Martes, febrero 15 2011 20: 00

Consideraciones de salud para la gestión del trabajo en altitudes elevadas

Valora este artículo
(Vote 1)

Un gran número de personas trabajan a gran altura, particularmente en las ciudades y pueblos de los Andes sudamericanos y la meseta tibetana. La mayoría de estas personas son montañeses que han vivido en la zona durante muchos años y quizás varias generaciones. Gran parte del trabajo es de naturaleza agrícola, por ejemplo, cuidar animales domésticos.

Sin embargo, el enfoque de este artículo es diferente. Recientemente ha habido un gran aumento en las actividades comerciales en altitudes de 3,500 a 6,000 m. Los ejemplos incluyen minas en Chile y Perú a altitudes de alrededor de 4,500 m. Algunas de estas minas son muy grandes y emplean a más de 1,000 trabajadores. Otro ejemplo es la instalación del telescopio en Mauna Kea, Hawai, a una altitud de 4,200 m.

Tradicionalmente, las minas de altura en los Andes sudamericanos, algunas de las cuales datan del período colonial español, han sido explotadas por indígenas que han estado a gran altura durante generaciones. Recientemente, sin embargo, se está haciendo un uso cada vez mayor de trabajadores del nivel del mar. Hay varias razones para este cambio. Una es que no hay suficientes personas en estas áreas remotas para operar las minas. Una razón igualmente importante es que a medida que las minas se automatizan cada vez más, se requiere personal calificado para operar grandes máquinas excavadoras, cargadores y camiones, y es posible que la población local no tenga las habilidades necesarias. Una tercera razón es la economía del desarrollo de estas minas. Mientras que antes se establecían pueblos enteros en las inmediaciones de la mina para albergar a las familias de los trabajadores y las instalaciones auxiliares necesarias, como escuelas y hospitales, ahora se considera preferible que las familias vivan al nivel del mar y que los trabajadores viajar a las minas. No se trata de una cuestión puramente económica. La calidad de vida a una altitud de 4,500 m es menor que a altitudes más bajas (p. ej., los niños crecen más lentamente). Por lo tanto, la decisión de que las familias permanezcan al nivel del mar mientras los trabajadores viajan a gran altura tiene una sólida base socioeconómica.

La situación en la que una fuerza de trabajo se desplaza desde el nivel del mar hasta altitudes de aproximadamente 4,500 m plantea muchos problemas médicos, muchos de los cuales son poco conocidos en la actualidad. Ciertamente, la mayoría de las personas que viajan desde el nivel del mar hasta una altitud de 4,500 m desarrollan inicialmente algunos síntomas del mal agudo de montaña. La tolerancia a la altitud a menudo mejora después de los primeros dos o tres días. Sin embargo, la severa hipoxia de estas altitudes tiene una serie de efectos nocivos en el cuerpo. La capacidad máxima de trabajo disminuye y las personas se fatigan más rápidamente. La eficiencia mental se reduce y muchas personas encuentran que es mucho más difícil concentrarse. La calidad del sueño suele ser mala, con despertares frecuentes y respiración periódica (la respiración aumenta y disminuye tres o cuatro veces por minuto) con el resultado de que la PO arterial2 cae a niveles bajos después de los períodos de apnea o respiración reducida.

La tolerancia a la gran altitud varía mucho entre los individuos y, a menudo, es muy difícil predecir quién será intolerante a la gran altitud. Un número importante de personas que quisieran trabajar a una altura de 4,500 m encuentran que no pueden hacerlo o que la calidad de vida es tan mala que se niegan a permanecer en esa altura. Temas como la selección de trabajadores que probablemente toleren la gran altitud y la programación de su trabajo entre la gran altitud y el período con sus familias al nivel del mar son relativamente nuevos y no se comprenden bien.

