Domingo, enero 16 2011 16: 18

Introducción y conceptos

Valora este artículo
(3 votos)

La toxicología mecanicista es el estudio de cómo los agentes químicos o físicos interactúan con los organismos vivos para causar toxicidad. El conocimiento del mecanismo de toxicidad de una sustancia mejora la capacidad de prevenir la toxicidad y diseñar productos químicos más deseables; constituye la base para la terapia en caso de sobreexposición y, con frecuencia, permite una mayor comprensión de los procesos biológicos fundamentales. Para efectos de este Enciclopedia se hará hincapié en los animales para predecir la toxicidad humana. Las diferentes áreas de la toxicología incluyen la toxicología mecanicista, descriptiva, regulatoria, forense y ambiental (Klaassen, Amdur y Doull 1991). Todos estos se benefician de la comprensión de los mecanismos fundamentales de la toxicidad.

¿Por qué entender los mecanismos de toxicidad?

Comprender el mecanismo por el cual una sustancia causa toxicidad mejora las diferentes áreas de la toxicología de diferentes maneras. La comprensión mecánica ayuda al regulador gubernamental a establecer límites seguros legalmente vinculantes para la exposición humana. Ayuda a los toxicólogos a recomendar cursos de acción con respecto a la limpieza o remediación de sitios contaminados y, junto con las propiedades físicas y químicas de la sustancia o mezcla, puede usarse para seleccionar el grado de equipo de protección requerido. El conocimiento mecanicista también es útil para formar la base de la terapia y el diseño de nuevos fármacos para el tratamiento de enfermedades humanas. Para el toxicólogo forense, el mecanismo de toxicidad a menudo proporciona información sobre cómo un agente químico o físico puede causar la muerte o la incapacitación.

Si se comprende el mecanismo de toxicidad, la toxicología descriptiva se vuelve útil para predecir los efectos tóxicos de sustancias químicas relacionadas. Sin embargo, es importante comprender que la falta de información sobre los mecanismos no impide que los profesionales de la salud protejan la salud humana. Se utilizan decisiones prudentes basadas en estudios con animales y experiencia humana para establecer niveles de exposición seguros. Tradicionalmente, se establecía un margen de seguridad usando el “nivel sin efectos adversos” o el “nivel más bajo de efectos adversos” de estudios con animales (usando diseños de exposición repetida) y dividiendo ese nivel por un factor de 100 para exposición ocupacional o 1,000 para otra exposición ambiental humana. El éxito de este proceso es evidente a partir de los pocos incidentes de efectos adversos para la salud atribuidos a la exposición a sustancias químicas en los trabajadores en los que en el pasado se habían establecido y respetado los límites de exposición apropiados. Además, la esperanza de vida humana sigue aumentando, al igual que la calidad de vida. En general, el uso de los datos de toxicidad ha dado lugar a un control normativo y voluntario eficaz. El conocimiento detallado de los mecanismos tóxicos mejorará la previsibilidad de los modelos de riesgo más nuevos que se están desarrollando actualmente y dará como resultado una mejora continua.

Comprender los mecanismos ambientales es complejo y supone un conocimiento de la alteración y la homeostasis (equilibrio) de los ecosistemas. Si bien no se analiza en este artículo, una mejor comprensión de los mecanismos tóxicos y sus consecuencias finales en un ecosistema ayudaría a los científicos a tomar decisiones prudentes con respecto al manejo de materiales de desecho industriales y municipales. La gestión de residuos es un área de investigación en crecimiento y seguirá siendo muy importante en el futuro.

Técnicas para estudiar los mecanismos de toxicidad

La mayoría de los estudios mecanísticos comienzan con un estudio toxicológico descriptivo en animales u observaciones clínicas en humanos. Idealmente, los estudios en animales incluyen cuidadosas observaciones clínicas y de comportamiento, un examen bioquímico cuidadoso de los elementos de la sangre y la orina en busca de signos de función adversa de los principales sistemas biológicos del cuerpo, y una evaluación post-mortem de todos los sistemas de órganos mediante un examen microscópico para verificar lesiones (consulte las directrices de ensayo de la OCDE; las directivas de la CE sobre evaluación química; las normas de ensayo de la EPA de EE. UU.; las reglamentaciones sobre productos químicos de Japón). Esto es análogo a un examen físico humano completo que se llevaría a cabo en un hospital durante un período de dos a tres días, excepto por el examen post-mortem.

Comprender los mecanismos de toxicidad es el arte y la ciencia de la observación, la creatividad en la selección de técnicas para probar varias hipótesis y la integración innovadora de signos y síntomas en una relación causal. Los estudios mecanísticos comienzan con la exposición, siguen la distribución relacionada con el tiempo y el destino en el cuerpo (farmacocinética) y miden el efecto tóxico resultante en algún nivel del sistema y en algún nivel de dosis. Diferentes sustancias pueden actuar en diferentes niveles del sistema biológico causando toxicidad.

Exposición

La vía de exposición en los estudios mecanísticos suele ser la misma que para la exposición humana. La ruta es importante porque puede haber efectos que ocurren localmente en el sitio de exposición además de efectos sistémicos después de que la sustancia química haya sido absorbida en la sangre y distribuida por todo el cuerpo. Un ejemplo simple pero convincente de un efecto local sería la irritación y eventual corrosión de la piel después de la aplicación de soluciones alcalinas o ácidas fuertes diseñadas para limpiar superficies duras. De manera similar, puede ocurrir irritación y muerte celular en las células que recubren la nariz y/o los pulmones después de la exposición a vapores o gases irritantes como óxidos de nitrógeno u ozono. (Ambos son componentes de la contaminación del aire o smog). Después de la absorción de un químico en la sangre a través de la piel, los pulmones o el tracto gastrointestinal, la concentración en cualquier órgano o tejido está controlada por muchos factores que determinan la farmacocinética del químico en el cuerpo. El cuerpo tiene la capacidad de activar y desintoxicar varios químicos como se indica a continuación.

Papel de la farmacocinética en la toxicidad

La farmacocinética describe las relaciones de tiempo para la absorción, distribución, metabolismo (alteraciones bioquímicas en el cuerpo) y eliminación o excreción química del cuerpo. En relación con los mecanismos de toxicidad, estas variables farmacocinéticas pueden ser muy importantes y, en algunos casos, determinan si se producirá o no toxicidad. Por ejemplo, si un material no se absorbe en una cantidad suficiente, no se producirá toxicidad sistémica (dentro del cuerpo). Por el contrario, una sustancia química altamente reactiva que se desintoxica rápidamente (segundos o minutos) por enzimas digestivas o hepáticas puede no tener tiempo para causar toxicidad. Algunas sustancias y mezclas policíclicas halogenadas, así como ciertos metales como el plomo, no causarían una toxicidad significativa si la excreción fuera rápida; pero la acumulación a niveles suficientemente altos determina su toxicidad ya que la excreción no es rápida (a veces se mide en años). Afortunadamente, la mayoría de los productos químicos no tienen una retención tan larga en el cuerpo. La acumulación de un material inocuo aún no induciría toxicidad. La tasa de eliminación del cuerpo y la desintoxicación se denomina con frecuencia la vida media de la sustancia química, que es el tiempo para que el 50 % de la sustancia química se excrete o se altere a una forma no tóxica.

