Viernes, abril 01 2011 00: 48

Riesgos de hardware

Valora este artículo
(13 votos)

Este artículo aborda los peligros de las “máquinas”, aquellos que son específicos de los accesorios y el hardware utilizado en los procesos industriales asociados con recipientes a presión, equipos de procesamiento, máquinas poderosas y otras operaciones intrínsecamente riesgosas. Este artículo no aborda los peligros de los trabajadores, que implican las acciones y el comportamiento de las personas, como resbalones en las superficies de trabajo, caídas desde alturas y peligros por el uso de herramientas ordinarias. Este artículo se centra en los peligros de las máquinas, que son característicos de un entorno de trabajo industrial. Dado que estos peligros amenazan a cualquier persona presente e incluso pueden ser una amenaza para los vecinos y el medio ambiente externo, los métodos de análisis y los medios de prevención y control son similares a los métodos utilizados para tratar los riesgos ambientales de las actividades industriales.

Peligros de la máquina

El hardware de buena calidad es muy confiable y la mayoría de las fallas son causadas por efectos secundarios como fuego, corrosión, mal uso, etc. Sin embargo, el hardware puede destacarse en ciertos accidentes, porque un componente de hardware que falla suele ser el eslabón más visible o visiblemente prominente de la cadena de eventos. Aunque el término hardware se utiliza en un sentido amplio, se han tomado ejemplos ilustrativos de fallas de hardware y su “alrededor” inmediato en la causalidad de accidentes de lugares de trabajo industriales. Los candidatos típicos para la investigación de los peligros de las "máquinas" incluyen, entre otros, los siguientes:

  • recipientes a presión y tuberías
  • motores, máquinas, turbinas y otras máquinas rotativas
  • reactores químicos y nucleares
  • andamios, puentes, etc.
  • láseres y otros radiadores de energía
  • maquinaria de corte y perforación, etc.
  • equipo de soldadura.

 

Efectos de la energía

Los peligros del hardware pueden incluir un uso incorrecto, errores de construcción o sobrecarga frecuente y, en consecuencia, su análisis y mitigación o prevención pueden seguir direcciones bastante diferentes. Sin embargo, las formas de energía física y química que eluden el control humano a menudo existen en el corazón de los peligros del hardware. Por lo tanto, un método muy general para identificar los peligros del hardware es buscar las energías que normalmente se controlan con la pieza real del equipo o la maquinaria, como un recipiente a presión que contiene amoníaco o cloro. Otros métodos utilizan el propósito o la función prevista del hardware real como punto de partida y luego buscan los efectos probables de mal funcionamiento y fallas. Por ejemplo, un puente que no cumpla con su función principal expondrá a los sujetos en el puente al riesgo de caerse; otros efectos del colapso de un puente serán los secundarios de la caída de elementos, ya sean partes estructurales del puente u objetos situados sobre el puente. Más adelante en la cadena de consecuencias, puede haber efectos derivados relacionados con funciones en otras partes del sistema que dependían de que el puente desempeñara su función correctamente, como la interrupción del tráfico vehicular de respuesta de emergencia a otro incidente.

Además de los conceptos de "energía controlada" y "función prevista", las sustancias peligrosas deben abordarse haciendo preguntas como "¿Cómo podría liberarse el agente X de los recipientes, tanques o sistemas de tuberías y cómo podría producirse el agente Y?" (cualquiera o ambos pueden ser peligrosos). El agente X puede ser un gas a presión o un solvente, y el agente Y puede ser una dioxina extremadamente tóxica cuya formación se ve favorecida por las temperaturas “adecuadas” en algunos procesos químicos, o puede producirse por oxidación rápida, como resultado de un incendio. . Sin embargo, los posibles peligros suman mucho más que los riesgos de las sustancias peligrosas. Pueden existir condiciones o influencias que permitan que la presencia de un elemento particular de hardware tenga consecuencias dañinas para los humanos.

Entorno de trabajo industrial

Los peligros de las máquinas también implican factores de carga o estrés que pueden ser peligrosos a largo plazo, como los siguientes:

  • temperaturas extremas de trabajo
  • altas intensidades de luz, ruido u otros estímulos
  • mala calidad del aire
  • demandas o cargas de trabajo extremas.