Examen previo al empleo

Además del tipo habitual de examen previo al empleo, se debe prestar especial atención al sistema cardiopulmonar, porque trabajar a gran altura exige mucho de los sistemas respiratorio y cardiovascular. Condiciones médicas como la enfermedad pulmonar obstructiva crónica temprana y el asma serán mucho más incapacitantes a gran altura debido a los altos niveles de ventilación, y deben buscarse específicamente. Es probable que un gran fumador de cigarrillos con síntomas de bronquitis temprana tenga dificultades para tolerar la gran altitud. La espirometría forzada debe medirse además del examen de tórax habitual, incluida la radiografía de tórax. Si es posible, se debe realizar una prueba de ejercicio porque cualquier intolerancia al ejercicio se exagerará a gran altura.

El sistema cardiovascular debe examinarse cuidadosamente, incluido un electrocardiograma de ejercicio si es factible. Se deben realizar hemogramas para excluir a los trabajadores con grados inusuales de anemia o policitemia.

Vivir a gran altura aumenta el estrés psicológico en muchas personas, y se debe realizar un historial cuidadoso para excluir a los posibles trabajadores con problemas de comportamiento previos. Muchas minas modernas a gran altura están secas (no se permite el alcohol). Los síntomas gastrointestinales son comunes en algunas personas a gran altura, y los trabajadores que tienen antecedentes de dispepsia pueden tener un desempeño deficiente.

Selección de trabajadores para tolerar la gran altitud

Además de excluir a los trabajadores con enfermedades pulmonares o cardíacas que probablemente tengan un desempeño deficiente en altitudes elevadas, sería muy valioso si se pudieran realizar pruebas para determinar quién es probable que tolere bien la altitud. Desafortunadamente, en la actualidad se sabe poco acerca de los predictores de tolerancia a la gran altitud, aunque actualmente se está realizando un trabajo considerable al respecto.

El mejor predictor de la tolerancia a la altura es probablemente la experiencia previa en altura. Si alguien ha podido trabajar a 4,500 m de altitud durante varias semanas sin problemas apreciables, es muy probable que pueda volver a hacerlo. Del mismo modo, alguien que trató de trabajar a gran altura y descubrió que no podía tolerarlo, es muy probable que tenga el mismo problema la próxima vez. Por lo tanto, al seleccionar a los trabajadores, se debe poner mucho énfasis en el empleo anterior exitoso en altura. Sin embargo, claramente este criterio no se puede utilizar para todos los trabajadores porque, de lo contrario, ninguna persona nueva entraría en el grupo de trabajo de gran altura.

Otro posible predictor es la magnitud de la respuesta ventilatoria a la hipoxia. Esto se puede medir al nivel del mar dando al posible trabajador una baja concentración de oxígeno para respirar y midiendo el aumento de la ventilación. Existe alguna evidencia de que las personas que tienen una respuesta ventilatoria hipóxica relativamente débil toleran mal las alturas. Por ejemplo, Schoene (1982) mostró que 14 escaladores de gran altura tenían respuestas ventilatorias hipóxicas significativamente más altas que diez controles. Se realizaron más mediciones en la Expedición de Investigación Médica Estadounidense al Everest de 1981, donde se demostró que la respuesta ventilatoria hipóxica medida antes y durante la Expedición se correlacionó bien con el rendimiento en lo alto de la montaña (Schoene, Lahiri y Hackett 1984). Masuyama, Kimura y Sugita (1986) informaron que cinco escaladores que alcanzaron los 8,000 m en Kanchenjunga tuvieron una respuesta ventilatoria hipóxica más alta que cinco escaladores que no lo hicieron.

Sin embargo, esta correlación no es de ninguna manera universal. En un estudio prospectivo de 128 escaladores que iban a grandes alturas, una medida de la respuesta ventilatoria hipóxica no se correlacionó con la altura alcanzada, mientras que una medida del consumo máximo de oxígeno al nivel del mar sí se correlacionó (Richalet, Kerome y Bersch 1988). Este estudio también sugirió que la respuesta de la frecuencia cardíaca a la hipoxia aguda podría ser un predictor útil del rendimiento a gran altura. Ha habido otros estudios que muestran una pobre correlación entre la respuesta ventilatoria hipóxica y el rendimiento en altitudes extremas (Ward, Milledge y West 1995).

