una planta de tratamiento de efluentes para neutralizar el ácido y eliminar el plomo de la suspensión.

      Futuros desarrollos

      Es probable que en el futuro aumenten las restricciones sobre el uso del plomo. En un sentido ocupacional, esto dará como resultado una creciente automatización de los procesos para que el trabajador esté alejado del peligro.

       

      Atrás

      Miércoles, marzo de 16 2011 20: 59

      Fundición y Refinación de Cobre, Plomo y Zinc

      Adaptado de EPA 1995.

      Cobre

      El cobre se extrae tanto en minas a cielo abierto como subterráneas, según la ley del mineral y la naturaleza del yacimiento. El mineral de cobre normalmente contiene menos del 1% de cobre en forma de minerales de sulfuro. Una vez que el mineral se entrega sobre el suelo, se tritura y muele hasta obtener una finura de polvo y luego se concentra para su posterior procesamiento. En el proceso de concentración, el mineral molido se mezcla con agua, se agregan reactivos químicos y se sopla aire a través de la suspensión. Las burbujas de aire se adhieren a los minerales de cobre y luego se eliminan de la parte superior de las celdas de flotación. El concentrado contiene entre 20 y 30% de cobre. Los relaves, o minerales de ganga, del mineral caen al fondo de las celdas y se extraen, se deshidratan mediante espesadores y se transportan como una lechada a un estanque de relaves para su eliminación. Toda el agua utilizada en esta operación, desde los espesadores de deshidratación y la balsa de relaves, se recupera y se recicla nuevamente al proceso.

      El cobre se puede producir de forma pirometalúrgica o hidrometalúrgica, según el tipo de mineral utilizado como carga. Los concentrados de mineral, que contienen minerales de sulfuro de cobre y sulfuro de hierro, se tratan mediante procesos pirometalúrgicos para producir productos de cobre de alta pureza. Los minerales de óxido, que contienen minerales de óxido de cobre que pueden encontrarse en otras partes de la mina, junto con otros materiales de desecho oxidados, se tratan mediante procesos hidrometalúrgicos para producir productos de cobre de alta pureza.

      La conversión de cobre del mineral a metal se logra mediante la fundición. Durante la fundición, los concentrados se secan y se introducen en uno de varios tipos diferentes de hornos. Allí, los minerales de sulfuro se oxidan parcialmente y se derriten para producir una capa de mata, una mezcla de sulfuro de cobre y hierro y escoria, una capa superior de desechos.

      El mate se procesa aún más mediante la conversión. La escoria se extrae del horno y se almacena o desecha en pilas de escoria en el sitio. Una pequeña cantidad de escoria se vende para balasto de ferrocarril y para arenado. Un tercer producto del proceso de fundición es el dióxido de azufre, un gas que se recolecta, purifica y convierte en ácido sulfúrico para su venta o uso en operaciones de lixiviación hidrometalúrgica.

      Después de la fundición, la mata de cobre se introduce en un convertidor. Durante este proceso, la mata de cobre se vierte en un recipiente cilíndrico horizontal (aproximadamente 10 x 4 m) equipado con una hilera de tuberías. Las tuberías, conocidas como toberas, se proyectan hacia el interior del cilindro y se utilizan para introducir aire en el convertidor. Se agrega cal y sílice a la mata de cobre para que reaccione con el óxido de hierro producido en el proceso para formar escoria. También se puede agregar chatarra de cobre al convertidor. El horno se gira para que las toberas queden sumergidas y se sopla aire en la mata fundida, lo que hace que el resto del sulfuro de hierro reaccione con el oxígeno para formar óxido de hierro y dióxido de azufre. Luego se hace girar el convertidor para verter la escoria de silicato de hierro.

      Una vez que se elimina todo el hierro, el convertidor gira hacia atrás y se le da un segundo golpe de aire durante el cual el resto del azufre se oxida y se elimina del sulfuro de cobre. Luego se hace girar el convertidor para verter el cobre fundido, que en este punto se llama cobre ampollado (llamado así porque si se deja solidificar en este punto, tendrá una superficie irregular debido a la presencia de oxígeno gaseoso y azufre). El dióxido de azufre de los convertidores se recolecta y alimenta al sistema de purificación de gas junto con el del horno de fundición y se convierte en ácido sulfúrico. Debido a su contenido de cobre residual, la escoria se recicla nuevamente al horno de fundición.

      El cobre blíster, que contiene un mínimo de 98.5 % de cobre, se refina a cobre de alta pureza en dos pasos. El primer paso es el refinado al fuego, en el que el cobre ampolloso fundido se vierte en un horno cilíndrico, de apariencia similar a un convertidor, donde primero se sopla aire y luego gas natural o propano a través de la masa fundida para eliminar el último azufre y cualquier resto. oxígeno residual del cobre. Luego, el cobre fundido se vierte en una rueda de fundición para formar ánodos lo suficientemente puros para la electrorrefinación.

      En el electrorrefinado, los ánodos de cobre se cargan en celdas electrolíticas y se intercalan con láminas iniciales de cobre, o cátodos, en un baño de solución de sulfato de cobre. Cuando pasa una corriente continua a través de la celda, el cobre se disuelve del ánodo, se transporta a través del electrolito y se vuelve a depositar en las láminas iniciales del cátodo. Cuando los cátodos se han acumulado hasta un espesor suficiente, se retiran de la celda electrolítica y se coloca un nuevo juego de láminas iniciales en su lugar. Las impurezas sólidas en los ánodos caen al fondo de la celda como un lodo donde finalmente se recolectan y procesan para la recuperación de metales preciosos como el oro y la plata. Este material se conoce como limo anódico.

      Los cátodos extraídos de la celda electrolítica son el producto principal del productor de cobre y contienen 99.99% de cobre. Estos pueden venderse a molinos de alambrón como cátodos o procesarse posteriormente hasta obtener un producto llamado alambrón. En la fabricación de alambrón, los cátodos se funden en un horno de cuba y el cobre fundido se vierte en una rueda de fundición para formar una barra apta para laminarse en un alambrón continuo de 3/8 de pulgada de diámetro. Este producto de alambrón se envía a molinos de alambre donde se extruye en varios tamaños de alambre de cobre.

      En el proceso hidrometalúrgico, los minerales oxidados y los materiales de desecho se lixivian con ácido sulfúrico del proceso de fundición. La lixiviación se realiza in situ, o en pilas especialmente preparadas distribuyendo ácido por la parte superior y permitiendo que se filtre a través del material donde se recolecta. El suelo debajo de las pilas de lixiviación está revestido con un material plástico impermeable a prueba de ácidos para evitar que el licor de lixiviación contamine las aguas subterráneas. Una vez que se recolectan las soluciones ricas en cobre, se pueden procesar mediante cualquiera de dos procesos: el proceso de cementación o el proceso de extracción por solvente/electroobtención (SXEW). En el proceso de cementación (que rara vez se usa hoy en día), el cobre en la solución ácida se deposita en la superficie de la chatarra de hierro a cambio del hierro. Cuando se ha cementado suficiente cobre, el hierro rico en cobre se coloca en la fundición junto con los concentrados de mineral para la recuperación de cobre a través de la ruta pirometalúrgica.

      En el proceso SXEW, la solución de lixiviación cargada (PLS) se concentra mediante extracción por solvente, que extrae cobre pero no metales impuros (hierro y otras impurezas). Luego, la solución orgánica cargada de cobre se separa del lixiviado en un tanque de sedimentación. Se agrega ácido sulfúrico a la mezcla orgánica cargada, que despoja el cobre en una solución electrolítica. El lixiviado, que contiene el hierro y otras impurezas, se devuelve a la operación de lixiviación donde su ácido se usa para una mayor lixiviación. La solución de banda rica en cobre pasa a una celda electrolítica conocida como celda de electroobtención. Una celda de electroobtención se diferencia de una celda de electrorrefinación en que utiliza un ánodo permanente e insoluble. Luego, el cobre en solución se deposita en un cátodo de hoja inicial de la misma manera que en el cátodo en una celda de electrorrefinación. El electrolito empobrecido en cobre se devuelve al proceso de extracción con solvente, donde se usa para extraer más cobre de la solución orgánica. Los cátodos producidos a partir del proceso de electroobtención se venden o se transforman en varillas de la misma manera que los producidos a partir del proceso de electrorrefinación.

      Las celdas de electroobtención también se utilizan para la preparación de láminas iniciales para los procesos de electrorrefinación y electroobtención mediante el recubrimiento del cobre sobre cátodos de acero inoxidable o titanio y luego se quita el cobre recubierto.

      Los peligros y su prevención.

      Los principales peligros son la exposición a polvos de mineral durante el procesamiento y la fundición del mineral, los humos metálicos (incluidos el cobre, el plomo y el arsénico) durante la fundición, el dióxido de azufre y el monóxido de carbono durante la mayoría de las operaciones de fundición, el ruido de las operaciones de trituración y molienda y de los hornos, el estrés por calor de los hornos y el ácido sulfúrico y los peligros eléctricos durante los procesos electrolíticos.

      Las precauciones incluyen: LEV para polvos durante las operaciones de transferencia; extracción local y ventilación de dilución para dióxido de azufre y monóxido de carbono; un programa de control de ruido y protección auditiva; ropa y escudos protectores, pausas para descansar y líquidos para el estrés por calor; y LEV, PPE y precauciones eléctricas para procesos electrolíticos. La protección respiratoria se usa comúnmente para protegerse contra el polvo, los humos y el dióxido de azufre.

      La Tabla 1 enumera los contaminantes ambientales para varios pasos en la fundición y refinación de cobre.

      Tabla 1. Entradas de materiales de proceso y salidas de contaminación para la fundición y refinación de cobre

      Proceso

      entrada de materiales

      Emisiones de aire

      Residuos de proceso

      Otros desechos

      Concentración de cobre

      Mineral de cobre, agua, reactivos químicos, espesantes

       

      Aguas residuales de flotación

      Relaves que contienen minerales de desecho como piedra caliza y cuarzo

      Lixiviación de cobre

      Concentrado de cobre, ácido sulfúrico

       

      Lixiviado no controlado

      Residuos de lixiviación en pilas

      fundición de cobre

      Concentrado de cobre, fundente silíceo

      Dióxido de azufre, material particulado que contiene arsénico, antimonio, cadmio, plomo, mercurio y zinc

       

      Lodos/lodos de purga de plantas ácidas, escoria que contiene sulfuros de hierro, sílice

      Conversión de cobre

      Mata de cobre, chatarra de cobre, fundente silíceo

      Dióxido de azufre, material particulado que contiene arsénico, antimonio, cadmio, plomo, mercurio y zinc

       

      Lodos/lodos de purga de plantas ácidas, escoria que contiene sulfuros de hierro, sílice

      Refinación de cobre electrolítico

      Blíster de cobre, ácido sulfúrico

         

      Lodos que contienen impurezas como oro, plata, antimonio, arsénico, bismuto, hierro, plomo, níquel, selenio, azufre y zinc

       

      Lidera

      El proceso de producción de plomo primario consta de cuatro pasos: sinterización, fundición, escoria y refinación pirometalúrgica. Para empezar, una materia prima compuesta principalmente de concentrado de plomo en forma de sulfuro de plomo se introduce en una máquina de sinterización. Se pueden agregar otras materias primas, como hierro, sílice, fundente de piedra caliza, coque, sosa, ceniza, pirita, zinc, cáustico y partículas recolectadas de los dispositivos de control de la contaminación. En la máquina de sinterización, la materia prima de plomo se somete a ráfagas de aire caliente que queman el azufre y crean dióxido de azufre. El material de óxido de plomo existente después de este proceso contiene alrededor del 9% de su peso en carbono. Luego, el sinterizado se alimenta junto con el coque, varios materiales reciclados y de limpieza, piedra caliza y otros agentes fundentes en un alto horno para la reducción, donde el carbón actúa como combustible y funde el material de plomo. El plomo fundido fluye hacia el fondo del horno donde se forman cuatro capas: “speiss” (el material más liviano, básicamente arsénico y antimonio); “mata” (sulfuro de cobre y otros sulfuros metálicos); escoria de alto horno (principalmente silicatos); y lingotes de plomo (98% de plomo, por peso). A continuación, se escurren todas las capas. El speiss y la mata se venden a fundiciones de cobre para la recuperación de cobre y metales preciosos. La escoria de alto horno que contiene zinc, hierro, sílice y cal se almacena en pilas y se recicla parcialmente. Las emisiones de óxido de azufre se generan en los altos hornos a partir de pequeñas cantidades de sulfuro de plomo residual y sulfatos de plomo en la alimentación del sinterizado.

      Los lingotes de plomo en bruto del alto horno generalmente requieren un tratamiento preliminar en calderas antes de someterse a las operaciones de refinación. Durante la formación de escoria, el lingote se agita en una caldera de escoria y se enfría justo por encima de su punto de congelación (370 a 425 °C). Una escoria, que se compone de óxido de plomo, junto con cobre, antimonio y otros elementos, flota hacia la parte superior y se solidifica sobre el plomo fundido.

      La escoria se retira y se introduce en un horno de escoria para recuperar los metales útiles distintos del plomo. Para mejorar la recuperación de cobre, los lingotes de plomo en escoria se tratan agregando materiales que contienen azufre, zinc y/o aluminio, lo que reduce el contenido de cobre a aproximadamente 0.01 %.

      Durante el cuarto paso, el lingote de plomo se refina utilizando métodos pirometalúrgicos para eliminar cualquier material vendible que no sea plomo restante (por ejemplo, oro, plata, bismuto, zinc y óxidos metálicos como antimonio, arsénico, estaño y óxido de cobre). El plomo se refina en una caldera de hierro fundido en cinco etapas. Primero se eliminan el antimonio, el estaño y el arsénico. Luego se agrega zinc y se eliminan el oro y la plata en la escoria de zinc. A continuación, el plomo se refina mediante la extracción al vacío (destilación) del zinc. El refinado continúa con la adición de calcio y magnesio. Estos dos materiales se combinan con el bismuto para formar un compuesto insoluble que se extrae de la tetera. En el paso final, se puede agregar sosa cáustica y/o nitratos al plomo para eliminar cualquier resto de impurezas metálicas. El plomo refinado tendrá una pureza de 99.90 a 99.99 % y podrá mezclarse con otros metales para formar aleaciones o directamente moldearse en formas.

      Los peligros y su prevención.

      Los principales peligros son la exposición a polvos de mineral durante el procesamiento y la fundición del mineral, los vapores metálicos (incluidos el plomo, el arsénico y el antimonio) durante la fundición, el dióxido de azufre y el monóxido de carbono durante la mayoría de las operaciones de fundición, el ruido de las operaciones de molienda y trituración y de los hornos, y el estrés por calor. de los hornos.

      Las precauciones incluyen: LEV para polvos durante las operaciones de transferencia; extracción local y ventilación de dilución para dióxido de azufre y monóxido de carbono; un programa de control de ruido y protección auditiva; y ropa protectora y escudos, descansos y líquidos para el estrés por calor. La protección respiratoria se usa comúnmente para protegerse contra el polvo, los humos y el dióxido de azufre. El monitoreo biológico del plomo es esencial.

      La Tabla 2 enumera los contaminantes ambientales para varios pasos en la fundición y refinación de plomo.