 

Estos peligros pueden reconocerse y tomarse precauciones porque las condiciones peligrosas ya existen. No dependen de algún cambio estructural en el hardware para que se produzca y produzca un resultado dañino, o de algún evento especial para producir daños o lesiones. Los peligros a largo plazo también tienen fuentes específicas en el entorno laboral, pero deben identificarse y evaluarse mediante la observación de los trabajadores y los trabajos, en lugar de solo analizar la construcción y las funciones del hardware.

Hardware peligroso o peligros de la máquina Suelen ser excepcionales y rara vez se encuentran en un entorno de trabajo sólido, pero no se pueden evitar por completo. Varios tipos de energía no controlada, como los siguientes agentes de riesgo, puede ser la consecuencia inmediata de un mal funcionamiento del hardware:

  • emisiones nocivas de gases, líquidos, polvos u otras sustancias peligrosas
  • fuego y explosión
  • altos voltajes
  • caída de objetos, misiles, etc.
  • campos electricos y magneticos
  • cortar, atrapar, etc.
  • desplazamiento de oxigeno
  • radiación nuclear, rayos x y luz láser
  • inundación o ahogamiento
  • chorros de líquido caliente o vapor.

 

Agentes de Riesgo

Objetos en movimiento. Los objetos que caen y vuelan, los flujos de líquido y los chorros de líquido o vapor, como los enumerados, son a menudo las primeras consecuencias externas de la falla del hardware o del equipo, y representan una gran proporción de los accidentes.

Sustancias químicas. Los peligros químicos también contribuyen a los accidentes laborales y afectan al medio ambiente y al público. Los accidentes de Seveso y Bhopal involucraron emisiones químicas que afectaron a numerosos miembros del público, y muchos incendios y explosiones industriales liberaron sustancias químicas y humos a la atmósfera. Los accidentes de tránsito que involucran camiones de reparto de gasolina o químicos u otros transportes de mercancías peligrosas, unen dos agentes de riesgo: objetos en movimiento y sustancias químicas.

Energía electromagnética. Los campos eléctricos y magnéticos, los rayos X y los rayos gamma son manifestaciones del electromagnetismo, pero a menudo se tratan por separado, ya que se encuentran en circunstancias bastante diferentes. Sin embargo, los peligros del electromagnetismo tienen algunos rasgos generales: los campos y la radiación penetran en el cuerpo humano en lugar de hacer contacto únicamente en el área de aplicación, y no pueden detectarse directamente, aunque intensidades muy grandes provocan el calentamiento de las partes del cuerpo afectadas. Los campos magnéticos son creados por el flujo de corriente eléctrica, y se encuentran campos magnéticos intensos en las proximidades de grandes motores eléctricos, equipos de soldadura por arco eléctrico, aparatos de electrólisis, trabajos en metal, etc. Los campos eléctricos acompañan a la tensión eléctrica, e incluso las tensiones de red ordinarias de 200 a 300 voltios provocan la acumulación de suciedad durante varios años, el signo visible de la existencia del campo, un efecto también conocido en conexión con líneas eléctricas de alta tensión, tubos de imagen de TV , monitores de computadora y así sucesivamente.

Los campos electromagnéticos se encuentran principalmente cerca de sus fuentes, pero los campos electromagnéticos radiación es un viajero de largas distancias, como lo ejemplifican las ondas de radio y radar. La radiación electromagnética se dispersa, refleja y amortigua a medida que atraviesa el espacio y se encuentra con objetos, superficies, diferentes sustancias y atmósferas intermedias, y similares; por lo tanto, su intensidad se reduce de varias maneras.

Las características generales de las fuentes de peligro electromagnético (EM) son:

  • Se necesitan instrumentos para detectar la presencia de campos EM o radiación EM.
  • EM no deja huellas primarias en forma de “contaminación”.
  • Los efectos peligrosos suelen ser retardados o a largo plazo, pero en casos graves se producen quemaduras inmediatas.
  • Los rayos X y los rayos gamma son amortiguados, pero no detenidos, por el plomo y otros elementos pesados.
  • Los campos magnéticos y los rayos X se detienen inmediatamente cuando la fuente se desactiva o el equipo se apaga.
  • Los campos eléctricos pueden sobrevivir durante largos períodos después de apagar los sistemas de generación.
  • Los rayos gamma provienen de procesos nucleares y estas fuentes de radiación no se pueden apagar como muchas fuentes EM.

