Miércoles, marzo de 16 2011 21: 45

La base física del trabajo en calor

Valora este artículo
(2 votos)

Intercambios Térmicos

El cuerpo humano intercambia calor con su entorno por varias vías: conducción a través de las superficies en contacto con él, convección y evaporación con el aire ambiente y radiación con las superficies vecinas.

Conducción

La conducción es la transmisión de calor entre dos sólidos en contacto. Dichos intercambios se observan entre la piel y la ropa, calzado, puntos de presión (asiento, asas), herramientas, etc. En la práctica, en el cálculo matemático del balance térmico, este flujo de calor por conducción se aproxima indirectamente como una cantidad igual al flujo de calor por convección y radiación que se produciría si estas superficies no estuvieran en contacto con otros materiales.

Convección

La convección es la transferencia de calor entre la piel y el aire que la rodea. Si la temperatura de la piel, tsk, en unidades de grados Celsius (°C), es mayor que la temperatura del aire (ta), el aire en contacto con la piel se calienta y por lo tanto asciende. La circulación del aire, conocida como convección natural, se establece así en la superficie del cuerpo. Este intercambio se hace mayor si el aire ambiente pasa sobre la piel a cierta velocidad: la convección se vuelve forzada. El flujo de calor intercambiado por convección, C, en unidades de vatios por metro cuadrado (W/m2), puede ser estimado por:

C = hc FCLC (tsk - ta)

donde hc es el coeficiente de convección (W/°C m2), que es una función de la diferencia entre tsk y ta en el caso de convección natural, y de la velocidad del aire Va (en m/s) en convección forzada; FCLC es el factor por el cual la ropa reduce el intercambio de calor por convección.

La radiación

Todo cuerpo emite radiación electromagnética, cuya intensidad es función de la cuarta potencia de su temperatura absoluta T (en grados Kelvin—K). La piel, cuya temperatura puede estar entre 30 y 35°C (303 y 308K), emite dicha radiación, que se encuentra en la zona infrarroja. Además, recibe la radiación emitida por las superficies vecinas. El flujo térmico intercambiado por radiación, R (en W/m2), entre el cuerpo y su entorno puede describirse mediante la siguiente expresión:

dónde:

s es la constante universal de radiación (5.67 × 10-8 W/m2 K4)

e es la emisividad de la piel, que para la radiación infrarroja es igual a 0.97 e independiente de la longitud de onda, y para la radiación solar es del orden de 0.5 para la piel de un sujeto Blanco y de 0.85 para la piel de un sujeto Negro

AR/AD es la fracción de la superficie corporal que participa en los intercambios, que es del orden de 0.66, 0.70 o 0.77, dependiendo de si el sujeto está agachado, sentado o de pie

FCLR es el factor por el cual la ropa reduce el intercambio de calor por radiación

Tsk (en K) es la temperatura media de la piel

Tr (en K) es la temperatura radiante media del ambiente, es decir, la temperatura uniforme de una esfera negra mate de gran diámetro que rodearía al sujeto e intercambiaría con él la misma cantidad de calor que el ambiente real.

Esta expresión puede sustituirse por una ecuación simplificada del mismo tipo que la de los intercambios por convección:

R = horar (AR/AD)FCLR (tsk - Tr)

donde hr es el coeficiente de intercambio por radiación (W/°C m2).

Evaporación

Toda superficie mojada tiene sobre ella una capa de aire saturado de vapor de agua. Si la atmósfera misma no está saturada, el vapor se difunde desde esta capa hacia la atmósfera. Luego, la capa tiende a regenerarse aprovechando el calor de la evaporación (0.674 vatios hora por gramo de agua) en la superficie húmeda, que se enfría. Si la piel está totalmente cubierta de sudor, la evaporación es máxima (Emax) y depende únicamente de las condiciones ambientales, según la siguiente expresión:

Emax =he FPCL (Psk - Pa)

dónde:

he es el coeficiente de intercambio por evaporación (W/m2kPa)

Psk es la presión de saturación del vapor de agua a la temperatura de la piel (expresada en kPa)

Pa es la presión parcial ambiental del vapor de agua (expresada en kPa)

FPCL es el factor de reducción de intercambios por evaporación debido a la ropa.

