Jueves, 10 Marzo 2011 16: 45

Metas, Definiciones e Información General

Valora este artículo
(3 votos)

El trabajo es esencial para la vida, el desarrollo y la realización personal. Desafortunadamente, actividades indispensables como la producción de alimentos, la extracción de materias primas, la fabricación de bienes, la producción de energía y los servicios involucran procesos, operaciones y materiales que pueden, en mayor o menor medida, generar riesgos para la salud de los trabajadores y de las comunidades cercanas. , así como al medio ambiente en general.

Sin embargo, la generación y liberación de agentes nocivos en el ambiente de trabajo puede prevenirse mediante intervenciones adecuadas de control de riesgos, que no solo protegen la salud de los trabajadores sino que también limitan el daño al medio ambiente a menudo asociado con la industrialización. Si se elimina un químico nocivo de un proceso de trabajo, no afectará a los trabajadores ni irá más allá de contaminar el medio ambiente.

La profesión que tiene por objeto específico la prevención y el control de los riesgos derivados de los procesos de trabajo es la higiene en el trabajo. Los objetivos de la higiene ocupacional incluyen la protección y promoción de la salud de los trabajadores, la protección del medio ambiente y la contribución a un desarrollo seguro y sostenible.

La necesidad de la higiene ocupacional en la protección de la salud de los trabajadores no se puede exagerar. Aun cuando sea factible, el diagnóstico y la curación de una enfermedad profesional no impedirán que se produzcan más, si no cesa la exposición al agente etiológico. Mientras el ambiente de trabajo insalubre permanezca sin cambios, su potencial para perjudicar la salud permanecerá. Solo el control de los riesgos para la salud puede romper el círculo vicioso ilustrado en la figura 1.

Figura 1. Interacciones entre las personas y el medio ambiente

IHY010F1

Sin embargo, la acción preventiva debe comenzar mucho antes, no solo antes de que se manifieste cualquier deterioro de la salud, sino incluso antes de que ocurra realmente la exposición. El ambiente de trabajo debe estar bajo vigilancia continua para que los agentes y factores peligrosos puedan ser detectados y eliminados, o controlados, antes de que causen efectos nocivos; este es el papel de la higiene ocupacional.

Además, la higiene ocupacional también puede contribuir a un desarrollo seguro y sostenible, es decir, “garantizar que (el desarrollo) satisfaga las necesidades del presente sin comprometer la capacidad de las generaciones futuras para satisfacer sus propias necesidades” (Comisión Mundial sobre el Medio Ambiente y el Desarrollo 1987). Satisfacer las necesidades de la población mundial actual sin agotar o dañar la base mundial de recursos y sin causar consecuencias adversas para la salud y el medio ambiente requiere conocimientos y medios para influir en la acción (OMS 1992a); cuando se relaciona con procesos de trabajo, está estrechamente relacionado con la práctica de higiene ocupacional.

 

 

 

 

 

 

 

 

 

 

 

 

La salud ocupacional requiere un abordaje multidisciplinario e involucra disciplinas fundamentales, una de las cuales es la higiene ocupacional, junto con otras que incluyen la medicina y enfermería del trabajo, la ergonomía y la psicología del trabajo. Una representación esquemática de los ámbitos de actuación de los médicos del trabajo y de los higienistas del trabajo se presenta en la figura 2.

Figura 2. Ámbitos de actuación de los médicos del trabajo e higienistas del trabajo.

IHY010F2

Es importante que los tomadores de decisiones, los gerentes y los propios trabajadores, así como todos los profesionales de la salud ocupacional, comprendan el papel esencial que juega la higiene ocupacional en la protección de la salud de los trabajadores y del medio ambiente, así como la necesidad de contar con profesionales especializados en esta materia. campo. También se debe tener presente el estrecho vínculo entre la salud ocupacional y ambiental, ya que la prevención de la contaminación de origen industrial, mediante el adecuado manejo y disposición de los efluentes y residuos peligrosos, debe iniciarse a nivel del lugar de trabajo. (Ver “Evaluación del clima laboral”).

 

 

 

 

Conceptos y definiciones

Higiene Ocupacional

La higiene ocupacional es la ciencia de la anticipación, reconocimiento, evaluación y control de los peligros que surgen en o desde el lugar de trabajo y que podrían afectar la salud y el bienestar de los trabajadores, teniendo también en cuenta el posible impacto en las comunidades circundantes y el medio ambiente en general. ambiente.

Las definiciones de higiene ocupacional pueden presentarse de diferentes maneras; sin embargo, todos tienen esencialmente el mismo significado y apuntan al mismo objetivo fundamental de proteger y promover la salud y el bienestar de los trabajadores, así como proteger el medio ambiente en general, a través de acciones preventivas en el lugar de trabajo.

La higiene ocupacional aún no está universalmente reconocida como profesión; sin embargo, en muchos países está surgiendo una legislación marco que conducirá a su establecimiento.


higienista ocupacional

 Un higienista ocupacional es un profesional capaz de:

  • anticipar los peligros para la salud que pueden resultar de los procesos de trabajo, operaciones y equipos, y en consecuencia asesorar sobre su planificación y diseño
  • reconocer y comprender, en el ambiente de trabajo, la ocurrencia (real o potencial) de agentes químicos, físicos y biológicos y otros estreses, y sus interacciones con otros factores, que pueden afectar la salud y el bienestar de los trabajadores
  • comprender las posibles rutas de entrada de agentes en el cuerpo humano y los efectos que dichos agentes y otros factores pueden tener en la salud
  • evaluar la exposición de los trabajadores a agentes y factores potencialmente nocivos y evaluar los resultados
  •  evaluar los procesos y métodos de trabajo, desde el punto de vista de la posible generación y liberación/propagación de agentes potencialmente dañinos y otros factores, con miras a eliminar las exposiciones o reducirlas a niveles aceptables
  • diseñar, recomendar para su adopción y evaluar la eficacia de las estrategias de control, solo o en colaboración con otros profesionales para garantizar un control eficaz y económico
  • participar en el análisis y la gestión de riesgos generales de un agente, proceso o lugar de trabajo, y contribuir al establecimiento de prioridades para la gestión de riesgos
  • comprender el marco legal para la práctica de la higiene ocupacional en su propio país
  • educar, capacitar, informar y asesorar a las personas en todos los niveles, en todos los aspectos de la comunicación de peligros
  • trabajar eficazmente en un equipo multidisciplinario que involucre a otros profesionales
  • reconocer los agentes y factores que pueden tener impacto ambiental y comprender la necesidad de integrar la práctica de la higiene ocupacional con la protección del medio ambiente.

 

Debe tenerse en cuenta que una profesión consta no sólo de un cuerpo de conocimientos, sino también de un Código de Ética; las asociaciones nacionales de higiene ocupacional, así como la Asociación Internacional de Higiene Ocupacional (IOHA), tienen sus propios Códigos de Ética (OMS 1992b).  


 

tecnico en higiene ocupacional

Un técnico en higiene ocupacional es “una persona competente para realizar mediciones del ambiente de trabajo” pero no “para hacer las interpretaciones, juicios y recomendaciones requeridas de un higienista ocupacional”. El nivel de competencia necesario puede obtenerse en un campo amplio o limitado (OMS 1992b).

Asociación Internacional de Higiene Ocupacional (IOHA)

La IOHA se estableció formalmente, durante una reunión en Montreal, el 2 de junio de 1987. En la actualidad, la IOHA cuenta con la participación de 19 asociaciones nacionales de higiene ocupacional, con más de diecinueve mil miembros de diecisiete países.

El objetivo principal de la IOHA es promover y desarrollar la higiene ocupacional en todo el mundo, a un alto nivel de competencia profesional, a través de medios que incluyen el intercambio de información entre organizaciones e individuos, el mayor desarrollo de los recursos humanos y la promoción de un alto nivel. de la práctica ética. Las actividades de la IOHA incluyen reuniones científicas y la publicación de un boletín informativo. Los miembros de asociaciones afiliadas son automáticamente miembros de IOHA; también es posible unirse como miembro individual, para aquellos en países donde aún no existe una asociación nacional.

Certificación

Además de una definición aceptada de higiene ocupacional y del papel del higienista ocupacional, es necesario establecer esquemas de certificación para garantizar estándares aceptables de competencia y práctica de higiene ocupacional. La certificación se refiere a un esquema formal basado en procedimientos para establecer y mantener el conocimiento, las habilidades y la competencia de los profesionales (Burdorf 1995).

La IOHA ha promovido una encuesta de los esquemas nacionales de certificación existentes (Burdorf 1995), junto con recomendaciones para la promoción de la cooperación internacional para asegurar la calidad de los higienistas ocupacionales profesionales, que incluyen lo siguiente:

  • “la armonización de las normas sobre la competencia y la práctica de los higienistas ocupacionales profesionales”
  • “el establecimiento de un organismo internacional de pares para revisar la calidad de los esquemas de certificación existentes”.

 

Otras sugerencias en este informe incluyen elementos tales como: "reciprocidad" y "aceptación cruzada de designaciones nacionales, con el objetivo final de un esquema general con una designación aceptada internacionalmente".