Sin embargo, si una sustancia química se acumula en una célula u órgano en particular, eso puede indicar una razón para examinar más a fondo su posible toxicidad en ese órgano. Más recientemente, se han desarrollado modelos matemáticos para extrapolar variables farmacocinéticas de animales a humanos. Estos modelos farmacocinéticos son extremadamente útiles para generar hipótesis y probar si el animal de experimentación puede ser una buena representación para los humanos. Se han escrito numerosos capítulos y textos sobre este tema (Gehring et al. 1976; Reitz et al. 1987; Nolan et al. 1995). En la figura 1 se muestra un ejemplo simplificado de un modelo fisiológico.

Figura 1. Un modelo farmacocinético simplificado

TOX210F1

Los diferentes niveles y sistemas pueden verse afectados negativamente

La toxicidad se puede describir en diferentes niveles biológicos. La lesión se puede evaluar en la persona (o animal) en su totalidad, el sistema de órganos, la célula o la molécula. Los sistemas de órganos incluyen los sistemas inmunitario, respiratorio, cardiovascular, renal, endocrino, digestivo, musculoesquelético, sanguíneo, reproductivo y nervioso central. Algunos órganos clave incluyen el hígado, los riñones, los pulmones, el cerebro, la piel, los ojos, el corazón, los testículos o los ovarios, y otros órganos importantes. A nivel celular/bioquímico, los efectos adversos incluyen la interferencia con la función normal de las proteínas, la función de los receptores endocrinos, la inhibición de la energía metabólica o la inhibición o inducción de enzimas xenobióticas (sustancias extrañas). Los efectos adversos a nivel molecular incluyen la alteración de la función normal de la transcripción de ADN-ARN, de la unión a receptores citoplasmáticos y nucleares específicos, y de genes o productos génicos. En última instancia, es probable que la disfunción en un sistema orgánico principal sea causada por una alteración molecular en una célula diana particular dentro de ese órgano. Sin embargo, no siempre es posible rastrear un mecanismo hasta un origen molecular de causalidad, ni tampoco es necesario. La intervención y la terapia se pueden diseñar sin una comprensión completa del objetivo molecular. Sin embargo, el conocimiento sobre el mecanismo específico de toxicidad aumenta el valor predictivo y la precisión de la extrapolación a otras sustancias químicas. La figura 2 es una representación esquemática de los diversos niveles en los que se puede detectar la interferencia de los procesos fisiológicos normales. Las flechas indican que las consecuencias para un individuo pueden determinarse de arriba hacia abajo (exposición, farmacocinética a toxicidad de sistema/órgano) o de abajo hacia arriba (cambio molecular, efecto celular/bioquímico a toxicidad de sistema/órgano).

Figura 2. Representación de mecanismos de toxicidad

TOX210F2

Ejemplos de mecanismos de toxicidad

Los mecanismos de toxicidad pueden ser sencillos o muy complejos. Con frecuencia, existe una diferencia entre el tipo de toxicidad, el mecanismo de toxicidad y el nivel de efecto, relacionado con si los efectos adversos se deben a una sola dosis aguda alta (como un envenenamiento accidental) o a una dosis más baja. exposición repetida (por exposición ocupacional o ambiental). Clásicamente, para fines de prueba, se administra una dosis alta única aguda mediante intubación directa en el estómago de un roedor o exposición a una atmósfera de gas o vapor durante dos a cuatro horas, lo que mejor se asemeje a la exposición humana. Los animales se observan durante un período de dos semanas después de la exposición y luego se examinan los principales órganos externos e internos en busca de lesiones. Las pruebas de dosis repetida varían de meses a años. Para las especies de roedores, dos años se considera un estudio crónico (de por vida) suficiente para evaluar la toxicidad y la carcinogenicidad, mientras que para los primates no humanos, dos años se consideraría un estudio subcrónico (menos de la vida) para evaluar la toxicidad de dosis repetidas. Después de la exposición, se realiza un examen completo de todos los tejidos, órganos y fluidos para determinar cualquier efecto adverso.

Mecanismos de toxicidad aguda

Los siguientes ejemplos son específicos de los efectos agudos de dosis altas que pueden provocar la muerte o una incapacidad grave. Sin embargo, en algunos casos, la intervención tendrá efectos transitorios y totalmente reversibles. La dosis o la gravedad de la exposición determinarán el resultado.

Asfixiantes simples. El mecanismo de toxicidad de los gases inertes y algunas otras sustancias no reactivas es la falta de oxígeno (anoxia). Estas sustancias químicas, que provocan la privación de oxígeno en el sistema nervioso central (SNC), se denominan asfixiantes simples. Si una persona ingresa a un espacio cerrado que contiene nitrógeno sin suficiente oxígeno, se produce un agotamiento inmediato del oxígeno en el cerebro y conduce a la pérdida del conocimiento y, finalmente, a la muerte si no se retira rápidamente a la persona. En casos extremos (casi cero oxígeno) la pérdida del conocimiento puede ocurrir en unos pocos segundos. El rescate depende de la rápida remoción a un ambiente oxigenado. La supervivencia con daño cerebral irreversible puede ocurrir por un rescate retrasado, debido a la muerte de las neuronas, que no pueden regenerarse.

asfixiantes químicos. El monóxido de carbono (CO) compite con el oxígeno para unirse a la hemoglobina (en los glóbulos rojos) y, por lo tanto, priva a los tejidos de oxígeno para el metabolismo energético; la muerte celular puede resultar. La intervención incluye la eliminación de la fuente de CO y el tratamiento con oxígeno. El uso directo del oxígeno se basa en la acción tóxica del CO. Otro potente asfixiante químico es el cianuro. El ion cianuro interfiere con el metabolismo celular y la utilización de oxígeno para obtener energía. El tratamiento con nitrito de sodio provoca un cambio en la hemoglobina de los glóbulos rojos a metahemoglobina. La metahemoglobina tiene una mayor afinidad de unión con el ion cianuro que el objetivo celular del cianuro. En consecuencia, la metahemoglobina se une al cianuro y lo mantiene alejado de las células diana. Esto forma la base para la terapia con antídotos.

Depresores del sistema nervioso central (SNC). La toxicidad aguda se caracteriza por la sedación o pérdida del conocimiento de una serie de materiales como disolventes que no son reactivos o que se transforman en productos intermedios reactivos. Se plantea la hipótesis de que la sedación/anestesia se debe a una interacción del disolvente con las membranas de las células del SNC, lo que reduce su capacidad para transmitir señales eléctricas y químicas. Si bien la sedación puede parecer una forma leve de toxicidad y fue la base para el desarrollo de los primeros anestésicos, "la dosis aún produce el veneno". Si se administra una dosis suficiente por ingestión o inhalación, el animal puede morir por paro respiratorio. Si no se produce la muerte anestésica, este tipo de toxicidad suele ser rápidamente reversible cuando el sujeto se retira del medio ambiente o la sustancia química se redistribuye o elimina del cuerpo.