Aislamiento térmico de la ropa.

Un factor de corrección opera en el cálculo del flujo de calor por convección, radiación y evaporación para tener en cuenta la ropa. En el caso de la ropa de algodón, los dos factores de reducción FCLC y FCLR puede ser determinada por:

Fcl = 1/(1+(hc+hr)Icl)

dónde:

hc es el coeficiente de intercambio por convección

hr es el coeficiente de intercambio por radiación

Icl es el aislamiento térmico efectivo (m2/W) de ropa.

En cuanto a la reducción de la transferencia de calor por evaporación, el factor de corrección FPCL viene dada por la siguiente expresión:

FPCL = 1 / (1+2.22hc Icl)

El aislamiento térmico de la ropa. Icl se expresa en m2/W o en clo. Un aislamiento de 1 clo corresponde a 0.155 m2/W y se proporciona, por ejemplo, con la ropa normal de ciudad (camisa, corbata, pantalón, chaqueta, etc.).

La norma ISO 9920 (1994) da el aislamiento térmico proporcionado por diferentes combinaciones de ropa. En el caso de ropa de protección especial que refleje el calor o limite la permeabilidad al vapor en condiciones de exposición al calor, o que absorba y aísle en condiciones de estrés por frío, se deben utilizar factores de corrección individuales. Sin embargo, hasta la fecha, el problema sigue siendo poco conocido y las predicciones matemáticas siguen siendo muy aproximadas.

Evaluación de los Parámetros Básicos de la Situación Laboral

Como se vio anteriormente, los intercambios térmicos por convección, radiación y evaporación son una función de cuatro parámetros climáticos: la temperatura del aire ta en °C, la humedad del aire expresada por su presión de vapor parcial Pa en kPa, la temperatura radiante media tr en °C, y la velocidad del aire Va en m/s. Los aparatos y métodos para medir estos parámetros físicos del medio ambiente están sujetos a la norma ISO 7726 (1985), que describe los diferentes tipos de sensores a usar, especifica su rango de medición y su precisión, y recomienda ciertos procedimientos de medición. En este apartado se resumen parte de los datos de dicha norma, con especial referencia a las condiciones de uso de los aparatos y aparatos más comunes.

Temperatura del aire

La temperatura del aire (ta) debe medirse independientemente de cualquier radiación térmica; la precisión de la medición debe ser de ±0.2 ºC dentro del rango de 10 a 30 ºC y de ±0.5 °C fuera de ese rango.

Existen numerosos tipos de termómetros en el mercado. Los termómetros de mercurio son los más comunes. Su ventaja es la precisión, siempre que hayan sido correctamente calibrados originalmente. Sus principales desventajas son su largo tiempo de respuesta y la falta de capacidad de grabación automática. Los termómetros electrónicos, por otro lado, generalmente tienen un tiempo de respuesta muy corto (5 s a 1 min) pero pueden tener problemas de calibración.

Cualquiera que sea el tipo de termómetro, el sensor debe estar protegido contra la radiación. Esto generalmente está garantizado por un cilindro hueco de aluminio brillante que rodea el sensor. Dicha protección está asegurada por el psicrómetro, que se mencionará en la siguiente sección.

Presión parcial de vapor de agua

La humedad del aire se puede caracterizar de cuatro maneras diferentes:

1. el temperatura de derretimiento: la temperatura a la que debe enfriarse el aire para que se sature de humedad (td,°C)

2. el presión parcial de vapor de agua: la fracción de la presión atmosférica debida al vapor de agua (Pa, kPa)

3. la humedad relativa (HORA), que viene dada por la expresión:

RH = 100·PAGa/PS, ta

donde PS, ta es la presión de vapor saturado asociada con la temperatura del aire

4. el temperatura del bulbo húmedo (tw), que es la temperatura más baja alcanzada por una manga húmeda protegida contra la radiación y ventilada a más de 2 m/s por el aire ambiente.