      Tabla 2. Entradas de materiales de proceso y salidas de contaminación para la fundición y refinación de plomo

      Proceso

      entrada de materiales

      Emisiones de aire

      Residuos de proceso

      Otros desechos

      Sinterización de plomo

      Mineral de plomo, hierro, sílice, fundente de piedra caliza, coque, soda, ceniza, pirita, zinc, cáustico, polvo de cámara de filtros

      Dióxido de azufre, partículas que contienen cadmio y plomo

         

      fundición de plomo

      sinterizado de plomo, coque

      Dióxido de azufre, partículas que contienen cadmio y plomo

      Aguas residuales de lavado de plantas, agua de granulación de escoria

      Escoria que contiene impurezas como zinc, hierro, sílice y cal, sólidos de embalses superficiales

      escoria de plomo

      Lingotes de plomo, carbonato de sodio, azufre, polvo de cámara de filtros, coque

         

      Escoria que contiene impurezas tales como cobre, sólidos de embalses superficiales

      Refinación de plomo

      Lingotes de escoria de plomo

           

       

      Zinc

      El concentrado de zinc se produce separando el mineral, que puede contener tan solo un 2 % de zinc, de la roca estéril mediante trituración y flotación, un proceso que normalmente se realiza en el sitio de la mina. Luego, el concentrado de zinc se reduce a zinc metálico en una de dos formas: pirometalúrgicamente por destilación (retorta en un horno) o hidrometalúrgicamente por electroobtención. Este último representa aproximadamente el 80% del total de la refinación de zinc.

      En el refinado hidrometalúrgico de zinc se utilizan generalmente cuatro etapas de procesamiento: calcinación, lixiviación, purificación y electroobtención. La calcinación, o tostado, es un proceso a alta temperatura (700 a 1000 °C) que convierte el concentrado de sulfuro de zinc en un óxido de zinc impuro llamado calcina. Los tipos de tostadores incluyen hogar múltiple, suspensión o lecho fluidizado. En general, la calcinación comienza con la mezcla de materiales que contienen zinc con carbón. Luego, esta mezcla se calienta, o se tuesta, para vaporizar el óxido de zinc que luego se saca de la cámara de reacción con la corriente de gas resultante. La corriente de gas se dirige al área de la cámara de filtros (filtro) donde el óxido de zinc se captura en el polvo de la cámara de filtros.

      Todos los procesos de calcinación generan dióxido de azufre, que se controla y convierte en ácido sulfúrico como subproducto comercializable del proceso.

      El procesamiento electrolítico de la calcina desulfurada consta de tres pasos básicos: lixiviación, purificación y electrólisis. La lixiviación se refiere a la disolución de la calcina capturada en una solución de ácido sulfúrico para formar una solución de sulfato de zinc. La calcina puede lixiviarse una o dos veces. En el método de doble lixiviación, la calcina se disuelve en una solución ligeramente ácida para eliminar los sulfatos. Luego, la calcina se lixivia por segunda vez en una solución más fuerte que disuelve el zinc. Este segundo paso de lixiviación es en realidad el comienzo del tercer paso de purificación porque muchas de las impurezas de hierro se eliminan de la solución, así como el zinc.

      Después de la lixiviación, la solución se purifica en dos o más etapas mediante la adición de polvo de zinc. La solución se purifica a medida que el polvo fuerza la precipitación de elementos nocivos para que puedan ser filtrados. La purificación generalmente se lleva a cabo en grandes tanques de agitación. El proceso tiene lugar a temperaturas que oscilan entre 40 y 85 °C y presiones que van desde la atmosférica hasta las 2.4 atmósferas. Los elementos recuperados durante la purificación incluyen cobre como torta y cadmio como metal. Después de la purificación, la solución está lista para el paso final, la electroobtención.

      La electroobtención de zinc se lleva a cabo en una celda electrolítica e implica el paso de una corriente eléctrica desde un ánodo de aleación de plomo y plata a través de la solución acuosa de zinc. Este proceso carga el zinc suspendido y lo obliga a depositarse en un cátodo de aluminio que se sumerge en la solución. Cada 24 a 48 horas, se apaga cada celda, se retiran y enjuagan los cátodos revestidos de zinc y se extrae mecánicamente el zinc de las placas de aluminio. El concentrado de zinc luego se funde y se moldea en lingotes y, a menudo, tiene una pureza de hasta el 99.995 %.

      Las fundiciones de zinc electrolítico contienen hasta varios cientos de celdas. Una parte de la energía eléctrica se convierte en calor, lo que aumenta la temperatura del electrolito. Las celdas electrolíticas operan en rangos de temperatura de 30 a 35°C a presión atmosférica. Durante la electroobtención, una parte del electrolito pasa a través de torres de enfriamiento para disminuir su temperatura y evaporar el agua que acumula durante el proceso.

      Los peligros y su prevención.

      Los principales peligros son la exposición a polvos de minerales durante el procesamiento y la fundición del mineral, los humos metálicos (incluidos el zinc y el plomo) durante el refinado y el tostado, el dióxido de azufre y el monóxido de carbono durante la mayoría de las operaciones de fundición, el ruido de las operaciones de trituración y molienda y de los hornos, el estrés por calor de los hornos y el ácido sulfúrico y los peligros eléctricos durante los procesos electrolíticos.

      Las precauciones incluyen: LEV para polvos durante las operaciones de transferencia; extracción local y ventilación de dilución para dióxido de azufre y monóxido de carbono; un programa de control de ruido y protección auditiva; ropa y escudos protectores, pausas para descansar y líquidos para el estrés por calor; y LEV, PPE y precauciones eléctricas para procesos electrolíticos. La protección respiratoria se usa comúnmente para protegerse contra el polvo, los humos y el dióxido de azufre.

      La Tabla 3 enumera los contaminantes ambientales para varios pasos en la fundición y refinación de zinc.

      Tabla 3. Entradas de materiales de proceso y salidas de contaminación para la fundición y refinación de zinc

      Proceso

      entrada de materiales

      Emisiones de aire

      Residuos de proceso

      Otros desechos

      calcinación de zinc

      Mineral de zinc, coque

      Dióxido de azufre, partículas que contienen zinc y plomo

       

      Lodo de purga de planta ácida

      Lixiviación de zinc

      Calcina de zinc, ácido sulfúrico, piedra caliza, electrolito gastado

       

      Aguas residuales que contienen ácido sulfúrico

       

      Purificación de zinc

      Solución de zinc-ácido, polvo de zinc

       

      Aguas residuales que contienen ácido sulfúrico, hierro

      Torta de cobre, cadmio

      Electroobtención de zinc

      Zinc en ácido sulfúrico/solución acuosa, ánodos de aleación de plomo y plata, cátodos de aluminio, carbonato de bario o estroncio, aditivos coloidales

       

      Ácido sulfúrico diluido

      Lodos/lodos de celdas electrolíticas

       

      Atrás

      Miércoles, marzo de 16 2011 18: 57

      Baterías

      El término agresión con lesiones se refiere a una colección de individuos Células, que pueden generar electricidad a través de reacciones químicas. Las celdas se clasifican como primario or secundario. En las celdas primarias, las reacciones químicas que producen el flujo de electrones no son reversibles y, por lo tanto, las celdas no se recargan fácilmente. Por el contrario, las celdas secundarias deben cargarse antes de su uso, lo que se logra haciendo pasar una corriente eléctrica a través de la celda. Las celdas secundarias tienen la ventaja de que a menudo se pueden recargar y descargar repetidamente durante el uso.

      La batería primaria clásica en el uso diario es la celda seca Leclanché, llamada así porque el electrolito es una pasta, no un líquido. La celda de Leclanché se caracteriza por las baterías cilíndricas utilizadas en linternas, radios portátiles, calculadoras, juguetes eléctricos y similares. En los últimos años, las pilas alcalinas, como la pila de dióxido de zinc-manganeso, se han vuelto más frecuentes para este tipo de uso. Las pilas en miniatura o de “botón” han encontrado uso en audífonos, computadoras, relojes, cámaras y otros equipos electrónicos. La celda de óxido de plata-zinc, la celda de mercurio, la celda de zinc-aire y la celda de dióxido de litio-manganeso son algunos ejemplos. Consulte la figura 1 para ver una vista en corte de una batería alcalina en miniatura típica.

      Figura 1. Vista en corte de una batería alcalina en miniatura

      ELA030F1

      La clásica batería secundaria o de almacenamiento es la batería de plomo-ácido, ampliamente utilizada en la industria del transporte. Las baterías secundarias también se utilizan en las centrales eléctricas y la industria. Las herramientas recargables que funcionan con baterías, los cepillos de dientes, las linternas y similares son un nuevo mercado para las celdas secundarias. Las celdas secundarias de níquel-cadmio son cada vez más populares, especialmente en celdas de bolsillo para iluminación de emergencia, arranque diésel y aplicaciones estacionarias y de tracción, donde la confiabilidad, la vida útil prolongada, la recarga frecuente y el rendimiento a baja temperatura superan su costo adicional.

      Las baterías recargables que se están desarrollando para su uso en vehículos eléctricos utilizan sulfuro ferroso de litio, cloro de zinc y azufre de sodio.

      La Tabla 1 da la composición de algunas baterías comunes.

      Tabla 1. Composición de baterías comunes

      Tipo de batería

      Electrodo negativo

      Electrodo positivo

      Electrolito

      Células primarias

      Celda seca Leclanché

      Zinc

      Dióxido de manganeso

      Agua, cloruro de zinc, cloruro de amonio

      Alcalinidad

      Zinc

      Dióxido de manganeso

      Hidróxido de potasio

      Mercurio (celda de Rubén)

      Zinc

      óxido de mercurio

      Hidróxido de potasio, óxido de zinc, agua

      Silver

      Zinc

      Óxido de plata

      Hidróxido de potasio, óxido de zinc, agua

      Litio

      Litio

      Dióxido de manganeso

      clorato de litio, LiCF3SO3

      Litio

      Litio

      dióxido de azufre

      Dióxido de azufre, acetonitrilo, bromuro de litio

         

      Cloruro de tionilo

      Cloruro de litio y aluminio

      zinc en el aire

      Zinc

      Oxígeno

      Óxido de zinc, hidróxido de potasio

      Células secundarias

      Plomo-ácido

      Lidera

      Dióxido de plomo

      Ácido sulfúrico diluido

      Níquel-hierro (batería Edison)

      Plancha para ropa

      Óxido de níquel

      Hidróxido de potasio

      Niquel Cadmio

      Hidróxido de cadmio

      Hidróxido de níquel

      Hidróxido de potasio, posiblemente hidróxido de litio

      plata-zinc

      Polvo de zinc

      Óxido de plata

      Hidróxido de potasio

       

      Procesos de manufactura

      Si bien existen claras diferencias en la fabricación de los diferentes tipos de baterías, hay varios procesos que son comunes: pesaje, trituración, mezcla, compresión y secado de los ingredientes constituyentes. En las plantas de baterías modernas, muchos de estos procesos están cerrados y altamente automatizados, utilizando equipos sellados. Por lo tanto, la exposición a los diversos ingredientes puede ocurrir durante el pesaje y la carga y durante la limpieza del equipo.

      En las plantas de baterías más antiguas, muchas de las operaciones de molienda, mezcla y otras se realizan manualmente, o la transferencia de ingredientes de un paso del proceso a otro se realiza manualmente. En estos casos, el riesgo de inhalación de polvos o contacto de la piel con sustancias corrosivas es alto. Las precauciones para las operaciones que producen polvo incluyen el encierro total y el manejo y pesaje mecanizados de polvos, ventilación de escape local, trapeado húmedo diario y/o aspirado y uso de respiradores y otros equipos de protección personal durante las operaciones de mantenimiento.

      El ruido también es un peligro, ya que las máquinas compresoras y las máquinas envolvedoras son ruidosas. Los métodos de control de ruido y los programas de conservación de la audición son esenciales.

      Los electrolitos de muchas baterías contienen hidróxido de potasio corrosivo. El recinto y la protección de la piel y los ojos son precauciones indicadas. También pueden ocurrir exposiciones a partículas de metales tóxicos como óxido de cadmio, mercurio, óxido de mercurio, níquel y compuestos de níquel, y litio y compuestos de litio, que se utilizan como ánodos o cátodos en determinados tipos de baterías. La batería de almacenamiento de plomo-ácido, a veces denominada acumulador, puede implicar riesgos considerables de exposición al plomo y se analiza por separado en el artículo "Fabricación de baterías de plomo-ácido".

      El litio metálico es altamente reactivo, por lo que las baterías de litio deben ensamblarse en una atmósfera seca para evitar que el litio reaccione con el vapor de agua. El dióxido de azufre y el cloruro de tionilo, utilizados en algunas baterías de litio, son peligrosos para las vías respiratorias. El gas hidrógeno, utilizado en baterías de níquel-hidrógeno, es un peligro de incendio y explosión. Estos, así como los materiales de las baterías recientemente desarrolladas, requerirán precauciones especiales.

      Células de Leclanché

      Las baterías de celda seca de Leclanché se fabrican como se muestra en la figura 2. La mezcla de cátodo o electrodo positivo comprende del 60 al 70 % de dióxido de manganeso, y el resto está compuesto por grafito, negro de acetileno, sales de amonio, cloruro de zinc y agua. El dióxido de manganeso, el grafito y el negro de acetileno, secos y finamente molidos, se pesan y se introducen en un triturador-mezclador; se añade electrolito que contiene agua, cloruro de zinc y cloruro de amonio, y la mezcla preparada se prensa en una prensa de aglomeración o de comprimidos alimentada manualmente. En ciertos casos, la mezcla se seca en un horno, se tamiza y se vuelve a humedecer antes de formar tabletas. Las tabletas se inspeccionan y envuelven en máquinas alimentadas a mano después de dejar que se endurezcan durante unos días. Luego, los aglomerados se colocan en bandejas y se sumergen en electrolito, y ahora están listos para ensamblar.

      Figura 2. Producción de baterías de celdas de Leclanché

      ELA030F2

      El ánodo es la caja de zinc, que se prepara a partir de piezas de zinc en bruto en una prensa caliente (o se doblan láminas de zinc y se sueldan a la caja). Una pasta gelatinosa orgánica que consiste en almidones de maíz y harina empapados en electrolito se mezcla en grandes cubas. Los ingredientes generalmente se vierten de sacos sin pesar. Luego, la mezcla se purifica con virutas de zinc y dióxido de manganeso. Se agrega cloruro de mercurio al electrolito para formar una amalgama con el interior del recipiente de zinc. Esta pasta formará el medio conductor o electrolito.

      Las celdas se ensamblan mediante el vertido automático de la cantidad requerida de pasta gelatinosa en las cajas de zinc para formar un revestimiento de manga interior en el contenedor de zinc. En algunos casos, las cajas reciben un acabado cromado mediante el vertido y vaciado de una mezcla de ácido crómico y clorhídrico antes de añadir la pasta gelatinosa. A continuación, el aglomerado de cátodo se coloca en posición en el centro de la caja. Una varilla de carbono se coloca en el centro del cátodo para que actúe como colector de corriente.