Efectos de la piel. Los efectos adversos para la piel pueden ir desde la irritación hasta la corrosión, según la sustancia encontrada. Los ácidos fuertes y las soluciones alcalinas son incompatibles con los tejidos vivos y son corrosivos, provocando quemaduras químicas y posibles cicatrices. La cicatrización se debe a la muerte de las células dérmicas profundas de la piel responsables de la regeneración. Las concentraciones más bajas pueden causar irritación de la primera capa de la piel.

Otro mecanismo tóxico específico de la piel es el de la sensibilización química. Por ejemplo, la sensibilización se produce cuando el 2,4-dinitroclorobenceno se une a las proteínas naturales de la piel y el sistema inmunitario reconoce el complejo unido a proteínas alterado como un material extraño. Al responder a este material extraño, el sistema inmunitario activa células especiales para eliminar la sustancia extraña mediante la liberación de mediadores (citocinas) que provocan una erupción o dermatitis (consulte “Inmunotoxicología”). Esta es la misma reacción del sistema inmunitario cuando se produce la exposición a la hiedra venenosa. La sensibilización inmunitaria es muy específica de la sustancia química en particular y requiere al menos dos exposiciones antes de que se produzca una respuesta. La primera exposición sensibiliza (prepara las células para que reconozcan la sustancia química) y las exposiciones posteriores desencadenan la respuesta del sistema inmunitario. La eliminación del contacto y la terapia sintomática con cremas antiinflamatorias que contienen esteroides suelen ser eficaces en el tratamiento de personas sensibilizadas. En casos graves o refractarios, se utiliza un inmunosupresor de acción sistémica como la prednisona junto con el tratamiento tópico.

sensibilización pulmonar. El diisocianato de tolueno (TDI) provoca una respuesta de sensibilización inmunitaria, pero el sitio objetivo son los pulmones. La sobreexposición a TDI en personas susceptibles provoca edema pulmonar (acumulación de líquido), constricción bronquial y dificultad para respirar. Esta es una condición grave y requiere retirar al individuo de posibles exposiciones posteriores. El tratamiento es principalmente sintomático. La sensibilización de la piel y los pulmones sigue una respuesta a la dosis. Superar el nivel establecido para la exposición ocupacional puede causar efectos adversos.

Efectos oculares. Las lesiones oculares varían desde el enrojecimiento de la capa exterior (enrojecimiento de la piscina) hasta la formación de cataratas en la córnea y daños en el iris (la parte coloreada del ojo). Las pruebas de irritación ocular se realizan cuando se cree que no se producirán lesiones graves. Muchos de los mecanismos que causan la corrosión de la piel también pueden causar lesiones en los ojos. Los materiales corrosivos para la piel, como ácidos fuertes (pH inferior a 2) y álcalis (pH superior a 11.5), no se prueban en los ojos de los animales porque la mayoría causará corrosión y ceguera debido a un mecanismo similar al que causa la corrosión de la piel. . Además, los agentes tensioactivos como los detergentes y los tensioactivos pueden causar lesiones oculares que van desde la irritación hasta la corrosión. Un grupo de materiales que requiere precaución son los tensioactivos cargados positivamente (catiónicos), que pueden causar quemaduras, opacidad permanente de la córnea y vascularización (formación de vasos sanguíneos). Otro químico, el dinitrofenol, tiene un efecto específico en la formación de cataratas. Esto parece estar relacionado con la concentración de esta sustancia química en el ojo, que es un ejemplo de especificidad de distribución farmacocinética.

Si bien la lista anterior está lejos de ser exhaustiva, está diseñada para brindarle al lector una apreciación de varios mecanismos de toxicidad aguda.

Mecanismos de toxicidad crónica y subcrónica

Cuando se administran en una sola dosis alta, algunas sustancias químicas no tienen el mismo mecanismo de toxicidad que cuando se administran repetidamente en dosis más bajas pero aún tóxicas. Cuando se administra una sola dosis alta, siempre existe la posibilidad de exceder la capacidad de la persona para desintoxicarse o excretar la sustancia química, y esto puede conducir a una respuesta tóxica diferente que cuando se administran dosis repetitivas más bajas. El alcohol es un buen ejemplo. Las dosis altas de alcohol provocan efectos primarios en el sistema nervioso central, mientras que las dosis repetitivas más bajas provocan lesiones hepáticas.

Inhibición de la anticolinesterasa. La mayoría de los pesticidas organofosforados, por ejemplo, tienen poca toxicidad para los mamíferos hasta que se activan metabólicamente, principalmente en el hígado. El principal mecanismo de acción de los organofosforados es la inhibición de la acetilcolinesterasa (AChE) en el cerebro y el sistema nervioso periférico. AChE es la enzima normal que termina la estimulación del neurotransmisor acetilcolina. La inhibición leve de AChE durante un período prolongado no se ha asociado con efectos adversos. A altos niveles de exposición, la incapacidad para terminar esta estimulación neuronal da como resultado una sobreestimulación del sistema nervioso colinérgico. La sobreestimulación colinérgica finalmente da como resultado una serie de síntomas, incluido el paro respiratorio, seguido de la muerte si no se trata. El tratamiento primario es la administración de atropina, que bloquea los efectos de la acetilcolina, y la administración de cloruro de pralidoxima, que reactiva la AChE inhibida. Por lo tanto, tanto la causa como el tratamiento de la toxicidad por organofosforados se abordan mediante la comprensión de la base bioquímica de la toxicidad.

Activación metabólica. Muchos productos químicos, incluidos el tetracloruro de carbono, el cloroformo, el acetilaminofluoreno, las nitrosaminas y el paraquat, se activan metabólicamente a radicales libres u otros intermediarios reactivos que inhiben e interfieren con la función celular normal. A altos niveles de exposición, esto da como resultado la muerte celular (ver “Daño celular y muerte celular”). Si bien se desconocen las interacciones específicas y los objetivos celulares, los sistemas de órganos que tienen la capacidad de activar estos químicos, como el hígado, los riñones y los pulmones, son todos objetivos potenciales de lesiones. Específicamente, las células particulares dentro de un órgano tienen una mayor o menor capacidad para activar o desintoxicar estos intermediarios, y esta capacidad determina la susceptibilidad intracelular dentro de un órgano. El metabolismo es una de las razones por las que la comprensión de la farmacocinética, que describe estos tipos de transformaciones y la distribución y eliminación de estos intermediarios, es importante para reconocer el mecanismo de acción de estas sustancias químicas.

Mecanismos del cáncer. El cáncer es una multiplicidad de enfermedades, y aunque la comprensión de ciertos tipos de cáncer está aumentando rápidamente debido a las numerosas técnicas de biología molecular que se han desarrollado desde 1980, aún queda mucho por aprender. Sin embargo, está claro que el desarrollo del cáncer es un proceso de varias etapas, y los genes críticos son clave para diferentes tipos de cáncer. Las alteraciones en el ADN (mutaciones somáticas) en varios de estos genes críticos pueden causar una mayor susceptibilidad o lesiones cancerosas (ver “Toxicología genética”). La exposición a químicos naturales (en alimentos cocidos como carne de res y pescado) o químicos sintéticos (como bencidina, utilizada como colorante) o agentes físicos (luz ultravioleta del sol, radón del suelo, radiación gamma de procedimientos médicos o actividad industrial) son todos contribuyentes a las mutaciones genéticas somáticas. Sin embargo, existen sustancias naturales y sintéticas (como los antioxidantes) y procesos de reparación del ADN que son protectores y mantienen la homeostasis. Está claro que la genética es un factor importante en el cáncer, ya que los síndromes de enfermedades genéticas como el xeroderma pigmentoso, donde hay una falta de reparación normal del ADN, aumentan drásticamente la susceptibilidad al cáncer de piel por la exposición a la luz ultravioleta del sol.

