Viernes, marzo de 11 2011 16: 26

Radón

Valora este artículo
(Vote 1)

La mayor parte de la radiación a la que estará expuesto un ser humano durante su vida proviene de fuentes naturales en el espacio exterior o de materiales presentes en la corteza terrestre. Los materiales radiactivos pueden afectar al organismo desde fuera o, si se inhalan o se ingieren con los alimentos, desde dentro. La dosis recibida puede ser muy variable porque depende, por un lado, de la cantidad de minerales radiactivos presentes en la zona del mundo donde vive la persona, que está relacionada con la cantidad de nucleidos radiactivos en el aire y la cantidad que se encuentra. tanto en los alimentos como especialmente en el agua potable—y, por otro, en el uso de ciertos materiales de construcción y el uso de gas o carbón como combustible, así como el tipo de construcción empleada y los hábitos tradicionales de las personas en la localidad determinada .

Hoy en día, el radón se considera la fuente más frecuente de radiación natural. Junto con sus “hijos”, o radionucleidos formados por su desintegración, el radón constituye aproximadamente las tres cuartas partes de la dosis equivalente efectiva a la que están expuestos los humanos debido a las fuentes terrestres naturales. La presencia de radón está asociada con un aumento en la ocurrencia de cáncer de pulmón debido al depósito de sustancias radiactivas en la región bronquial.

El radón es un gas incoloro, inodoro e insípido siete veces más pesado que el aire. Dos isótopos ocurren con mayor frecuencia. Uno es el radón-222, un radionúclido presente en la serie radiactiva de la desintegración del uranio-238; su principal fuente en el medio ambiente son las rocas y el suelo en el que se encuentra su predecesor, el radio-226. El otro es el radón-220 de la serie radiactiva del torio, que tiene una incidencia menor que el radón-222.

El uranio se encuentra ampliamente en la corteza terrestre. La concentración media de radio en el suelo es del orden de 25 Bq/kg. Un Becquerel (Bq) es la unidad del sistema internacional y representa una unidad de actividad de radionúclido equivalente a una desintegración por segundo. La concentración media de gas radón en la atmósfera en la superficie de la tierra es de 3 Bq/m3, con un rango de 0.1 (sobre los océanos) a 10 Bq/m3. El nivel depende de la porosidad del suelo, la concentración local de radio-226 y la presión atmosférica. Dado que la vida media del radón-222 es de 3.823 días, la mayor parte de la dosificación no es causada por el gas sino por los hijos del radón.

El radón se encuentra en los materiales existentes y fluye desde la tierra por todas partes. Por sus características se dispersa fácilmente al aire libre, pero tiende a concentrarse en espacios cerrados, especialmente en cuevas y edificios, y especialmente en espacios bajos donde su eliminación es difícil sin una ventilación adecuada. En las regiones templadas, se estima que las concentraciones de radón en el interior son del orden de ocho veces más altas que las concentraciones en el exterior.

La exposición al radón por parte de la mayoría de la población, por lo tanto, ocurre principalmente dentro de los edificios. Las concentraciones medianas de radón dependen, básicamente, de las características geológicas del suelo, de los materiales de construcción utilizados para la edificación y de la cantidad de ventilación que recibe.

La principal fuente de radón en espacios interiores es el radio presente en el suelo sobre el que descansa el edificio o los materiales empleados en su construcción. Otras fuentes importantes, aunque su influencia relativa es mucho menor, son el aire exterior, el agua y el gas natural. La Figura 1 muestra la contribución que cada fuente hace al total.

Figura 1. Fuentes de radón en el ambiente interior.

AIRE035F1

Los materiales de construcción más comunes, como la madera, los ladrillos y los bloques de hormigón, emiten relativamente poco radón, en contraste con el granito y la piedra pómez. Sin embargo, los principales problemas están causados ​​por el uso de materiales naturales como la pizarra de alumbre en la producción de materiales de construcción. Otra fuente de problemas ha sido el uso de subproductos del tratamiento de minerales fosfatados, el uso de subproductos de la producción de aluminio, el uso de escoria o escoria del tratamiento del mineral de hierro en altos hornos, y el uso de cenizas de la combustión del carbón. Además, en algunos casos, los residuos derivados de la extracción de uranio también se utilizaron en la construcción.