El problema con muchos de estos estudios es que los resultados son principalmente aplicables a altitudes mucho más altas que las de interés aquí. También hay muchos ejemplos de escaladores con valores moderados de respuesta ventilatoria hipóxica que lo hacen bien en altura. Sin embargo, una respuesta ventilatoria hipóxica anormalmente baja es probablemente un factor de riesgo para tolerar incluso altitudes medias como 4,500 m.

Una forma de medir la respuesta ventilatoria hipóxica al nivel del mar es hacer que el sujeto vuelva a respirar en una bolsa que inicialmente está llena con un 24 % de oxígeno, un 7 % de dióxido de carbono y el resto de nitrógeno. Durante la reinhalación el PCO2 se controla y se mantiene constante por medio de un bypass variable y un absorbedor de dióxido de carbono. La reinhalación se puede continuar hasta el PO inspirado2 cae a unos 40 mmHg (5.3 kPa). La saturación de oxígeno arterial se mide continuamente con un oxímetro de pulso y la ventilación se representa frente a la saturación (Rebuck y Campbell 1974). Otra forma de medir la respuesta ventilatoria hipóxica es determinar la presión inspiratoria durante un breve período de oclusión de las vías respiratorias mientras el sujeto respira una mezcla baja en oxígeno (Whitelaw, Derenne y Milic-Emili 1975).

Otro posible predictor de la tolerancia a la altura es la capacidad de trabajo durante la hipoxia aguda a nivel del mar. La razón aquí es que alguien que no puede tolerar la hipoxia aguda es más probable que no tolere la hipoxia crónica. Hay poca evidencia a favor o en contra de esta hipótesis. Los fisiólogos soviéticos utilizaron la tolerancia a la hipoxia aguda como uno de los criterios para la selección de escaladores para su exitosa expedición al Everest de 1982 (Gazenko 1987). Por otro lado, los cambios que ocurren con la aclimatación son tan profundos que no sería sorprendente que el rendimiento del ejercicio durante la hipoxia aguda estuviera pobremente correlacionado con la capacidad de trabajar durante la hipoxia crónica.

Otro posible predictor es el aumento de la presión arterial pulmonar durante la hipoxia aguda a nivel del mar. Esto se puede medir de forma no invasiva en muchas personas mediante ultrasonido Doppler. El fundamento principal de esta prueba es la correlación conocida entre el desarrollo de edema pulmonar a gran altitud y el grado de vasoconstricción pulmonar hipóxica (Ward, Milledge y West 1995). Sin embargo, dado que el edema pulmonar a gran altura es poco común en personas que trabajan a una altitud de 4,500 m, el valor práctico de esta prueba es cuestionable.

La única forma de determinar si estas pruebas para la selección de trabajadores tienen valor práctico es un estudio prospectivo donde los resultados de las pruebas realizadas a nivel del mar se correlacionen con la posterior evaluación de la tolerancia a la gran altura. Esto plantea la cuestión de cómo se medirá la tolerancia a la gran altitud. La forma habitual de hacerlo es mediante cuestionarios como el de Lake Louise (Hackett y Oelz 1992). Sin embargo, los cuestionarios pueden no ser confiables en esta población porque los trabajadores perciben que si admiten la intolerancia a la altitud, podrían perder sus trabajos. Es cierto que existen medidas objetivas de intolerancia a la altura como dejar de trabajar, estertores en los pulmones como indicación de edema pulmonar subclínico y ataxia leve como indicación de edema cerebral subclínico de altura. Sin embargo, estas características solo se verán en personas con intolerancia severa a la altitud, y un estudio prospectivo basado únicamente en tales mediciones sería muy insensible.

Cabe destacar que no se ha establecido el valor de estas posibles pruebas para determinar la tolerancia al trabajo a gran altura. Sin embargo, las implicaciones económicas de contratar a un número sustancial de trabajadores que no pueden desempeñarse satisfactoriamente a gran altura son tales que sería muy valioso contar con predictores útiles. Actualmente se están realizando estudios para determinar si algunos de estos predictores son valiosos y factibles. Las mediciones como la respuesta ventilatoria hipóxica a la hipoxia y la capacidad de trabajo durante la hipoxia aguda al nivel del mar no son particularmente difíciles. Sin embargo, deben ser realizados por un laboratorio profesional, y el costo de estas investigaciones puede justificarse solo si el valor predictivo de las mediciones es sustancial.