Mecanismos reproductivos. Similar al cáncer, se conocen muchos mecanismos de toxicidad reproductiva y/o de desarrollo, pero queda mucho por aprender. Se sabe que ciertos virus (como la rubéola), infecciones bacterianas y medicamentos (como la talidomida y la vitamina A) afectarán negativamente el desarrollo. Recientemente, el trabajo de Khera (1991), revisado por Carney (1994), muestra buena evidencia de que los efectos anormales en el desarrollo en pruebas con animales con etilenglicol son atribuibles a metabolitos metabólicos ácidos maternos. Esto ocurre cuando el etilenglicol se metaboliza a metabolitos ácidos, incluidos los ácidos glicólico y oxálico. Los efectos posteriores sobre la placenta y el feto parecen deberse a este proceso de intoxicación metabólica.

Conclusión

La intención de este artículo es dar una perspectiva sobre varios mecanismos conocidos de toxicidad y la necesidad de estudios futuros. Es importante entender que el conocimiento mecanicista no es absolutamente necesario para proteger la salud humana o ambiental. Este conocimiento mejorará la capacidad del profesional para predecir y manejar mejor la toxicidad. Las técnicas reales utilizadas para dilucidar cualquier mecanismo en particular dependen del conocimiento colectivo de los científicos y del pensamiento de quienes toman decisiones sobre la salud humana.

 

Atrás

Leer 10678 veces Ultima modificacion el Martes, julio 26 2022 19: 33
Más en esta categoría: Lesión celular y muerte celular »

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Referencias de toxicología

Andersen, KE y HI Maibach. 1985. Pruebas predictivas de alergia de contacto en conejillos de indias. Cap. 14 en Problemas Actuales en Dermatología. Basilea: Karger.

Ashby, J y RW Tennant. 1991. Relaciones definitivas entre estructura química, carcinogenicidad y mutagenicidad para 301 sustancias químicas probadas por el NTP de EE. UU. Resolución mutacional 257: 229-306.

Barlow, S y F Sullivan. mil novecientos ochenta y dos. Peligros reproductivos de los productos químicos industriales. Londres: Prensa académica.

Barret, JC. 1993a. Mecanismos de acción de carcinógenos humanos conocidos. En Mecanismos de carcinogénesis en la identificación de riesgos, editado por H Vainio, PN Magee, DB McGregor y AJ McMichael. Lyon: Agencia Internacional para la Investigación del Cáncer (IARC).

—. 1993b. Mecanismos de carcinogénesis en varios pasos y evaluación del riesgo carcinógeno. Medio Ambiente Salud Persp 100: 9-20.

Bernstein, ME. 1984. Agentes que afectan el sistema reproductivo masculino: Efectos de la estructura sobre la actividad. Drug Metab Rev 15: 941-996.

Beutler, E. 1992. La biología molecular de las variantes de G6PD y otros defectos de glóbulos rojos. Annu Rev Med 43: 47-59.

Bloom, AD. 1981. Directrices para estudios reproductivos en poblaciones humanas expuestas. White Plains, Nueva York: Fundación March of Dimes.

Borghoff, S, B Short y J Swenberg. 1990. Mecanismos bioquímicos y patobiología de la nefropatía a-2-globulina. Annu Rev Pharmacol Toxicol 30: 349.

Burchell, B, DW Nebert, DR Nelson, KW Bock, T Iyanagi, PLM Jansen, D Lancet, GJ Mulder, JR Chowdhury, G Siest, TR Tephly y PI Mackenzie. 1991. La superfamilia de genes UPD-glucuronosiltransferasa: nomenclatura sugerida basada en la divergencia evolutiva. Biol de células de ADN 10: 487-494.

Burleson, G, A Munson y J Dean. 1995. Métodos modernos en inmunotoxicología. Nueva York: Wiley.

Capecchi, M. 1994. Reemplazo de genes dirigidos. Sci Am 270: 52-59.

Carney, EW. 1994. Una perspectiva integrada sobre la toxicidad del etilenglicol para el desarrollo. Rep Toxicol 8: 99-113.

Dean, JH, MI Lustre, AE Munson y yo Kimber. 1994. Inmunotoxicología e Inmunofarmacología. Nueva York: Raven Press.

Escotes, J. 1986. Inmunotoxicología de Fármacos y Químicos. Ámsterdam: Elsevier.

Devary, Y, C Rosette, JA DiDonato y M Karin. 1993. Activación de NFkB por luz ultravioleta no dependiente de una señal nuclear. Ciencia: 261: 1442-1445.

Dixon, RL. 1985. Toxicología reproductiva. Nueva York: Raven Press.

Duffus, JH. 1993. Glosario para químicos de términos usados ​​en toxicología. Química de aplicación pura 65: 2003-2122.

Elsenhans, B, K Schuemann y W Forth. 1991. Metales tóxicos: Interacciones con metales esenciales. En Nutrición, Toxicidad y Cáncer, editado por IR Rowland. Boca-Ratón: CRC Press.

Agencia de Protección Ambiental (EPA). 1992. Directrices para la evaluación de la exposición. registro federal 57: 22888-22938.

—. 1993. Principios de evaluación del riesgo de neurotoxicidad. registro federal 58: 41556-41598.

—. 1994. Directrices para la Evaluación de la Toxicidad Reproductiva. Washington, DC: EPA de EE. UU.: Oficina de Investigación y Desarrollo.

Fergusson, JE. 1990. Los elementos pesados. Cap. 15 en Química, Impacto Ambiental y Efectos sobre la Salud. Oxford: Pérgamo.

Gehring, PJ, PG Watanabe y GE Blau. 1976. Estudios farmacocinéticos en la evaluación del peligro toxicológico y ambiental de los productos químicos. Evaluación segura de nuevos conceptos 1 (Parte 1, Capítulo 8): 195-270.

Goldstein, JA y SMF de Morais. 1994. Bioquímica y biología molecular del ser humano. CYP2C subfamilia. Farmacogenética 4: 285-299.

González, FJ. 1992. Citocromos humanos P450: Problemas y perspectivas. Tendencias Pharmacol Sci 13: 346-352.

González, FJ, CL Crespi y HV Gelboin. 1991. Citocromo P450 humano expresado por ADNc: una nueva era en toxicología molecular y evaluación de riesgos humanos. Resolución mutacional 247: 113-127.

González, FJ y DW Nebert. 1990. Evolución de la superfamilia de genes P450: "guerra" animal-planta, impulso molecular y diferencias genéticas humanas en la oxidación de fármacos. Tendencias Genet 6: 182-186.