Todos estos valores están conectados matemáticamente.

La presión de vapor de agua saturada PS t a cualquier temperatura t es dado por:

mientras que la presión parcial del vapor de agua está relacionada con la temperatura por:

Pa = PS, tw - (ta - Tw)/15

donde PS, tw es la presión de vapor saturado a la temperatura de bulbo húmedo.

El diagrama psicrométrico (figura 1) permite combinar todos estos valores. Comprende:

Figura 1. Diagrama psicrométrico.

HEA010F1

  • existentes y eje, la escala de presión parcial de vapor de agua Pa, expresado en kPa
  • existentes x eje, la escala de la temperatura del aire
  • las curvas de humedad relativa constante
  • las líneas rectas oblicuas de temperatura de bulbo húmedo constante.
  • Los parámetros de humedad más utilizados en la práctica son:
  • la humedad relativa, medida por medio de higrómetros o aparatos electrónicos más especializados
  • la temperatura de bulbo húmedo, medida por medio del psicrómetro; de aquí se deriva la presión parcial de vapor de agua, que es el parámetro más utilizado en el análisis del balance térmico

 

El rango de medición y la precisión recomendados son de 0.5 a 6 kPa y ±0.15 kPa. Para la medición de la temperatura de bulbo húmedo, el rango se extiende de 0 a 36ºC, con una precisión idéntica a la de la temperatura del aire. En cuanto a los higrómetros para medir la humedad relativa, el rango se extiende de 0 a 100%, con una precisión de ±5%.

Temperatura radiante media

La temperatura radiante media (tr) ha sido definido previamente; se puede determinar de tres maneras diferentes:

1. de la temperatura medida por el termómetro de esfera negra

2. desde el plano temperaturas radiantes medidas a lo largo de tres ejes perpendiculares

3. por cálculo, integrando los efectos de las distintas fuentes de radiación.

Aquí sólo se revisará la primera técnica.

El termómetro de esfera negra consta de una sonda térmica, cuyo elemento sensible se coloca en el centro de una esfera completamente cerrada, fabricada en un metal buen conductor del calor (cobre) y pintada de negro mate para tener un coeficiente de absorción en la zona infrarroja cercana a 1.0. La esfera se coloca en el lugar de trabajo y se somete a intercambios por convección y radiación. La temperatura del globo (tg) depende entonces de la temperatura radiante media, la temperatura del aire y la velocidad del aire.

Para un globo negro estándar de 15 cm de diámetro, la temperatura media de radiación se puede calcular a partir de la temperatura del globo sobre la base de la siguiente expresión:

En la práctica, se debe enfatizar la necesidad de mantener la emisividad del globo cercana a 1.0 repintándolo cuidadosamente de negro mate.

La principal limitación de este tipo de globo es su largo tiempo de respuesta (del orden de 20 a 30 min, según el tipo de globo utilizado y las condiciones ambientales). La medida es válida solo si las condiciones de radiación son constantes durante este período de tiempo, y esto no siempre es así en un entorno industrial; la medida es entonces inexacta. Estos tiempos de respuesta se aplican a globos de 15 cm de diámetro, utilizando termómetros de mercurio ordinarios. Son más cortos si se utilizan sensores de menor capacidad térmica o si se reduce el diámetro del globo. Por lo tanto, la ecuación anterior debe modificarse para tener en cuenta esta diferencia de diámetro.