 

Radiación nuclear. Los peligros asociados con la radiación nuclear son motivo de especial preocupación para los trabajadores de las centrales nucleares y de las plantas que trabajan con materiales nucleares, como la fabricación de combustible y el reprocesamiento, transporte y almacenamiento de materia radiactiva. Las fuentes de radiación nuclear también se utilizan en medicina y en algunas industrias para la medición y el control. Uno de los usos más comunes es en alarmas contra incendios/detectores de humo, que usan un emisor de partículas alfa como el americio para monitorear la atmósfera.

Los peligros nucleares se centran principalmente en torno a cinco factores:

  • rayos gamma
  • neutrones
  • partículas beta (electrones)
  • partículas alfa (núcleos de helio)
  • contaminación.

 

Los peligros surgen de la radioactivo Procesos de fisión nuclear y descomposición de materiales radiactivos. Este tipo de radiación es emitida por los procesos del reactor, el combustible del reactor, el material moderador del reactor, por los productos de fisión gaseosos que pueden desarrollarse y por ciertos materiales de construcción que se activan por la exposición a las emisiones radiactivas que surgen de la operación del reactor.

Otros agentes de riesgo. Otras clases de agentes de riesgo que liberan o emiten energía incluyen:

  • Radiación ultravioleta y luz láser.
  • infrasonido
  • sonido de alta intensidad
  • vibración.

 

Activación de los peligros de hardware

Ambos repentino y gradual los cambios de la condición controlada, o “segura”, a una con mayor peligro pueden ocurrir a través de las siguientes circunstancias, que pueden controlarse a través de medios organizacionales apropiados, como la experiencia del usuario, la educación, las habilidades, la vigilancia y la prueba del equipo:

  • desgaste y sobrecargas
  • impacto externo (fuego o impacto)
  • envejecimiento y fracaso
  • suministro incorrecto (energía, materias primas)
  • mantenimiento y reparación insuficientes
  • error de control o proceso
  • mal uso o mala aplicación
  • avería de hardware
  • mal funcionamiento de la barrera.

 

Dado que las operaciones adecuadas no pueden compensar de manera confiable un diseño e instalación inadecuados, es importante considerar todo el proceso, desde la selección y el diseño hasta la instalación, el uso, el mantenimiento y las pruebas, para evaluar el estado y las condiciones reales del elemento de hardware.

Caso de peligro: el tanque de gas presurizado

El gas puede estar contenido en recipientes adecuados para almacenamiento o transporte, como los cilindros de gas y oxígeno que usan los soldadores. A menudo, el gas se maneja a alta presión, lo que permite un gran aumento en la capacidad de almacenamiento, pero con un mayor riesgo de accidentes. El fenómeno accidental clave en el almacenamiento de gas a presión es la creación repentina de un agujero en el tanque, con estos resultados:

  • la función de confinamiento del tanque cesa
  • el gas confinado obtiene acceso inmediato a la atmósfera circundante.

 

El desarrollo de tal accidente depende de estos factores:

  • el tipo y la cantidad de gas en el tanque
  • la situación del agujero en relación con el contenido del tanque
  • el tamaño inicial y la tasa de crecimiento posterior del agujero
  • la temperatura y la presión del gas y del equipo
  • las condiciones del entorno inmediato (fuentes de ignición, personas, etc.).

 

El contenido del tanque puede liberarse casi de inmediato o durante un período de tiempo y dar como resultado diferentes escenarios, desde la explosión de gas libre de un tanque roto hasta liberaciones moderadas y bastante lentas de pequeños pinchazos.

El comportamiento de varios gases en caso de fuga.

Al desarrollar modelos de cálculo de liberación, es muy importante determinar las siguientes condiciones que afectan el comportamiento potencial del sistema:

  • la fase gaseosa detrás del agujero (¿gaseosa o líquida?)
  • condiciones de temperatura y viento
  • la posible entrada de otras sustancias en el sistema o su posible presencia en su entorno
  • Barreras y otros obstáculos.