La práctica de la higiene ocupacional

Los pasos clásicos en la práctica de la higiene ocupacional son:

  • el reconocimiento de los posibles riesgos para la salud en el entorno de trabajo
  • la evaluación de los peligros, que es el proceso de evaluar la exposición y llegar a conclusiones sobre el nivel de riesgo para la salud humana
  • prevención y control de riesgos, que es el proceso de desarrollar e implementar estrategias para eliminar, o reducir a niveles aceptables, la ocurrencia de agentes y factores nocivos en el lugar de trabajo, al mismo tiempo que se tiene en cuenta la protección del medio ambiente.

 

El enfoque ideal para la prevención de riesgos es una “acción preventiva anticipada e integrada”, que debe incluir:

  • evaluaciones de salud ocupacional e impacto ambiental, antes del diseño e instalación de cualquier nuevo lugar de trabajo
  • selección de la tecnología más segura, menos peligrosa y menos contaminante (“producción más limpia”)
  • ubicación ambientalmente apropiada
  • diseño apropiado, con disposición adecuada y tecnología de control apropiada, incluso para el manejo y eliminación seguros de los efluentes y desechos resultantes
  • elaboración de lineamientos y reglamentos para la capacitación sobre la correcta operación de los procesos, incluyendo prácticas seguras de trabajo, mantenimiento y procedimientos de emergencia.

 

No se puede dejar de enfatizar la importancia de anticipar y prevenir todo tipo de contaminación ambiental. Existe, afortunadamente, una tendencia creciente a considerar las nuevas tecnologías desde el punto de vista de los posibles impactos negativos y su prevención, desde el diseño e instalación del proceso hasta el manejo de los efluentes y residuos resultantes, en la denominada cuna -aproximación a la tumba. Los desastres ambientales, que han ocurrido tanto en países desarrollados como en vías de desarrollo, podrían haberse evitado mediante la aplicación de estrategias de control y procedimientos de emergencia apropiados en el lugar de trabajo.

Los aspectos económicos deben verse en términos más amplios que la consideración habitual del costo inicial; las opciones más costosas que ofrecen buena salud y protección ambiental pueden resultar más económicas a largo plazo. La protección de la salud de los trabajadores y del medio ambiente debe comenzar mucho antes de lo habitual. La información técnica y el asesoramiento sobre higiene ocupacional y ambiental siempre deben estar disponibles para quienes diseñan nuevos procesos, maquinaria, equipos y lugares de trabajo. Desafortunadamente, dicha información suele estar disponible demasiado tarde, cuando la única solución es una readaptación costosa y difícil, o peor aún, cuando las consecuencias ya han sido desastrosas.

Reconocimiento de peligros

El reconocimiento de peligros es un paso fundamental en la práctica de la higiene ocupacional, indispensable para la adecuada planificación de estrategias de evaluación y control de peligros, así como para el establecimiento de prioridades de actuación. Para el diseño adecuado de las medidas de control, también es necesario caracterizar físicamente las fuentes contaminantes y las vías de propagación de los contaminantes.

El reconocimiento de los peligros conduce a la determinación de:

  • qué agentes pueden estar presentes y en qué circunstancias
  • la naturaleza y el posible alcance de los efectos adversos asociados sobre la salud y el bienestar.

 

La identificación de agentes peligrosos, sus fuentes y las condiciones de exposición requiere un amplio conocimiento y un estudio cuidadoso de los procesos y operaciones de trabajo, las materias primas y los productos químicos utilizados o generados, los productos finales y eventuales subproductos, así como las posibilidades de formación accidental. de productos químicos, descomposición de materiales, combustión de combustibles o presencia de impurezas. El reconocimiento de la naturaleza y magnitud potencial de los efectos biológicos que dichos agentes pueden causar en caso de sobreexposición requiere conocimiento y acceso a la información toxicológica. Las fuentes internacionales de información a este respecto incluyen el Programa Internacional de Seguridad Química (IPCS), la Agencia Internacional para la Investigación del Cáncer (IARC) y el Registro Internacional de Productos Químicos Potencialmente Tóxicos, Programa de las Naciones Unidas para el Medio Ambiente (PNUMA-IRPTC).

Los agentes que plantean peligros para la salud en el entorno laboral incluyen contaminantes transportados por el aire; productos químicos no transportados por el aire; agentes físicos, como el calor y el ruido; agentes biologicos; factores ergonómicos, como procedimientos de levantamiento y posturas de trabajo inadecuados; y tensiones psicosociales.

Evaluaciones de higiene ocupacional

Las evaluaciones de higiene ocupacional se llevan a cabo para evaluar la exposición de los trabajadores, así como para proporcionar información para el diseño o para probar la eficacia de las medidas de control.

La evaluación de la exposición de los trabajadores a los riesgos laborales, tales como contaminantes transportados por el aire, agentes físicos y biológicos, se trata en otra parte de este capítulo. No obstante, aquí se brindan algunas consideraciones generales para una mejor comprensión del campo de la higiene ocupacional.

Es importante tener en cuenta que la evaluación de peligros no es un fin en sí mismo, sino que debe ser considerada como parte de un procedimiento mucho más amplio que comienza con la constatación de que un determinado agente, capaz de causar daños a la salud, puede estar presente en el trabajo. ambiente, y concluye con el control de este agente para evitar que cause daño. La evaluación de riesgos allana el camino hacia la prevención de riesgos, pero no la reemplaza.

Asesoramiento de exposición

La evaluación de la exposición tiene como objetivo determinar a qué cantidad de un agente han estado expuestos los trabajadores, con qué frecuencia y durante cuánto tiempo. Se han establecido directrices a este respecto tanto a nivel nacional como internacional, por ejemplo, EN 689, preparada por el Comité Européen de Normalization (Comité Europeo de Normalización) (CEN 1994).

En la evaluación de la exposición a contaminantes aerotransportados, el procedimiento más habitual es la evaluación de la exposición por inhalación, que requiere la determinación de la concentración en aire del agente al que están expuestos los trabajadores (o, en el caso de partículas aerotransportadas, la concentración en aire de la fracción relevante, por ejemplo, la “fracción respirable”) y la duración de la exposición. Sin embargo, si las rutas distintas a la inhalación contribuyen de manera apreciable a la absorción de una sustancia química, se puede hacer un juicio erróneo al observar solo la exposición por inhalación. En tales casos, se debe evaluar la exposición total, y una herramienta muy útil para esto es el monitoreo biológico.

La práctica de la higiene ocupacional se ocupa de tres tipos de situaciones:

  • estudios iniciales para evaluar la exposición de los trabajadores
  • seguimiento seguimiento/vigilancia
  • evaluación de la exposición para estudios epidemiológicos.

 

Una razón principal para determinar si existe una sobreexposición a un agente peligroso en el entorno laboral es decidir si se requieren intervenciones. Esto a menudo, pero no necesariamente, significa establecer si se cumple con una norma adoptada, que generalmente se expresa en términos de un límite de exposición ocupacional. La determinación de la situación de “peor exposición” puede ser suficiente para cumplir con este propósito. De hecho, si se espera que las exposiciones sean muy altas o muy bajas en relación con los valores límite aceptados, la exactitud y la precisión de las evaluaciones cuantitativas pueden ser menores que cuando se espera que las exposiciones estén más cerca de los valores límite. De hecho, cuando los peligros son obvios, puede ser más inteligente invertir recursos inicialmente en controles y realizar evaluaciones ambientales más precisas después de que se hayan implementado los controles.

Las evaluaciones de seguimiento a menudo son necesarias, particularmente si existió la necesidad de instalar o mejorar las medidas de control o si se previeron cambios en los procesos o materiales utilizados. En estos casos, las evaluaciones cuantitativas tienen un importante papel de vigilancia en:

  • evaluando la adecuación, probando la eficiencia o revelando posibles fallas en los sistemas de control
  • detectar si alteraciones en los procesos, como la temperatura de operación, o en las materias primas, han alterado la situación de exposición.

 

Siempre que se lleve a cabo una encuesta de higiene ocupacional en relación con un estudio epidemiológico con el fin de obtener datos cuantitativos sobre las relaciones entre la exposición y los efectos sobre la salud, la exposición debe caracterizarse con un alto nivel de exactitud y precisión. En este caso, todos los niveles de exposición deben estar adecuadamente caracterizados, ya que no sería suficiente, por ejemplo, caracterizar solo la peor situación de exposición. Sería ideal, aunque difícil en la práctica, mantener siempre registros precisos y exactos de evaluación de la exposición, ya que puede haber una necesidad futura de tener datos históricos de exposición.

Para garantizar que los datos de la evaluación sean representativos de la exposición de los trabajadores y que no se desperdicien los recursos, se debe diseñar y seguir una estrategia de muestreo adecuada que tenga en cuenta todas las posibles fuentes de variabilidad. Las estrategias de muestreo, así como las técnicas de medición, se tratan en “Evaluación del ambiente de trabajo”.

Interpretación de resultados

El grado de incertidumbre en la estimación de un parámetro de exposición, por ejemplo, la concentración promedio real de un contaminante en el aire, se determina mediante el tratamiento estadístico de los resultados de las mediciones (p. ej., muestreo y análisis). El nivel de confianza en los resultados dependerá del coeficiente de variación del “sistema de medición” y del número de mediciones. Una vez que existe una confianza aceptable, el siguiente paso es considerar las implicaciones para la salud de la exposición: ¿qué significa para la salud de los trabajadores expuestos: ahora? ¿en el futuro cercano? en su vida laboral? ¿Habrá un impacto en las generaciones futuras?