Programación entre gran altitud y nivel del mar

Una vez más, este artículo se dirige a los problemas específicos que ocurren cuando las actividades comerciales, como las minas a altitudes de unos 4,500 m, emplean a trabajadores que viajan desde el nivel del mar donde viven sus familias. La programación obviamente no es un problema cuando las personas viven permanentemente a gran altura.

Diseñar el programa óptimo para moverse entre la gran altitud y el nivel del mar es un problema desafiante y, hasta el momento, hay poca base científica para los programas que se han empleado hasta ahora. Estos se han basado principalmente en factores sociales como el tiempo que los trabajadores están dispuestos a pasar a gran altura antes de volver a ver a sus familias.

La principal justificación médica para pasar varios días seguidos a gran altura es la ventaja que se obtiene con la aclimatación. Muchas personas que desarrollan síntomas del mal agudo de montaña después de subir a gran altura se sienten mucho mejor después de dos a cuatro días. Por lo tanto, se está produciendo una aclimatación rápida durante este período. Además, se sabe que la respuesta ventilatoria a la hipoxia tarda de siete a diez días en alcanzar un estado estable (Lahiri 1972; Dempsey y Forster 1982). Este aumento de la ventilación es una de las características más importantes del proceso de aclimatación y, por lo tanto, es razonable recomendar que el período de trabajo en altura sea de al menos diez días.

Es probable que otras características de la aclimatación a grandes altitudes tarden mucho más en desarrollarse. Un ejemplo es la policitemia, que tarda varias semanas en alcanzar un estado estable. Sin embargo, debe agregarse que el valor fisiológico de la policitemia es mucho menos seguro de lo que se pensaba en un momento. De hecho, Winslow y Monge (1987) han demostrado que los grados graves de policitemia que a veces se observan en los habitantes permanentes a altitudes de unos 4,500 m son contraproducentes, ya que la capacidad de trabajo a veces se puede aumentar si se reduce el hematocrito mediante la extracción de sangre durante varias semanas. .

Otro tema importante es el índice de desaclimatación. Lo ideal es que los trabajadores no pierdan toda la aclimatación que han desarrollado a gran altura durante su período con sus familias a nivel del mar. Desafortunadamente, ha habido poco trabajo sobre la tasa de desaclimatación, aunque algunas mediciones sugieren que la tasa de cambio de la respuesta ventilatoria durante la desaclimatación es más lenta que durante la aclimatación (Lahiri 1972).

Otra cuestión práctica es el tiempo necesario para trasladar a los trabajadores desde el nivel del mar hasta una gran altura y viceversa. En una nueva mina en Collahuasi en el norte de Chile, se tarda solo unas pocas horas en llegar a la mina en autobús desde la ciudad costera de Iquique, donde se espera que viva la mayoría de las familias. Sin embargo, si el trabajador reside en Santiago, el viaje podría demorar más de un día. En estas circunstancias, un breve período de trabajo de tres o cuatro días a gran altura sería claramente ineficiente debido al tiempo perdido en el viaje.

Los factores sociales también juegan un papel crítico en cualquier programación que involucre tiempo fuera de la familia. Incluso si existen razones médicas y fisiológicas por las que un período de aclimatación de 14 días es óptimo, el hecho de que los trabajadores no estén dispuestos a dejar a sus familias durante más de siete o diez días puede ser un factor determinante. La experiencia hasta ahora muestra que un programa de siete días a gran altura seguido de siete días al nivel del mar, o diez días a gran altitud seguidos del mismo período al nivel del mar son probablemente los programas más aceptables.

Tenga en cuenta que con este tipo de horario, el trabajador nunca se aclimata por completo a la gran altura, ni se desaclimatiza por completo mientras está al nivel del mar. Por lo tanto, pasa su tiempo oscilando entre los dos extremos, sin recibir nunca el beneficio completo de ninguno de los dos estados. Además, algunos trabajadores se quejan de cansancio extremo cuando regresan al nivel del mar, y pasan los primeros dos o tres días recuperándose. Posiblemente esto esté relacionado con la mala calidad del sueño, que suele ser una característica de vivir a gran altura. Estos problemas resaltan nuestra ignorancia de los factores que determinan los mejores horarios, y claramente se necesita más trabajo en esta área.