 

Los cálculos exactos correspondientes a un proceso de liberación en el que el gas licuado escapa de un orificio en forma de chorro y luego se evapora (o, alternativamente, primero se convierte en una neblina de gotas) son difíciles. La especificación de la dispersión posterior de las nubes resultantes también es un problema difícil. Se debe tener en cuenta los movimientos y la dispersión de las emisiones de gas, si el gas forma nubes visibles o invisibles y si el gas se eleva o permanece a nivel del suelo.

Mientras que el hidrógeno es un gas ligero en comparación con cualquier atmósfera, el gas amoníaco (NH3, con un peso molecular de 17.0) se elevará en una atmósfera ordinaria de oxígeno y nitrógeno similar al aire a la misma temperatura y presión. Cloro (Cl2, con un peso molecular de 70.9) y butano (C4H10, mol. wt.58) son ejemplos de productos químicos cuyas fases gaseosas son más densas que el aire, incluso a temperatura ambiente. Acetileno (C2H2, mol. peso 26.0) tiene una densidad de aproximadamente 0.90 g/l, acercándose a la del aire (1.0 g/l), lo que significa que en un entorno de trabajo, el gas de soldadura que se escapa no tendrá una tendencia pronunciada a flotar hacia arriba o a hundirse hacia abajo; por lo tanto puede mezclarse fácilmente con la atmósfera.

Pero el amoníaco liberado de un recipiente a presión como líquido se enfriará al principio como consecuencia de su evaporación y luego puede escapar a través de varios pasos:

  • El amoníaco líquido presurizado emana del orificio del tanque en forma de chorro o nube.
  • Se pueden formar mares de amoníaco líquido en las superficies más cercanas.
  • El amoníaco se evapora, por lo que se enfría a sí mismo y al entorno cercano.
  • El gas amoníaco intercambia gradualmente calor con el entorno y se equilibra con la temperatura ambiente.

 

Incluso una nube de gas ligero puede no surgir inmediatamente de una liberación de gas líquido; primero puede formar una niebla, una nube de gotitas, y permanecer cerca del suelo. El movimiento de la nube de gas y la mezcla/dilución gradual con la atmósfera circundante depende de los parámetros meteorológicos y del entorno circundante: área cerrada, área abierta, casas, tráfico, presencia de público, trabajadores, etc.

Falla del tanque

Las consecuencias de la avería del tanque pueden incluir fuego y explosión, asfixia, envenenamiento y asfixia, como lo demuestra la experiencia con los sistemas de producción y manejo de gas (propano, metano, nitrógeno, hidrógeno, etc.), con tanques de amoníaco o cloro, y con soldadura de gas ( utilizando acetileno y oxígeno). Lo que realmente inicia la formación de un agujero en un tanque tiene una fuerte influencia en el "comportamiento" del agujero, que a su vez influye en la salida de gas, y es crucial para la eficacia de los esfuerzos de prevención. Un recipiente a presión está diseñado y construido para resistir ciertas condiciones de uso e impacto ambiental, y para manejar un determinado gas, o quizás una selección de gases. Las capacidades reales de un tanque dependen de su forma, materiales, soldadura, protección, uso y clima; por lo tanto, la evaluación de su idoneidad como contenedor de gas peligroso debe considerar las especificaciones del diseñador, el historial del tanque, las inspecciones y las pruebas. Las áreas críticas incluyen las costuras de soldadura utilizadas en la mayoría de los recipientes a presión; los puntos donde accesorios como entradas, salidas, soportes e instrumentos están conectados a la embarcación; los extremos planos de tanques cilíndricos como tanques de ferrocarril; y otros aspectos de formas geométricas aún menos óptimas.

Las costuras de soldadura se investigan visualmente, con rayos X o mediante pruebas destructivas de muestras, ya que pueden revelar defectos locales, por ejemplo, en forma de resistencia reducida que podría poner en peligro la resistencia general del recipiente, o incluso ser un punto desencadenante de un tanque agudo. falla.