      Luego, la celda de zinc se sella con cera fundida o parafina y se calienta con una llama para lograr un mejor sellado. Luego, las celdas se sueldan entre sí para formar la batería. La reacción de la batería es:

      2MnO2 + 2NH4Cl + Zn → ZnCl2 + H2O2 + manganeso2O3

      Los trabajadores pueden estar expuestos al dióxido de manganeso durante el pesaje, la carga del mezclador, la molienda, la limpieza del horno, el tamizado, el prensado manual y el envoltorio, según el grado de automatización, el recinto sellado y la ventilación de escape local. En el prensado manual y el envoltorio húmedo, puede haber exposición a la mezcla húmeda, que puede secarse y producir polvo inhalable; la dermatitis puede ocurrir por la exposición al electrolito ligeramente corrosivo. Las medidas de higiene personal, los guantes y la protección respiratoria para las operaciones de limpieza y mantenimiento, las duchas y los armarios separados para la ropa de trabajo y de calle pueden reducir estos riesgos. Como se mencionó anteriormente, los riesgos de ruido pueden resultar de la prensa de envolver y hacer tabletas.

      La mezcla es automática durante la fabricación de la pasta gelatinosa y la única exposición es durante la adición de los materiales. Durante la adición de cloruro mercúrico a la pasta gelatinosa, existe el riesgo de inhalación y absorción por la piel y posible intoxicación por mercurio. LEV o equipo de protección personal es necesario.

      También es posible la exposición a derrames de ácido crómico y ácido clorhídrico durante el cromado y la exposición a humos de soldadura y humos del calentamiento del compuesto de sellado. La mecanización del proceso de cromado, el uso de guantes y LEV para termosellado y soldadura son precauciones adecuadas.

      Baterías de níquel-cadmio

      El método más común hoy en día para fabricar electrodos de níquel-cadmio consiste en depositar el material del electrodo activo directamente en un sustrato o placa de níquel sinterizado poroso. (Consulte la figura 3). La placa se prepara presionando una pasta de polvo de níquel de grado sinterizado (a menudo hecha por descomposición del carbonilo de níquel) en la rejilla abierta de chapa de acero perforada niquelada (o gasa de níquel o gasa de acero niquelado) y luego sinterizado o secado en un horno. Luego, estas placas pueden cortarse, pesarse y acuñarse (comprimirse) para propósitos particulares o enrollarse en espiral para celdas de tipo doméstico.

      Figura 3. Producción de baterías de níquel-cadmio

      ELA030F3

      A continuación, la placa sinterizada se impregna con una solución de nitrato de níquel para el electrodo positivo o de nitrato de cadmio para el electrodo negativo. Estas placas se enjuagan y se secan, se sumergen en hidróxido de sodio para formar hidróxido de níquel o hidróxido de cadmio y se lavan y se secan nuevamente. Por lo general, el siguiente paso es sumergir los electrodos positivo y negativo en una celda temporal grande que contiene de 20 a 30 % de hidróxido de sodio. Se ejecutan ciclos de carga y descarga para eliminar las impurezas y los electrodos se retiran, lavan y secan.

      Una forma alternativa de fabricar electrodos de cadmio es preparar una pasta de óxido de cadmio mezclado con grafito, óxido de hierro y parafina, que se muele y finalmente se compacta entre rodillos para formar el material activo. Esto luego se presiona en una tira de acero perforada en movimiento que se seca, a veces se comprime y se corta en placas. Las orejetas se pueden unir en esta etapa.

      Los siguientes pasos involucran el ensamblaje de la celda y la batería. Para baterías grandes, los electrodos individuales se ensamblan luego en grupos de electrodos con placas de polaridad opuesta intercaladas con separadores de plástico. Estos grupos de electrodos pueden atornillarse o soldarse entre sí y colocarse en una carcasa de acero niquelado. Más recientemente, se han introducido carcasas de batería de plástico. Las celdas se llenan con una solución electrolítica de hidróxido de potasio, que también puede contener hidróxido de litio. Luego, las celdas se ensamblan en baterías y se atornillan juntas. Las celdas de plástico se pueden cementar o unir con cinta adhesiva. Cada celda está conectada con un conector de plomo a la celda adyacente, dejando un terminal positivo y negativo en los extremos de la batería.

      Para las baterías cilíndricas, las placas impregnadas se ensamblan en grupos de electrodos enrollando los electrodos positivo y negativo, separados por un material inerte, en un cilindro hermético. El cilindro del electrodo se coloca luego en una caja de metal niquelado, se agrega electrolito de hidróxido de potasio y la celda se sella mediante soldadura.

      La reacción química involucrada en la carga y descarga de baterías de níquel-cadmio es:

      La principal exposición potencial al cadmio se produce por la manipulación del nitrato de cadmio y su solución mientras se elabora una pasta a partir del polvo de óxido de cadmio y se manipulan los polvos activos secos. La exposición también puede ocurrir durante la recuperación de cadmio de las placas de desecho. El pesaje y la mezcla en recintos y automatizados pueden reducir estos peligros durante los primeros pasos.

      Medidas similares pueden controlar la exposición a compuestos de níquel. La producción de níquel sinterizado a partir de carbonilo de níquel, aunque se realiza en maquinaria sellada, implica una exposición potencial a carbonilo de níquel y monóxido de carbono extremadamente tóxicos. El proceso requiere un monitoreo continuo de fugas de gas.

      La manipulación de hidróxido de litio o potasio cáustico requiere una ventilación adecuada y protección personal. La soldadura genera humos y requiere LEV.

      Efectos sobre la salud y patrones de enfermedad

      Los peligros para la salud más graves en la fabricación de baterías tradicionales son las exposiciones al plomo, cadmio, mercurio y dióxido de manganeso. Los peligros del plomo se analizan en otras partes de este capítulo y Enciclopedia. El cadmio puede causar enfermedad renal y es cancerígeno. Se encontró que la exposición al cadmio estaba muy extendida en las plantas de baterías de níquel-cadmio de EE. UU., y muchos trabajadores han tenido que ser retirados médicamente según las disposiciones del estándar de cadmio de la Administración de Seguridad y Salud Ocupacional debido a los altos niveles de cadmio en la sangre y la orina (McDiarmid et al. 1996) . El mercurio afecta los riñones y el sistema nervioso. Se ha demostrado una exposición excesiva al vapor de mercurio en estudios de varias plantas de baterías de mercurio (Telesca 1983). Se ha demostrado que la exposición al dióxido de manganeso es alta en la mezcla y manipulación de polvos en la fabricación de celdas secas alcalinas (Wallis, Menke y Chelton 1993). Esto puede resultar en déficits neurofuncionales en los trabajadores de baterías (Roels et al. 1992). Los polvos de manganeso pueden, si se absorben en cantidades excesivas, provocar trastornos del sistema nervioso central similares al síndrome de Parkinson. Otros metales de preocupación incluyen níquel, litio, plata y cobalto.

      Las quemaduras en la piel pueden resultar de la exposición a soluciones de cloruro de zinc, hidróxido de potasio, hidróxido de sodio e hidróxido de litio utilizadas en los electrolitos de las baterías.

       

      Atrás

      Miércoles, marzo de 16 2011 21: 05

      Fundición y Refinación de Aluminio

      Vista general del proceso

      La bauxita se extrae mediante minería a cielo abierto. Los minerales más ricos se utilizan tal como se extraen. Los minerales de menor ley pueden ser beneficiados mediante trituración y lavado para eliminar los residuos de arcilla y sílice. La producción del metal comprende dos pasos básicos:

      1. Refinación. Producción de alúmina a partir de bauxita por el proceso Bayer en el que la bauxita se digiere a alta temperatura y presión en una solución fuerte de sosa cáustica. El hidrato resultante se cristaliza y se calcina hasta el óxido en un horno o calcinador de lecho fluido.
      2. Reducción. Reducción de alúmina a metal de aluminio virgen empleando el proceso electrolítico Hall-Heroult usando electrodos de carbón y fundente de criolita.

       

      El desarrollo experimental sugiere que en el futuro el aluminio puede reducirse al metal por reducción directa del mineral.

      Actualmente hay dos tipos principales de celdas electrolíticas de Hall-Heroult en uso. El llamado proceso de "pre-horneado" utiliza electrodos fabricados como se indica a continuación. En dichas fundiciones, la exposición a hidrocarburos policíclicos normalmente ocurre en las instalaciones de fabricación de electrodos, especialmente durante los molinos mezcladores y las prensas de formación. Las fundiciones que utilizan la celda tipo Soderberg no requieren instalaciones para la fabricación de ánodos de carbón horneados. Más bien, la mezcla de coque y aglutinante de brea se coloca en tolvas cuyos extremos inferiores se sumergen en la mezcla de baño de criolita-alúmina fundida. A medida que la mezcla de brea y coque es calentada por el baño de metal fundido y criolita dentro de la celda, esta mezcla se cuece en una masa grafítica dura. en el lugar. Las barras de metal se insertan en la masa anódica como conductores para un flujo eléctrico de corriente continua. Estas varillas deben reemplazarse periódicamente; al extraerlos, se desarrollan cantidades considerables de volátiles de brea de alquitrán de hulla en el entorno de la sala de celdas. A esta exposición se añaden los volátiles de brea generados a medida que avanza la cocción de la masa de coque de brea.

      En la última década, la industria ha tendido a no reemplazar oa modificar las instalaciones de reducción tipo Soderberg existentes como consecuencia del riesgo cancerígeno demostrado que presentan. Además, con la creciente automatización de las operaciones de celdas de reducción, en particular el cambio de ánodos, las tareas se realizan más comúnmente desde grúas mecánicas cerradas. En consecuencia, la exposición de los trabajadores y el riesgo de desarrollar los trastornos asociados con la fundición de aluminio están disminuyendo gradualmente en las instalaciones modernas. Por el contrario, en aquellas economías en las que no se dispone fácilmente de una inversión de capital adecuada, la persistencia de procesos de reducción manuales más antiguos seguirá presentando los riesgos de los trastornos ocupacionales (ver más abajo) anteriormente asociados con las plantas de reducción de aluminio. De hecho, esta tendencia tenderá a agravarse en operaciones tan antiguas y no mejoradas, especialmente a medida que envejecen.

      fabricación de electrodos de carbono

      Los electrodos requeridos por la reducción electrolítica de precocción a metal puro normalmente se fabrican en una instalación asociada con este tipo de planta de fundición de aluminio. Los ánodos y cátodos se fabrican con mayor frecuencia a partir de una mezcla de coque derivado del petróleo molido y brea. El coque primero se muele en molinos de bolas, luego se transporta y se mezcla mecánicamente con la brea y finalmente se vierte en bloques en prensas de moldeo. Estos bloques de ánodo o cátodo se calientan a continuación en un horno caldeado con gas durante varios días hasta que forman masas grafíticas duras con esencialmente todos los volátiles eliminados. Finalmente, se unen a varillas de ánodo o se ranuran con sierra para recibir las barras de cátodo.

      Cabe señalar que la brea utilizada para formar tales electrodos representa un destilado que se deriva del alquitrán de carbón o petróleo. En la conversión de este alquitrán en brea por calentamiento, el producto final de la brea se ha evaporado esencialmente todos sus compuestos inorgánicos de bajo punto de ebullición, por ejemplo, SO2, así como compuestos alifáticos y compuestos aromáticos de uno y dos anillos. Por lo tanto, dicha brea no debería presentar los mismos peligros en su uso que los alquitranes de carbón o de petróleo, ya que estas clases de compuestos no deberían estar presentes. Hay algunos indicios de que el potencial cancerígeno de tales productos de brea puede no ser tan grande como el de la mezcla más compleja de alquitrán y otros volátiles asociados con la combustión incompleta del carbón.

      Riesgos y su prevención

      Los peligros y las medidas preventivas para los procesos de fundición y refinación de aluminio son básicamente los mismos que se encuentran en la fundición y refinación en general; sin embargo, los procesos individuales presentan ciertos peligros específicos.

      Minería

      Aunque en la literatura aparecen referencias esporádicas al “pulmón de bauxita”, hay poca evidencia convincente de que tal entidad exista. Sin embargo, se debe considerar la posibilidad de la presencia de sílice cristalina en los minerales de bauxita.

      Proceso de Bayer

      El uso extensivo de soda cáustica en el proceso Bayer presenta riesgos frecuentes de quemaduras químicas en la piel y los ojos. La descalcificación de los tanques con martillos neumáticos es responsable de una fuerte exposición al ruido. Los peligros potenciales asociados con la inhalación de dosis excesivas de óxido de aluminio producido en este proceso se analizan a continuación.

      Todos los trabajadores involucrados en el proceso de Bayer deben estar bien informados de los peligros asociados con el manejo de la soda cáustica. En todos los sitios en riesgo, se deben proporcionar fuentes y lavabos para lavado de ojos con agua corriente y duchas de inundación, con avisos que expliquen su uso. Se debe proporcionar equipo de protección personal (por ejemplo, gafas, guantes, delantales y botas). Deben proporcionarse duchas y casilleros dobles (un casillero para la ropa de trabajo y el otro para la ropa personal) y se debe alentar a todos los empleados a que se laven bien al final del turno. Todos los trabajadores que manipulan metal fundido deben estar provistos de visores, respiradores, guanteletes, delantales, brazaletes y polainas para protegerlos contra quemaduras, polvo y humos. Los trabajadores empleados en el proceso de baja temperatura de Gadeau deben estar provistos de guantes y trajes especiales para protegerlos de los vapores de ácido clorhídrico que se desprenden cuando las celdas se ponen en marcha; la lana ha demostrado tener una buena resistencia a estos humos. Los respiradores con cartuchos de carbón o máscaras impregnadas de alúmina brindan una protección adecuada contra los vapores de brea y flúor; máscaras de polvo eficientes son necesarias para la protección contra el polvo de carbón. Los trabajadores con una exposición más severa al polvo y al humo, particularmente en las operaciones de Soderberg, deben contar con equipo de protección respiratoria con suministro de aire. Dado que el trabajo mecanizado en el cuarto de limpieza se realiza de forma remota desde cabinas cerradas, estas medidas de protección serán menos necesarias.

      reducción electrolítica

      La reducción electrolítica expone a los trabajadores a posibles quemaduras en la piel y accidentes debido a salpicaduras de metal fundido, trastornos por estrés térmico, ruido, peligros eléctricos, criolita y vapores de ácido fluorhídrico. Las celdas de reducción electrolítica pueden emitir grandes cantidades de polvo de fluoruro y alúmina.

      En los talleres de fabricación de electrodos de carbono, se debe instalar un equipo de ventilación de extracción con filtros de mangas; El cerramiento del equipo de molienda de brea y carbón minimiza aún más la exposición a brea caliente y polvo de carbón. Deben realizarse controles regulares de las concentraciones de polvo atmosférico con un dispositivo de muestreo adecuado. Deberían realizarse exámenes periódicos de rayos X a los trabajadores expuestos al polvo, seguidos de exámenes clínicos cuando sea necesario.

      Para reducir el riesgo de manipulación de la brea, el transporte de este material debe mecanizarse en la medida de lo posible (por ejemplo, se pueden utilizar camiones cisterna calentados para transportar brea líquida a la planta donde se bombea automáticamente a tanques de brea calentados). Los exámenes regulares de la piel para detectar eritema, epitelioma o dermatitis también son prudentes, y las cremas protectoras a base de alginato pueden brindar protección adicional.