El proceso de evaluación solo se completa cuando los resultados de las mediciones se interpretan a la vista de los datos (a veces denominados "datos de evaluación de riesgos") derivados de estudios experimentales de toxicología, epidemiológicos y clínicos y, en ciertos casos, de ensayos clínicos. Debe aclararse que el término evaluación de riesgos se ha utilizado en relación con dos tipos de evaluaciones: la evaluación de la naturaleza y el alcance del riesgo resultante de la exposición a sustancias químicas u otros agentes, en general, y la evaluación del riesgo para un trabajador en particular. o grupo de trabajadores, en una situación específica de trabajo.

En la práctica de la higiene ocupacional, los resultados de la evaluación de la exposición a menudo se comparan con los límites de exposición ocupacional adoptados, que tienen como objetivo brindar orientación para la evaluación de peligros y para establecer niveles objetivo para el control. La exposición que exceda estos límites requiere una acción correctiva inmediata mediante la mejora de las medidas de control existentes o la implementación de otras nuevas. De hecho, las intervenciones preventivas deben realizarse al "nivel de acción", que varía según el país (p. ej., la mitad o la quinta parte del límite de exposición ocupacional). Un nivel de acción bajo es la mejor garantía de evitar problemas futuros.

La comparación de los resultados de la evaluación de la exposición con los límites de exposición ocupacional es una simplificación, ya que, entre otras limitaciones, este procedimiento no tiene en cuenta muchos factores que influyen en la absorción de sustancias químicas (p. ej., susceptibilidades individuales, actividad física y complexión corporal). Además, en la mayoría de los lugares de trabajo hay exposición simultánea a muchos agentes; por lo tanto, un tema muy importante es el de las exposiciones combinadas y las interacciones entre agentes, porque las consecuencias para la salud de la exposición a un determinado agente solo pueden diferir considerablemente de las consecuencias de la exposición a este mismo agente en combinación con otros, particularmente si hay sinergia o potenciación de efectos

Medidas para el control

Las mediciones con el propósito de investigar la presencia de agentes y los patrones de parámetros de exposición en el ambiente de trabajo pueden ser de gran utilidad para la planificación y diseño de medidas de control y prácticas de trabajo. Los objetivos de tales mediciones incluyen:

  • identificación y caracterización de fuentes
  • detección de puntos críticos en sistemas o recintos cerrados (p. ej., fugas)
  • determinación de rutas de propagación en el entorno de trabajo
  • comparación de diferentes intervenciones de control
  • verificación de que el polvo respirable se ha asentado junto con el polvo grueso visible, cuando se usan rociadores de agua
  • verificar que el aire contaminado no provenga de un área adyacente.

 

Los instrumentos de lectura directa son extremadamente útiles para fines de control, en particular aquellos que se pueden utilizar para el muestreo continuo y reflejan lo que sucede en tiempo real, revelando así situaciones de exposición que de otro modo no se detectarían y que deben controlarse. Ejemplos de tales instrumentos incluyen: detectores de fotoionización, analizadores infrarrojos, medidores de aerosol y tubos detectores. Cuando se toman muestras para obtener una imagen del comportamiento de los contaminantes, desde la fuente hasta el entorno de trabajo, la exactitud y la precisión no son tan críticas como lo serían para la evaluación de la exposición.

Los desarrollos recientes en este tipo de medición con fines de control incluyen técnicas de visualización, una de las cuales es Picture Mix Exposure—PIMEX (Rosen 1993). Este método combina una imagen de video del trabajador con una escala que muestra las concentraciones de contaminantes en el aire, que se miden continuamente, en la zona de respiración, con un instrumento de monitoreo en tiempo real, lo que permite visualizar cómo varía la concentración mientras se realiza la tarea. . Esto proporciona una excelente herramienta para comparar la eficacia relativa de diferentes medidas de control, como la ventilación y las prácticas laborales, contribuyendo así a un mejor diseño.

También se necesitan mediciones para evaluar la eficacia de las medidas de control. En este caso, el muestreo de fuente o el muestreo de área son convenientes, solos o además del muestreo personal, para la evaluación de la exposición de los trabajadores. Para asegurar la validez, las ubicaciones para el muestreo (o las mediciones) "antes" y "después" y las técnicas utilizadas deben ser iguales o equivalentes en cuanto a sensibilidad, exactitud y precisión.

Prevención y control de riesgos

El objetivo principal de la higiene ocupacional es la implementación de medidas adecuadas de prevención y control de riesgos en el entorno de trabajo. Las normas y los reglamentos, si no se hacen cumplir, carecen de sentido para la protección de la salud de los trabajadores, y su cumplimiento suele requerir estrategias tanto de seguimiento como de control. La ausencia de estándares legalmente establecidos no debe ser un obstáculo para la implementación de las medidas necesarias para prevenir exposiciones dañinas o controlarlas al nivel más bajo posible. Cuando los peligros graves son obvios, se debe recomendar el control, incluso antes de que se lleven a cabo las evaluaciones cuantitativas. A veces puede ser necesario cambiar el concepto clásico de “reconocimiento-evaluación-control” a “reconocimiento-control-evaluación”, o incluso a “reconocimiento-control”, si no existen capacidades para la evaluación de peligros. Algunos ejemplos de peligros que obviamente necesitan acción sin la necesidad de un muestreo ambiental previo son la galvanoplastia llevada a cabo en una habitación pequeña sin ventilación, o el uso de un martillo neumático o un equipo de limpieza con chorro de arena sin controles ambientales ni equipo de protección. Para tales peligros para la salud reconocidos, la necesidad inmediata es el control, no la evaluación cuantitativa.

La acción preventiva debe de alguna manera interrumpir la cadena por la cual el agente peligroso —un químico, un polvo, una fuente de energía— se transmite desde la fuente al trabajador. Hay tres grupos principales de medidas de control: controles de ingeniería, prácticas de trabajo y medidas personales.

El enfoque de prevención de riesgos más eficiente es la aplicación de medidas de control de ingeniería que previenen las exposiciones ocupacionales mediante la gestión del entorno de trabajo, disminuyendo así la necesidad de iniciativas por parte de los trabajadores o personas potencialmente expuestas. Las medidas de ingeniería generalmente requieren algunas modificaciones de procesos o estructuras mecánicas e involucran medidas técnicas que eliminan o reducen el uso, la generación o la liberación de agentes peligrosos en su fuente o, cuando la eliminación de la fuente no es posible, las medidas de ingeniería deben diseñarse para prevenir o reducir la propagación de agentes peligrosos en el ambiente de trabajo por:

  • conteniéndolos
  • eliminándolos inmediatamente más allá de la fuente
  • interfiriendo con su propagación
  • reduciendo su concentración o intensidad.

 

Las intervenciones de control que involucran alguna modificación de la fuente son el mejor enfoque porque el agente nocivo puede eliminarse o reducirse en concentración o intensidad. Las medidas de reducción de fuentes incluyen la sustitución de materiales, la sustitución/modificación de procesos o equipos y un mejor mantenimiento de los equipos.

Cuando las modificaciones de la fuente no son factibles o no son suficientes para lograr el nivel deseado de control, entonces se debe evitar la liberación y diseminación de agentes peligrosos en el ambiente de trabajo interrumpiendo su ruta de transmisión a través de medidas tales como el aislamiento (p. ej., sistemas cerrados, recintos), ventilación de extracción local, barreras y escudos, aislamiento de los trabajadores.

Otras medidas destinadas a reducir las exposiciones en el entorno laboral incluyen un diseño adecuado del lugar de trabajo, ventilación por dilución o desplazamiento, buena limpieza y almacenamiento adecuado. El etiquetado y las señales de advertencia pueden ayudar a los trabajadores en prácticas de trabajo seguras. Los sistemas de vigilancia y alarma pueden ser necesarios en un programa de control. Los monitores de monóxido de carbono alrededor de los hornos, de sulfuro de hidrógeno en el trabajo de alcantarillado y de deficiencia de oxígeno en espacios cerrados son algunos ejemplos.

Las prácticas de trabajo son una parte importante del control, por ejemplo, trabajos en los que la postura de trabajo de un trabajador puede afectar la exposición, como si un trabajador se inclina sobre su trabajo. La posición del trabajador puede afectar las condiciones de exposición (p. ej., zona de respiración en relación con la fuente contaminante, posibilidad de absorción por la piel).

Por último, la exposición ocupacional se puede evitar o reducir mediante la colocación de una barrera protectora sobre el trabajador, en el punto crítico de entrada del agente nocivo en cuestión (boca, nariz, piel, oído), es decir, el uso de dispositivos de protección personal. Debe señalarse que todas las demás posibilidades de control deben explorarse antes de considerar el uso de equipo de protección personal, ya que este es el medio menos satisfactorio para el control de rutina de las exposiciones, particularmente a los contaminantes transportados por el aire.

Otras medidas preventivas personales incluyen educación y formación, higiene personal y limitación del tiempo de exposición.

Las evaluaciones continuas, a través del monitoreo ambiental y la vigilancia de la salud, deben ser parte de cualquier estrategia de prevención y control de peligros.