Subvención, DM. 1993. Genética molecular de las N-acetiltransferasas. Farmacogenética 3: 45-50.

Gray, LE, J Ostby, R Sigmon, J Ferrel, R Linder, R Cooper, J Goldman y J Laskey. 1988. El desarrollo de un protocolo para evaluar los efectos reproductivos de los tóxicos en la rata. Rep Toxicol 2: 281-287.

Guengerich, FP. 1989. Polimorfismo del citocromo P450 en humanos. Tendencias Pharmacol Sci 10: 107-109.

—. 1993. Enzimas del citocromo P450. Soy ciencia 81: 440-447.

Hansch, C y A Leo. 1979. Constantes de Sustituyentes para Análisis de Correlación en Química y Biología. Nueva York: Wiley.

Hansch, C y L Zhang. 1993. Relaciones cuantitativas estructura-actividad del citocromo P450. Drug Metab Rev 25: 1-48.

Hayes A.W. 1988. Principios y Métodos de Toxicología. 2ª ed. Nueva York: Raven Press.

Heindell, JJ y RE Chapin. 1993. Métodos en Toxicología: Toxicología Reproductiva Masculina y Femenina. vol. 1 y 2. San Diego, California: Academic Press.

Agencia Internacional para la Investigación del Cáncer (IARC). 1992. Radiación solar y ultravioleta. Lyon: IARC.

—. 1993. Exposición ocupacional de peluqueros y barberos y uso personal de colorantes para el cabello: algunos tintes para el cabello, colorantes cosméticos, colorantes industriales y aminas aromáticas. Lyon: IARC.

—. 1994a. Preámbulo. Lyon: IARC.

—. 1994b. Algunos productos químicos industriales. Lyon: IARC.

Comisión Internacional de Protección Radiológica (ICRP). 1965. Principios de Vigilancia Ambiental Relacionados con el Manejo de Materiales Radiactivos. Informe del Comité IV de la Comisión Internacional de Protección Radiológica. Oxford: Pérgamo.

Programa Internacional de Seguridad Química (IPCS). 1991. Principios y métodos para la evaluación de la nefrotoxicidad asociada con la exposición a sustancias químicas, EHC 119. Ginebra: OMS.

—. 1996. Principios y métodos para evaluar Inmunotoxicidad directa asociada con la exposición a sustancias químicas, EHC 180. Ginebra: OMS.

Johanson, G y PH Naslund. 1988. Programación de hoja de cálculo: un nuevo enfoque en el modelado basado en la fisiología de la toxicocinética de solventes. Letras de toxicol 41: 115-127.

Johnson, BL. 1978. Prevención de Enfermedades Neurotóxicas en Poblaciones Trabajadoras. Nueva York: Wiley.

Jones, JC, JM Ward, U Mohr y RD Hunt. 1990. Sistema Hemopoyético, Monografía ILSI, Berlín: Springer Verlag.

Kalow, W. 1962. Farmacogenética: Herencia y la Respuesta a las Drogas. Filadelfia: WB Saunders.

—. 1992. Farmacogenética del Metabolismo de Fármacos. Nueva York: Pérgamo.

Kammüller, ME, N Bloksma y W Seinen. 1989. Autoinmunidad y Toxicología. Desregulación inmune inducida por drogas y productos químicos. Ámsterdam: Elsevier Sciences.

Kawajiri, K, J Watanabe y SI Hayashi. 1994. Polimorfismo genético de P450 y cáncer humano. En Citocromo P450: Bioquímica, Biofísica y Biología Molecular, editado por MC Lechner. París: John Libbey Eurotext.

Kehrer, JP. 1993. Los radicales libres como mediadores de lesiones y enfermedades tisulares. Toxicol Rev Crítico 23: 21-48.

Kellerman, G, CR Shaw y M Luyten-Kellerman. 1973. Inducibilidad de aril hidrocarburo hidroxilasa y carcinoma broncogénico. Nueva Engl J Med 289: 934-937.

Khera, KS. 1991. Alteraciones químicamente inducidas, homeostasis materna e histología del concepto: su significado etiológico en anomalías fetales de rata. Teratología 44: 259-297.

Kimmel, CA, GL Kimmel y V Frankos. 1986. Taller del Grupo de enlace regulatorio interinstitucional sobre evaluación del riesgo de toxicidad para la reproducción. Medio Ambiente Salud Persp 66: 193-221.

Klaassen, CD, MO Amdur y J Doull (eds.). 1991. Toxicología de Casarett y Doull. Nueva York: Pergamon Press.

Kramer, HJ, EJHM Jansen, MJ Zeilmaker, HJ van Kranen y ED Kroese. 1995. Métodos cuantitativos en toxicología para la evaluación de la respuesta a la dosis humana. RIVM-informe nr. 659101004.

Kress, S, C Sutter, PT Strickland, H Mukhtar, J Schweizer y M Schwarz. 1992. Patrón mutacional específico de carcinógeno en el gen p53 en carcinomas de células escamosas de piel de ratón inducidos por radiación ultravioleta B. Res Cáncer 52: 6400-6403.

Krewski, D, D Gaylor, M Szyazkowicz. 1991. Un enfoque sin modelo para la extrapolación de dosis bajas. Env H Pers. 90: 270-285.

Lawton, MP, T Cresteil, AA Elfarra, E Hodgson, J Ozols, RM Philpot, AE Rettie, DE Williams, JR Cashman, CT Dolphin, RN Hines, T Kimura, IR Phillips, LL Poulsen, EA Shephare y DM Ziegler. 1994. Una nomenclatura para la familia de genes de monooxigenasa que contiene flavina de mamíferos basada en identidades de secuencias de aminoácidos. Biochis de arco biochem 308: 254-257.

Lewalter, J y U Korallus. 1985. Conjugados de proteína sanguínea y acetilación de aminas aromáticas. Nuevos hallazgos en el monitoreo biológico. Int Arch Occup Salud Ambiental 56: 179-196.

Majno, G y I Joris. 1995. Apoptosis, oncosis y necrosis: una descripción general de la muerte celular. Soy J Pathol 146: 3-15.

Mattison, DR y PJ Thomford. 1989. El mecanismo de acción de los tóxicos reproductivos. Toxicol Patol 17: 364-376.

Meyer, UA. 1994. Polimorfismos del citocromo P450 CYP2D6 como factor de riesgo en la carcinogénesis. En Citocromo P450: Bioquímica, Biofísica y Biología Molecular, editado por MC Lechner. París: John Libbey Eurotext.

Moller, H, H Vainio y E Heseltine. 1994. Estimación cuantitativa y predicción de riesgo en la Agencia Internacional para la Investigación del Cáncer. Cáncer Res 54:3625-3627.

Moolenaar, RJ. 1994. Supuestos predeterminados en la evaluación del riesgo de carcinógenos utilizados por las agencias reguladoras. Regul Toxicol Pharmacol 20: 135-141.

Moser, VC. 1990. Enfoques de detección de la neurotoxicidad: una batería de observación funcional. J Am Coll Toxicol 1: 85-93.