      Se debe instruir a los trabajadores que realizan trabajos en caliente antes del inicio del clima cálido para que aumenten la ingesta de líquidos y agreguen mucha sal a sus alimentos. Ellos y sus supervisores también deben estar capacitados para reconocer los trastornos incipientes inducidos por el calor en ellos mismos y en sus compañeros de trabajo. Todos los que trabajan aquí deben estar capacitados para tomar las medidas adecuadas necesarias para prevenir la aparición o progresión de los trastornos por calor.

      Los trabajadores expuestos a niveles elevados de ruido deben contar con equipos de protección auditiva, como tapones para los oídos, que permitan el paso de ruidos de baja frecuencia (para permitir la percepción de órdenes) pero reduzcan la transmisión de ruidos intensos y de alta frecuencia. Además, los trabajadores deben someterse a exámenes audiométricos periódicos para detectar la pérdida de audición. Finalmente, el personal también debe estar capacitado para dar reanimación cardiopulmonar a las víctimas de accidentes con descargas eléctricas.

      La posibilidad de salpicaduras de metal fundido y quemaduras graves está muy extendida en muchos sitios de plantas de reducción y operaciones asociadas. Además de la ropa protectora (p. ej., guanteletes, delantales, polainas y viseras para la cara), debe prohibirse el uso de ropa sintética, ya que el calor del metal fundido hace que dichas fibras calientes se derritan y se adhieran a la piel, lo que intensifica aún más las quemaduras en la piel.

      Las personas que usan marcapasos cardíacos deben excluirse de las operaciones de reducción debido al riesgo de arritmias inducidas por campos magnéticos.

      Otros efectos sobre la salud

      Los peligros para los trabajadores, la población en general y el medio ambiente resultantes de la emisión de gases, humos y polvos que contienen flúor debido al uso de fundente de criolita han sido ampliamente informados (ver tabla 1). En niños que viven en las cercanías de fundiciones de aluminio mal controladas, se han informado grados variables de manchas en los dientes permanentes si la exposición ocurrió durante la fase de desarrollo del crecimiento de los dientes permanentes. Entre los trabajadores de las fundiciones antes de 1950, o donde continuaba el control inadecuado de los efluentes de fluoruro, se han observado grados variables de fluorosis ósea. La primera etapa de esta afección consiste en un simple aumento de la densidad ósea, particularmente marcado en los cuerpos vertebrales y la pelvis. A medida que el fluoruro se absorbe más en el hueso, a continuación se observa la calcificación de los ligamentos de la pelvis. Finalmente, en caso de exposición extrema y prolongada al fluoruro, se observa calcificación de las estructuras paraespinales y de otros ligamentos, así como de las articulaciones. Si bien esta última etapa se ha visto en su forma grave en las plantas de procesamiento de criolita, rara vez se han visto etapas tan avanzadas en los trabajadores de las fundiciones de aluminio. Aparentemente, los cambios radiográficos menos severos en las estructuras óseas y ligamentosas no están asociados con alteraciones de la función estructural o metabólica del hueso. Mediante prácticas de trabajo apropiadas y un control de ventilación adecuado, se puede evitar fácilmente que los trabajadores en tales operaciones de reducción desarrollen cualquiera de los cambios de rayos X anteriores, a pesar de los 25 a 40 años de dicho trabajo. Finalmente, la mecanización de las operaciones de la sala de despensa debería minimizar, si no eliminar totalmente, cualquier peligro asociado con el fluoruro.

      Tabla 1. Entradas de materiales de proceso y salidas de contaminación para la fundición y refinación de aluminio

      Proceso

      entrada de materiales

      Emisiones de aire

      Residuos de proceso

      Otros desechos

      Refinación de bauxita

      bauxita, hidróxido de sodio

      Partículas, cáustico/agua
      vapor

       

      Residuos que contienen silicio, hierro, titanio, óxidos de calcio y cáustico

      Clarificación y precipitación de alúmina.

      Suspensión de alúmina, almidón, agua

       

      Aguas residuales que contienen almidón, arena y sosa cáustica

       

      Calcinación de alúmina

      Hidrato de aluminio

      Partículas y vapor de agua

         

      electrolítico primario
      fundición de aluminio

      Alúmina, ánodos de carbono, celdas electrolíticas, criolita

      Fluoruro—tanto gaseoso como particulado, dióxido de carbono, dióxido de azufre, monóxido de carbono, C2F6 , CF4 y carbones perfluorados (PFC)

       

      Revestimientos de ollas usados

       

      Desde principios de la década de 1980, se ha demostrado definitivamente una condición similar al asma entre los trabajadores de los potrooms de reducción de aluminio. Esta aberración, denominada asma ocupacional asociada con la fundición de aluminio (OAAAS), se caracteriza por una resistencia variable al flujo de aire, hiperreactividad bronquial o ambas, y no se desencadena por estímulos fuera del lugar de trabajo. Sus síntomas clínicos consisten en sibilancias, opresión en el pecho y dificultad para respirar y tos no productiva que generalmente se retrasan varias horas después de las exposiciones laborales. El período de latencia entre el comienzo de la exposición laboral y la aparición de OAAAS es muy variable, oscilando entre 1 semana y 10 años, dependiendo de la intensidad y el carácter de la exposición. Por lo general, la afección mejora con el retiro del lugar de trabajo después de las vacaciones, etc., pero se volverá más frecuente y grave con exposiciones laborales continuas.

      Si bien la aparición de esta afección se ha correlacionado con las concentraciones de fluoruro en la despensa, no está claro que la etiología del trastorno surja específicamente de la exposición a este agente químico. Dada la mezcla compleja de polvos y humos (p. ej., fluoruros gaseosos y en partículas, dióxido de azufre, más bajas concentraciones de óxidos de vanadio, níquel y cromo), es más probable que tales mediciones de fluoruros representen un sustituto de esta mezcla compleja de humos. gases y partículas que se encuentran en potrooms.

      En la actualidad, parece que esta afección forma parte de un grupo cada vez más importante de enfermedades profesionales: el asma profesional. El proceso causal que da como resultado este trastorno se determina con dificultad en un caso individual. Los signos y síntomas de OAAAS pueden deberse a: asma preexistente basada en alergias, hiperreactividad bronquial no específica, síndrome de disfunción reactiva de las vías respiratorias (RADS) o asma ocupacional verdadera. El diagnóstico de esta condición es actualmente problemático, requiriendo una historia compatible, la presencia de limitación variable del flujo de aire, o en su ausencia, producción de hiperreactividad bronquial inducida farmacológicamente. Pero si esto último no es demostrable, este diagnóstico es poco probable. (Sin embargo, este fenómeno eventualmente puede desaparecer después de que el trastorno desaparece con la eliminación de las exposiciones laborales).

      Dado que este trastorno tiende a volverse progresivamente más severo con la exposición continua, los individuos afectados por lo general necesitan ser retirados de las exposiciones laborales continuas. Si bien las personas con asma atópica preexistente deben restringirse inicialmente de las salas de celdas de reducción de aluminio, la ausencia de atopia no puede predecir si esta condición ocurrirá después de las exposiciones laborales.

      Actualmente hay informes que sugieren que el aluminio puede estar asociado con neurotoxicidad entre los trabajadores dedicados a la fundición y soldadura de este metal. Se ha demostrado claramente que el aluminio se absorbe a través de los pulmones y se excreta en la orina a niveles superiores a los normales, particularmente en los trabajadores de las salas de celdas de reducción. Sin embargo, gran parte de la literatura sobre los efectos neurológicos en tales trabajadores se deriva de la presunción de que la absorción de aluminio produce neurotoxicidad humana. En consecuencia, hasta que tales asociaciones sean demostrables de manera más reproducible, la conexión entre el aluminio y la neurotoxicidad ocupacional debe considerarse especulativa en este momento.

      Debido a la necesidad ocasional de gastar más de 300 kcal/h durante el cambio de ánodos o la realización de otros trabajos extenuantes en presencia de criolita y aluminio fundidos, se pueden observar trastornos por calor durante los períodos de clima cálido. Dichos episodios tienen más probabilidades de ocurrir cuando el clima cambia inicialmente de las condiciones moderadas a cálidas y húmedas del verano. Además, las prácticas de trabajo que dan como resultado un cambio de ánodo acelerado o el empleo durante dos turnos de trabajo sucesivos durante el clima cálido también predispondrán a los trabajadores a tales trastornos por calor. Los trabajadores inadecuadamente aclimatados al calor o físicamente acondicionados, cuyo consumo de sal es inadecuado o que tienen enfermedades intercurrentes o recientes son particularmente propensos al desarrollo de agotamiento por calor y/o calambres por calor mientras realizan tareas tan arduas. Se han producido golpes de calor, pero rara vez, entre los trabajadores de las fundiciones de aluminio, excepto entre aquellos con alteraciones de salud predisponentes conocidas (p. ej., alcoholismo, envejecimiento).

      Se ha demostrado que la exposición a los compuestos aromáticos policíclicos asociados con la respiración del humo y las partículas de brea coloca al personal de las células de reducción de tipo Soderberg en particular en un riesgo excesivo de desarrollar cáncer de vejiga urinaria; el exceso de riesgo de cáncer está menos establecido. Se supone que los trabajadores de plantas de electrodos de carbono donde se calientan mezclas de coque calentado y alquitrán también corren ese riesgo. Sin embargo, después de que los electrodos se han horneado durante varios días a aproximadamente 1,200 °C, los compuestos aromáticos policíclicos prácticamente se queman o se volatilizan por completo y ya no están asociados con dichos ánodos o cátodos. Por lo tanto, no se ha demostrado tan claramente que las células de reducción que utilizan electrodos precocidos presenten un riesgo indebido de desarrollo de estos trastornos malignos. Se ha sugerido que ocurren otras neoplasias (p. ej., leucemia no granulocítica y cánceres cerebrales) en las operaciones de reducción de aluminio; en la actualidad dicha evidencia es fragmentaria e inconsistente.

      En las inmediaciones de las celdas electrolíticas, el uso de descortezadores neumáticos en las salas de ollas produce niveles de ruido del orden de los 100 dBA. Las celdas de reducción electrolítica funcionan en serie a partir de un suministro de corriente de bajo voltaje y alto amperaje y, en consecuencia, los casos de descarga eléctrica no suelen ser graves. Sin embargo, en la casa de máquinas, en el punto donde el suministro de alto voltaje se une a la red de conexión en serie de la sala de máquinas, pueden ocurrir accidentes severos por descarga eléctrica, especialmente porque el suministro eléctrico es una corriente alterna de alto voltaje.

      Debido a que se han planteado preocupaciones de salud con respecto a las exposiciones asociadas con los campos de energía electromagnética, se ha cuestionado la exposición de los trabajadores en esta industria. Debe reconocerse que la energía suministrada a las celdas de reducción electrolítica es corriente continua; por lo tanto, los campos electromagnéticos generados en los cuartos de baño son principalmente del tipo de campo estático o estacionario. Dichos campos, en contraste con los campos electromagnéticos de baja frecuencia, muestran incluso menos fácilmente que ejercen efectos biológicos consistentes o reproducibles, ya sea experimental o clínicamente. Además, los niveles de flujo de los campos magnéticos medidos en las salas de celdas actuales comúnmente se encuentran dentro de los valores límite de umbral tentativos actualmente propuestos para campos magnéticos estáticos, sub-radiofrecuencia y campos eléctricos estáticos. La exposición a campos electromagnéticos de ultra baja frecuencia también ocurre en las plantas de reducción, especialmente en los extremos de estas salas adyacentes a las salas de rectificadores. Sin embargo, los niveles de fundente que se encuentran en los potrooms cercanos son mínimos, muy por debajo de los estándares actuales. Por último, no se han demostrado de forma convincente pruebas epidemiológicas coherentes o reproducibles de los efectos adversos para la salud debidos a los campos electromagnéticos en las plantas de reducción de aluminio.

      fabricación de electrodos

      Los trabajadores en contacto con los vapores de brea pueden desarrollar eritema; la exposición a la luz solar induce fotosensibilización con aumento de la irritación. Se han presentado casos de tumores cutáneos localizados entre trabajadores de electrodos de carbón donde se practicaba una higiene personal inadecuada; después de la escisión y el cambio de trabajo, por lo general no se observa más propagación ni recurrencia. Durante la fabricación de electrodos, se pueden generar cantidades considerables de carbón y polvo de brea. Donde tales exposiciones al polvo han sido severas y controladas de manera inadecuada, ha habido informes ocasionales de que los fabricantes de electrodos de carbón pueden desarrollar neumoconiosis simple con enfisema focal, complicada por el desarrollo de lesiones fibróticas masivas. Tanto la neumoconiosis simple como la complicada son indistinguibles de la condición correspondiente de la neumoconiosis de los trabajadores del carbón. La molienda de coque en molinos de bolas produce niveles de ruido de hasta 100 dBA.

      Nota del editor: La industria de producción de aluminio ha sido clasificada como causa conocida del Grupo 1 de cánceres humanos por la Agencia Internacional para la Investigación del Cáncer (IARC). Se ha asociado una variedad de exposiciones con otras enfermedades (p. ej., “asma en el cuarto de baño”) que se describen en otra parte de este Enciclopedia.

       

      Atrás

      Miércoles, marzo de 16 2011 19: 06

      Fabricación de cables eléctricos

      Los cables vienen en una variedad de tamaños para diferentes usos, desde cables de alimentación de supertensión que transportan energía eléctrica a más de 100 kilovoltios, hasta cables de telecomunicaciones. Estos últimos en el pasado utilizaban conductores de cobre, pero estos han sido reemplazados por cables de fibra óptica, que transportan más información en un cable mucho más pequeño. En medio están los cables generales utilizados para el cableado doméstico, otros cables flexibles y cables de potencia a tensiones inferiores a las de los cables de supertensión. Además, existen cables más especializados, como cables con aislamiento mineral (utilizados cuando su protección inherente contra la quema en caso de incendio es crucial, por ejemplo, en una fábrica, en un hotel o a bordo de un barco), cables esmaltados (utilizados como bobinados para motores), alambre de oropel (usado en la conexión en espiral de un auricular de teléfono), cables de cocina (que históricamente usaban aislamiento de asbesto pero ahora usan otros materiales) y así sucesivamente.

      Materiales y Procesos

      Directores

      El material más común utilizado como conductor en los cables siempre ha sido el cobre, debido a su conductividad eléctrica. El cobre tiene que ser refinado a alta pureza antes de que pueda convertirse en un conductor. El refinado de cobre a partir de mineral o chatarra es un proceso de dos etapas:

      1. refinación al fuego en un horno grande para eliminar las impurezas no deseadas y fundir un ánodo de cobre
      2. refinado electrolítico en una celda eléctrica que contiene ácido sulfúrico, del cual se deposita cobre muy puro en el cátodo.

       

      En las plantas modernas, los cátodos de cobre se funden en un horno de cuba y se moldean y laminan continuamente para formar varillas de cobre. Esta varilla se reduce al tamaño requerido en una máquina de trefilado tirando del cobre a través de una serie de troqueles precisos. Históricamente, la operación de trefilado se realizaba en una ubicación central, con muchas máquinas que producían alambres de diferentes tamaños. Más recientemente, las fábricas autónomas más pequeñas tienen su propia operación de trefilado más pequeña. Para algunas aplicaciones especializadas, el conductor de cobre se recubre con un revestimiento metálico, como estaño, plata o zinc.