Una tecnología de control adecuada para el ambiente de trabajo también debe incluir medidas para la prevención de la contaminación ambiental (aire, agua, suelo), incluyendo el manejo adecuado de los residuos peligrosos.

Aunque la mayoría de los principios de control aquí mencionados se aplican a los contaminantes transportados por el aire, muchos también se aplican a otros tipos de peligros. Por ejemplo, un proceso puede modificarse para producir menos contaminantes en el aire o producir menos ruido o menos calor. Una barrera aislante puede aislar a los trabajadores de una fuente de ruido, calor o radiación.

Con demasiada frecuencia, la prevención se basa en las medidas más conocidas, como la ventilación por extracción local y el equipo de protección personal, sin considerar adecuadamente otras opciones de control valiosas, como tecnologías alternativas más limpias, sustitución de materiales, modificación de procesos y buenas prácticas laborales. A menudo sucede que los procesos de trabajo se consideran inalterables cuando, en realidad, se pueden realizar cambios que previenen eficazmente o al menos reducen los peligros asociados.

La prevención y el control de riesgos en el entorno laboral requiere conocimiento e ingenio. Un control efectivo no requiere necesariamente medidas muy costosas y complicadas. En muchos casos, el control de peligros se puede lograr mediante la tecnología adecuada, que puede ser tan simple como colocar un trozo de material impermeable entre el hombro desnudo de un trabajador portuario y una bolsa de material tóxico que puede absorberse a través de la piel. También puede consistir en mejoras simples, como colocar una barrera móvil entre una fuente ultravioleta y un trabajador, o capacitar a los trabajadores en prácticas de trabajo seguras.

Los aspectos que se deben considerar al seleccionar estrategias y tecnología de control apropiadas incluyen el tipo de agente peligroso (naturaleza, estado físico, efectos sobre la salud, rutas de entrada al cuerpo), tipo de fuente(s), magnitud y condiciones de exposición, características de el lugar de trabajo y la ubicación relativa de los puestos de trabajo.

Se deben asegurar las habilidades y recursos necesarios para el correcto diseño, implementación, operación, evaluación y mantenimiento de los sistemas de control. Los sistemas como la ventilación por extracción local deben evaluarse después de la instalación y, a partir de entonces, deben comprobarse de forma rutinaria. Solo el monitoreo y el mantenimiento regulares pueden garantizar una eficiencia continua, ya que incluso los sistemas bien diseñados pueden perder su rendimiento inicial si se descuidan.

Las medidas de control deben estar integradas en los programas de prevención y control de riesgos, con objetivos claros y una gestión eficiente, involucrando equipos multidisciplinarios integrados por higienistas ocupacionales y otro personal de seguridad y salud ocupacional, ingenieros de producción, gerencia y trabajadores. Los programas también deben incluir aspectos tales como comunicación de peligros, educación y capacitación que abarquen prácticas de trabajo seguras y procedimientos de emergencia.

También se deben incluir aspectos de promoción de la salud, ya que el lugar de trabajo es un escenario ideal para promover estilos de vida saludables en general y para alertar sobre los peligros de exposiciones no ocupacionales peligrosas causadas, por ejemplo, por disparar sin la protección adecuada o fumar.

Los vínculos entre higiene ocupacional, evaluación de riesgos y gestión de riesgos

Evaluación del riesgo

La evaluación de riesgos es una metodología que tiene como objetivo caracterizar los tipos de efectos en la salud esperados como resultado de una determinada exposición a un agente dado, así como proporcionar estimaciones sobre la probabilidad de ocurrencia de estos efectos en la salud, en diferentes niveles de exposición. También se utiliza para caracterizar situaciones de riesgo específicas. Implica la identificación de peligros, el establecimiento de relaciones exposición-efecto y la evaluación de la exposición, lo que conduce a la caracterización del riesgo.

El primer paso se refiere a la identificación de un agente, por ejemplo, una sustancia química, como causante de un efecto nocivo para la salud (por ejemplo, cáncer o envenenamiento sistémico). El segundo paso establece cuánta exposición causa qué cantidad de un efecto dado en cuántas de las personas expuestas. Este conocimiento es esencial para la interpretación de los datos de evaluación de la exposición.

La evaluación de la exposición es parte de la evaluación del riesgo, tanto cuando se obtienen datos para caracterizar una situación de riesgo como cuando se obtienen datos para el establecimiento de relaciones exposición-efecto a partir de estudios epidemiológicos. En este último caso, la exposición que condujo a un determinado efecto causado por el trabajo o el medio ambiente debe caracterizarse con precisión para garantizar la validez de la correlación.

Aunque la evaluación de riesgos es fundamental para muchas decisiones que se toman en la práctica de la higiene ocupacional, tiene un efecto limitado en la protección de la salud de los trabajadores, a menos que se traduzca en una acción preventiva real en el lugar de trabajo.

La evaluación de riesgos es un proceso dinámico, ya que los nuevos conocimientos a menudo revelan efectos nocivos de sustancias hasta entonces consideradas relativamente inofensivas; por lo que el higienista ocupacional debe tener, en todo momento, acceso a información toxicológica actualizada. Otra implicación es que las exposiciones siempre deben controlarse al nivel más bajo posible.

La figura 3 se presenta como una ilustración de los diferentes elementos de la evaluación de riesgos.

Figura 3. Elementos de la evaluación de riesgos.

IHY010F3

Gestión de riesgos en el entorno laboral.

No siempre es factible eliminar todos los agentes que presentan riesgos para la salud ocupacional porque algunos son inherentes a los procesos de trabajo que son indispensables o deseables; sin embargo, los riesgos pueden y deben gestionarse.

La evaluación de riesgos proporciona una base para la gestión de riesgos. Sin embargo, mientras que la evaluación de riesgos es un procedimiento científico, la gestión de riesgos es más pragmática, involucrando decisiones y acciones que apuntan a prevenir, o reducir a niveles aceptables, la ocurrencia de agentes que pueden presentar peligros para la salud de los trabajadores, las comunidades circundantes y el medio ambiente. , teniendo en cuenta también el contexto socioeconómico y de salud pública.

La gestión de riesgos se lleva a cabo en diferentes niveles; las decisiones y acciones tomadas a nivel nacional allanan el camino para la práctica de la gestión de riesgos a nivel del lugar de trabajo.

La gestión de riesgos en el lugar de trabajo requiere información y conocimientos sobre:

  • peligros para la salud y su magnitud, identificados y clasificados de acuerdo con los resultados de la evaluación de riesgos
  • requisitos y normas legales
  • factibilidad tecnológica, en términos de la tecnología de control disponible y aplicable
  • aspectos económicos, como los costos de diseño, implementación, operación y mantenimiento de sistemas de control, y análisis de costo-beneficio (costos de control versus beneficios financieros derivados del control de riesgos laborales y ambientales)
  • recursos humanos (disponibles y requeridos)
  • contexto socioeconómico y de salud pública

 

servir como base para decisiones que incluyen:

  • establecimiento de un objetivo para el control
  • selección de estrategias y tecnologías de control adecuadas
  • establecimiento de prioridades de actuación en vista de la situación de riesgo, así como del contexto socioeconómico y de salud pública existente (particularmente importante en los países en desarrollo)

 

y que debe conducir a acciones tales como:

  • identificación/búsqueda de recursos financieros y humanos (si aún no están disponibles)
  • diseño de medidas de control específicas, que deberían ser apropiadas para la protección de la salud de los trabajadores y del medio ambiente, así como para salvaguardar en la medida de lo posible la base de recursos naturales
  • implementación de medidas de control, incluidas disposiciones para una operación adecuada, mantenimiento y procedimientos de emergencia
  • establecimiento de un programa de prevención y control de peligros con una gestión adecuada e incluyendo vigilancia rutinaria.

 

Tradicionalmente, la profesión responsable de la mayoría de estas decisiones y acciones en el lugar de trabajo es la higiene ocupacional.

Una decisión clave en la gestión de riesgos, la del riesgo aceptable (¿qué efecto puede aceptarse, en qué porcentaje de la población activa, si es que hay alguno?), se toma generalmente, pero no siempre, en el nivel de formulación de políticas nacionales y se sigue. mediante la adopción de límites de exposición ocupacional y la promulgación de reglamentos y normas de salud ocupacional. Esto conduce al establecimiento de objetivos de control, generalmente a nivel del lugar de trabajo por parte del higienista ocupacional, quien debe tener conocimiento de los requisitos legales. Sin embargo, puede suceder que las decisiones sobre el riesgo aceptable deban ser tomadas por el higienista ocupacional en el lugar de trabajo, por ejemplo, en situaciones en las que los estándares no están disponibles o no cubren todas las exposiciones potenciales.

Todas estas decisiones y acciones deben estar integradas en un plan realista, lo que requiere coordinación y colaboración multidisciplinaria y multisectorial. Aunque la gestión de riesgos implica enfoques pragmáticos, su eficacia debe evaluarse científicamente. Desafortunadamente, las acciones de gestión de riesgos son, en la mayoría de los casos, un compromiso entre lo que se debe hacer para evitar cualquier riesgo y lo mejor que se puede hacer en la práctica, en vista de las limitaciones financieras y de otro tipo.