Consejo Nacional de Investigación (NRC). 1983. Evaluación de Riesgos en el Gobierno Federal: Gestión del Proceso. Washington, DC: Prensa de NAS.

—. 1989. Marcadores Biológicos en Toxicidad Reproductiva. Washington, DC: Prensa de NAS.

—. 1992. Marcadores biológicos en inmunotoxicología. Subcomité de Toxicología. Washington, DC: Prensa de NAS.

Nebert, DW. 1988. Genes que codifican enzimas que metabolizan fármacos: posible papel en las enfermedades humanas. En Variación fenotípica en poblaciones, editado por AD Woodhead, MA Bender y RC Leonard. Nueva York: Plenum Publishing.

—. 1994. Enzimas metabolizadoras de fármacos en la transcripción modulada por ligandos. Biochem Pharmacol 47: 25-37.

Nebert, DW y WW Weber. 1990. Farmacogenética. En Principios de Acción de los Medicamentos. La base de la farmacología, editado por WB Pratt y PW Taylor. Nueva York: Churchill-Livingstone.

Nebert, DW y DR Nelson. 1991. Nomenclatura del gen P450 basada en la evolución. En Métodos de Enzimología. Citocromo P450, editado por MR Waterman y EF Johnson. Orlando, Florida: Prensa académica.

Nebert, DW y RA McKinnon. 1994. Citocromo P450: Evolución y diversidad funcional. Prog Liv Dis 12: 63-97.

Nebert, DW, M Adesnik, MJ Coon, RW Estabrook, FJ Gonzalez, FP Guengerich, IC Gunsalus, EF Johnson, B Kemper, W Levin, IR Phillips, R Sato y MR Waterman. 1987. La superfamilia de genes P450: nomenclatura recomendada. Biol de células de ADN 6: 1-11.

Nebert, DW, DR Nelson, MJ Coon, RW Estabrook, R Feyereisen, Y Fujii-Kuriyama, FJ Gonzalez, FP Guengerich, IC Gunsalas, EF Johnson, JC Loper, R Sato, MR Waterman y DJ Waxman. 1991. La superfamilia P450: Actualización sobre nuevas secuencias, mapeo de genes y nomenclatura recomendada. Biol de células de ADN 10: 1-14.

Nebert, DW, DD Petersen y A Puga. 1991. Polimorfismo y cáncer del locus AH humano: Inducibilidad de CYP1A1 y otros genes por productos de combustión y dioxina. Farmacogenética 1: 68-78.

Nebert, DW, A Puga y V Vasiliou. 1993. Papel del receptor Ah y la batería de genes [Ah] inducibles por dioxina en la toxicidad, el cáncer y la transducción de señales. Ann NY Acad Sci 685: 624-640.

Nelson, DR, T Kamataki, DJ Waxman, FP Guengerich, RW Estabrook, R Feyereisen, FJ Gonzalez, MJ Coon, IC Gunsalus, O Gotoh, DW Nebert y K Okuda. 1993. La superfamilia P450: actualización de nuevas secuencias, mapeo de genes, números de acceso, primeros nombres triviales de enzimas y nomenclatura. Biol de células de ADN 12: 1-51.

Nicholson, DW, A All, NA Thornberry, JP Vaillancourt, CK Ding, M Gallant, Y Gareau, PR Griffin, M Labelle, YA Lazebnik, NA Munday, SM Raju, ME Smulson, TT Yamin, VL Yu y DK Miller. 1995. Identificación e inhibición de la proteasa ICE/CED-3 necesaria para la apoptosis de los mamíferos. Naturaleza 376: 37-43.

Nolan, RJ, WT Stott y PG Watanabe. 1995. Datos toxicológicos en evaluación de seguridad química. Cap. 2 en Higiene Industrial y Toxicología de Patty, editado por LJ Cralley, LV Cralley y JS Bus. Nueva York: John Wiley & Sons.

Nordberg, GF. 1976. Efecto y relaciones dosis-respuesta de metales tóxicos. Ámsterdam: Elsevier.

Oficina de Evaluación de Tecnología (OTA). 1985. Riesgos reproductivos en el lugar de trabajo. Documento No. OTA-BA-266. Washington, DC: Imprenta del Gobierno.

—. 1990. Neurotoxicidad: identificación y control de venenos del sistema nervioso. Documento No. OTA-BA-436. Washington, DC: Imprenta del Gobierno.

Organización para la Cooperación y el Desarrollo Económicos (OCDE). 1993. Proyecto conjunto US EPA/EC sobre la evaluación de las relaciones estructura-actividad (cuantitativas). París: OCDE.

Parque, CN y NC Hawkins. 1993. Revisión de tecnología; una descripción general de la evaluación del riesgo de cáncer. Métodos de toxicol 3: 63-86.

Pease, W, J Vandenberg y WK Hooper. 1991. Comparación de enfoques alternativos para establecer niveles regulatorios para tóxicos reproductivos: DBCP como estudio de caso. Medio Ambiente Salud Persp 91: 141-155.

pipi ƒ -Maji ƒ , D, S Telišman y S Kezi ƒ . 6.5. Estudio in vitro sobre la interacción del plomo y el alcohol y la inhibición de la deshidratasa del ácido delta-aminolevulínico eritrocitario en el hombre. Scand J Trabajo Medio Ambiente Salud 10: 235-238.

Reitz, RH, RJ Nolan y AM Schumann. 1987. Desarrollo de modelos farmacocinéticos de múltiples especies y múltiples vías para el cloruro de metileno y el 1,1,1-tricloroetano. En Farmacocinética y Evaluación de Riesgos, Agua Potable y Salud. Washington, DC: Prensa de la Academia Nacional.

Roitt, I, J Brostoff y D Male. 1989. Inmunología. Londres: Gower Medical Publishing.

Sato, A. 1991. El efecto de los factores ambientales en el comportamiento farmacocinético de los vapores de solventes orgánicos. Ann Ocupar Higiene 35: 525-541.

Silbergeld, EK. 1990. Desarrollo de métodos formales de evaluación de riesgos para neurotóxicos: una evaluación del estado del arte. En Avances en Toxicología Neuroconductual, editado por BL Johnson, WK Anger, A Durao y C Xintaras. Chelsea, Michigan: Lewis.

Spencer, PS y HH Schaumberg. 1980. Neurotoxicología Experimental y Clínica. Baltimore: Williams & Wilkins.

Sweeney, AM, MR Meyer, JH Aarons, JL Mills y RE LePorte. 1988. Evaluación de métodos para la identificación prospectiva de pérdidas fetales tempranas en estudios de epidemiología ambiental. Soy J Epidemiol 127: 843-850.

Taylor, BA, HJ Heiniger y H Meier. 1973. Análisis genético de la resistencia al daño testicular inducido por cadmio en ratones. Proc Soc Exp Biol Med 143: 629-633.

Telišman, S. 1995. Interacciones de metales y metaloides esenciales y/o tóxicos con respecto a las diferencias interindividuales en la susceptibilidad a varios tóxicos y enfermedades crónicas en el hombre. Arh plataforma rada toksikol 46: 459-476.