Cualquiera que sea el horario que se utilice, es muy ventajoso que los trabajadores puedan dormir a una altura más baja que el lugar de trabajo. Naturalmente, si esto es factible depende de la topografía de la región. Una altitud más baja para dormir no es factible si se necesitan varias horas para alcanzarla porque esto corta demasiado la jornada laboral. Sin embargo, si hay una ubicación varios cientos de metros más abajo a la que se puede llegar en, digamos, una hora, establecer dormitorios a esta altitud más baja mejorará la calidad del sueño, la comodidad y la sensación de bienestar de los trabajadores y la productividad.

Enriquecimiento de oxígeno del aire de la habitación para reducir la hipoxia de los altos Altitud

Los efectos nocivos de la gran altitud son causados ​​por la baja presión parcial de oxígeno en el aire. A su vez, esto resulta del hecho de que mientras la concentración de oxígeno es la misma que al nivel del mar, la presión barométrica es baja. Desafortunadamente, es poco lo que se puede hacer a gran altura para contrarrestar esta “agresión climática”, como la denominó Carlos Monge, el padre de la medicina de altura en el Perú (Monge 1948).

Una posibilidad es aumentar la presión barométrica en un área pequeña, y este es el principio de la bolsa de Gamow, que a veces se usa para el tratamiento de emergencia del mal de montaña. Sin embargo, presurizar grandes espacios como habitaciones es difícil desde un punto de vista técnico, y también existen problemas médicos asociados con la entrada y salida de una habitación con mayor presión. Un ejemplo es la molestia en el oído medio si la trompa de Eustaquio está bloqueada.

La alternativa es aumentar la concentración de oxígeno en algunas partes de las instalaciones de trabajo, y este es un desarrollo relativamente nuevo que muestra una gran promesa (West 1995). Como se señaló anteriormente, incluso después de un período de aclimatación de siete a diez días a una altitud de 4,500 m, la hipoxia severa continúa reduciendo la capacidad de trabajo, la eficiencia mental y la calidad del sueño. Por lo tanto, sería muy ventajoso reducir el grado de hipoxia en algunas partes de la instalación de trabajo si eso fuera factible.

Esto se puede hacer agregando oxígeno a la ventilación de aire normal de algunas habitaciones. El valor de grados relativamente menores de enriquecimiento de oxígeno del aire de la habitación es notable. Se ha demostrado que cada 1% de aumento en la concentración de oxígeno (por ejemplo, de 21 a 22%) reduce la altitud equivalente en 300 m. La altura equivalente es aquella que tiene el mismo PO inspirado2 durante la respiración de aire como en la habitación enriquecida con oxígeno. Así, a una altitud de 4,500 m, elevar la concentración de oxígeno de una habitación del 21 al 26 % reduciría la altitud equivalente en 1,500 m. El resultado sería una altitud equivalente a 3,000 m, que se tolera fácilmente. El oxígeno se añadiría a la ventilación normal de la habitación y por tanto formaría parte de la climatización. Todos esperamos que una habitación proporcione una temperatura y humedad agradables. El control de la concentración de oxígeno puede considerarse como un paso lógico adicional en el control de nuestro medio ambiente por parte de la humanidad.