La gestión de riesgos relacionados con el entorno laboral y el entorno general debe estar bien coordinada; no solo hay áreas superpuestas, sino que, en la mayoría de las situaciones, el éxito de una está interrelacionado con el éxito de la otra.

Programas y Servicios de Higiene Ocupacional

La voluntad política y la toma de decisiones a nivel nacional influirán, directa o indirectamente, en el establecimiento de programas o servicios de higiene ocupacional, ya sea a nivel gubernamental o privado. Está más allá del alcance de este artículo proporcionar modelos detallados para todos los tipos de programas y servicios de higiene ocupacional; sin embargo, existen principios generales que son aplicables a muchas situaciones y pueden contribuir a su implementación y operación eficientes.

Un servicio completo de higiene en el trabajo debería tener la capacidad de realizar estudios preliminares, muestreos, mediciones y análisis adecuados para la evaluación de peligros y con fines de control, y recomendar medidas de control, si no diseñarlas.

Los elementos clave de un programa o servicio integral de higiene ocupacional son los recursos humanos y financieros, las instalaciones, el equipo y los sistemas de información, bien organizados y coordinados a través de una planificación cuidadosa, bajo una gestión eficiente y que también involucren garantía de calidad y evaluación continua del programa. Los programas exitosos de higiene ocupacional requieren una base política y el compromiso de la alta dirección. La obtención de recursos financieros está fuera del alcance de este artículo.

Recursos humanos

Los recursos humanos adecuados constituyen el activo principal de cualquier programa y deben garantizarse como una prioridad. Todo el personal debe tener descripciones claras de sus funciones y responsabilidades. Si es necesario, se deben hacer provisiones para capacitación y educación. Los requisitos básicos para los programas de higiene ocupacional incluyen:

  • higienistas ocupacionales—además de conocimientos generales sobre el reconocimiento, evaluación y control de riesgos laborales, los higienistas ocupacionales pueden estar especializados en áreas específicas, como química analítica o ventilación industrial; la situación ideal es contar con un equipo de profesionales bien capacitados en la práctica integral de la higiene ocupacional y en todas las áreas de especialización requeridas
  • personal de laboratorio, químicos (dependiendo del alcance del trabajo analítico)
  • técnicos y auxiliares, para estudios de campo y para laboratorios, así como para mantenimiento y reparación de instrumentos
  • especialistas en información y apoyo administrativo.

 

Un aspecto importante es la competencia profesional, que no solo debe lograrse sino también mantenerse. La educación continua, dentro o fuera del programa o servicio, debe cubrir, por ejemplo, actualizaciones de la legislación, nuevos avances y técnicas, y lagunas en el conocimiento. La participación en conferencias, simposios y talleres también contribuye al mantenimiento de la competencia.

Salud y seguridad para el personal

Se debe garantizar la salud y la seguridad de todo el personal en estudios de campo, laboratorios y oficinas. Los higienistas ocupacionales pueden estar expuestos a peligros graves y deben usar el equipo de protección personal requerido. Según el tipo de trabajo, es posible que se requiera inmunización. Si se trata de trabajo rural, dependiendo de la región, se deben tomar disposiciones como antídoto para las mordeduras de serpientes. La seguridad en el laboratorio es un campo especializado que se trata en otra parte de este Enciclopedia.

No se deben pasar por alto los riesgos laborales en las oficinas, por ejemplo, trabajar con unidades de visualización y fuentes de contaminación interior, como impresoras láser, fotocopiadoras y sistemas de aire acondicionado. También deben tenerse en cuenta los factores ergonómicos y psicosociales.

Instalaciones

Estos incluyen oficinas y sala(s) de reuniones, laboratorios y equipos, sistemas de información y biblioteca. Las instalaciones deben estar bien diseñadas, teniendo en cuenta las necesidades futuras, ya que las mudanzas y adaptaciones posteriores suelen ser más costosas y requieren más tiempo.

Laboratorios y equipos de higiene ocupacional

Los laboratorios de higiene ocupacional deberían tener, en principio, la capacidad de realizar una evaluación cualitativa y cuantitativa de la exposición a contaminantes transportados por el aire (productos químicos y polvo), agentes físicos (ruido, estrés por calor, radiación, iluminación) y agentes biológicos. En el caso de la mayoría de los agentes biológicos, las evaluaciones cualitativas son suficientes para recomendar controles, eliminando así la necesidad de las evaluaciones cuantitativas normalmente difíciles.

Aunque algunos instrumentos de lectura directa de contaminantes transportados por el aire pueden tener limitaciones para fines de evaluación de la exposición, estos son extremadamente útiles para el reconocimiento de peligros y la identificación de sus fuentes, la determinación de picos de concentración, la recopilación de datos para medidas de control y para verificar en controles tales como sistemas de ventilación. En relación con esto último, también se necesitan instrumentos para comprobar la velocidad del aire y la presión estática.

Una de las posibles estructuras comprendería las siguientes unidades:

  • equipo de campo (muestreo, lectura directa)
  • laboratorio analítico
  • laboratorio de partículas
  • agentes físicos (ruido, ambiente térmico, iluminación y radiación)
  • Taller de mantenimiento y reparación de instrumentación.

 

Siempre que se seleccione un equipo de higiene ocupacional, además de las características de desempeño, se deben considerar aspectos prácticos en vista de las condiciones de uso esperadas, por ejemplo, infraestructura disponible, clima, ubicación. Estos aspectos incluyen portabilidad, fuente de energía requerida, requisitos de calibración y mantenimiento, y disponibilidad de los suministros fungibles requeridos.

El equipo debe comprarse solo si y cuando:

  • hay una verdadera necesidad
  • se dispone de habilidades para la adecuada operación, mantenimiento y reparación
  • se ha desarrollado el procedimiento completo, ya que no sirve, por ejemplo, comprar bombas de muestreo sin un laboratorio para analizar las muestras (o un acuerdo con un laboratorio externo).

 

La calibración de todos los tipos de medidas y muestreos de higiene ocupacional, así como el equipo analítico, debe ser una parte integral de cualquier procedimiento, y el equipo requerido debe estar disponible.

El mantenimiento y las reparaciones son esenciales para evitar que los equipos permanezcan inactivos durante largos períodos de tiempo, y los fabricantes deben garantizarlos, ya sea mediante asistencia directa o brindando capacitación al personal.

Si se está desarrollando un programa completamente nuevo, solo se debe comprar inicialmente el equipo básico, y se deben agregar más artículos a medida que se establecen las necesidades y se aseguran las capacidades operativas. Sin embargo, incluso antes de que el equipo y los laboratorios estén disponibles y en funcionamiento, se puede lograr mucho inspeccionando los lugares de trabajo para evaluar cualitativamente los peligros para la salud y recomendando medidas de control para los peligros reconocidos. La falta de capacidad para llevar a cabo evaluaciones cuantitativas de la exposición nunca debe justificar la inacción con respecto a las exposiciones obviamente peligrosas. Esto es particularmente cierto en situaciones en las que los riesgos en el lugar de trabajo no están controlados y las exposiciones intensas son comunes.

Información

Esto incluye biblioteca (libros, periódicos y otras publicaciones), bases de datos (por ejemplo, en CD-ROM) y comunicaciones.

Siempre que sea posible, se deben proporcionar computadoras personales y lectores de CD-ROM, así como conexiones a INTERNET. Hay posibilidades cada vez mayores de servidores de información pública en red en línea (sitios World Wide Web y GOPHER), que brindan acceso a una gran cantidad de fuentes de información relevantes para la salud de los trabajadores, por lo que justifican plenamente la inversión en computadoras y comunicaciones. Dichos sistemas deben incluir el correo electrónico, que abre nuevos horizontes para la comunicación y el debate, ya sea individualmente o en grupo, facilitando y promoviendo así el intercambio de información en todo el mundo.

Planificación

La planificación oportuna y cuidadosa para la implementación, gestión y evaluación periódica de un programa es esencial para asegurar que se logren los objetivos y metas, mientras se hace el mejor uso de los recursos disponibles.

Inicialmente, se debe obtener y analizar la siguiente información:

  • naturaleza y magnitud de los peligros prevalecientes, a fin de establecer prioridades
  • requisitos legales (legislación, normas)
  • recursos disponibles
  • infraestructura y servicios de apoyo.

 

Los procesos de planificación y organización incluyen:

  • establecimiento de la finalidad del programa o servicio, definición de objetivos y alcance de las actividades, en vista de la demanda esperada y de los recursos disponibles
  • asignación de recursos
  • definición de la estructura organizativa
  • perfil de los recursos humanos requeridos y planes para su desarrollo (si es necesario)
  • asignación clara de responsabilidades a unidades, equipos e individuos
  • diseño/adecuación de las instalaciones
  • selección de equipo
  • requerimientos operacionales
  • establecimiento de mecanismos de comunicación dentro y fuera del servicio
  • calendario.

 

Los costos operativos no deben subestimarse, ya que la falta de recursos puede dificultar seriamente la continuidad de un programa. Los requisitos que no se pueden pasar por alto incluyen:

  • compra de suministros fungibles (incluidos elementos como filtros, tubos detectores, tubos de carbón, reactivos), repuestos para equipos, etc.
  • mantenimiento y reparacion de equipos
  • transporte (vehículos, combustible, mantenimiento) y viajes
  • actualización de información.