Telišman, S, A Pinent y D Prpi ƒ -Maji ƒ . 6.5. La interferencia del plomo en el metabolismo del zinc y la interacción entre el plomo y el zinc en humanos como posible explicación de la aparente susceptibilidad individual al plomo. En Metales Pesados ​​en el Medio Ambiente, editado por RJ Allan y JO Nriagu. Edimburgo: CEP Consultants.

Telišman, S, D Prpi ƒ -Maji ƒ y S Kezi ƒ . 6.5. Estudio in vivo sobre la interacción del plomo y el alcohol y la inhibición de la deshidratasa del ácido delta-aminolevulínico eritrocitario en el hombre. Scand J Trabajo Medio Ambiente Salud 10: 239-244.

Tilson, HA y PA Cabe. 1978. Estrategias para la evaluación de las consecuencias neuroconductuales de los factores ambientales. Medio Ambiente Salud Persp 26: 287-299.

Trump, BF y AU Arstila. 1971. Lesión celular y muerte celular. En Principios de patobiología, editado por MF LaVia y RB Hill Jr. Nueva York: Oxford Univ. Presionar.

Trump, BF e IK Berezesky. 1992. El papel del Ca2 citosólico + en daño celular, necrosis y apoptosis. Curr Opin Cell Biol 4: 227-232.

—. 1995. Lesión celular mediada por calcio y muerte celular. FASEB J 9: 219-228.

Trump, BF, IK Berezesky y A Osornio-Vargas. 1981. La muerte celular y el proceso de la enfermedad. El papel del calcio celular. En Muerte Celular en Biología y Patología, editado por ID Bowen y RA Lockshin. Londres: Chapman & Hall.

Vos, JG, M Younes y E Smith. 1995. Hipersensibilidades alérgicas inducidas por sustancias químicas: recomendaciones para la prevención publicadas en nombre de la Oficina Regional para Europa de la Organización Mundial de la Salud. Boca Ratón, FL: CRC Press.

Weber, WW. 1987. Los genes acetiladores y la respuesta a fármacos. Nueva York: Universidad de Oxford. Presionar.

Organización Mundial de la Salud (OMS). 1980. Límites recomendados basados ​​en la salud en la exposición ocupacional a metales pesados. Serie de Informes Técnicos, No. 647. Ginebra: OMS.

—. 1986. Principios y métodos para la evaluación de la neurotoxicidad asociada con la exposición a sustancias químicas. Criterios de Salud Ambiental, No.60. Ginebra: OMS.

—. 1987. Directrices de calidad del aire para Europa. European Series, No. 23. Copenhague: Publicaciones regionales de la OMS.

—. 1989. Glosario de términos sobre seguridad química para uso en publicaciones del IPCS. Ginebra: OMS.

—. 1993. La derivación de los valores guía para los límites de exposición basados ​​en la salud. Criterios de Salud Ambiental, borrador sin editar. Ginebra: OMS.

Wyllie, AH, JFR Kerr y AR Currie. 1980. Muerte celular: La importancia de la apoptosis. Int Rev Citol 68: 251-306.

@REFS LABEL = Otras lecturas relevantes

Alberto, RE. 1994. Evaluación del riesgo carcinógeno en la Agencia de Protección Ambiental de EE.UU. crítico Rev. Toxicol 24: 75-85.

Alberts, B, D Bray, J Lewis, M Raff, K Roberts y JD Watson. 1988. Biología molecular de la célula. Nueva York: Garland Publishing.

Ariens, EJ. 1964. Farmacología Molecular. Volúmen 1. Nueva York: Prensa Académica.

Ariens, EJ, E Mutschler y AM Simonis. 1978. Allgemeine Toxicologie [Toxicología general]. Stuttgart: Georg Thieme Verlag.

Ashby, J y RW Tennant. 1994. Predicción de carcinogenicidad en roedores para 44 químicos: Resultados. Mutagénesis 9: 7-15.

Ashford, NA, CJ Spadafor, DB Hattis y CC Caldart. 1990. Vigilancia del trabajador por exposición y enfermedad. Baltimore: Universidad Johns Hopkins. Presionar.

Balabuha, NS y GE Fradkin. 1958. Nakoplenie radioaktivnih elementov v organizme I ih vivedenie [Acumulación de elementos radiactivos en el organismo y su excreción]. Moscú: Medgiz.

Balls, M, J Bridges y J Southee. 1991. Animales y Alternativas en Toxicología Estado Actual y Perspectivas Futuras. Nottingham, Reino Unido: El Fondo para el Reemplazo de Animales en Experimentos Médicos.

Berlin, A, J Dean, MH Draper, EMB Smith y F Spreafico. 1987. Inmunotoxicología. Dordrecht: Martinus Nijhoff.

Boyhous, A. 1974. Respiración. Nueva York: Grune & Stratton.

Brandau, R y BH Lippold. mil novecientos ochenta y dos. Absorción dérmica y transdérmica. Stuttgart: Wissenschaftliche Verlagsgesellschaft.

Brusick, DJ. 1994. Métodos para la Evaluación del Riesgo Genético. Boca Ratón: Lewis Publishers.

Burrell, R. 1993. Toxicidad inmunológica humana. Mol Aspectos Med 14: 1-81.

Castell, JV y MJ Gómez-Lechón. 1992. Alternativas in vitro a la farmacotoxicología animal. Madrid, España: Farmaindustria.

Chapman, G. 1967. Líquidos corporales y sus funciones. Londres: Edward Arnold.

Comité de Marcadores Biológicos del Consejo Nacional de Investigaciones. 1987. Marcadores biológicos en la investigación de salud ambiental. Medio Ambiente Salud Persp 74: 3-9.

Cralley, LJ, LV Cralley y JS Bus (eds.). 1978. Higiene Industrial y Toxicología de Patty. Nueva York: Witey.

Dayan, AD, RF Hertel, E Heseltine, G Kazantis, EM Smith y MT Van der Venne. 1990. Inmunotoxicidad de los Metales e Inmunotoxicología. Nueva York: Plenum Press.

Djuric, D. 1987. Aspectos moleculares y celulares de la exposición ocupacional a sustancias químicas tóxicas. En Parte 1 Toxicocinética. Ginebra: OMS.

Duffus, JH. 1980. Toxicología Ambiental. Londres: Edward Arnold.

ECOTOC. 1986. Relación Estructura-Actividad en Toxicología y Ecotoxicología, Monografía No. 8. Bruselas: ECOTOC.

Forth, W, D Henschler y W Rummel. 1983. Farmakologie und Toxikologie. Mannheim: Bibliographische Institut.

Frazier, JM. 1990. Criterios científicos para la Validación de Pruebas de Toxicidad in Vitro. Monografía ambiental de la OCDE, no. 36. París: OCDE.

—. 1992. Toxicidad in vitro: aplicaciones a la evaluación de la seguridad. Nueva York: Marcel Dekker.

Gad, Carolina del Sur. 1994. Toxicología in vitro. Nueva York: Raven Press.

Gadaskina, ID. 1970. Zhiroraya tkan I yadi [Tejidos grasos y sustancias tóxicas]. En Aktualnie Vaprosi promishlenoi toksikolgii [Problemas Actuales en Toxicología Ocupacional], editado por NV Lazarev. Leningrado: Ministerio de Salud RSFSR.