      Los conductores de aluminio se utilizan en cables eléctricos aéreos donde el peso más ligero compensa con creces la conductividad inferior en comparación con el cobre. Los conductores de aluminio se fabrican exprimiendo un tocho de aluminio calentado a través de un troquel usando una prensa de extrusión.

      Los conductores metálicos más especializados utilizan aleaciones especiales para una aplicación particular. Se ha utilizado una aleación de cadmio-cobre para las catenarias aéreas (el conductor aéreo que se usa en un ferrocarril) y para el alambre de oropel que se usa en un auricular de teléfono. El cadmio aumenta la resistencia a la tracción en comparación con el cobre puro y se utiliza para que la catenaria no se combe entre los apoyos. La aleación de berilio-cobre también se usa en ciertas aplicaciones.

      Las fibras ópticas, que consisten en un filamento continuo de vidrio de alta calidad óptica para transmitir telecomunicaciones, se desarrollaron a principios de la década de 1980. Esto requería una tecnología de fabricación totalmente nueva. El tetracloruro de silicio se quema dentro de un torno para depositar dióxido de silicio en un espacio en blanco. El dióxido de silicio se convierte en vidrio calentándolo en una atmósfera de cloro; luego se dibuja a medida y se aplica una capa protectora.

      Aislamiento

      Se han utilizado muchos materiales de aislamiento en diferentes tipos de cables. Los tipos más comunes son los materiales plásticos, como el PVC, el polietileno, el politetrafluoroetileno (PTFE) y las poliamidas. En cada caso, el plástico se formula para cumplir con una especificación técnica y se aplica al exterior del conductor mediante una máquina de extrusión. En algunos casos, se pueden agregar materiales al compuesto plástico para una aplicación particular. Algunos cables de alimentación, por ejemplo, incorporan un compuesto de silano para reticular el plástico. En los casos en que el cable se va a enterrar en el suelo, se agrega un pesticida para evitar que las termitas se coman el aislamiento.

      Algunos cables flexibles, en particular los de las minas subterráneas, usan aislamiento de caucho. Se necesitan cientos de compuestos de caucho diferentes para cumplir con diferentes especificaciones, y se requiere una instalación especializada en compuestos de caucho. El caucho se extruye sobre el conductor. También debe vulcanizarse pasándolo por un baño de sal de nitrito caliente o por un líquido presurizado. Para evitar que los conductores adyacentes con aislamiento de goma se peguen, se extraen a través de polvo de talco.

      El conductor dentro de un cable puede estar envuelto con un aislante como papel (que puede haber sido empapado en un aceite mineral o sintético) o mica. Luego se aplica una funda exterior, generalmente por extrusión de plástico.

      Se han desarrollado dos métodos de fabricación de cables con aislamiento mineral (MI). En el primero, un tubo de cobre tiene una serie de conductores de cobre sólido insertados en él, y el espacio entre ellos está lleno de polvo de óxido de magnesio. Luego, todo el ensamblaje se estira hacia abajo a través de una serie de troqueles al tamaño requerido. La otra técnica implica la soldadura continua de una espiral de cobre alrededor de conductores separados por polvo. En uso, la cubierta exterior de cobre de un cable MI es la conexión a tierra y los conductores internos transportan la corriente. Aunque no se necesita una capa exterior, algunos clientes especifican una cubierta de PVC por motivos estéticos. Esto es contraproducente, ya que la principal ventaja del cable MI es que no se quema, y ​​una cubierta de PVC niega un poco esta ventaja.

      En los últimos años el comportamiento de los cables frente al fuego ha recibido una atención creciente por dos motivos:

      1. La mayoría de los cauchos y plásticos, los materiales de aislamiento tradicionales, emiten grandes cantidades de humo y gases tóxicos en un incendio, y en varios incidentes de incendios de alto perfil, esta ha sido la principal causa de muerte.
      2. Una vez que un cable se ha quemado, los conductores tocan y fusionan el circuito, por lo que se pierde energía eléctrica. Esto ha llevado al desarrollo de compuestos de baja emisión de humos y fuego (LSF), tanto para materiales plásticos como de caucho. Sin embargo, debe tenerse en cuenta que el mejor rendimiento en caso de incendio siempre se obtendrá con un cable MI.

       

      Se utilizan varios materiales especializados para ciertos cables. Los cables de supertensión están rellenos de aceite tanto por sus propiedades de aislamiento como de refrigeración. Otros cables utilizan una grasa de hidrocarburo conocida como MIND, vaselina o una cubierta de plomo. Los alambres esmaltados generalmente se fabrican recubriéndolos con un esmalte de poliuretano disuelto en cresol.

      Fabricación de cables

      En muchos cables, los conductores aislados individuales están trenzados para formar una configuración particular. Varios carretes que contienen los conductores individuales giran alrededor de un eje central a medida que el cable pasa a través de la máquina, en operaciones conocidas como varada y dejar.

      Algunos cables deben protegerse contra daños mecánicos. Esto se hace a menudo por trenza, donde un material se entreteje alrededor del aislamiento exterior de un cable flexible de tal manera que cada hebra se cruce entre sí una y otra vez en espiral. Un ejemplo de un cable trenzado de este tipo (al menos en el Reino Unido) es el que se usa en las planchas eléctricas, donde se usa hilo textil como material de trenzado. En otros casos se utiliza alambre de acero para el trenzado, operación que se denomina blindaje

      operaciones auxiliares

      Los cables más grandes se suministran en tambores de hasta unos pocos metros de diámetro. Tradicionalmente, los tambores son de madera, pero se han utilizado los de acero. Un tambor de madera se fabrica clavando madera aserrada con una máquina o una pistola clavadora neumática. Se utiliza un conservante de cobre, cromo y arsénico para evitar que la madera se pudra. Los cables más pequeños se suelen suministrar en un carrete de cartón.

      La operación de unir los dos extremos de los cables, conocida como unión, bien puede tener que llevarse a cabo en una ubicación remota. La junta no solo debe tener una buena conexión eléctrica, sino que también debe ser capaz de soportar las condiciones ambientales futuras. Los compuestos de unión utilizados son comúnmente resinas acrílicas e incorporan tanto compuestos de isocianato como polvo de sílice.

      Los conectores de cable se hacen comúnmente de latón en tornos automáticos que los fabrican a partir de barras. Las máquinas se enfrían y lubrican con una emulsión de agua y aceite. Los clips para cables se fabrican con máquinas de inyección de plástico.

      Peligros y su Prevención

      El peligro para la salud más generalizado en la industria del cable es el ruido. Las operaciones más ruidosas son:

      • trefilado
      • trenza
      • la refinería de fuego de cobre
      • colada continua de varillas de cobre
      • fabricación de tambores de cable.

       

      Los niveles de ruido superiores a 90 dBA son comunes en estas áreas. Para trefilado y trenzado, el nivel general de ruido depende del número y la ubicación de las máquinas y del entorno acústico. El diseño de la máquina debe planificarse para minimizar la exposición al ruido. Los recintos acústicos cuidadosamente diseñados son los medios más efectivos para controlar el ruido, pero son costosos. Para la refinería de cobre a fuego y la colada continua de alambrones de cobre, las principales fuentes de ruido son los quemadores, que deben diseñarse para una baja emisión de ruido. En el caso de la fabricación de tambores de cable, las pistolas de clavos accionadas neumáticamente son la principal fuente de ruido, que se puede reducir bajando la presión de la línea de aire e instalando silenciadores de escape. Sin embargo, la norma de la industria en la mayoría de los casos anteriores es entregar protección auditiva a los trabajadores en las áreas afectadas, pero dicha protección será más incómoda de lo habitual debido a los ambientes cálidos en la refinería de cobre a fuego y la colada continua de varillas de cobre. También se debe realizar una audiometría regular para monitorear la audición de cada individuo.

      Muchos de los riesgos de seguridad y su prevención son los mismos que en muchas otras industrias manufactureras. Sin embargo, algunas máquinas de fabricación de cables presentan peligros especiales, ya que tienen numerosos carretes de conductores que giran alrededor de dos ejes al mismo tiempo. Es esencial asegurarse de que los protectores de la máquina estén interbloqueados para evitar que la máquina funcione a menos que los protectores estén en posición para evitar el acceso a los puntos de contacto en funcionamiento y otras piezas giratorias, como tambores de cable grandes. Durante el enhebrado inicial de la máquina, cuando sea necesario permitir que el operador acceda al interior de la protección de la máquina, la máquina debe poder moverse solo unos pocos centímetros a la vez. Los arreglos de enclavamiento se pueden lograr al tener una llave única que abre la protección o debe insertarse en la consola de control para permitir que funcione.

      Se debe realizar una evaluación del riesgo de partículas voladoras, por ejemplo, si un cable se rompe y se sale.

      Preferiblemente, las protecciones deben estar diseñadas para evitar físicamente que tales partículas lleguen al operador. Cuando esto no sea posible, se debe proporcionar y usar protección ocular adecuada. Las operaciones de trefilado a menudo se designan como áreas donde se debe usar protección para los ojos.

      Directores

      En cualquier proceso de metal caliente, como una refinería de cobre a fuego o fundición de varillas de cobre, se debe evitar que el agua entre en contacto con el metal fundido para evitar una explosión. Cargar el horno puede resultar en el escape de vapores de óxido de metal al lugar de trabajo. Esto debe controlarse utilizando una ventilación de escape local eficaz sobre la puerta de carga. De manera similar, los canales por los que pasa el metal fundido desde el horno hasta la máquina de colada y la propia máquina de colada deben controlarse adecuadamente.

      El peligro principal en la refinería electrolítica es la neblina de ácido sulfúrico que se desprende de cada celda. Las concentraciones en el aire deben mantenerse por debajo de 1 mg/m3 con una ventilación adecuada para evitar la irritación.

      Al fundir varillas de cobre, se puede presentar un riesgo adicional mediante el uso de placas o mantas aislantes para conservar el calor alrededor de la rueda de fundición. Los materiales cerámicos pueden haber reemplazado al asbesto en tales aplicaciones, pero las fibras cerámicas en sí deben manipularse con mucho cuidado para evitar exposiciones. Dichos materiales se vuelven más friables (es decir, se rompen fácilmente) después de su uso cuando se han visto afectados por el calor y han resultado exposiciones a fibras respirables transportadas por el aire debido a su manipulación.

      Se presenta un peligro inusual en la fabricación de cables eléctricos de aluminio. Se aplica una suspensión de grafito en un aceite pesado al ariete de la prensa de extrusión para evitar que el tocho de aluminio se adhiera al ariete. Como el ariete está caliente, parte de este material se quema y sube al espacio del techo. Siempre que no haya un operador de puente grúa en las inmediaciones y que los ventiladores de techo estén instalados y funcionando, no debe haber riesgo para la salud de los trabajadores.

      La fabricación de aleaciones de cadmio-cobre o de berilio-cobre puede presentar grandes riesgos para los empleados involucrados. Dado que el cadmio hierve muy por debajo del punto de fusión del cobre, los vapores de óxido de cadmio recién generados se generarán en grandes cantidades cada vez que se agregue cadmio al cobre fundido (que debe ser para hacer la aleación). El proceso puede llevarse a cabo de manera segura solo con un diseño muy cuidadoso de la ventilación de extracción local. De manera similar, la fabricación de aleaciones de berilio y cobre requiere una gran atención a los detalles, ya que el berilio es el más tóxico de todos los metales tóxicos y tiene los límites de exposición más estrictos.

      La fabricación de fibras ópticas es una operación altamente especializada y de alta tecnología. Los productos químicos utilizados tienen sus propios riesgos especiales, y el control del entorno de trabajo requiere el diseño, la instalación y el mantenimiento de sistemas complejos de LEV y ventilación de procesos. Estos sistemas deben ser controlados por amortiguadores de control monitoreados por computadora. Los principales peligros químicos provienen del cloro, el cloruro de hidrógeno y el ozono. Además, los disolventes utilizados para limpiar los troqueles deben manipularse en cámaras de extracción de humos y debe evitarse el contacto de la piel con las resinas a base de acrilato utilizadas para recubrir las fibras.

      Aislamiento

      Tanto las operaciones de compuestos de plástico como las de caucho presentan peligros particulares que deben controlarse adecuadamente (consulte el capítulo Industria del caucho). Aunque la industria del cable puede usar compuestos diferentes a los de otras industrias, las técnicas de control son las mismas.

      Cuando se calientan, los compuestos plásticos desprenderán una mezcla compleja de productos de degradación térmica, cuya composición dependerá del compuesto plástico original y de la temperatura a la que se someta. A la temperatura de procesamiento normal de las extrusoras de plástico, los contaminantes transportados por el aire suelen ser un problema relativamente pequeño, pero es prudente instalar ventilación sobre el espacio entre el cabezal de la extrusora y el canal de agua utilizado para enfriar el producto, principalmente para controlar la exposición al ftalato. plastificantes comúnmente utilizados en PVC. La fase de la operación que bien puede justificar una mayor investigación es durante un cambio. El operador tiene que pararse sobre el cabezal del extrusor para quitar el compuesto plástico aún caliente y luego pasar el nuevo compuesto (y sobre el piso) hasta que solo salga el nuevo color y el cable esté centralizado en el cabezal del extrusor. Puede ser difícil diseñar LEV efectivo durante esta fase cuando el operador está tan cerca del cabezal del extrusor.

      El politetrafluoroetileno (PTFE) tiene su propio peligro especial. Puede causar fiebre por vapores de polímeros, que tiene síntomas parecidos a los de la influenza. La condición es temporal, pero debe prevenirse controlando adecuadamente las exposiciones al compuesto calentado.

      El uso de caucho en la fabricación de cables ha presentado un nivel de riesgo menor que otros usos del caucho, como en la industria de neumáticos. En ambas industrias, el uso de un antioxidante (Nonox S) que contenía β-naftilamina, hasta su retiro en 1949, resultó en casos de cáncer de vejiga hasta 30 años después en quienes habían estado expuestos antes de la fecha de retiro, pero ninguno en los empleados después de 1949 solamente. La industria del cable, sin embargo, no ha experimentado el aumento de la incidencia de otros tipos de cáncer, particularmente de pulmón y estómago, que se observa en la industria de los neumáticos. Es casi seguro que la razón es que en la fabricación de cables, las máquinas de extrusión y vulcanización están cerradas, y la exposición de los empleados a los vapores de caucho y al polvo de caucho fue generalmente mucho menor que en la industria de neumáticos. Una exposición de posible preocupación en las fábricas de cables de caucho es el uso de talco. Es importante asegurarse de que solo se utilice la forma no fibrosa de talco (es decir, una que no contenga tremolita fibrosa) y que el talco se aplique en una caja cerrada con ventilación de escape local.

      Muchos cables están impresos con marcas de identificación. Cuando se utilizan impresoras de chorro de vídeo modernas, el riesgo para la salud es prácticamente insignificante debido a las cantidades muy pequeñas de disolvente utilizado. Sin embargo, otras técnicas de impresión pueden resultar en una exposición significativa a los solventes, ya sea durante la producción normal o, más generalmente, durante las operaciones de limpieza. Por lo tanto, se deben utilizar sistemas de escape adecuados para controlar tales exposiciones.