 

Los recursos deben optimizarse mediante un estudio cuidadoso de todos los elementos que deben considerarse como partes integrales de un servicio integral. Una asignación equilibrada de recursos a las diferentes unidades (mediciones de campo, muestreo, laboratorios analíticos, etc.) y todos los componentes (instalaciones y equipos, personal, aspectos operativos) es esencial para el éxito del programa. Además, la asignación de recursos debe permitir flexibilidad, ya que los servicios de higiene ocupacional pueden tener que sufrir adaptaciones para responder a las necesidades reales, que deben evaluarse periódicamente.

La comunicación, el intercambio y la colaboración son palabras clave para un trabajo en equipo exitoso y capacidades individuales mejoradas. Se necesitan mecanismos efectivos de comunicación, dentro y fuera del programa, para asegurar el enfoque multidisciplinario requerido para la protección y promoción de la salud de los trabajadores. Debe existir una estrecha interacción con otros profesionales de la salud en el trabajo, en particular médicos y enfermeras del trabajo, ergonomistas y psicólogos del trabajo, así como con profesionales de la seguridad. A nivel del lugar de trabajo, esto debería incluir a los trabajadores, el personal de producción y los gerentes.

La implementación de programas exitosos es un proceso gradual. Por lo tanto, en la etapa de planificación, se debe preparar un cronograma realista, de acuerdo con prioridades bien establecidas y en vista de los recursos disponibles.

Administración

La gestión implica la toma de decisiones sobre los objetivos a alcanzar y las acciones requeridas para alcanzar estos objetivos de manera eficiente, con la participación de todos los interesados, así como la previsión y prevención, o el reconocimiento y solución, de los problemas que pueden crear obstáculos para la realización de la tareas requeridas. Debe tenerse en cuenta que el conocimiento científico no garantiza la competencia gerencial requerida para ejecutar un programa eficiente.

No se puede exagerar la importancia de implementar y hacer cumplir los procedimientos correctos y el aseguramiento de la calidad, ya que hay mucha diferencia entre el trabajo hecho y el trabajo bien hecho. Además, los objetivos reales, no los pasos intermedios, deben servir como vara de medir; la eficiencia de un programa de higiene ocupacional debe medirse no por el número de encuestas realizadas, sino por el número de encuestas que llevaron a una acción real para proteger la salud de los trabajadores.

Una buena gestión debe ser capaz de distinguir entre lo que es impresionante y lo que es importante; encuestas muy detalladas que involucran muestreo y análisis, arrojando resultados muy exactos y precisos, pueden ser muy impresionantes, pero lo que es realmente importante son las decisiones y acciones que se tomarán después.

Control de calidad

El concepto de aseguramiento de la calidad, que involucra control de calidad y pruebas de aptitud, se refiere principalmente a actividades que involucran mediciones. Aunque estos conceptos se han considerado más a menudo en relación con los laboratorios analíticos, su alcance debe ampliarse para abarcar también el muestreo y las mediciones.

Siempre que se requiera muestreo y análisis, el procedimiento completo debe considerarse como uno solo, desde el punto de vista de la calidad. Dado que ninguna cadena es más fuerte que el eslabón más débil, es un desperdicio de recursos utilizar, para los diferentes pasos de un mismo procedimiento de evaluación, instrumentos y técnicas de niveles desiguales de calidad. La exactitud y la precisión de una muy buena balanza analítica no pueden compensar el muestreo de una bomba con un caudal incorrecto.

El desempeño de los laboratorios debe verificarse para que las fuentes de errores puedan identificarse y corregirse. Es necesario un enfoque sistemático para mantener bajo control los numerosos detalles involucrados. Es importante establecer programas de garantía de calidad para los laboratorios de higiene ocupacional, y esto se refiere tanto al control de calidad interno como a las evaluaciones de calidad externas (a menudo llamadas “pruebas de competencia”).

Con respecto al muestreo o las mediciones con instrumentos de lectura directa (incluso para la medición de agentes físicos), la calidad implica adecuada y correcta:

  • estudios preliminares que incluyen la identificación de posibles peligros y los factores necesarios para el diseño de la estrategia
  • diseño de la estrategia de muestreo (o medición)
  • selección y utilización de metodologías y equipos para muestreo o mediciones, teniendo en cuenta tanto el propósito de la investigación como los requisitos de calidad
  • realización de los procedimientos, incluido el seguimiento del tiempo
  • manipulación, transporte y almacenamiento de muestras (si es el caso).

 

En lo que respecta al laboratorio analítico, la calidad implica adecuada y correcta:

  • diseño e instalación de las instalaciones
  • selección y utilización de métodos analíticos validados (o, si es necesario, validación de métodos analíticos)
  • selección e instalación de instrumentación
  • suministros adecuados (reactivos, muestras de referencia, etc.).

 

Para ambos, es indispensable contar con:

  • protocolos claros, procedimientos e instrucciones escritas
  • calibración y mantenimiento de rutina del equipo
  • capacitación y motivación del personal para realizar adecuadamente los procedimientos requeridos
  • manejo adecuado
  • control de calidad interno
  • evaluación externa de la calidad o pruebas de competencia (si corresponde).

 

Además, es fundamental tener un tratamiento correcto de los datos obtenidos y la interpretación de los resultados, así como un informe y mantenimiento de registros precisos.

La acreditación de laboratorios, definida por CEN (EN 45001) como “reconocimiento formal de que un laboratorio de pruebas es competente para realizar pruebas específicas o tipos específicos de pruebas”, es una herramienta de control muy importante y debe promoverse. Debe cubrir tanto el muestreo como los procedimientos analíticos.

Evaluación del programa

El concepto de calidad debe aplicarse a todos los pasos de la práctica de la higiene ocupacional, desde el reconocimiento de los peligros hasta la implementación de programas de prevención y control de peligros. Con esto en mente, los programas y servicios de higiene ocupacional deben ser evaluados periódicamente y de manera crítica, con miras a la mejora continua.

Observaciones finales

La higiene en el trabajo es fundamental para la protección de la salud de los trabajadores y del medio ambiente. Su práctica implica muchos pasos, que están interrelacionados y que no tienen sentido por sí mismos, pero deben integrarse en un enfoque integral.

 

Atrás

Leer 14448 veces Ultima modificacion el Jueves, octubre 13 2011 20: 43
Más en esta categoría: Reconocimiento de peligros »

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Referencias de Higiene Ocupacional

Abraham, MH, GS Whiting, Y Alarie et al. 1990. Enlace de hidrógeno 12. Un nuevo QSAR para la irritación del tracto respiratorio superior por sustancias químicas en el aire en ratones. Quant Struc Actividad Relat 9:6-10.

Adkins, LE et al. 1990. Carta al Editor. Aplicación Occup Environ Hyg 5(11):748-750.

Alarie, Y. 1981. Análisis de respuesta a dosis en estudios con animales: predicción de respuestas humanas. Salud Ambiental Persp 42:9-13.

Conferencia Americana de Higienistas Industriales Gubernamentales (ACGIH). 1994. Valores Límite Umbral para Sustancias Químicas y Agentes Físicos e Índices de Exposición Biológica 1993-1994. Cincinnati: ACGIH.

—. 1995. Documentación de valores límite de umbral. Cincinnati: ACGIH.

Baetjer, AM. 1980. Los primeros días de la higiene industrial: su contribución a los problemas actuales. Am Ind Hyg Assoc J 41:773-777.

Bailer, JC, EAC Crouch, R Shaikh y D Spiegelman. 1988. Modelos de carcinogénesis de un solo golpe: ¿conservadores o no? Riesgo Anal 8:485-490.

Bogers, M, LM Appelman, VJ Feron, et al. 1987. Efectos del perfil de exposición sobre la toxicidad por inhalación de tetracloruro de carbono en ratas macho. J Appl Toxicol 7:185-191.

Boleij, JSM, E Buringh, D Heederik y H Kromhour. 1995. Higiene Ocupacional para Agentes Químicos y Biológicos. Ámsterdam: Elsevier.

Bouyer, J y D Hemon. 1993. Estudiando el desempeño de una matriz de exposición laboral. Int J Epidemiol 22(6) Supl. 2:S65-S71.

Bowditch, M, DK Drinker, P Drinker, HH Haggard y A Hamilton. 1940. Código para concentraciones seguras de ciertas sustancias tóxicas comunes utilizadas en la industria. J Ind Hyg Toxicol 22:251.

Burdorf, A. 1995. Certificación de higienistas ocupacionales: una encuesta de los esquemas existentes en todo el mundo. Estocolmo: Asociación Internacional de Higiene Ocupacional (IOHA).

Autobús, JS y JE Gibson. 1994. Mecanismos de defensa del cuerpo ante la exposición a sustancias tóxicas. En Industrial Hygiene and Toxicology de Patty, editado por RL Harris, L Cralley y LV Cralley. Nueva York: Wiley.

Butterworth, BE y T Slaga. 1987. Nongenotoxic Mechanisms in Carcinogenesis: Banbury Report 25. Cold Spring Harbor, Nueva York: Cold Spring Harbor Laboratory.

Calabrese, EJ. 1983. Principios de extrapolación animal. Nueva York: Wiley.

Casaret, LJ. 1980. En Toxicología de Casarett y Doull: La ciencia básica de los venenos, editado por J Doull, CD Klaassen y MO Amdur. Nueva York: Macmillan.