El enriquecimiento de oxígeno se ha vuelto factible debido a la introducción de equipos relativamente económicos para proporcionar grandes cantidades de oxígeno casi puro. El más prometedor es el concentrador de oxígeno que utiliza un tamiz molecular. Dicho dispositivo adsorbe preferentemente nitrógeno y, por lo tanto, produce un gas enriquecido en oxígeno a partir del aire. Es difícil producir oxígeno puro con este tipo de concentrador, pero se encuentran fácilmente disponibles grandes cantidades de oxígeno al 90% en nitrógeno, y son igualmente útiles para esta aplicación. Estos dispositivos pueden funcionar de forma continua. En la práctica, se utilizan dos tamices moleculares de manera alterna, y uno se purga mientras el otro adsorbe activamente nitrógeno. El único requisito es la energía eléctrica, que normalmente es abundante en una mina moderna. Como una indicación aproximada del costo del enriquecimiento con oxígeno, se puede comprar un pequeño dispositivo comercial que produce 300 litros por hora de oxígeno al 90%. Fue desarrollado para producir oxígeno para el tratamiento de pacientes con enfermedades pulmonares en sus hogares. El dispositivo tiene un requerimiento de energía de 350 watts y el costo inicial es de alrededor de US$2,000. Una máquina de este tipo es suficiente para aumentar la concentración de oxígeno en una habitación en un 3% para una persona con un nivel mínimo aunque aceptable de ventilación de la habitación. También hay disponibles concentradores de oxígeno muy grandes y se utilizan en la industria de la pulpa de papel. También es posible que el oxígeno líquido sea económico en algunas circunstancias.

Hay varias áreas en una mina, por ejemplo, donde se podría considerar el enriquecimiento de oxígeno. Uno sería la oficina del director o la sala de conferencias, donde se toman decisiones importantes. Por ejemplo, si hay una crisis en la mina, como un accidente grave, tal instalación probablemente resultará en un pensamiento más claro que el ambiente hipóxico normal. Existe buena evidencia de que una altitud de 4,500 m afecta la función cerebral (Ward, Milledge y West 1995). Otro lugar donde el enriquecimiento de oxígeno sería beneficioso es un laboratorio donde se realizan las mediciones de control de calidad. Otra posibilidad es el enriquecimiento con oxígeno de los dormitorios para mejorar la calidad del sueño. Los ensayos doble ciego de la eficacia del enriquecimiento de oxígeno a altitudes de unos 4,500 m serían fáciles de diseñar y deberían llevarse a cabo lo antes posible.

Se deben considerar las posibles complicaciones del enriquecimiento de oxígeno. El aumento del riesgo de incendio es un problema que se ha planteado. Sin embargo, el aumento de la concentración de oxígeno en un 5% a una altitud de 4,500 m produce una atmósfera que tiene una inflamabilidad menor que el aire al nivel del mar (West 1996). Hay que tener en cuenta que aunque el enriquecimiento de oxígeno aumenta la PO2, esto sigue siendo mucho más bajo que el valor del nivel del mar. La inflamabilidad de una atmósfera depende de dos variables (Roth 1964):

  • la presión parcial de oxígeno, que es mucho menor en el aire enriquecido a gran altura que al nivel del mar
  • el efecto de extinción de los componentes inertes (es decir, nitrógeno) de la atmósfera.

 

Esta extinción se reduce ligeramente a gran altura, pero el efecto neto sigue siendo una menor inflamabilidad. El oxígeno puro o casi puro es peligroso, por supuesto, y se deben tomar las precauciones normales al canalizar el oxígeno desde el concentrador de oxígeno hasta el conducto de ventilación.

La pérdida de aclimatación a grandes alturas se cita a veces como una desventaja del enriquecimiento de oxígeno. Sin embargo, no existe una diferencia básica entre entrar en una habitación con una atmósfera enriquecida con oxígeno y descender a una altitud más baja. Todo el mundo dormiría a una altitud más baja si pudiera y, por lo tanto, este no es un argumento en contra del uso de oxígeno enriquecido. Es cierto que la exposición frecuente a una altitud más baja resultará en una menor aclimatación a la altitud más alta, en igualdad de condiciones. Sin embargo, el objetivo final es trabajar de manera efectiva a gran altura de la mina, y esto presumiblemente puede mejorarse mediante el enriquecimiento de oxígeno.

A veces se sugiere que alterar la atmósfera de esta manera podría aumentar la responsabilidad legal de la instalación si se desarrollara algún tipo de enfermedad relacionada con la hipoxia. En realidad, la opinión opuesta parece más razonable. Es posible que un trabajador que desarrolle, digamos, un infarto de miocardio mientras trabaja a gran altura pueda afirmar que la altitud fue un factor contribuyente. Cualquier procedimiento que reduzca el estrés hipóxico hace que las enfermedades inducidas por la altura sean menos probables.