      Los principales peligros de la fabricación de cables MI son la exposición al polvo, el ruido y las vibraciones. Los dos primeros están controlados por técnicas estándar descritas en otra parte. La exposición a vibraciones ocurrió en el pasado durante pavoneándose, cuando se formó una punta en el extremo del tubo ensamblado mediante la inserción manual en una máquina con martillos giratorios, de modo que la punta pudiera insertarse en la máquina de dibujo. Más recientemente, este tipo de máquina estampadora ha sido reemplazada por máquinas neumáticas, y esto ha eliminado tanto la vibración como el ruido generado por el método anterior.

      La exposición al plomo durante el revestimiento de plomo debe controlarse usando LEV adecuado y prohibiendo comer, beber y fumar cigarrillos en áreas que puedan estar contaminadas con plomo. Se debe realizar un monitoreo biológico regular mediante el análisis de muestras de sangre para determinar el contenido de plomo en un laboratorio calificado.

      El cresol utilizado en la fabricación de alambres esmaltados es corrosivo y tiene un olor característico en concentraciones muy bajas. Parte del poliuretano se degrada térmicamente en los hornos de esmaltado para liberar diisocianato de tolueno (TDI), un potente sensibilizador respiratorio. Se necesita un buen LEV alrededor de los hornos con posquemadores catalíticos para garantizar que el TDI no contamine el área circundante.

      operaciones auxiliares

      Unirse Las operaciones presentan peligros para dos grupos distintos de trabajadores: los que las fabrican y los que las usan. La fabricación implica la manipulación de un polvo fibrogénico (sílice), un sensibilizador respiratorio (isocianato) y un sensibilizador cutáneo (resina acrílica). Se debe usar LEV efectivo para controlar adecuadamente las exposiciones de los empleados, y se deben usar guantes adecuados para evitar el contacto de la piel con la resina. El principal peligro para los usuarios de los compuestos es la sensibilización de la piel a la resina. Esto puede ser difícil de controlar ya que es posible que el ensamblador no pueda evitar el contacto con la piel por completo y, a menudo, estará en un lugar remoto lejos de una fuente de agua para fines de limpieza. Por lo tanto, un limpiador de manos sin agua es esencial.

      Riesgos ambientales y su prevención.

      En general, la fabricación de cables no genera emisiones significativas fuera de la fábrica. Hay tres excepciones a esta regla. La primera es que la exposición a los vapores de los solventes utilizados para la impresión y otros fines se controlan mediante el uso de sistemas LEV que descargan los vapores a la atmósfera. Estas emisiones de compuestos orgánicos volátiles (COV) son uno de los componentes necesarios para formar smog fotoquímico y, por lo tanto, están bajo una presión cada vez mayor por parte de las autoridades reguladoras en varios países. La segunda excepción es la liberación potencial de TDI de la fabricación de alambre esmaltado. La tercera excepción es que, en varios casos, la fabricación de las materias primas utilizadas en los cables puede generar emisiones ambientales si no se toman medidas de control. Las emisiones de partículas metálicas de una refinería de cobre a fuego y de la fabricación de aleaciones de cadmio-cobre o berilio-cobre deben canalizarse a sistemas de filtro de mangas adecuados. Del mismo modo, las emisiones de partículas de los compuestos de caucho deben canalizarse a una unidad de filtro de mangas. Las emisiones de partículas, cloruro de hidrógeno y cloro provenientes de la fabricación de fibras ópticas deben canalizarse a un sistema de filtro de mangas seguido de un lavador de sosa cáustica.

       

      Atrás

      Miércoles, marzo de 16 2011 21: 06

      Fundición y Refinación de Oro

      Adaptado de la 3ra edición, Encyclopaedia of Occupational Health and Safety.

      La extracción de oro se lleva a cabo en pequeña escala por buscadores individuales (p. ej., en China y Brasil) ya gran escala en minas subterráneas (p. ej., en Sudáfrica) y en minería a cielo abierto (p. ej., en los Estados Unidos).

      El método más simple de extracción de oro es el lavado, que consiste en llenar un plato circular con arena o grava aurífera, sumergirlo bajo un chorro de agua y agitarlo. La arena y la grava más ligeras se eliminan gradualmente, dejando las partículas de oro cerca del centro de la bandeja. La extracción de oro hidráulica más avanzada consiste en dirigir una poderosa corriente de agua contra la grava o arena aurífera. Esto desmenuza el material y lo lava a través de compuertas especiales en las que se deposita el oro, mientras que la grava más liviana sale flotando. Para la minería fluvial, se utilizan dragas elevadoras, que consisten en botes de fondo plano que usan una cadena de pequeños baldes para recoger material del fondo del río y vaciarlo en un contenedor de cribado (trommel). El material gira en el trommel a medida que se dirige el agua sobre él. La arena aurífera se hunde a través de perforaciones en el trommel y cae sobre mesas vibratorias para una mayor concentración.

      Hay dos métodos principales para la extracción de oro del mineral. Estos son los procesos de amalgamación y cianuración. El proceso de amalgamación se basa en la capacidad del oro para alearse con mercurio metálico para formar amalgamas de consistencias variables, desde sólidas hasta líquidas. El oro se puede quitar con bastante facilidad de la amalgama destilando el mercurio. En la amalgamación interna, el oro se separa dentro del aparato de trituración al mismo tiempo que se tritura el mineral. La amalgama extraída del aparato se lava con agua en recipientes especiales para eliminar cualquier mezcla. Luego, el mercurio restante se extrae de la amalgama. En la amalgamación externa, el oro se separa fuera del aparato de trituración, en amalgamadores o esclusas (una mesa inclinada cubierta con láminas de cobre). Antes de retirar la amalgama, se agrega mercurio fresco. Luego se prensa la amalgama purificada y lavada. En ambos procesos, el mercurio se elimina de la amalgama por destilación. El proceso de fusión es raro hoy en día, excepto en la minería a pequeña escala, debido a preocupaciones ambientales.

      La extracción de oro mediante cianuración se basa en la capacidad del oro para formar una sal doble soluble en agua estable KAu(CN)2 cuando se combina con cianuro de potasio en asociación con oxígeno. La pulpa resultante de la trituración del mineral de oro consta de partículas cristalinas más grandes, conocidas como arenas, y partículas amorfas más pequeñas, conocidas como limo. La arena, al ser más pesada, se deposita en el fondo del aparato y permite el paso de las soluciones (incluido el limo). El proceso de extracción de oro consiste en introducir el mineral finamente molido en una tina de lixiviación y filtrar una solución de cianuro de potasio o sodio a través de ella. El limo se separa de las soluciones de cianuro de oro mediante la adición de espesantes y por filtración al vacío. La lixiviación en pilas, en la que la solución de cianuro se vierte sobre una pila nivelada de mineral triturado grueso, se está volviendo más popular, especialmente con minerales de baja ley y relaves mineros. En ambos casos, el oro se recupera de la solución de cianuro de oro agregando polvo de aluminio o zinc. En una operación separada, se agrega ácido concentrado en un reactor de digestión para disolver el zinc o el aluminio, dejando atrás el oro sólido.

      Bajo la influencia del ácido carbónico, el agua y el aire, así como los ácidos presentes en el mineral, las soluciones de cianuro se descomponen y emiten gas de cianuro de hidrógeno. Para evitarlo se añade álcali (cal o soda cáustica). El cianuro de hidrógeno también se produce cuando se agrega el ácido para disolver el aluminio o el zinc.

      Otra técnica de cianuración implica el uso de carbón activado para eliminar el oro. Se agregan espesantes a la solución de cianuro de oro antes de mezclarla con carbón activado para mantener el carbón en suspensión. El carbón que contiene oro se elimina mediante cribado y el oro se extrae con cianuro alcalino concentrado en solución alcohólica. Luego, el oro se recupera por electrólisis. El carbón puede reactivarse tostándolo y el cianuro puede recuperarse y reutilizarse.

      Tanto la amalgamación como la cianuración producen metal que contiene una cantidad considerable de impurezas, el contenido de oro puro rara vez supera los 900 por mil de finura, a menos que se refine electrolíticamente para producir un grado de finura de hasta 999.8 por mil y más.

      El oro también se recupera como subproducto de la fundición de cobre, plomo y otros metales (ver el artículo “Fundición y refinación de cobre, plomo y zinc” en este capítulo).

      Riesgos y su prevención

      El mineral de oro que se encuentra en grandes profundidades se extrae mediante minería subterránea. Esto requiere medidas para evitar la formación y propagación de polvo en las operaciones mineras. La separación del oro de los minerales arsénicos da lugar a la exposición al arsénico de los trabajadores de las minas ya la contaminación del aire y del suelo con polvo que contiene arsénico.

      En la extracción de mercurio del oro, los trabajadores pueden estar expuestos a altas concentraciones de mercurio en el aire cuando se coloca mercurio en las esclusas o se extrae de ellas, cuando se purifica o prensa la amalgama y cuando se destila el mercurio; se ha informado de intoxicación por mercurio entre los trabajadores de amalgamación y destilación. El riesgo de exposición al mercurio en la amalgamación se ha convertido en un problema grave en varios países del Lejano Oriente y América del Sur.

      En los procesos de amalgamación, se debe colocar el mercurio en las esclusas y retirar la amalgama de manera que el mercurio no entre en contacto con la piel de las manos (utilizando palas de mango largo, ropa de protección impermeable al mercurio y pronto). El procesamiento de la amalgama y la extracción o prensado del mercurio también debe estar lo más completamente mecanizado posible, sin posibilidad de que las manos sean tocadas por el mercurio; el procesamiento de la amalgama y la destilación del mercurio deben realizarse en locales separados y aislados en los que las paredes, los techos, los pisos, los aparatos y las superficies de trabajo estén cubiertos con un material que no absorba el mercurio ni sus vapores; todas las superficies deben limpiarse regularmente para eliminar todos los depósitos de mercurio. Todos los locales destinados a operaciones que involucren el uso de mercurio deben estar equipados con ventilación por extracción general y local. Estos sistemas de ventilación deben ser particularmente eficientes en locales donde se destila mercurio. Las existencias de mercurio deben mantenerse en recipientes metálicos herméticamente cerrados bajo una campana extractora especial; se debe proporcionar a los trabajadores el equipo de protección personal necesario para trabajar con mercurio; y el aire debe controlarse sistemáticamente en los locales utilizados para la amalgama y la destilación. También debe haber seguimiento médico.

      La contaminación del aire por cianuro de hidrógeno en las plantas de cianuración depende de la temperatura del aire, la ventilación, el volumen de material que se procesa, la concentración de las soluciones de cianuro en uso, la calidad de los reactivos y la cantidad de instalaciones abiertas. El examen médico de los trabajadores de las fábricas de extracción de oro ha revelado síntomas de intoxicación crónica por cianuro de hidrógeno, además de una alta frecuencia de dermatitis alérgica, eczema y pioderma (una enfermedad inflamatoria aguda de la piel con formación de pus).

      La organización adecuada de la preparación de soluciones de cianuro es particularmente importante. Si no se mecaniza la apertura de los tambores que contienen sales de cianuro y la alimentación de estas sales en las tinas de disolución, puede haber una contaminación sustancial por polvo de cianuro y gas de cianuro de hidrógeno. Las soluciones de cianuro deben introducirse a través de sistemas cerrados mediante bombas dosificadoras automáticas. En las plantas de cianuración de oro, se debe mantener el grado correcto de alcalinidad en todos los aparatos de cianuración; además, los aparatos de cianuración deben estar herméticamente sellados y equipados con LEV respaldados por una adecuada ventilación general y monitoreo de fugas. Todos los aparatos de cianuración y las paredes, pisos, áreas abiertas y escaleras del local deben cubrirse con materiales no porosos y limpiarse regularmente con soluciones alcalinas débiles.

      El uso de ácidos para descomponer el zinc en el procesamiento del lodo de oro puede generar cianuro de hidrógeno y arsina. Por lo tanto, estas operaciones deben realizarse en locales especialmente equipados y separados, con el uso de campanas extractoras locales.

      Debería prohibirse fumar y los trabajadores deberían contar con instalaciones separadas para comer y beber. El equipo de primeros auxilios debe estar disponible y debe contener material para eliminar inmediatamente cualquier solución de cianuro que entre en contacto con el cuerpo de los trabajadores y antídotos para el envenenamiento por cianuro. Los trabajadores deben contar con ropa de protección personal impermeable a los compuestos de cianuro.

      Efectos ambientales

      Hay evidencia de exposición al vapor de mercurio metálico y la metilación del mercurio en la naturaleza, particularmente donde se procesa el oro. En un estudio del agua, los asentamientos y el pescado de las zonas mineras de oro de Brasil, las concentraciones de mercurio en las partes comestibles del pescado consumido localmente superaron en casi 6 veces el nivel recomendado por Brasil para el consumo humano (Palheta y Taylor 1995). En un área contaminada de Venezuela, los buscadores de oro han estado utilizando mercurio para separar el oro de la arena aurífera y los polvos de roca durante muchos años. El alto nivel de mercurio en el suelo superficial y los sedimentos de caucho del área contaminada constituye un grave riesgo laboral y de salud pública.

      La contaminación por cianuro de las aguas residuales también es una gran preocupación. Las soluciones de cianuro deben tratarse antes de ser liberadas o deben recuperarse y reutilizarse. Las emisiones de gas de cianuro de hidrógeno, por ejemplo, en el reactor de digestión, se tratan con un depurador antes de salir por la chimenea.

       

      Atrás

      Miércoles, marzo de 16 2011 19: 10

      Fabricación de lámparas y tubos eléctricos

      Las lámparas constan de dos tipos básicos: lámparas de filamento (o incandescentes) y lámparas de descarga. Los componentes básicos de ambos tipos de lámparas incluyen vidrio, varias piezas de alambre de metal, un gas de relleno y, por lo general, una base. Según el fabricante de la lámpara, estos materiales se fabrican internamente o se pueden obtener de un proveedor externo. El fabricante típico de lámparas fabricará sus propias bombillas de vidrio, pero puede comprar otras piezas y lentes de fabricantes especializados o de otras compañías de lámparas.

      Dependiendo del tipo de lámpara, se pueden usar una variedad de lentes. Las lámparas incandescentes y fluorescentes suelen utilizar un vidrio de cal sodada. Las lámparas de temperatura más alta usarán vidrio de borosilicato, mientras que las lámparas de descarga de alta presión usarán cuarzo o cerámica para el tubo de arco y vidrio de borosilicato para la cubierta exterior. El vidrio emplomado (que contiene aproximadamente entre un 20 y un 30 % de plomo) se suele utilizar para sellar los extremos de las bombillas de las lámparas.

      Los cables utilizados como soportes o conectores en la construcción de lámparas pueden estar hechos de una variedad de materiales que incluyen acero, níquel, cobre, magnesio y hierro, mientras que los filamentos están hechos de tungsteno o aleación de tungsteno-torio. Un requisito crítico para el cable de soporte es que debe coincidir con las características de expansión del vidrio donde el cable penetra el vidrio para conducir la corriente eléctrica de la lámpara. Con frecuencia, en esta aplicación se utilizan cables conductores de varias partes.