El radón puede entrar en el agua y el gas natural en el subsuelo. El agua que se utiliza para abastecer un edificio, especialmente si proviene de pozos profundos, puede contener cantidades significativas de radón. Si esta agua se utiliza para cocinar, la ebullición puede liberar gran parte del radón que contiene. Si el agua se consume fría, el organismo elimina fácilmente los gases, por lo que beber esta agua no suele suponer un riesgo importante. Quemar gas natural en estufas sin chimenea, en calefactores y en otros electrodomésticos también puede provocar un aumento del radón en los espacios interiores, especialmente en las viviendas. A veces el problema es más agudo en los baños, porque el radón en el agua y en el gas natural que se usa para el calentador de agua se acumula si no hay suficiente ventilación.

Dado que hace tan solo unos años se desconocían los posibles efectos del radón sobre la población, los datos disponibles sobre las concentraciones encontradas en espacios interiores se limitan a aquellos países que, por sus características o circunstancias especiales, son más sensibles a este problema . Lo que sí se sabe con certeza es que es posible encontrar concentraciones en espacios interiores muy por encima de las concentraciones que se encuentran al aire libre en la misma región. En Helsinki (Finlandia), por ejemplo, se han encontrado concentraciones de radón en el aire interior que son cinco mil veces más altas que las concentraciones que normalmente se encuentran al aire libre. Esto puede deberse en gran parte a las medidas de ahorro energético que pueden favorecer notablemente la concentración de radón en los espacios interiores, especialmente si están muy aislados. Los edificios estudiados hasta ahora en diferentes países y regiones muestran que las concentraciones de radón que se encuentran dentro de ellos presentan una distribución que se aproxima al logaritmo normal. Vale la pena señalar que un pequeño número de edificios en cada región muestran concentraciones diez veces superiores a la mediana. Los valores de referencia para el radón en espacios interiores y las recomendaciones correctivas de varias organizaciones se brindan en "Reglamentos, recomendaciones, pautas y estándares" en este capítulo.

En conclusión, la principal forma de prevenir la exposición al radón se basa en evitar la construcción en áreas que por su naturaleza emiten una mayor cantidad de radón al aire. Cuando eso no sea posible, los pisos y las paredes deben sellarse adecuadamente y no deben usarse materiales de construcción que contengan material radiactivo. Los espacios interiores, especialmente los sótanos, deben tener una cantidad adecuada de ventilación.

 

Atrás

Leer 6694 veces Última modificación el viernes 12 de agosto de 2011 20:52

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Referencias de calidad del aire interior

Conferencia Americana de Higienistas Industriales Gubernamentales (ACGIH). 1989. Directrices para la Evaluación de Bioaerosoles en el Ambiente Interior. Cincinnati, Ohio: ACGIH.

Sociedad Americana para Pruebas de Materiales (ASTM). 1989. Guía estándar para determinaciones ambientales a pequeña escala de emisiones orgánicas de materiales/productos de interior. Atlanta: ASTM.

Sociedad Estadounidense de Ingenieros de Calefacción, Refrigeración y Aire Acondicionado (ASHRAE). 1989. Ventilación para una calidad de aire interior aceptable. Atlanta: ASHRAE.

Brownson, RC, MCR Alavanja, ET Hock y TS Loy. 1992. Tabaquismo pasivo y cáncer de pulmón en mujeres no fumadoras. Am J Public Health 82:1525-1530.

Brownson, RC, MCR Alavanja y ET Hock. 1993. Confiabilidad de las historias de exposición pasiva al humo en un estudio de casos y controles de cáncer de pulmón. Int J Epidemiol 22:804-808.

Brunnemann, KD y D Hoffmann. 1974. El pH del humo del tabaco. Alimento Cosmético Toxicol 12:115-124.

—. 1991. Estudios analíticos sobre N-nitrosaminas en tabaco y humo de tabaco. Rec Adv Tabaco Sci 17:71-112.

COST 613. 1989. Emisiones de formaldehído de materiales a base de madera: Directrices para la determinación de concentraciones en estado estacionario en cámaras de prueba. En Calidad del aire interior y su impacto en el hombre. Luxemburgo: CE.

—. 1991. Directrices para la caracterización de compuestos orgánicos volátiles emitidos por materiales y productos de interior utilizando cámaras de prueba pequeñas. En Calidad del aire interior y su impacto en el hombre. Luxemburgo: CE.

Eudy, LW, FW Thome, DK Heavner, CR Green y BJ Ingebrethsen. 1986. Estudios sobre la distribución de la fase de partículas de vapor de la nicotina ambiental mediante métodos selectivos de captura y detección. En Actas de la 20.ª Reunión Anual de la Asociación de Control de la Contaminación del Aire, del 27 al XNUMX de junio.