Gaylor, DW. 1983. El uso de factores de seguridad para controlar el riesgo. J Toxicol Salud Ambiental 11: 329-336.

Gibson, GG, R Hubbard y DV Parke. 1983. Inmunotoxicología. Londres: Prensa académica.

Goldberg, AM. 1983-1995. Alternativas en Toxicología. vol. 1-12. Nueva York: Mary Ann Liebert.

Grandjean, P. 1992. Susceptibilidad individual a la toxicidad. Letras de toxicol 64 / 65: 43-51.

Hanke, J y JK Piotrowski. 1984. Biochemyczne podstawy toksikologii [Bases bioquímicas de la toxicología]. Varsovia: PZWL.

Escotilla, T y P Bruto. 1954. Depósito Pulmonar y Retención de Aerosoles Inhalados. Nueva York: Academic Press.

Consejo de Salud de los Países Bajos: Comité de Evaluación de la Carcinogenicidad de Sustancias Químicas. 1994. Evaluación de riesgos de sustancias químicas cancerígenas en los Países Bajos. Regul Toxicol Pharmacol 19: 14-30.

Holland, WC, RL Klein y AH Briggs. 1967. Farmacología Molekulaere.

Huff, JE. 1993. Sustancias químicas y cáncer en humanos: Primera evidencia en animales de experimentación. Medio Ambiente Salud Persp 100: 201-210.

Klaassen, CD y DL Eaton. 1991. Principios de toxicología. Cap. 2 en Toxicología de Casarett y Doull, editado por CD Klaassen, MO Amdur y J Doull. Nueva York: Pergamon Press.

Kossover, EM. 1962. Bioquímica Molecular. Nueva York: McGraw-Hill.

Kundiev, YI. 1975.Vssavanie pesticidav cherez kozsu I profilaktika otravlenii [Absorción de plaguicidas a través de la piel y prevención de la intoxicación]. Kiev: Zdorovia.

Kustov, VV, LA Tiunov y JA Vasiljev. 1975. Komvinovanie deistvie promishlenih yadov [Efectos combinados de tóxicos industriales]. Moscú: Medicina.

Lauwerys, R. 1982. Toxicología industrial y intoxicaciones profesionales. París: Masson.

Li, AP y RH Heflich. 1991. Toxicología genética. Boca Ratón: CRC Press.

Loewey, AG y P Siekewitz. 1969. Estructura y funciones celulares. Nueva York: Holt, Reinhart y Winston.

Loomis, TA. 1976. Fundamentos de Toxicología. Filadelfia: Lea & Febiger.

Mendelsohn, ML y RJ Albertini. 1990. Mutación y Medio Ambiente, Partes AE. Nueva York: Wiley Liss.

Mettzler, DE. 1977. Bioquímica. Nueva York: Academic Press.

Miller, K, JL Turk y S. Nicklin. 1992. Principios y Práctica de la Inmunotoxicología. Oxford: Blackwells científico.

Ministerio de Industria y Comercio Internacional. 1981. Manual de Sustancias Químicas Existentes. Tokio: Chemical Daily Press.

—. 1987. Solicitud de Aprobación de Sustancias Químicas por Ley de Control de Sustancias Químicas. (En japonés y en inglés). Tokio: Kagaku Kogyo Nippo Press.

Montaña, W. 1956. La estructura y función de la piel. Nueva York: Academic Press.

Moolenaar, RJ. 1994. Evaluación del riesgo carcinógeno: comparación internacional. REgul Toxicol Pharmacol 20: 302-336.

Consejo nacional de investigación. 1989. Marcadores biológicos en toxicidad reproductiva. Washington, DC: Prensa de NAS.

Neuman, WG y M Neuman. 1958. La dinámica química de los minerales óseos. Chicago: La Universidad. de Prensa de Chicago.

Newcombe, DS, NR Rose y JC Bloom. 1992. Inmunotoxicología clínica. Nueva York: Raven Press.

Pacheco, H. 1973. La farmacologie moleculaire. París: Presse Universitaire.

Piotrowski, JK. 1971. La aplicación de la cinética metabólica y excretora a problemas de toxicología industrial.. Washington, DC: Departamento de Salud, Educación y Bienestar de EE. UU.

—. 1983. Interacciones bioquímicas de metales pesados: Metalotioneína. En Efectos sobre la salud de la exposición combinada a sustancias químicas. Copenhague: Oficina Regional de la OMS para Europa.

Actas de la Conferencia de Arnold O. Beckman/IFCC sobre biomarcadores de toxicología ambiental de exposición química. 1994. Clin Chem. 40(7B).

Russell, WMS y RL Burch. 1959. Los principios de la técnica experimental humanitaria. Londres: Methuen & Co. Reimpreso por la Federación de Universidades para el Bienestar Animal, 1993.

Rycroft, RJG, T Menné, PJ Frosch y C Benezra. 1992. Libro de texto de dermatitis de contacto. Berlín: Springer-Verlag.

Schubert, J. 1951. Estimación de radioelementos en individuos expuestos. nucleónica 8: 13-28.

Shelby, MD y E Zeiger. 1990. Actividad de carcinógenos humanos en las pruebas citogenéticas de Salmonella y médula ósea de roedores. Resolución mutacional 234: 257-261.

Stone, R. 1995. Un enfoque molecular del riesgo de cáncer. Ciencia: 268: 356-357.

Teisinger, J. 1984. Prueba de exposición en der Industrietoxikologie [Pruebas de Exposición en Toxicología Industrial]. Berlín: VEB Verlag Volk und Gesundheit.

Congreso de Estados Unidos. 1990. Monitoreo y detección genética en el lugar de trabajo, OTA-BA-455. Washington, DC: Imprenta del Gobierno de los Estados Unidos.

VEB. 1981. Kleine Enzyklopaedie: Leben [Vida]. Leipzig: VEB Bibliographische Institut.

Weil, E. 1975. Elementos de toxicología industrial [Elementos de Toxicología Industrial]. París: Masson et Cie.

Organización Mundial de la Salud (OMS). 1975. Métodos utilizados en la URSS para establecer niveles seguros de sustancias tóxicas. Ginebra: OMS.

1978. Principios y métodos para evaluar la toxicidad de los productos químicos, Parte 1. Criterios de Salud Ambiental, nº6. Ginebra: OMS.

—. 1981. Exposición Combinada a Productos Químicos, Documento Provisional n.º 11. Copenhague: Oficina Regional de la OMS para Europa.

—. 1986. Principios de estudios toxicocinéticos. Criterios de Salud Ambiental, núm. 57. Ginebra: OMS.

Yoftrey, JM y FC Courtice. 1956. Linfáticos, linfa y tejido linfoide. Cambridge: Universidad de Harvard. Presionar.

Zakutinsky, DI. 1959. Voprosi toksikologii radioaktivnih veshchestv [Problemas de toxicología de materiales radiactivos]. Moscú: Medguiz.

Zurlo, J, D Rudacille y AM Goldberg. 1993. Animales y Alternativas en las Pruebas: Historia, Ciencia y Ética. Nueva York: Mary Ann Liebert.