      Las bases (o tapas) suelen estar hechas de latón o aluminio, siendo el latón el material preferido cuando se requiere uso en exteriores.

      Lámparas de filamento o incandescentes

      Las lámparas de filamento o incandescentes son el tipo de lámpara más antiguo que aún se fabrica. Toman su nombre de la forma en que estas lámparas producen su luz: a través del calentamiento de un filamento de alambre a una temperatura lo suficientemente alta como para que brille. Si bien es posible fabricar una lámpara incandescente con casi cualquier tipo de filamento (las primeras lámparas usaban carbón), hoy en día la mayoría de estas lámparas usan un filamento hecho de metal de tungsteno.

      Lámparas de tungsteno. La versión doméstica común de estas lámparas consiste en una bombilla de vidrio que encierra un filamento de alambre de tungsteno. La electricidad es conducida al filamento por cables que sostienen el filamento y se extienden a través de la montura de vidrio que está sellada a la bombilla. Luego, los cables se conectan a la base de metal, con un cable soldado en el ojal central de la base y el otro conectado a la cubierta roscada. Los hilos de soporte son de composición especial, de modo que tienen las mismas características de expansión que el vidrio, evitando fugas cuando las lámparas se calientan durante el uso. El bulbo de vidrio generalmente está hecho de vidrio de cal, mientras que el soporte de vidrio es de vidrio emplomado. El dióxido de azufre se utiliza con frecuencia en la preparación de la preparación. El dióxido de azufre actúa como lubricante durante el montaje de lámparas de alta velocidad. Dependiendo del diseño de la lámpara, la bombilla puede encerrar un vacío o puede usar un gas de relleno de argón o algún otro gas no reactivo.

      Las lámparas de este diseño se venden con bombillas de vidrio transparente, bombillas esmeriladas y bombillas recubiertas con una variedad de materiales. Las bombillas esmeriladas y recubiertas con un material blanco (frecuentemente arcilla o sílice amorfa) se utilizan para reducir el deslumbramiento del filamento que se encuentra en las bombillas transparentes. Las bombillas también están recubiertas con una variedad de otros revestimientos decorativos, que incluyen cerámica de colores y lacas en el exterior de las bombillas y otros colores, como amarillo o rosa, en el interior de la bombilla.

      Si bien la forma típica del hogar es la más común, las lámparas incandescentes se pueden fabricar en muchas formas de bombilla, incluidos tubulares, globos y reflectores, así como en muchos tamaños y potencias, desde subminiatura hasta grandes lámparas de escenario/estudio.

      Lámparas de tungsteno-halógeno. Un problema en el diseño de la lámpara de filamento de tungsteno estándar es que el tungsteno se evapora durante el uso y se condensa en la pared de vidrio más fría, oscureciéndola y reduciendo la transmisión de luz. Agregar un halógeno, como bromuro de hidrógeno o bromuro de metilo, al gas de llenado elimina este problema. El halógeno reacciona con el tungsteno, evitando que se condense en la pared de vidrio. Cuando la lámpara se enfríe, el tungsteno se volverá a depositar en el filamento. Dado que esta reacción funciona mejor a presiones de lámpara más altas, las lámparas de tungsteno-halógeno suelen contener gas a varias atmósferas de presión. Por lo general, el halógeno se agrega como parte del gas de llenado de la lámpara, generalmente en concentraciones del 2% o menos.

      Las lámparas de tungsteno-halógeno también pueden usar bombillas hechas de cuarzo en lugar de vidrio. Las bombillas de cuarzo pueden soportar presiones más altas que las de vidrio. Sin embargo, las bombillas de cuarzo presentan un peligro potencial, ya que el cuarzo es transparente a la luz ultravioleta. Aunque el filamento de tungsteno produce relativamente poca luz ultravioleta, la exposición prolongada a corta distancia puede producir enrojecimiento de la piel e irritación ocular. Filtrar la luz a través de un cubreobjetos reducirá en gran medida la cantidad de luz ultravioleta y brindará protección contra el cuarzo caliente en caso de que la lámpara se rompa durante el uso.

      Peligros y precauciones

      En general, los mayores peligros en la producción de lámparas, independientemente del tipo de producto, se deben a los peligros de los equipos automatizados y la manipulación de bombillas y lámparas de vidrio y otros materiales. Los cortes del vidrio y la penetración en el equipo operativo son las causas más comunes de accidentes; Los problemas de manipulación de materiales, como los movimientos repetitivos o las lesiones en la espalda, son motivo de especial preocupación.

      La soldadura de plomo se usa con frecuencia en las lámparas. Para lámparas utilizadas en aplicaciones de temperatura más alta, se pueden usar soldaduras que contengan cadmio. En las operaciones de montaje de lámparas automatizadas, la exposición a ambas soldaduras es mínima. Cuando se realice soldadura manual, como en operaciones de reparación o semiautomáticas, se debe monitorear la exposición al plomo o al cadmio.

      Las exposiciones potenciales a materiales peligrosos durante la fabricación de lámparas han disminuido constantemente desde mediados del siglo XX. En la fabricación de lámparas incandescentes, un gran número de lámparas se grababan anteriormente con ácido fluorhídrico o soluciones salinas de bifluoruro para producir una lámpara esmerilada. Esto ha sido reemplazado en gran medida por el uso de un revestimiento de arcilla de baja toxicidad. Si bien no se reemplazó por completo, el uso de ácido fluorhídrico se redujo considerablemente. Este cambio ha reducido el riesgo de quemaduras en la piel e irritación de los pulmones debido al ácido. Los revestimientos cerámicos de colores utilizados en el exterior de algunos productos de lámparas contenían anteriormente pigmentos de metales pesados ​​como plomo, cadmio, cobalto y otros, además de utilizar una frita de vidrio de silicato de plomo como parte de la composición. Durante los últimos años, muchos de los pigmentos de metales pesados ​​han sido reemplazados por colorantes menos tóxicos. En los casos en que todavía se utilicen los metales pesados, se puede utilizar una forma de menor toxicidad (p. ej., cromo III en lugar de cromo VI).

      Los filamentos de tungsteno enrollados continúan haciéndose enrollando el tungsteno alrededor de un alambre de mandril de molibdeno o acero. Una vez formada y sinterizada la bobina, los mandriles se disuelven utilizando ácido clorhídrico (para el acero) o una mezcla de ácido nítrico y sulfúrico para el molibdeno. Debido a las posibles exposiciones a ácidos, este trabajo se realiza de forma rutinaria en sistemas de campana o, más recientemente, en disolventes totalmente cerrados (especialmente cuando se trata de la mezcla nítrica/sulfúrica).

      Los gases de relleno utilizados en las lámparas de tungsteno-halógeno se agregan a las lámparas en sistemas totalmente cerrados con poca pérdida o exposición. El uso de bromuro de hidrógeno presenta sus propios problemas debido a su naturaleza corrosiva. Se debe proporcionar LEV y se debe usar tubería resistente a la corrosión para los sistemas de suministro de gas. El alambre de tungsteno toriado (generalmente con 1 a 2% de torio) todavía se usa en algunos tipos de lámparas. Sin embargo, hay poco riesgo por el torio en forma de alambre.

      El dióxido de azufre debe controlarse cuidadosamente. LEV debe usarse siempre que el material se agregue al proceso. Los detectores de fugas también pueden ser útiles en áreas de almacenamiento. Se prefiere el uso de cilindros de gas más pequeños de 75 kg en lugar de contenedores más grandes de 1,000 kg debido a las posibles consecuencias de una liberación catastrófica.

      La irritación de la piel puede ser un peligro potencial debido a los fundentes de soldadura oa las resinas utilizadas en el cemento base. Algunos sistemas de cemento base utilizan paraformaldehído en lugar de resinas naturales, lo que genera una posible exposición al formaldehído durante el curado del cemento base.

      Todas las lámparas utilizan un sistema químico de "recubrimiento", en el que se recubre el filamento con un material antes del ensamblaje. El propósito del getter es reaccionar y eliminar cualquier humedad u oxígeno residual en la lámpara después de que la lámpara esté sellada. Los captadores típicos incluyen nitruro de fósforo y mezclas de polvos metálicos de aluminio y circonio. Si bien el captador de nitruro de fósforo tiene un uso bastante benigno, la manipulación de polvos metálicos de aluminio y circonio puede ser un peligro de inflamabilidad. Los absorbentes se aplican húmedos en un solvente orgánico, pero si el material se derrama, los polvos metálicos secos pueden encenderse por fricción. Los incendios de metales deben extinguirse con extintores especiales Clase D y no pueden combatirse con agua, espuma u otros materiales habituales. Un tercer tipo de captador incluye el uso de fosfina o silano. Estos materiales pueden incluirse en el relleno de gas de la lámpara en baja concentración o pueden agregarse en alta concentración y “destellos” en la lámpara antes del relleno de gas final. Ambos materiales son altamente tóxicos; si se usa en alta concentración, se deben usar sistemas totalmente cerrados con detectores de fugas y alarmas en el sitio.

      Lámparas y Tubos de Descarga

      Las lámparas de descarga, tanto los modelos de baja como de alta presión, son más eficientes en términos de luz por vatio que las lámparas incandescentes. Las lámparas fluorescentes se han utilizado durante muchos años en edificios comerciales y han encontrado un uso cada vez mayor en el hogar. Recientemente, se han desarrollado versiones compactas de la lámpara fluorescente específicamente como reemplazo de la lámpara incandescente.

      Las lámparas de descarga de alta presión se han utilizado durante mucho tiempo para el alumbrado público y de grandes superficies. También se están desarrollando versiones de bajo voltaje de estos productos.

      Lámparas fluorescentes

      Las lámparas fluorescentes reciben su nombre del polvo fluorescente que se usa para recubrir el interior del tubo de vidrio. Este polvo absorbe la luz ultravioleta producida por el vapor de mercurio utilizado en la lámpara, la convierte y la vuelve a emitir como luz visible.

      El vidrio utilizado en esta lámpara es similar al de las lámparas incandescentes, utilizando vidrio de cal para el tubo y vidrio emplomado para los soportes de cada extremo. Actualmente se utilizan dos familias diferentes de fósforos. Los halofosfatos, a base de cloro-fluoro-fosfato de calcio o de estroncio, son los fósforos más antiguos y comenzaron a usarse ampliamente a principios de la década de 1950 cuando reemplazaron a los fósforos a base de silicato de berilio. La segunda familia de fósforos incluye fósforos hechos de tierras raras, que normalmente incluyen itrio, lantano y otros. Estos fósforos de tierras raras suelen tener un espectro de emisión estrecho y se utiliza una mezcla de estos, generalmente un fósforo rojo, azul y verde.

      Los fósforos se mezclan con un sistema aglutinante, se suspenden en una mezcla orgánica o en una mezcla de agua/amoníaco y se revisten en el interior del tubo de vidrio. La suspensión orgánica utiliza acetato de butilo, acetato de butilo/nafta o xileno. Debido a las regulaciones ambientales, las suspensiones a base de agua están reemplazando a las de base orgánica. Una vez que se aplica el revestimiento, se seca sobre el tubo y el tubo se calienta a una temperatura alta para eliminar el aglutinante.

      Un soporte está unido a cada extremo de la lámpara. Mercurio ahora se introduce en la lámpara. Esto puede hacerse de varias maneras. Aunque en algunas áreas el mercurio se agrega manualmente, la forma predominante es automáticamente, con la lámpara montada en forma vertical u horizontal. En máquinas verticales, el vástago de montaje en un extremo de la lámpara está cerrado. Luego, se deja caer mercurio en la lámpara desde arriba, la lámpara se llena con argón a baja presión y el vástago de montaje superior se sella, sellando completamente la lámpara. En las máquinas horizontales, el mercurio se introduce por un lado, mientras que la lámpara sale por el otro lado. Se agrega nuevamente argón a la presión adecuada y se sellan ambos extremos de la lámpara. Una vez sellados, las tapas o bases se agregan a los extremos y los cables conductores se sueldan o sueldan a los contactos eléctricos.

      Se pueden utilizar otras dos formas posibles de introducir vapor de mercurio. En un sistema, el mercurio está contenido en una tira impregnada de mercurio, que libera el mercurio cuando la lámpara se enciende por primera vez. En el otro sistema, se usa mercurio líquido, pero está contenido dentro de una cápsula de vidrio que está unida a la montura. La cápsula se rompe después de que la lámpara se haya sellado y agotado, liberando así el mercurio.

      Las lámparas fluorescentes compactas son versiones más pequeñas de la lámpara fluorescente estándar, que a veces incluyen la electrónica del balasto como componente integral de la lámpara. Los fluorescentes compactos generalmente usan una mezcla de fósforos de tierras raras. Algunas lámparas compactas incorporarán un encendedor que contiene pequeñas cantidades de materiales radiactivos para ayudar a encender la lámpara. Estos arrancadores luminosos suelen utilizar criptón-85, hidrógeno-3, prometio-147 o torio natural para proporcionar lo que se denomina una corriente oscura, que ayuda a que la lámpara se encienda más rápido. Esto es deseable desde el punto de vista del consumidor, donde el cliente quiere que la lámpara se encienda inmediatamente, sin parpadeo.

      Peligros y precauciones

      La fabricación de lámparas fluorescentes ha experimentado un número considerable de cambios. El uso temprano de un fósforo que contenía berilio se suspendió en 1949, lo que eliminó un peligro respiratorio significativo durante la producción y el uso del fósforo. En muchas operaciones, las suspensiones de fósforo a base de agua han reemplazado a las suspensiones orgánicas en el revestimiento de las lámparas fluorescentes, lo que reduce la exposición de los trabajadores y reduce la emisión de COV al medio ambiente. Las suspensiones a base de agua implican una exposición mínima al amoníaco, particularmente durante la mezcla de las suspensiones.

      El mercurio sigue siendo el material de mayor preocupación durante la fabricación de lámparas fluorescentes. Si bien las exposiciones son relativamente bajas, excepto alrededor de las máquinas de escape, existe la posibilidad de una exposición significativa para los trabajadores ubicados alrededor de la máquina de escape, los mecánicos que trabajan en estas máquinas y durante las operaciones de limpieza. Debe usarse equipo de protección personal, como overoles y guantes para evitar o limitar la exposición y, cuando sea necesario, protección respiratoria, especialmente durante las actividades de mantenimiento y limpieza. Debe establecerse un programa de vigilancia biológica, incluido el análisis de orina de mercurio, para los sitios de fabricación de lámparas fluorescentes.

      Los dos sistemas de fósforo actualmente en producción utilizan materiales que se considera que tienen una toxicidad relativamente baja. Si bien algunos de los aditivos de los fósforos originales (como el bario, el plomo y el manganeso) tienen límites de exposición establecidos por varias agencias gubernamentales, estos componentes suelen estar presentes en porcentajes relativamente bajos en las composiciones.

      Las resinas de fenol-formaldehído se utilizan como aislantes eléctricos en las tapas de los extremos de las lámparas. El cemento normalmente incluye resinas naturales y sintéticas, que pueden incluir irritantes de la piel como la hexametilentetramina. Los equipos automatizados de mezcla y manejo limitan el potencial de contacto de estos materiales con la piel, lo que limita el potencial de irritación de la piel.