Feeley, JC. 1988. Legionelosis: Riesgo asociado con el diseño de edificios. En Diseño Arquitectónico y Contaminación Microbiana Interior, editado por RB Kundsin. Oxford: OUP.

Flannigan, B. 1992. Contaminantes microbiológicos de interior: fuentes, especies, caracterización: una evaluación. En Aspectos químicos, microbiológicos, de salud y comodidad de la calidad del aire interior: estado del arte en SBS, editado por H Knöppel y P Wolkoff. Dordrecht: Kluwer.

—. 1993. Enfoques para la evaluación de la flora microbiana de los edificios. Entornos para las Personas: IAQ '92. Atlanta: ASHRAE.

Freixa, A. 1993. Calidad Del Aire: Gases Presenta a Bajas Concentraciones En Ambientes Cerrados. Madrid: Instituto Nacional de Seguridad e Higiene en el Trabajo.

Gomel, M, B Oldenburg, JM Simpson y N Owen. 1993. Reducción del riesgo cardiovascular en el lugar de trabajo: un ensayo aleatorio de evaluación de riesgos para la salud, educación, asesoramiento e incentivos. Am J Public Health 83:1231-1238.

Guerin, MR, RA Jenkins y BA Tomkins. 1992. La Química del Humo de Tabaco Ambiental. Chelsea, Michigan: Lewis.

Hammond, SK, J Coghlin, PH Gann, M Paul, K Taghizadek, PL Skipper y SR Tannenbaum. 1993. Relación entre el humo de tabaco ambiental y los niveles de aducto carcinógeno-hemoglobina en no fumadores. J Natl Cancer Inst 85:474-478.

Hecht, SS, SG Carmella, SE Murphy, S Akerkar, KD Brunnemann y D Hoffmann. 1993. Un carcinógeno pulmonar específico del tabaco en hombres expuestos al humo del cigarrillo. New Engl J Med 329: 1543-1546.

Heller, WD, E Sennewald, JG Gostomzyk, G Scherer y F Adlkofer. 1993. Validación de la exposición al HTA en una población representativa del sur de Alemania. Aire interior Publ Conf 3: 361-366.

Hilt, B, S Langard, A Anderson y J Rosenberg. 1985. Exposición al asbesto, hábitos de fumar e incidencia de cáncer entre trabajadores de producción y mantenimiento en una planta eléctrica. Am J Ind Med 8:565-577.

Hoffmann, D y SS Hecht. 1990. Avances en la carcinogénesis del tabaco. En Handbook of Experimental Pharmacology, editado por CS Cooper y PL Grover. Nueva York: Springer.

Hoffmann, D y EL Wynder. 1976. Tabaquismo y cáncer ocupacional. Prevenir Med 5:245-261.
Agencia Internacional para la Investigación del Cáncer (IARC). 1986. Tabaquismo. vol. 38. Lyon: IARC.

—. 1987a. Bis(clorometil)éter y clorometilmetiléter. vol. 4 (1974), suplemento. 7 (1987). Lyon: IARC.

—. 1987b. Producción de coque. vol. 4 (1974), suplemento. 7 (1987). Lyon: IARC.

—. 1987c. Carcinógenos ambientales: métodos de análisis y exposición. vol. 9. Tabaquismo pasivo. Publicaciones científicas de IARC, no. 81. Lyon: IARC.

—. 1987d. Níquel y Compuestos de Níquel. vol. 11 (1976), suplemento. 7 (1987). Lyon: IARC.

—. 1988. Evaluación general de la carcinogenicidad: una actualización de las monografías 1 a 42 de la IARC. vol. 43. Lyon: IARC.

Johanning, E, PR Morey y BB Jarvis. 1993. Investigación clínico-epidemiológica de los efectos en la salud causados ​​por la contaminación de edificios por Stachybotrys atra. En Actas de la Sexta Conferencia Internacional sobre Clima y Calidad del Aire Interior, Helsinki.

Kabat, GC y EL Wynder. 1984. Incidencia de cáncer de pulmón en no fumadores. Cáncer 53:1214-1221.

Luceri, G, G Peiraccini, G Moneti y P Dolara. 1993. Las aminas aromáticas primarias del humo del cigarrillo son contaminantes comunes del aire interior. Toxicol Ind. Salud 9:405-413.

Mainville, C, PL Auger, W Smorgawiewicz, D Neculcea, J Neculcea y M Lévesque. 1988. Micotoxinas y síndrome de fatiga extrema en un hospital. En Healthy Buildings, editado por B Petterson y T Lindvall. Estocolmo: Consejo Sueco para la Investigación de la Construcción.