El índice WBGT hace uso directo de la temperatura del globo negro. Entonces es imprescindible utilizar un globo de 15 cm de diámetro. Por otro lado, otros índices hacen uso de la temperatura radiante media. Luego se puede seleccionar un globo más pequeño para reducir el tiempo de respuesta, siempre que la ecuación anterior se modifique para tenerlo en cuenta. La norma ISO 7726 (1985) permite una precisión de ±2ºC en la medida de tr entre 10 y 40ºC, y ±5ºC fuera de ese rango.

Velocidad del aire

La velocidad del aire debe medirse sin tener en cuenta la dirección del flujo de aire. De lo contrario, la medición debe realizarse en tres ejes perpendiculares (x, y y z) y la velocidad global calculada por suma vectorial:

El rango de medidas recomendado por la norma ISO 7726 se extiende desde 0.05 hasta 2 m/s. La precisión requerida es del 5%. Debe medirse como un valor promedio de 1 o 3 minutos.

Hay dos categorías de aparatos para medir la velocidad del aire: anemómetros con paletas y anemómetros térmicos.

Anemómetros de paletas

La medida se realiza contando el número de vueltas que dan las paletas durante un determinado periodo de tiempo. De esta forma se obtiene de forma discontinua la velocidad media durante ese periodo de tiempo. Estos anemómetros tienen dos desventajas principales:

  1. Son muy direccionales y deben orientarse estrictamente en la dirección del flujo de aire. Cuando esto es vago o desconocido, las mediciones deben tomarse en tres direcciones en ángulo recto.
  2. El rango de medición se extiende desde aproximadamente 0.3 m/s hasta 10 m/s. Esta limitación a velocidades bajas es importante cuando, por ejemplo, se trata de analizar una situación de confort térmico en la que generalmente se recomienda no superar una velocidad de 0.25 m/s. Aunque el rango de medida puede extenderse más allá de los 10 m/s, difícilmente baja de 0.3 o incluso 0.5 m/s, lo que limita mucho las posibilidades de uso en entornos próximos al confort, donde las velocidades máximas permitidas son de 0.5 o incluso 0.25 m/s. s.

Anemómetros de hilo caliente

De hecho, estos aparatos son complementarios a los anemómetros de molinete en el sentido de que su rango dinámico se extiende esencialmente de 0 a 1 m/s. Son aparatos que dan una estimación instantánea de la velocidad en un punto del espacio, por lo que es necesario utilizar valores medios en el tiempo y en el espacio. Estos aparatos también suelen ser muy direccionales, y las observaciones anteriores también se aplican. Finalmente, la medición es correcta sólo a partir del momento en que la temperatura del aparato ha alcanzado la del ambiente a evaluar.

 

Atrás

Leer 7701 veces Ultima modificacion el Jueves, octubre 13 2011 21: 14

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Referencias de calor y frío

ACGIH (Conferencia Americana de Higienistas Industriales Gubernamentales). 1990. Valores límite de umbral e índices de exposición biológica para 1989–1990. Nueva York: ACGIH.

—. 1992. Estrés por frío. En Valores Límite Umbral para Agentes Físicos en el Ambiente de Trabajo. Nueva York: ACGIH.

Bedford, T. 1940. El calor ambiental y su medición. Memorándum de investigación médica n.° 17. Londres: Oficina de papelería de Su Majestad.

Escotilla Belding, HS y TF. 1955. Índice para evaluar el estrés por calor en términos de tensión fisiológica resultante. Tubería de calefacción Aire acondicionado 27:129–136.

Bitel, JHM. 1987. La deuda de calor como índice de adaptación al frío en los hombres. J Appl Physiol 62(4):1627–1634.

Bittel, JHM, C Nonotte-Varly, GH Livecchi-Gonnot, GLM Savourey y AM Hanniquet. 1988. Aptitud física y reacciones termorreguladoras en un ambiente frío en hombres. J Appl Physiol 65:1984-1989.

Bittel, JHM, GH Livecchi-Gonnot, AM Hanniquet y JL Etienne. 1989. Cambios térmicos observados antes y después del viaje de JL Etienne al Polo Norte. Eur J Appl Physiol 58:646–651.