Castleman, BI y GE Ziem. 1988. Influencia corporativa en los valores límite de umbral. Am J Ind Med 13(5).

Checkoway, Arroz H y CH. 1992. Promedios ponderados en el tiempo, picos y otros índices de exposición en epidemiología ocupacional. Am J Ind Med 21:25-33.

Comité Europeo de Normalización (CEN). 1994. Atmósferas en el lugar de trabajo: guía para la evaluación de la exposición a agentes químicos para comparación con valores límite y estrategia de medición. EN 689, elaborado por el Comité Técnico 137 del CEN. Bruselas: CEN.

Cocine, WA. 1945. Concentraciones máximas permitidas de contaminantes industriales. Ind Med 14(11):936-946.

—. 1986. Límites de exposición ocupacional: en todo el mundo. Akron, Ohio: Asociación Estadounidense de Higiene Industrial (AIHA).

Cooper, WC. 1973. Indicadores de susceptibilidad a productos químicos industriales. J Occup Med 15(4):355-359.

Maíz, M. 1985. Estrategias para muestreo de aire. Scand J Work Environ Health 11:173-180.

Dinardi, SR. 1995. Métodos de Cálculo para Higiene Industrial. Nueva York: Van Nostrand Reinhold.

Doull, J. 1994. El enfoque y la práctica de ACGIH. Aplicación Occup Environ Hyg 9(1):23-24.

Dourson, MJ y JF Stara. 1983. Historia regulatoria y soporte experimental de factores de incertidumbre (seguridad). Regul Toxicol Pharmacol 3:224-238.

Droz, PO. 1991. Cuantificación de los resultados concomitantes del monitoreo biológico y del aire. Appl Ind Hyg 6:465-474.

—. 1992. Cuantificación de la variabilidad biológica. Ann Ocupa Salud 36:295-306.

Fieldner, AC, SH Katz y SP Kenney. 1921. Máscaras de gas para gases encontrados en la lucha contra incendios. Boletín No. 248. Pittsburgh: Oficina de Minas de EE. UU.

Finklea, JA. 1988. Valores límite umbral: Una mirada oportuna. Am J Ind Med 14:211-212.

Finley, B, D Proctor y DJ Paustenbach. 1992. Una alternativa a la concentración de referencia de inhalación propuesta por la USEPA para cromo hexavalente y trivalente. Regul Toxicol Pharmacol 16:161-176.

Fiserova-Bergerova, V. 1987. Desarrollo del uso de BEI y su implementación. Appl Ind Hyg 2(2):87-92.

Flury, F y F Zernik. 1931. Schadliche Gase, Dampfe, Nebel, Rauch-und Staubarten. Berlín: Springer.

Goldberg, M, H Kromhout, P Guénel, AC Fletcher, M Gérin, DC Glass, D Heederik, T Kauppinen y A Ponti. 1993. Matrices de exposiciones laborales en la industria. Int J Epidemiol 22(6) Supl. 2:S10-S15.

Gressel, MG y JA Gideon. 1991. Una descripción general de las técnicas de evaluación de riesgos de procesos. Am Ind Hyg Assoc J 52(4):158-163.

Henderson, Y y HH Haggard. 1943. Gases nocivos y los principios de la respiración que influyen en su acción. Nueva York: Reinhold.

Hickey, JLS y PC Reist. 1979. Ajuste de los límites de exposición ocupacional para el pluriempleo, las horas extraordinarias y las exposiciones ambientales. Am Ind Hyg Assoc J 40:727-734.

Hodgson, JT y RD Jones. 1990. Mortalidad de una cohorte de mineros del estaño 1941-1986. Br J Ind Med 47:665-676.

Holzner, CL, RB Hirsh y JB Perper. 1993. Gestión de la información sobre exposición en el lugar de trabajo. Am Ind Hyg Assoc J 54(1):15-21.

Houba, R, D Heederik, G Doekes y PEM van Run. 1996. Relación de exposición y sensibilización para alérgenos alfa-amilasa en la industria de la panificación. Am J Resp Crit Care Med 154(1):130-136.

Congreso Internacional de Salud Ocupacional (ICOH). 1985. Conferencias invitadas del XXI Congreso Internacional sobre Salud Ocupacional, Dublín. Scand J Work Environ Health 11(3):199-206.

Jacobs, RJ. 1992. Estrategias para reconocer agentes biológicos en el ambiente de trabajo y posibilidades para establecer estándares para agentes biológicos. Primera Conferencia Internacional de Ciencias de la IOHA, Bruselas, Bélgica, 7-9 de diciembre de 1992.

Jahr, J. 1974. Base de dosis-respuesta para establecer un valor límite de umbral de cuarzo. Arch Environ Salud 9: 338-340.

Kane, LE y Y Alarie. 1977. Irritación sensorial al formaldehído y la acroleína durante exposiciones únicas y repetidas en molinos. Am Ind Hyg Assoc J 38:509-522.

Kobert, R. 1912. Las cantidades más pequeñas de gases industriales nocivos que son tóxicos y las cantidades que pueden tolerarse. Comp Pract Toxicol 5:45.

Kromhout, H, E Symanski y SM Rappaport. 1993. Evaluación integral de los componentes dentro y entre trabajadores de la exposición ocupacional a agentes químicos. Ann Occup Hyg 37:253-270.

LaNier, ME. 1984. Valores límite de umbral: discusión e índice de 35 años con recomendaciones (TLV: 1946-81). Cincinnati: ACGIH.

Lehmann, KB. 1886. Experimentelle Studien über den Einfluss Technisch und Hygienisch Wichtiger Gase und Dampfe auf Organismus: Ammoniak und Salzsauregas. Arco Hyg 5:1-12.

Lehmann, KB y F Flury. 1938. Toxikologie und Hygiene der Technischen Losungsmittel. Berlín: Springer.

Lehmann, KB y L Schmidt-Kehl. 1936. Die 13 Wichtigsten Chlorkohlenwasserstoffe der Fettreihe vom Standpunkt der Gewerbehygiene. Arch Hyg Bakteriol 116:131-268.

Leidel, NA, KA Busch y JR Lynch. 1977. Estrategia de muestreo de exposición ocupacional de NIOSH Manuel. Washington, DC: NIOSH.

Leung, HW y DJ Paustenbach. 1988a. Establecimiento de límites de exposición ocupacional para ácidos y bases orgánicos irritantes en función de sus constantes de disociación de equilibrio. Appl Ind Hyg 3:115-118.

—. 1988b. Aplicación de la farmocinética para derivar índices de exposición biológica a partir de valores límite umbral. Amer Ind Hyg Assoc J 49:445-450.

Leung, HW, FJ Murray y DJ Paustenbach. 1988. Un límite de exposición ocupacional propuesto para 2, 3, 7, 8 - TCDD. Amer Ind Hyg Assoc J 49:466-474.

Lundberg, P. 1994. Enfoques nacionales e internacionales para el establecimiento de estándares ocupacionales dentro de Europa. Appl Occup Environ Hyg 9:25-27.

Lynch, JR. 1995. Medición de la exposición de los trabajadores. En Industrial Hygiene and Toxicology de Patty, editado por RL Harris, L Cralley y LV Cralley. Nueva York: Wiley.

Maslansky, CJ y SP Maslansky. 1993. Instrumentación de monitoreo de aire. Nueva York: Van Nostrand Reinhold.

Menzel, DB. 1987. Modelado farmacocinético fisiológico. Environ Sci Technol 21:944-950.

Miller, FJ y JH Overton. 1989. Cuestiones críticas en la dosimetría intra e interespecies del ozono. En Atmospheric Ozone Research and Its Policy Implications, editado por T Schneider, SD Lee, GJR Wolters y LD Grant. Ámsterdam: Elsevier.

Academia Nacional de Ciencias (NAS) y Consejo Nacional de Investigación (NRC). 1983. Evaluación de Riesgos en el Gobierno Federal: Gestión del Proceso. Washington, DC: NAS.

Consejo Nacional de Seguridad (NSC). 1926. Informe Final del Comité del Sector Químico y del Caucho sobre Benceno. Washington, DC: Oficina Nacional de Suscriptores de Garantías y Accidentes.

Ness, SA. 1991. Monitoreo del aire para exposiciones tóxicas. Nueva York: Van Nostrand Reinhold.

Nielsen, GD. 1991. Mecanismos de activación del receptor irritante sensorial. CRC Rev. Toxicol 21:183-208.

Nollen, SD. 1981. La semana laboral comprimida: ¿Vale la pena el esfuerzo? Ing Ing :58-63.

Nollen, SD y VH Martin. 1978. Horarios de trabajo alternativos. Parte 3: La semana laboral comprimida. Nueva York: AMACOM.

Olishifski, JB. 1988. Aspectos administrativos y clínicos en el capítulo Higiene Industrial. En Medicina Ocupacional: Principios y Aplicaciones Prácticas, editado por C Zenz. Chicago: Anuario médico.

Panett, B, D Coggon y ED Acheson. 1985. Matriz de exposición laboral para uso en estudios basados ​​en la población en Inglaterra y Gales. Br J Ind Med 42:777-783.

Parque, C y R Snee. 1983. Evaluación cuantitativa del riesgo: estado del arte para la carcinogénesis. Fund Appl Toxicol 3:320-333.