      Lámparas de mercurio de alta presión

      Las lámparas de mercurio de alta presión incluyen dos tipos similares: las que usan solo mercurio y las que usan una mezcla de mercurio y una variedad de haluros metálicos. El diseño básico de las lámparas es similar. Ambos tipos usan un tubo de arco de cuarzo que contendrá el mercurio o la mezcla de mercurio/haluro. Luego, este tubo de arco se encierra en una cubierta exterior dura de vidrio de borosilicato y se agrega una base de metal para proporcionar contactos eléctricos. La cubierta exterior puede ser transparente o recubierta con un material difusor o un fósforo para modificar el color de la luz.

      Lámparas de mercurio contienen sólo mercurio y argón en el tubo de arco de cuarzo de la lámpara. El mercurio, a alta presión, genera luz con un alto contenido de azul y ultravioleta. El tubo de arco de cuarzo es completamente transparente a la luz ultravioleta y, en caso de que la cubierta exterior se rompa o se quite, es una poderosa fuente de luz ultravioleta que puede producir quemaduras en la piel y los ojos en las personas expuestas. Aunque el diseño típico de lámpara de mercurio seguirá funcionando si se quita la cubierta exterior, los fabricantes también ofrecen algunos modelos con un diseño fundido que dejará de funcionar si se rompe la cubierta. Durante el uso normal, el vidrio de borosilicato de la cubierta exterior absorbe un alto porcentaje de la luz ultravioleta, por lo que la lámpara intacta no representa un peligro.

      Debido al alto contenido de azul del espectro de la lámpara de mercurio, el interior de la cubierta exterior suele estar recubierto con un fósforo como el fosfato de vanadato de itrio o un fósforo similar que realza el rojo.

      Lámparas de halogenuros metálicos también contienen mercurio y argón en el tubo de arco, pero agregan haluros metálicos (típicamente una mezcla de sodio y escandio, posiblemente con otros). La adición de haluros metálicos mejora la salida de luz roja de la lámpara, produciendo una lámpara que tiene un espectro de luz más equilibrado.

      Peligros y precauciones

      Aparte del mercurio, los materiales potencialmente peligrosos que se utilizan en la producción de lámparas de mercurio de alta presión incluyen los materiales de revestimiento utilizados en las envolturas exteriores y los aditivos de haluros utilizados en las lámparas de haluros metálicos. Un material de recubrimiento es un difusor simple, el mismo que se usa en las lámparas incandescentes. Otro es un fósforo corrector de color, vanadato de itrio o fosfato de vanadato de itrio. Si bien es similar al pentóxido de vanadio, el vanadato se considera menos tóxico. La exposición a los materiales de haluros normalmente no es significativa, ya que los haluros reaccionan en el aire húmedo y deben mantenerse secos y bajo una atmósfera inerte durante la manipulación y el uso. De manera similar, aunque el sodio es un metal altamente reactivo, también debe manipularse en una atmósfera inerte para evitar la oxidación del metal.

      Lámparas de sodio

      Actualmente se producen dos tipos de lámparas de sodio. Las lámparas de baja presión contienen solo sodio metálico como fuente de emisión de luz y producen una luz muy amarilla. Las lámparas de sodio de alta presión utilizan mercurio y sodio para generar una luz más blanca.

      Lámparas de sodio de baja presión tener un tubo de vidrio, que contiene el sodio metálico, encerrado dentro de un segundo tubo de vidrio.

      Lámparas de sodio de alta presión contienen una mezcla de mercurio y sodio dentro de un tubo de arco de alúmina cerámica de alta pureza. Aparte de la composición del tubo de arco, la construcción de la lámpara de sodio de alta presión es esencialmente la misma que la de las lámparas de mercurio y de halogenuros metálicos.

      Peligros y precauciones

      Hay pocos peligros únicos durante la fabricación de lámparas de sodio de alta o baja presión. En ambos tipos de lámparas, el sodio debe mantenerse seco. El sodio metálico puro reaccionará violentamente con el agua, produciendo gas hidrógeno y suficiente calor para provocar la ignición. El sodio metálico que queda en el aire reaccionará con la humedad del aire y producirá una capa de óxido en el metal. Para evitar esto, el sodio generalmente se maneja en una caja de guantes, bajo una atmósfera seca de nitrógeno o argón. Para los sitios que fabrican lámparas de sodio de alta presión, se necesitan precauciones adicionales para manejar el mercurio, similares a los sitios que fabrican lámparas de mercurio de alta presión.

      Problemas ambientales y de salud pública

      La eliminación de desechos y/o el reciclaje de lámparas que contienen mercurio es un tema que ha recibido un alto grado de atención en muchas áreas del mundo durante los últimos años. Si bien en el mejor de los casos es una operación de "equilibrio" desde el punto de vista de los costos, actualmente existe tecnología para recuperar el mercurio de las lámparas fluorescentes y de descarga de alta presión. El reciclaje de los materiales de las lámparas en la actualidad se describe con mayor precisión como recuperación, ya que los materiales de las lámparas rara vez se reprocesan y se utilizan para fabricar lámparas nuevas. Por lo general, las piezas de metal se envían a los comerciantes de chatarra. El vidrio recuperado puede utilizarse para fabricar fibra de vidrio o bloques de vidrio o utilizarse como árido en pavimentos de cemento o asfalto. El reciclaje puede ser la alternativa de menor costo, según la ubicación y la disponibilidad de opciones de reciclaje y eliminación de desechos especiales o peligrosos.

      Los balastos utilizados en las instalaciones de lámparas fluorescentes contenían anteriormente condensadores que utilizaban PCB como dieléctrico. Si bien se ha interrumpido la fabricación de balastos que contienen PCB, es posible que muchos de los balastos más antiguos todavía estén en uso debido a su larga vida útil. La eliminación de los balastos que contienen PCB puede estar regulada y puede requerir la eliminación como un desecho especial o peligroso.

      La fabricación de vidrio, particularmente los vidrios de borosilicato, puede ser una fuente importante de NOx emisión a la atmósfera. Recientemente, se ha utilizado oxígeno puro en lugar de aire con quemadores de gas como un medio para reducir el NOx las emisiones.

       

      Atrás

      Miércoles, marzo de 16 2011 19: 12

      Fabricación de electrodomésticos

      Adaptado de la 3ra edición, Enciclopedia de Salud y Seguridad Ocupacional.

      La industria de los electrodomésticos es responsable de la fabricación de una amplia variedad de equipos, incluidos los aparatos diseñados para usos audiovisuales, de cocina, de calefacción, de preparación de alimentos y de almacenamiento (refrigeración). La producción y fabricación de tales aparatos involucra muchos procesos altamente automatizados que pueden tener riesgos para la salud y patrones de enfermedades asociados.

      Procesos de manufactura

      Los materiales utilizados en la fabricación de electrodomésticos se pueden clasificar en:

        1. metales que se utilizan típicamente para conductores eléctricos en cables y estructuras y/o marcos de aparatos
        2. materiales dieléctricos o aislantes utilizados para prevenir el contacto accidental con equipos eléctricos activos
        3. pinturas y acabados
        4. productos quimicos

               

              En la tabla 1 se muestran ejemplos de los materiales incluidos en las cuatro categorías mencionadas.

              Tabla 1. Ejemplos de materiales utilizados en la fabricación de electrodomésticos

              Metales

              Dieléctricos

              Pinturas/acabados

              Química​

              Acero

              Materiales inorgánicos (p. ej., mica)

              Pinturas

              ácidos

              Aluminio

              Plásticos (p. ej., PVC)

              Lacas

              Álcalis

              Lidera

              Caucho

              Barnices

              disolventes

              Cadmio

              Materiales silico-orgánicos

              Tratamientos resistentes a la corrosión

               

              Mercurio

              Otros polímeros (p. ej., nailon)

                 

              Nota: el plomo y el mercurio son cada vez menos comunes en la fabricación de electrodomésticos

              Los materiales utilizados en la industria de los electrodomésticos deben satisfacer requisitos exigentes, incluida la capacidad de soportar la manipulación que probablemente se encuentre en el funcionamiento normal, la capacidad de soportar la fatiga del metal y la capacidad de no verse afectado por ningún otro proceso o tratamiento que pueda el aparato es peligroso de usar inmediatamente o después de un período prolongado de tiempo.

              Los materiales utilizados en la industria a menudo se reciben en la etapa de ensamblaje de los electrodomésticos después de haber pasado por varios procesos de fabricación, cada uno de los cuales es probable que tenga sus propios peligros y problemas de salud. Los detalles de estos peligros y problemas se consideran en los capítulos correspondientes en otras partes de este Enciclopedia.

              Los procesos de fabricación variarán de un producto a otro, pero en general seguirán el flujo de producción que se muestra en la figura 1. Este gráfico también muestra los peligros asociados con los diferentes procesos.

              Figura 1. Secuencia y peligros del proceso de fabricación

              ELA060F1

              Problemas de salud y seguridad

              Fuego y explosión

              Muchos de los disolventes, pinturas y aceites aislantes que se utilizan en la industria son sustancias inflamables. Estos materiales deben almacenarse en locales secos y frescos, preferiblemente en un edificio a prueba de incendios separado de las instalaciones de producción. Los contenedores deben estar claramente etiquetados y las diferentes sustancias bien separadas o almacenadas separadamente según lo requieran sus puntos de inflamación y su clase de riesgo. En el caso de materiales aislantes y plásticos, es importante obtener información sobre la combustibilidad o características de fuego de cada nueva sustancia utilizada. El circonio en polvo, que ahora se usa en cantidades significativas en la industria, también es un peligro de incendio.

              Las cantidades de sustancias inflamables que salen de los almacenes deben mantenerse al mínimo necesario para la producción. Cuando se trasvasan líquidos inflamables, pueden formarse cargas de electricidad estática, por lo que todos los recipientes deben estar conectados a tierra. Se deben proporcionar dispositivos de extinción de incendios y se debe instruir al personal del almacén en su uso.

              La pintura de componentes generalmente se lleva a cabo en cabinas de pintura especialmente construidas, que deben tener un equipo de extracción y ventilación adecuado que, cuando se usa con equipo de protección personal (PPE), creará un entorno de trabajo seguro.

              Durante la soldadura, se deben tomar precauciones especiales contra incendios.

              Accidentes

              La recepción, almacenamiento y expedición de materias primas, componentes y productos terminados pueden dar lugar a accidentes por tropiezos, caídas, caída de objetos, carretillas elevadoras, etc. El manejo manual de materiales también puede crear problemas ergonómicos que pueden aliviarse mediante la automatización siempre que sea posible.

              Dado que se emplean numerosos procesos diferentes en la industria, los riesgos de accidentes variarán de un taller a otro en la planta. Durante la producción de componentes, habrá peligros para las máquinas en el uso de máquinas herramienta, prensas eléctricas, máquinas de moldeo por inyección de plástico, etc., y es esencial proteger la maquinaria de manera eficiente. Durante la galvanoplastia, se deben tomar precauciones contra las salpicaduras de productos químicos corrosivos. Durante el ensamblaje de componentes, el movimiento constante de los componentes de un proceso a otro significa que el peligro de accidentes debido al transporte en la planta y al equipo de manejo mecánico es alto.

              Las pruebas de calidad no dan lugar a ningún problema especial de seguridad. Sin embargo, las pruebas de rendimiento requieren precauciones especiales, ya que las pruebas a menudo se llevan a cabo en aparatos semiacabados o sin aislamiento. Durante las pruebas eléctricas, todos los componentes activos, conductores, terminales e instrumentos de medición deben protegerse para evitar contactos accidentales. El lugar de trabajo debe estar protegido, prohibirse la entrada de personas no autorizadas y colocarse avisos de advertencia. En las áreas de pruebas eléctricas, se recomienda especialmente la provisión de interruptores de emergencia, y los interruptores deben estar en una posición prominente para que, en caso de emergencia, todo el equipo pueda desconectarse inmediatamente.

              Para probar los aparatos que emiten rayos x o contienen sustancias radiactivas, existen normas de protección radiológica. Un supervisor competente debe ser responsable de la observancia de los reglamentos.

              Existen riesgos especiales en el uso de gases comprimidos, equipos de soldadura, láseres, planta de impregnación, equipos de pintura por pulverización, hornos de recocido y templado e instalaciones eléctricas de alta tensión.

              Durante todas las actividades de reparación y mantenimiento, los programas adecuados de bloqueo/etiquetado son esenciales.

              Peligros para la salud

              Las enfermedades profesionales asociadas con la fabricación de equipos eléctricos domésticos son relativamente escasas y normalmente no se consideran graves. Los problemas que existen se caracterizan por:

                • el desarrollo de afecciones de la piel debido al uso de solventes, aceites de corte, endurecedores utilizados con resina epoxi y bifenilos policlorados (PCB)
                • la aparición de silicosis por inhalación de sílice en el arenado (aunque la arena está siendo sustituida cada vez más por agentes abrasivos menos tóxicos como el corindón, la granalla de acero o la granalla)
                • problemas de salud por inhalación de vapores de solventes en pintura y desengrasado, y envenenamiento por plomo por uso de pigmentos de plomo, esmaltes, etc.
                • niveles variables de ruido producidos durante los procesos.

                       

                      Siempre que sea posible, los disolventes altamente tóxicos y los compuestos clorados deberían sustituirse por sustancias menos peligrosas; bajo ninguna circunstancia se debe emplear benceno o tetracloruro de carbono como disolventes. El envenenamiento por plomo puede superarse mediante la sustitución de materiales o técnicas más seguras y la aplicación estricta de procedimientos de trabajo seguros, higiene personal y supervisión médica. Cuando exista el peligro de exposición a concentraciones peligrosas de contaminantes atmosféricos, el aire del lugar de trabajo debe controlarse regularmente y, cuando sea necesario, tomar las medidas apropiadas, como la instalación de un sistema de escape. El riesgo de ruido puede reducirse encerrando las fuentes de ruido, el uso de materiales absorbentes de sonido en las salas de trabajo o el uso de protección personal para los oídos.

                      Los ingenieros de seguridad y los médicos industriales deben ser llamados en la etapa de diseño y planificación de nuevas plantas u operaciones, y los peligros de los procesos o máquinas deben eliminarse antes de que se inicien los procesos. Esto debe ir seguido de una inspección regular de máquinas, herramientas, plantas, equipos de transporte, dispositivos de extinción de incendios, talleres y áreas de prueba, etc.

                      La participación de los trabajadores en el esfuerzo de seguridad es esencial, y los supervisores deben asegurarse de que el equipo de protección personal esté disponible y se use cuando sea necesario. Debe prestarse especial atención a la formación en seguridad de los nuevos trabajadores, ya que estos representan una proporción relativamente alta de los accidentes.

                      Los trabajadores deben someterse a un examen médico previo a la colocación y, cuando exista la posibilidad de una exposición peligrosa, un examen periódico según sea necesario.

                      Muchos procesos en la producción de componentes individuales implicarán el rechazo de material de desecho (p. ej., "virutas" de láminas o barras de metal), y la eliminación de dichos materiales debe realizarse de acuerdo con los requisitos de seguridad. Además, si dichos residuos del proceso no pueden devolverse al productor o fabricante para su reciclaje, entonces su eliminación posterior debe realizarse mediante procesos aprobados para evitar la contaminación ambiental.

                       

                      Atrás

                      Página 1 de 3

                      " EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

                      Contenido