Bligh, J y KG Johnson. 1973. Glosario de términos de fisiología térmica. J Appl Physiol 35(6):941–961.

Botsford, JH. 1971. Un termómetro de globo húmedo para medir el calor ambiental. Am Ind Hyg J 32:1–10.

Boutelier, C. 1979. Survie et protection des équipages en cas d'immersion accidentelle en eau froide. Neuilly-sur-Seine: AGARD AG 211.

Brouha, L. 1960. Fisiología en la Industria. Nueva York: Pergamon Press.

Burton, AC y OG Edholm. 1955. Hombre en un Ambiente Frío. Londres: Edward Arnold.

Chen, F, H Nilsson y RI Holmér. 1994. Respuestas de enfriamiento de la yema del dedo en contacto con una superficie de aluminio. Am Ind Hyg Assoc J 55(3):218-22.

Comité Europeo de Normalización (CEN). 1992. EN 344. Ropa de Protección Contra el Frío. Bruselas: CEN.

—. 1993. EN 511. Guantes de Protección Contra el Frío. Bruselas: CEN.

Comisión de las Comunidades Europeas (CEC). 1988. Actas de un seminario sobre índices de estrés por calor. Luxemburgo: CEC, Dirección de Salud y Seguridad.

Daanen, HAM. 1993. Deterioro del rendimiento manual en condiciones de frío y viento. AGARD, OTAN, CP-540.

Dasler, AR. 1974. Ventilación y estrés térmico, en tierra y a flote. En el Capítulo 3, Manual de Medicina Preventiva Naval. Washington, DC: Departamento de Marina, Oficina de Medicina y Cirugía.

—. 1977. Estrés por calor, funciones laborales y límites fisiológicos de exposición al calor en el hombre. En Análisis Térmico—Confort Humano—Ambientes Interiores. NBS Special Publication 491. Washington, DC: Departamento de Comercio de EE. UU.

Deutsches Institut für Normierung (DIN) 7943-2. 1992. Schlafsäcke, Thermophysiologische Prufung. Berlín: DIN.

Dubois, D y EF Dubois. 1916. Calorimetría clínica X: una fórmula para estimar el área de superficie adecuada si se conocen la altura y el peso. Arco Int Med 17: 863–871.

Eagan, CJ. 1963. Introducción y terminología. Fed Proc 22:930–933.

Edwards, JSA, DE Roberts y SH Mutter. 1992. Relaciones para uso en ambiente frío. J Vida Silvestre Med 3:27–47.

Enander, A. 1987. Reacciones sensoriales y rendimiento en frío moderado. Tesis doctoral. Solna: Instituto Nacional de Salud Ocupacional.

Fuller, FH y L Brouha. 1966. Nuevos métodos de ingeniería para evaluar el entorno laboral. ASHRAE J 8(1):39–52.

Fuller, FH y PE Smith. 1980. La eficacia de los procedimientos de trabajo preventivo en un taller caliente. En FN Dukes-Dobos y A Henschel (eds.). Actas de un taller de NIOSH sobre las normas recomendadas para el estrés por calor. Washington DC: publicación n.° 81-108 del DHSS (NIOSH).

—. 1981. Evaluación del estrés por calor en un taller caluroso mediante mediciones fisiológicas. Am Ind Hyg Assoc J 42:32–37.

Gagge, AP, AP Fobelets y LG Berglund. 1986. Un índice predictivo estándar de la respuesta humana al ambiente térmico. ASHRAE Trans 92:709–731.

Gisolfi, CV y ​​CB Wenger. 1984. Regulación de la temperatura durante el ejercicio: Viejos conceptos, nuevas ideas. Ejercicio Deporte Sci Rev 12:339–372.