Tratamiento de emergencia

Los diversos tipos de mal de altura, incluido el mal agudo de montaña, el edema pulmonar de altura y el edema cerebral de altura, se analizaron anteriormente en este capítulo. Poco se necesita agregar en el contexto del trabajo a gran altura.

A cualquier persona que desarrolle un mal de altura se le debe permitir descansar. Esto puede ser suficiente para condiciones como el mal agudo de montaña. El oxígeno debe administrarse por mascarilla si está disponible. Sin embargo, si el paciente no mejora o empeora, el descenso es, con diferencia, el mejor tratamiento. Por lo general, esto se hace fácilmente en una gran instalación comercial, porque el transporte siempre está disponible. Todas las enfermedades relacionadas con la gran altitud suelen responder rápidamente al traslado a una altitud más baja.

Puede haber un lugar en una instalación comercial para un pequeño contenedor presurizado en el que se pueda colocar al paciente y reducir la altitud equivalente bombeando aire. En el campo, esto se hace comúnmente usando una bolsa fuerte. Un diseño se conoce como el bolso Gamow, en honor a su inventor. Sin embargo, la principal ventaja de la bolsa es su portabilidad, y dado que esta característica no es realmente esencial en una instalación comercial, probablemente sería mejor usar un tanque rígido más grande. Esto debe ser lo suficientemente grande para que un asistente esté dentro de la instalación con el paciente. Por supuesto, la ventilación adecuada de dicho contenedor es esencial. Curiosamente, existe evidencia anecdótica de que elevar la presión atmosférica de esta manera a veces es más eficaz en el tratamiento del mal de altura que darle al paciente una alta concentración de oxígeno. No está claro por qué esto debería ser así.

Enfermedad aguda de montaña

Esto suele ser autolimitado y el paciente se siente mucho mejor después de uno o dos días. La incidencia del mal agudo de montaña se puede reducir tomando acetazolamida (Diamox), una o dos tabletas de 250 mg por día. Estos pueden iniciarse antes de llegar a gran altura o pueden tomarse cuando se desarrollan los síntomas. Incluso las personas con síntomas leves descubren que medio comprimido por la noche a menudo mejora la calidad del sueño. La aspirina o el paracetamol son útiles para el dolor de cabeza. El mal agudo de montaña grave se puede tratar con dexametasona, 8 mg inicialmente, seguidos de 4 mg cada seis horas. Sin embargo, el descenso es, con mucho, el mejor tratamiento si la afección es grave.

Edema pulmonar a gran altitud

Esta es una complicación potencialmente grave del mal de montaña y debe tratarse. Una vez más, la mejor terapia es el descenso. Mientras espera la evacuación, o si la evacuación no es posible, administre oxígeno o colóquelo en una cámara de alta presión. Se debe administrar nifedipina (un bloqueador de los canales de calcio). La dosis es de 10 mg por vía sublingual seguida de 20 mg de liberación lenta. Esto da como resultado una caída en la presión de la arteria pulmonar y, a menudo, es muy eficaz. Sin embargo, el paciente debe ser bajado a una altitud más baja.

Edema cerebral a gran altitud

Esta es una complicación potencialmente muy grave y es una indicación para el descenso inmediato. Mientras espera la evacuación, o si la evacuación no es posible, administre oxígeno o colóquelo en un entorno de mayor presión. Se debe administrar dexametasona, 8 mg inicialmente, seguidos de 4 mg cada seis horas.

Como se indicó anteriormente, es probable que las personas que desarrollan mal de montaña agudo grave, edema pulmonar por altura o edema cerebral por altura tengan una recurrencia si regresan a la altura. Por lo tanto, si un trabajador desarrolla cualquiera de estas condiciones, se debe intentar encontrar empleo en una altitud más baja.

 

Atrás

Leer 10221 veces Ultima modificacion el Martes, julio 26 2022 20: 59

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Presión barométrica, referencias reducidas

Dempsey, JA y HV Forster. 1982. Mediación de adaptaciones ventilatorias. Physiol Rev 62: 262-346. 