La resistencia del tanque se ve afectada por el historial de uso del tanque; en primer lugar, por los procesos normales de desgaste y los ataques de arañazos y corrosión típicos de la industria en particular y de la aplicación. Otros parámetros históricos de particular interés incluyen:

  • sobrepresion casual
  • calentamiento o enfriamiento extremo (interno o externo)
  • impactos mecanicos
  • vibraciones y estrés
  • Sustancias que han sido almacenadas o han pasado por el tanque.
  • sustancias utilizadas durante la limpieza, el mantenimiento y la reparación.

 

El material de construcción (placa de acero, placa de aluminio, hormigón para aplicaciones no presurizadas, etc.) puede sufrir un deterioro por estas influencias que no siempre es posible comprobar sin sobrecargar o destruir el equipo durante la prueba.

Caso de accidente: Flixborough

La explosión de una gran nube de ciclohexano en Flixborough (Reino Unido) en 1974, que mató a 28 personas y causó grandes daños a la planta, sirve como un caso muy instructivo. El evento desencadenante fue la ruptura de una tubería temporal que servía de reemplazo en una unidad de reactor. El accidente fue "causado" por la rotura de una pieza de hardware, pero una investigación más detallada reveló que la avería se debió a una sobrecarga y que la construcción temporal era, de hecho, inadecuada para el uso previsto. Después de dos meses de servicio, la tubería estuvo expuesta a fuerzas de flexión debido a un ligero aumento de presión de 10 bar (106 Pa) contenido de ciclohexano a unos 150°C. Los dos fuelles entre la tubería y los reactores cercanos se rompieron y se liberaron de 30 a 50 toneladas de ciclohexano que pronto se incendiaron, probablemente por un horno a cierta distancia de la fuga. (Véase la figura 1.) En Kletz (1988) se encuentra un relato muy ameno del caso.

Figura 1. Conexión temporal entre tanques en Flixborough

SAF030F1

Análisis de Peligros

Los métodos que se han desarrollado para encontrar los riesgos que pueden ser relevantes para un equipo, para un proceso químico o para una determinada operación se denominan “análisis de peligros”. Estos métodos hacen preguntas como: "¿Qué puede salir mal?" “¿Podría ser serio?” ¿Y qué se puede hacer al respecto?" A menudo se combinan diferentes métodos para realizar los análisis para lograr una cobertura razonable, pero ninguno de esos conjuntos puede hacer más que guiar o ayudar a un equipo inteligente de analistas en sus determinaciones. Las principales dificultades con el análisis de peligros son las siguientes:

  • disponibilidad de datos relevantes
  • limitaciones de los modelos y cálculos
  • materiales, construcciones y procesos nuevos y desconocidos
  • complejidad del sistema
  • Limitaciones en la imaginación humana.
  • limitaciones en las pruebas prácticas.

 

Para producir evaluaciones de riesgo utilizables en estas circunstancias, es importante definir estrictamente el alcance y el nivel de "ambición" apropiado para el análisis en cuestión; por ejemplo, está claro que no se necesita el mismo tipo de información para propósitos de seguros que para propósitos de diseño, o para la planificación de esquemas de protección y la construcción de arreglos de emergencia. En términos generales, el cuadro de riesgo debe completarse mezclando técnicas empíricas (es decir, estadísticas) con razonamiento deductivo y una imaginación creativa.

Las diferentes herramientas de evaluación de riesgos, incluso los programas informáticos para el análisis de riesgos, pueden ser muy útiles. El estudio de peligros y operabilidad (HAZOP) y el análisis de modo y efecto de falla (FMEA) son métodos comúnmente utilizados para investigar peligros, especialmente en la industria química. El punto de partida del método HAZOP es el rastreo de posibles escenarios de riesgo basados ​​en un conjunto de palabras guía; para cada escenario hay que identificar las causas probables y las consecuencias. En la segunda etapa, se trata de encontrar medios para reducir las probabilidades o mitigar las consecuencias de aquellos escenarios juzgados como inaceptables. Se puede encontrar una revisión del método HAZOP en Charsley (1995). El método FMEA hace una serie de preguntas "qué pasaría si" para cada componente de riesgo posible para determinar completamente cualquier modo de falla que pueda existir y luego identificar los efectos que pueden tener en el rendimiento del sistema; dicho análisis se ilustrará en el ejemplo de demostración (para un sistema de gas) presentado más adelante en este artículo.