Givoni, B. 1963. Un nuevo método para evaluar la exposición al calor industrial y la carga de trabajo máxima permisible. Documento presentado al Congreso Biometeorológico Internacional en París, Francia, septiembre de 1963.

—. 1976. Hombre, Clima y Arquitectura, 2ª ed. Londres: Ciencias Aplicadas.

Givoni, B y RF Goldman. 1972. Predicción de la respuesta de la temperatura rectal al trabajo, el medio ambiente y la ropa. J Appl Physiol 2(6):812–822.

—. 1973. Predicción de la respuesta del ritmo cardíaco al trabajo, el entorno y la ropa. J Appl Physiol 34(2):201–204.

Goldman, RF. 1988. Normas para la exposición humana al calor. En Ergonomía Ambiental, editado por IB Mekjavic, EW Banister y JB Morrison. Londres: Taylor & Francis.

Hales, JRS y DAB Richards. 1987. Estrés por calor. Ámsterdam, Nueva York: Oxford Excerpta Medica.

Hammel, HT. 1963. Resumen de patrones térmicos comparativos en el hombre. Fed Proc 22: 846–847.

Havenith, G, R Heus y WA Lotens. 1990. Índice de ventilación, resistencia al vapor y permeabilidad de la ropa: Cambios debido a la postura, el movimiento y el viento. Ergonomía 33:989–1005.

Hayes. 1988. En Ergonomía Ambiental, editado por IB Mekjavic, EW Banister y JB Morrison. Londres: Taylor & Francis.

Holmér, I. 1988. Evaluación del estrés por frío en términos del aislamiento de ropa requerido—IREQ. Int J Ind Erg 3:159–166.

—. 1993. Trabajar en el frío. Revisión de métodos para la evaluación del estrés por frío. Int Arch Occ Env Health 65:147–155.

—. 1994. Estrés por frío: Parte 1—Pautas para el profesional. Int J Ind Erg 14:1–10.

—. 1994. Estrés por frío: Parte 2—La base científica (base de conocimientos) para la guía. Int J Ind Erg 14:1–9.

Houghton, FC y CP Yagoglou. 1923. Determinación de líneas de igual comodidad. JASHVE 29:165–176.

Organización Internacional de Normalización (ISO). 1985. ISO 7726. Ambientes térmicos: instrumentos y métodos para medir cantidades físicas. Ginebra: ISO.

—. 1989a. ISO 7243. Ambientes cálidos: estimación del estrés por calor en el trabajador, basado en el índice WBGT (temperatura de globo de bulbo húmedo). Ginebra: ISO.

—. 1989b. ISO 7933. Ambientes cálidos: determinación e interpretación analíticas del estrés térmico mediante el cálculo de la tasa de sudoración requerida. Ginebra: ISO.

—. 1989c. ISO DIS 9886. Ergonomía: evaluación de la tensión térmica mediante mediciones fisiológicas. Ginebra: ISO.

—. 1990. ISO 8996. Ergonomía: determinación de la producción de calor metabólico. Ginebra: ISO.

—. 1992. ISO 9886. Evaluación de la Deformación Térmica por Mediciones Fisiológicas. Ginebra: ISO.

—. 1993. Valoración de la Influencia del Ambiente Térmico mediante Escalas de Juicio Subjetivo. Ginebra: ISO.

—. 1993. ISO CD 12894. Ergonomía del entorno térmico: supervisión médica de personas expuestas a entornos cálidos o fríos. Ginebra: ISO.

—. 1993. ISO TR 11079 Evaluación de ambientes fríos—Determinación del aislamiento de ropa requerido, IREQ. Ginebra: ISO. (Reporte técnico)

—. 1994. ISO 9920. Ergonomía—Estimación de las características térmicas de un conjunto de ropa. Ginebra: ISO.

—. 1994. ISO 7730. Ambientes Térmicos Moderados—Determinación de los Índices PMV y PPD y Especificación de las Condiciones para el Confort Térmico. Ginebra: ISO.