Paty, FA. 1949. Higiene Industrial y Toxicología. vol. II. Nueva York: Wiley.

Paustenbach, DJ. 1990a. Evaluación de riesgos para la salud y la práctica de la higiene industrial. Am Ind Hyg Assoc J 51:339-351.

—. 1990b. Límites de exposición ocupacional: su papel fundamental en la medicina preventiva y la gestión de riesgos. Am Ind Hyg Assoc J 51:A332-A336.

—. 1990c. ¿Qué nos dice el proceso de evaluación de riesgos sobre los TLV? Presentado en la Conferencia Conjunta sobre Higiene Industrial de 1990. Vancouver, BC, 24 de octubre.

—. 1994. Límites de exposición ocupacional, farmacocinética y turnos de trabajo inusuales. En Higiene Industrial y Toxicología de Patty. vol. IIIa (4ª ed.). Nueva York: Wiley.

—. 1995. La práctica de la evaluación de riesgos para la salud en los Estados Unidos (1975-1995): cómo los EE. UU. y otros países pueden beneficiarse de esa experiencia. Hum Ecol Risk Assessment 1:29-79.

—. 1997. Programa de OSHA para actualizar los límites de exposición permisibles (PEL): ¿Puede la evaluación de riesgos ayudar a “hacer avanzar la pelota”? Riesgo en Perspectivas 5(1):1-6. Escuela de Salud Pública de la Universidad de Harvard.

Paustenbach, DJ y RR Langner. 1986. Establecimiento de límites de exposición empresarial: Estado del arte. Am Ind Hyg Assoc J 47:809-818.

Peto, J, H Seidman e IJ Selikoff. 1982. Mortalidad por mesotelioma en trabajadores del asbesto: implicaciones para modelos de carcinogénesis y evaluación de riesgos. Br J Cancer 45:124-134.

Comité de Prevención de la Tisis. 1916. Informe de mineros. Johannesburgo: Phthisis Prevention Committee.

Post, WK, D Heederik, H Kromhout y D Kromhout. 1994. Exposición ocupacional estimada por una matriz de exposición laboral específica de la población y una tasa de incidencia de 25 años de enfermedad pulmonar crónica no específica (CNSLD): The Zutphen Study. Eur Resp J 7:1048-1055.

Ramazinni, B. 1700. De Morbis Atrificum Diatriba [Enfermedades de los trabajadores]. Chicago: La Universidad. de Prensa de Chicago.

Rappaport, SM. 1985. Suavizado de la variabilidad de la exposición en el receptor: Implicaciones para los estándares de salud. Ann Occup Hyg 29:201-214.

—. 1991. Evaluación de exposiciones a largo plazo a sustancias tóxicas en el aire. Ann Occup Hyg 35:61-121.

—. 1995. Interpretación de los niveles de exposición a agentes químicos. En Industrial Hygiene and Toxicology de Patty, editado por RL Harris, L Cralley y LV Cralley. Nueva York: Wiley.

Rappaport, SM, E Symanski, JW Yager y LL Kupper. 1995. La relación entre el monitoreo ambiental y los marcadores biológicos en la evaluación de la exposición. Environ Health Persp 103 Supl. 3:49-53.

Renés, LE. 1978. La encuesta de higiene industrial y personal. En Industrial Hygiene and Toxicology de Patty, editado por GD Clayton y FE Clayton. Nueva York: Wiley.

Roach, SA. 1966. Una base más racional para los programas de muestreo de aire. Am Ind Hyg Assoc J 27:1-12.

—. 1977. Una base más racional para los programas de muestreo de aire. Am Ind Hyg Assoc J 20:67-84.

Roach, SA y SM Rappaport. 1990. Pero no son umbrales: un análisis crítico de la documentación de los valores límite de umbral. Am J Ind Med 17:727-753.

Rodricks, JV, A Brett y G Wrenn. 1987. Decisiones de riesgo significativas en agencias reguladoras federales. Regul Toxicol Pharmacol 7:307-320.

Rosen, G. 1993. Uso combinado de PIMEX de instrumentos de muestreo de aire y filmación de video: Experiencia y resultados durante seis años de uso. Aplicación Occup Environ Hyg 8(4).

Rylander, R. 1994. Agentes causales de enfermedades relacionadas con el polvo orgánico: Actas de un taller internacional, Suecia. Am J Ind Med 25:1-11.

Sayers, RR. 1927. Toxicología de gases y vapores. En Tablas Críticas Internacionales de Datos Numéricos, Física, Química y Toxicología. Nueva York: McGraw-Hill.

Schrenk, HH. 1947. Interpretación de los límites permisibles. Am Ind Hyg Assoc Q 8:55-60.

Seiler, JP. 1977. Umbrales aparentes y reales: Un estudio de dos mutágenos. In Progress in Genetic Toxicology, editado por D Scott, BA Bridges y FH Sobels. Nueva York: Elsevier Biomedical.

Seixas, NS, TG Robins y M Becker. 1993. Un enfoque novedoso para la caracterización de la exposición acumulativa para el estudio de enfermedades profesionales crónicas. Am J Epidemiol 137:463-471.

Smith, RG y JB Olishifski. 1988. Toxicología industrial. En Fundamentos de Higiene Industrial, editado por JB Olishifski. Chicago: Consejo Nacional de Seguridad.

Smith, TJ. 1985. Desarrollo y aplicación de un modelo para estimar los niveles de polvo alveolar e intersticial. Ann Occup Hyg 29:495-516.

—. 1987. Evaluación de la exposición para la epidemiología ocupacional. Am J Ind Med 12:249-268.

Smyth, HF. 1956. Comunicación mejorada: estándar higiénico para la inhalación diaria. Am Ind Hyg Assoc Q 17:129-185.

Stokinger, HE. 1970. Criterios y procedimientos para evaluar las respuestas tóxicas a los productos químicos industriales. En Niveles Permisibles de Sustancias Tóxicas en el Ambiente de Trabajo. Ginebra: OIT.

—. 1977. El caso de los carcinógenos TLV continúa con fuerza. Occup Health Safety 46 (marzo-abril):54-58.

—. 1981. Valores límite de umbral: Parte I. Dang Prop Ind Mater Rep (mayo-junio): 8-13.

Stott, WT, RH Reitz, AM Schumann y PG Watanabe. 1981. Eventos genéticos y no genéticos en neoplasia. Food Cosmet Toxicol 19:567-576.

Suter, AH. 1993. Ruido y conservación de la audición. En Manual de conservación de la audición. Milwaukee, Wisc: Consejo para la Acreditación en Conservación de la Audición Ocupacional.

Tait, K. 1992. Sistema experto de evaluación de la exposición en el lugar de trabajo (WORK SPERT). Am Ind Hyg Assoc J 53(2):84-98.

Tarlau, ES. 1990. Higiene industrial sin límites. Una editorial invitada. Am Ind Hyg Assoc J 51:A9-A10.

Travis, CC, SA Richter, EA Crouch, R Wilson y E Wilson. 1987. Manejo del riesgo de cáncer: Una revisión de 132 decisiones regulatorias federales. Environ Sci Technol 21(5):415-420.

Watanabe, PG, RH Reitz, AM Schumann, MJ McKenna y PJ Gehring. 1980. Implicaciones de los mecanismos de tumorigenicidad para la evaluación de riesgos. En The Scientific Basis of Toxicity Assessment, editado por M Witschi. Ámsterdam: Elsevier.

Wegman, DH, EA Eisen, SR Woskie y X Hu. 1992. Medición de la exposición para el estudio epidemiológico de los efectos agudos. Am J Ind Med 21:77-89.

Bien, CS. 1972. Estadísticas versus factores de seguridad y juicio científico en la evaluación de la seguridad para el hombre. Toxicol Appl Pharmacol 21:454-463.

Wilkinson, CF. 1988. Ser más realistas acerca de la carcinogénesis química. Environ Sci Technol 9:843-848.

Wong, O. 1987. Un estudio de mortalidad de toda la industria de trabajadores químicos expuestos ocupacionalmente al benceno. II Análisis dosis-respuesta. Br J Ind Med 44:382-395.

Comisión Mundial sobre Medio Ambiente y Desarrollo (WCED). 1987. Nuestro futuro común. Informe Brundtland. Oxford: OUP.

Organización Mundial de la Salud (OMS). 1977. Métodos utilizados para establecer los niveles permisibles de exposición ocupacional a agentes nocivos. Informe Técnico No. 601. Ginebra: Organización Internacional del Trabajo (OIT).

—. 1992a. Nuestro Planeta, Nuestra Salud. Informe de la Comisión de Salud y Medio Ambiente de la OMS. Ginebra: OMS.

—. 1992b. Higiene Ocupacional en Europa: Desarrollo de la Profesión. European Occupational Health Series No. 3. Copenhague: Oficina Regional de la OMS para Europa.

Zielhuis, RL y van der FW Kreek. 1979a. Cálculos de un factor de seguridad en el establecimiento de niveles permisibles basados ​​en la salud para la exposición ocupacional. Una propuesta. I. Int Arch Occup Environ Health 42:191-201.

Ziem, GE y BI Castleman. 1989. Valores límite umbral: Perspectiva histórica y práctica actual. J Ocupa Med 13:910-918.