árboles de fallas y Los árboles de eventos y los modos de análisis lógico propios de las estructuras de causalidad de accidentes y el razonamiento de probabilidad no son específicos del análisis de peligros de hardware, ya que son herramientas generales para las evaluaciones de riesgos del sistema.

Rastreo de peligros de hardware en una planta industrial

Para identificar posibles peligros, se puede buscar información sobre la construcción y la función en:

  • equipos y plantas reales
  • sustitutos y modelos
  • planos, diagramas eléctricos, diagramas de tuberías e instrumentación (P/I), etc.
  • descripciones de procesos
  • esquemas de control
  • modos y fases de funcionamiento
  • órdenes de trabajo, órdenes de cambio, informes de mantenimiento, etc.

 

Al seleccionar y digerir dicha información, los analistas forman una imagen del objeto de riesgo en sí, sus funciones y su uso real. Donde las cosas aún no están construidas, o no están disponibles para inspección, no se pueden hacer observaciones importantes y la evaluación debe basarse completamente en descripciones, intenciones y planes. Tal evaluación puede parecer bastante pobre, pero de hecho, la mayoría de las evaluaciones de riesgos prácticas se realizan de esta manera, ya sea para buscar la aprobación autorizada de las solicitudes para emprender nuevas construcciones, o para comparar la seguridad relativa de soluciones de diseño alternativas. Se consultarán los procesos de la vida real para obtener la información que no se muestra en los diagramas formales o que no se describe verbalmente mediante una entrevista, y para verificar que la información recopilada de estas fuentes sea objetiva y represente las condiciones reales. Estos incluyen lo siguiente:

  • practica real y cultura
  • mecanismos de falla adicionales/detalles de construcción
  • “caminos furtivos” (ver más abajo)
  • causas de errores comunes
  • riesgos de fuentes externas/misiles
  • exposiciones o consecuencias particulares
  • incidentes pasados, accidentes y casi accidentes.

 

La mayor parte de esta información adicional, especialmente las rutas furtivas, solo es detectable por observadores hábiles y creativos con una experiencia considerable, y parte de la información sería casi imposible de rastrear con mapas y diagramas. caminos furtivos denotan interacciones no deseadas e imprevistas entre sistemas, donde la operación de un sistema afecta la condición o la operación de otro sistema a través de formas distintas a las funcionales. Esto suele suceder cuando las piezas funcionalmente diferentes están situadas una cerca de la otra o (por ejemplo) una sustancia que gotea gotea sobre el equipo que se encuentra debajo y provoca una falla. Otro modo de acción de una ruta furtiva puede implicar la introducción de sustancias o partes incorrectas en un sistema por medio de instrumentos o herramientas durante la operación o el mantenimiento: las estructuras previstas y sus funciones previstas se cambian a través de las rutas furtivas. Por fallas de modo común uno significa que ciertas condiciones, como inundaciones, relámpagos o cortes de energía, pueden perturbar varios sistemas a la vez, lo que tal vez provoque apagones o accidentes inesperadamente grandes. Por lo general, uno trata de evitar los efectos furtivos y las fallas de modo común a través de diseños adecuados e introduciendo distancia, aislamiento y diversidad en las operaciones de trabajo.

Un caso de análisis de peligros: entrega de gas desde un barco a un tanque

La figura 2 muestra un sistema para la entrega de gas desde un barco de transporte a un tanque de almacenamiento. Una fuga podría aparecer en cualquier parte de este sistema: barco, línea de transmisión, tanque o línea de salida; teniendo en cuenta los dos depósitos del tanque, una fuga en algún lugar de la línea podría permanecer activa durante horas.

Figura 2. Línea de transmisión para la entrega de gas licuado desde el barco hasta el tanque de almacenamiento

SAF030F2

Los componentes más críticos del sistema son los siguientes:

  • el tanque de almacenamiento
  • la tubería o manguera entre el tanque y el barco
  • otras mangueras, líneas, válvulas y conexiones
  • la válvula de seguridad en el tanque de almacenamiento
  • las válvulas de parada de emergencia ESD 1 y 2.