Gazenko, OG (ed.) 1987. Fisiología del hombre en altitudes elevadas (en ruso). Moscú: Nauka.

Hackett, PH y O Oelz. 1992. El consenso de Lake Louise sobre la definición y cuantificación del mal de altura. En Hipoxia y Medicina de Montaña, editado por JR Sutton, G Coates y CS Houston. Burlington: Impresoras de Queen City.

Hornbein, TF, BD Townes, RB Schoene, JR Sutton y CS Houston. 1989. El costo para el sistema nervioso central de escalar a altitudes extremadamente altas. Nueva Engl J Med 321: 1714-1719.

Lahiri, S. 1972. Aspectos dinámicos de la regulación de la ventilación en el hombre durante la aclimatación a gran altura. Fisiol respiratorio 16: 245-258.

Leichnitz, K. 1977. Uso de tubos detectores en condiciones extremas (humedad, presión, temperatura). Am Ind Hyg Assoc J 38: 707.

Lindenboom, RH y ED Palmes. 1983. Efecto de la presión atmosférica reducida en un muestreador de difusión. Am Ind Hyg Assoc J 44: 105.

Masuyama, S, H Kimura y T Sugita. 1986. Control de la ventilación en escaladores de altura extrema. J Appl Physiol 61: 500-506.

Monge, C. 1948. Aclimatación en los Andes: Confirmaciones Históricas de la “Agresión Climática” en el Desarrollo del Hombre Andino. Baltimore: Universidad Johns Hopkins. Presionar.

Paustenbach, DJ. 1985. Límites de exposición ocupacional, farmacocinética y horarios de trabajo inusuales. En Higiene Industrial y Toxicología de Patty, editado por LJ Cralley y LV Cralley. Nueva York: Wiley.

Rebuck, AS y EJ Campbell. 1974. Un método clínico para evaluar la respuesta ventilatoria a la hipoxia. Soy Rev Respir Dis 109: 345-350.

Richalet, JP, A Keromes y B Bersch. 1988. Características fisiológicas de los escaladores de altura. ciencia deporte 3: 89-108.

Roth, EM. 1964. Atmósferas de cabina espacial: Parte II, Riesgos de incendio y explosión. Informe SP-48 de la NASA. Washington, DC: NASA.

Schoene, RB. 1982. Control de ventilación en escaladores a altura extrema. J Appl Physiol 53: 886-890.

Schoene, RB, S Lahiri y PH Hackett. 1984. Relación de la respuesta ventilatoria hipóxica con el rendimiento del ejercicio en el Monte Everest. J Appl Physiol 56: 1478-1483.

Ward, MP, JS Milledge y JB West. 1995. Medicina y Fisiología de las Alturas. Londres: Chapman & Hall.

Oeste, JB. 1995. Enriquecimiento de oxígeno del aire de la habitación para aliviar la hipoxia de gran altitud. Fisiol respiratorio 99: 225-232.

—. 1997. Peligro de incendio en atmósferas enriquecidas con oxígeno a bajas presiones barométricas. Aviat Espacio Environ Med. 68: 159-162.

Oeste, JB y S Lahiri. 1984. Gran altitud y hombre. Bethesda, Md: Sociedad Americana de Fisiología.

West, JB y PD Wagner. 1980. Predicción del intercambio de gases en la cumbre del Monte Everest. Fisiol respiratorio 42: 1-16.

West, JB, SJ Boyer, DJ Graber, PH Hackett, KH Maret, JS Milledge, RM Peters, CJ Pizzo, M Samaja, FH Sarnquist, RB Schoene y RM Winslow. 1983. Ejercicio máximo en altitudes extremas en el Monte Everest. J Appl Physiol. 55: 688-698. 

Whitelaw, WA, JP Derenne y J Milic-Emili. 1975. La presión de oclusión como medida de la salida del centro respiratorio en el hombre consciente. Fisiol respiratorio 23: 181-199.

Winslow, RM y CC Monge. 1987. Hipoxia, policitemia y mal de montaña crónico. Baltimore: Universidad Johns Hopkins. Presionar.