Masi, MA et al. 1988. Exposición ambiental al humo del tabaco y función pulmonar en adultos jóvenes. Am Rev Respir Dis 138:296-299.

McLaughlin, JK, MS Dietz, ES Mehl y WJ Blot. 1987. Confiabilidad de la información sustituta sobre el tabaquismo por tipo de informante. Am J Epidemiol 126:144-146.

McLaughlin, JK, JS Mandel, ES Mehl y WJ Blot. 1990. Comparación de familiares con autorespondedores con respecto a la pregunta sobre el consumo de cigarrillos, café y alcohol. Epidemiología 1(5):408-412.

Medina, E, R Medina y AM Kaempffer. 1988. Efectos del tabaquismo doméstico sobre la frecuencia de enfermedades respiratorias infantiles. Rev. Chilena Pediátrica 59:60-64.

Miller, J.D. 1993. Los hongos y el ingeniero de la construcción. Entornos para las Personas: IAQ '92. Atlanta: ASHRAE.

Morey, PR. 1993a. Eventos microbiológicos después de un incendio en un edificio de gran altura. En Aire Interior '93. Helsinki: Aire interior '93.

—. 1993b. Uso del estándar de comunicación de peligros y cláusula de deber general durante la remediación de la contaminación fúngica. En Aire Interior '93. Helsinki: Aire interior '93.

Nathanson, T. 1993. Calidad del aire interior en edificios de oficinas: una guía técnica. Ottawa: Salud Canadá.

Departamento de Salud de la Ciudad de Nueva York. 1993. Directrices sobre evaluación y remediación de Stachybotrys Atra en ambientes interiores. Nueva York: Departamento de Salud de la Ciudad de Nueva York.

Pershagen, G, S Wall, A Taube y I Linnman. 1981. Sobre la interacción entre la exposición ocupacional al arsénico y el tabaquismo y su relación con el cáncer de pulmón. Scand J Work Environ Health 7:302-309.

Riedel, F, C Bretthauer y CHL Rieger. 1989. Einfluss von paasivem Rauchen auf die bronchiale Reaktivitact bei Schulkindern. Prax Neumol 43:164-168.

Saccomanno, G, GC Huth y O Auerbach. 1988. Relación de las hijas del radón radiactivo y el tabaquismo en la génesis del cáncer de pulmón en los mineros de uranio. Cáncer 62:402-408.

Sorenson, WG. 1989. Impacto en la salud de las micotoxinas en el hogar y el lugar de trabajo: una descripción general. En Biodeterioration Research 2, editado por CE O'Rear y GC Llewellyn. Nueva York: Pleno.

Fondo Sueco para el Entorno Laboral. 1988. ¿Medir o tomar medidas correctivas directas? Estrategias de Investigación y Medición en el Ambiente de Trabajo. Estocolmo: Arbetsmiljöfonden [Fondo sueco para el entorno laboral].

Agencia de Protección Ambiental de los Estados Unidos (US EPA). 1992. Efectos sobre la salud respiratoria del tabaquismo pasivo: cáncer de pulmón y otros trastornos. Washington, DC: EPA de EE. UU.

Consejo Nacional de Investigación de EE.UU. 1986. Humo de tabaco ambiental: exposición de medición y evaluación del efecto sobre la salud. Washington, DC: Academia Nacional de Ciencias.

Cirujano General de EE.UU. 1985. Las consecuencias para la salud del tabaquismo: cáncer y enfermedad pulmonar crónica en el lugar de trabajo. Washington, DC: DHHS (PHS).

—. 1986. Las consecuencias para la salud del tabaquismo involuntario. Washington, DC: DHHS (CDC).

Wald, NJ, J Borcham, C Bailey, C Ritchie, JE Haddow y J Knight. 1984. La cotinina urinaria como marcador de respirar el humo del tabaco de otras personas. Lanceta 1:230-231.

Wanner, HU, AP Verhoeff, A Colombi, B Flannigan, S Gravesen, A Mouilleseux, A Nevalainen, J Papadakis y K Seidel. 1993. Partículas biológicas en ambientes interiores. Calidad del aire interior y su impacto en el hombre. Bruselas: Comisión de las Comunidades Europeas.

White, JR y HF Froeb. 1980. Disfunción de las vías respiratorias pequeñas en no fumadores expuestos crónicamente al humo del tabaco. New Engl J Med 302: 720-723.

Organización Mundial de la Salud (OMS). 1987. Pautas de calidad del aire para Europa. Serie Europea, núm. 23. Copenhague: Publicaciones regionales de la OMS.