 

Un tanque de almacenamiento con un gran inventario de gas licuado se coloca en la parte superior de esta lista, porque es difícil detener una fuga de un tanque con poca antelación. El segundo elemento de la lista, la conexión al barco, es fundamental porque las fugas en la tubería o la manguera y las conexiones sueltas o los acoplamientos con juntas desgastadas y las variaciones entre los diferentes barcos podrían liberar el producto. Las piezas flexibles, como las mangueras y los fuelles, son más críticas que las piezas rígidas y requieren mantenimiento e inspección regulares. Los dispositivos de seguridad como la válvula de liberación de presión en la parte superior del tanque y las dos válvulas de cierre de emergencia son críticos, ya que se debe confiar en ellos para revelar fallas latentes o en desarrollo.

Hasta este punto, la clasificación de los componentes del sistema en cuanto a su importancia con respecto a la confiabilidad ha sido únicamente de carácter general. Ahora, con fines analíticos, se llamará la atención sobre las funciones particulares del sistema, siendo la principal, por supuesto, el movimiento de gas licuado desde el barco hasta el tanque de almacenamiento hasta que el tanque del barco conectado esté vacío. El peligro principal es una fuga de gas, siendo los posibles mecanismos contribuyentes uno o más de los siguientes:

  • acoplamientos o válvulas con fugas
  • ruptura del tanque
  • ruptura de tubería o manguera
  • avería del tanque.

 

Aplicación del método FMEA

La idea central del enfoque FMEA, o análisis “qué pasaría si”, es registrar explícitamente, para cada componente del sistema, sus modos de falla y para cada falla para encontrar las posibles consecuencias para el sistema y el medio ambiente. Para componentes estándar como un tanque, tubería, válvula, bomba, caudalímetro, etc., los modos de falla siguen patrones generales. En el caso de una válvula, por ejemplo, los modos de falla podrían incluir las siguientes condiciones:

  • La válvula no puede cerrarse a pedido (hay un flujo reducido a través de una válvula "abierta").
  • La válvula tiene fugas (hay flujo residual a través de una válvula “cerrada”).
  • La válvula no puede abrirse a demanda (la posición de la válvula oscila).

 

Para una tubería, los modos de falla considerarían elementos como:

  • un flujo reducido
  • una fuga
  • un flujo se detuvo debido a un bloqueo
  • una ruptura en la línea.

 

Los efectos de las fugas parecen obvios, pero a veces los efectos más importantes pueden no ser los primeros efectos: ¿qué sucede, por ejemplo, si una válvula se atasca en una posición medio abierta? Una válvula de cierre en la línea de entrega que no se abre por completo cuando se requiere retrasará el proceso de llenado del tanque, una consecuencia no peligrosa. Pero si la condición de "atascado medio abierto" surge al mismo tiempo que se realiza una demanda de cierre, en un momento en que el tanque está casi lleno, podría producirse un sobrellenado (a menos que la válvula de cierre de emergencia se active con éxito). En un sistema diseñado y operado adecuadamente, la probabilidad de que ambas válvulas estén atascadas simultáneamente se mantendrá bastante bajo.

Evidentemente, el hecho de que una válvula de seguridad no funcione a demanda podría significar un desastre; de hecho, se podría afirmar justificadamente que las fallas latentes amenazan constantemente todos los dispositivos de seguridad. Las válvulas de alivio de presión, por ejemplo, pueden estar defectuosas debido a la corrosión, suciedad o pintura (típicamente debido a un mal mantenimiento), y en el caso del gas líquido, tales defectos en combinación con la disminución de la temperatura en una fuga de gas podrían producir hielo y por lo tanto reducir o quizás detener el flujo de material a través de una válvula de seguridad. Si una válvula de alivio de presión no funciona según la demanda, la presión puede acumularse en un tanque o en los sistemas de tanques conectados, lo que eventualmente causará otras fugas o la ruptura del tanque.

Por simplicidad, los instrumentos no se muestran en la figura 2; por supuesto, habrá instrumentos relacionados con la presión, el flujo y la temperatura, que son parámetros esenciales para monitorear el estado del sistema, las señales relevantes se transmiten a las consolas del operador o a una sala de control para fines de control y monitoreo. Además, habrá líneas de alimentación distintas a las destinadas al transporte de materiales -para electricidad, hidráulica, etc.- y dispositivos de seguridad extra. Un análisis completo debe pasar por estos sistemas también y buscar los modos de falla. y los efectos de estos componentes también. En particular, el trabajo de detección de efectos de modo común y caminos furtivos requiere que uno construya la imagen integral de los componentes principales del sistema, controles, instrumentos, suministros, operadores, horarios de trabajo, mantenimiento, etc.