—. 1995. ISO DIS 11933. Ergonomía del Ambiente Térmico. Principios y Aplicación de Normas Internacionales. Ginebra: ISO.

Kenneth, W, P Sathasivam, AL Vallerand y TB Graham. 1990. Influencia de la cafeína en las respuestas metabólicas de los hombres en reposo a 28 y 5C. J Appl Physiol 68(5):1889–1895.

Kenney, WL y SR Fowler. 1988. Densidad y producción de glándulas sudoríparas ecrinas activadas por metilcolina en función de la edad. J Appl Physiol 65:1082–1086.

Kerslake, DMck. 1972. El estrés de los ambientes cálidos. Cambridge: Prensa de la Universidad de Cambridge.

LeBlanc, J. 1975. Hombre en el frío. Springfield, IL, EE. UU.: Charles C Thomas Publ.

Leithead, CA y AR Lind. 1964. Estrés por calor y trastornos de la cabeza. Londres: Cassell.

Lind, AR. 1957. Un criterio fisiológico para establecer límites ambientales térmicos para el trabajo de todos. J Appl Physiol 18:51–56.

Loten, WA. 1989. El aislamiento real de la ropa multicapa. Scand J Work Environ Health 15 Supl. 1:66–75.

—. 1993. Transferencia de calor de humanos usando ropa. Tesis, Universidad Técnica. Delft, Países Bajos. (ISBN 90-6743-231-8).

Lotens, WA y G Havenith. 1991. Cálculo de aislamiento de ropa y resistencia al vapor. Ergonomía 34:233–254.

Maclean, D y D Emslie-Smith. 1977. Hipotermia accidental. Oxford, Londres, Edimburgo, Melbourne: Blackwell Scientific Publication.

Macpherson, RK. 1960. Respuestas fisiológicas a ambientes calientes. Serie de Informes Especiales del Consejo de Investigación Médica No. 298. Londres: HMSO.

Martineau, L y I Jacob. 1988. Utilización de glucógeno muscular durante la termogénesis por escalofríos en humanos. J Appl Physiol 56:2046–2050.

Maughan, RJ. 1991. Pérdida y reemplazo de líquidos y electrolitos en el ejercicio. J Sport Sci 9: 117–142.

McArdle, B, W Dunham, HE Halling, WSS Ladell, JW Scalt, ML Thomson y JS Weiner. 1947. La predicción de los efectos fisiológicos de ambientes cálidos y cálidos. Consejo de Investigación Médica Rep 47/391. Londres: RNP.

McCullough, EA, BW Jones y PEJ Huck. 1985. Una base de datos completa para estimar el aislamiento de la ropa. ASHRAE Trans 91:29–47.

McCullough, EA, BW Jones y T Tamura. 1989. Una base de datos para determinar la resistencia a la evaporación de la ropa. ASHRAE Trans 95:316–328.

McIntyre, DA. 1980. Clima interior. Londres: Applied Science Publishers Ltd.

Mekjavic, IB, EW Banister y JB Morrison (eds.). 1988. Ergonomía Ambiental. Filadelfia: Taylor & Francis.

Nielsen, B. 1984. Deshidratación, rehidratación y termorregulación. En E Jokl y M Hebbelinck (eds.). Medicina y Ciencias del Deporte. Basilea: S. Karger.

—. 1994. Estrés por calor y aclimatación. Ergonomía 37(1):49–58.

Nielsen, R, BW Olesen y PO Fanger. 1985. Efecto de la actividad física y la velocidad del aire sobre el aislamiento térmico de la ropa. Ergonomía 28:1617–1632.

Instituto Nacional de Seguridad y Salud Ocupacional (NIOSH). 1972. Exposición ocupacional a ambientes calientes. HSM 72-10269. Washington, DC: Departamento de Educación para la Salud y Bienestar de EE. UU.

—. 1986. Exposición ocupacional a ambientes calientes. Publicación NIOSH No. 86-113. Washington, DC: NIOSH.

Nishi, Y y AP Gagge. 1977. Escala de temperatura efectiva utilizada para ambientes hipobáricos e hiperbáricos. Espacio de aviación y Envir Med 48: 97–107.

Olesen, BW. 1985. Estrés por calor. En Bruel and Kjaer Technical Review No. 2. Dinamarca: Bruel and Kjaer.

Olesen, BW, E Sliwinska, TL Madsen y PO Fanger. 1982. Efecto de la postura corporal y la actividad en el aislamiento térmico de la ropa: Mediciones por un maniquí térmico móvil. ASHRAE Trans 88:791–805.

Pandolf, KB, BS Cadarette, MN Sawka, AJ Young, RP Francesconi y RR Gonzales. 1988. J Appl Physiol 65(1):65–71.

Parsons, KC. 1993. Ambientes Térmicos Humanos. Hampshire, Reino Unido: Taylor & Francis.

Reed, HL, D Brice, KMM Shakir, KD Burman, MM D'Alesandro y JT O'Brian. 1990. Fracción libre disminuida de hormonas tiroideas después de una residencia prolongada en la Antártida. J Appl Physiol 69:1467–1472.

Rowell, LB. 1983. Aspectos cardiovasculares de la termorregulación humana. Circ. Res. 52:367–379.

—. 1986. Regulación de la circulación humana durante el estrés físico. Oxford: OUP.

Sato, K y F Sato. 1983. Variaciones individuales en la estructura y función de la glándula sudorípara ecrina humana. Soy J Physiol 245:R203–R208.

Savourey, G, AL Vallerand y J Bittel. 1992. Adaptación general y local después de un viaje de esquí en un entorno ártico severo. Eur J Appl Physiol 64:99–105.

Savourey, G, JP Caravel, B Barnavol y J Bittel. 1994. Cambios en la hormona tiroidea en un ambiente de aire frío después de la aclimatación local al frío. J Appl Physiol 76(5):1963–1967.

Savourey, G, B Barnavol, JP Caravel, C Feuerstein y J Bittel. 1996. Adaptación hipotérmica al frío general inducida por la aclimatación al frío local. Eur J Appl Physiol 73:237–244.

Vallerand, AL, I Jacob y MF Kavanagh. 1989. Mecanismo de tolerancia al frío mejorada por una mezcla de efedrina/cafeína en humanos. J Appl Physiol 67:438–444.

van Dilla, MA, R Day y PA Siple. 1949. Problemas especiales de las manos. En Physiology of Heat Regulation, editado por R Newburgh. Filadelfia: Saunders.

Vellar, OD. 1969. Pérdidas de nutrientes a través del sudor. Oslo: Universitetsforlaget.

Vogt, JJ, V Candas, JP Libert and F Daull. 1981. Tasa de sudor requerida como índice de tensión térmica en la industria. En Bioingeniería, fisiología térmica y comodidad, editado por K Cena y JA Clark. Ámsterdam: Elsevier. 99–110.

Wang, LCH, SFP Man y AN Bel Castro. 1987. Respuestas metabólicas y hormonales en la resistencia al frío aumentada por teofilina en los hombres. J Appl Physiol 63:589–596.

Organización Mundial de la Salud (OMS). 1969. Factores de salud implicados en el trabajo en condiciones de estrés por calor. Informe técnico 412. Ginebra: OMS.

Wissler, EH. 1988. Una revisión de los modelos térmicos humanos. En Ergonomía Ambiental, editado por IB Mekjavic, EW Banister y JB Morrison. Londres: Taylor & Francis.

Woodcock, AH. 1962. Transferencia de humedad en sistemas textiles. Parte I. Textil Res J 32:628–633.

Yaglou, CP y D Minard. 1957. Control de bajas por calor en centros de instrucción militar. Am Med Assoc Arch Ind Health 16:302–316 y 405.