Los ejemplos de efectos de modo común a considerar en relación con los sistemas de gas se abordan mediante preguntas como las siguientes:

  • ¿Las señales de activación de las válvulas de suministro y las válvulas de cierre de emergencia se transmiten por una línea común (cable, canales de cableado)?
  • ¿Dos válvulas dadas comparten la misma línea de alimentación?
  • ¿El mantenimiento lo realiza la misma persona de acuerdo con un programa determinado?

 

Incluso un sistema excelentemente diseñado con redundancia y líneas de alimentación independientes puede sufrir un mantenimiento inferior, donde, por ejemplo, una válvula y su válvula de respaldo (la válvula de cierre de emergencia en nuestro caso) se han dejado en un estado incorrecto después de un prueba. Un efecto de modo común prominente con un sistema de manejo de amoníaco es la situación de fuga en sí misma: una fuga moderada puede hacer que todas las operaciones manuales en los componentes de la planta sean bastante incómodas, y retrasadas, debido al despliegue de la protección de emergencia requerida.

Resumen

Los componentes de hardware rara vez son las partes culpables en el desarrollo de accidentes; más bien, hay causas fundamentales que se encuentran en otros eslabones de la cadena: conceptos erróneos, malos diseños, errores de mantenimiento, errores del operador, errores de gestión, etc. Ya se han dado varios ejemplos de las condiciones y actos específicos que pueden conducir al desarrollo de fallas; una colección amplia de tales agentes tendría en cuenta lo siguiente:

  • colisión
  • corrosión, grabado
  • cargas excesivas
  • soporte defectuoso y piezas envejecidas o desgastadas
  • trabajos de soldadura de baja calidad
  • misiles
  • partes faltantes
  • sobrecalentamiento o enfriamiento
  • vibración
  • material de construcción incorrecto utilizado.

 

El control de los peligros del hardware en un entorno de trabajo requiere la revisión de todas las posibles causas y el respeto de las condiciones que se consideran críticas con los sistemas reales. Las implicaciones de esto para la organización de los programas de gestión de riesgos se tratan en otros artículos, pero, como lo indica claramente la lista anterior, el seguimiento y control de las condiciones del hardware puede ser necesario hasta la elección de los conceptos y diseños para el sistemas y procesos seleccionados.

 

Atrás

Leer 9501 veces Ultima modificacion el Jueves, septiembre 08 2022 16: 51

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Auditorías, Inspecciones e Investigaciones Referencias

Comité Asesor de Riesgos Mayores. 1976, 1979, 1984. Informes primero, segundo y tercero. Londres: HMSO.

Bennis WG, KD Benne y R Chin (eds.). 1985. La planificación del cambio. Nueva York: Holt, Rinehart y Winston.

Castí, JL. 1990. Buscando certeza: lo que los científicos pueden saber sobre el futuro. Nueva York: William Morrow.

Charsley, P. 1995. HAZOP y evaluación de riesgos (DNV Londres). Pérdida Ant. Bull 124:16-19.

Cornelison, JD. 1989. Análisis de causa raíz basado en MORT. Documento de trabajo n.° 27. Idaho Falls, EE. UU.: System Safety Development Center.

Gleick, J. 1987. Chaos: Making a New Science. Nueva York: Pingüino vikingo.

Groeneweg, J. 1996. Controlling the Controllable: The Management of Safety. 3ª edición revisada. Los países bajos:
DSWO Press, Universidad de Leiden.

Haddon, W. 1980. Las estrategias básicas para reducir los daños causados ​​por peligros de todo tipo. Hazard Anterior Septiembre/Octubre: 8-12.

Hendrick K y L Benner. 1987. Investigación de accidentes con STEP. Nueva York: Dekker.

Johnson, WG. 1980. MORT Sistemas de Aseguramiento de la Seguridad. Nueva York: Marcel Dekker.

Kjellén, U y RK Tinmannsvik. 1989. SMORT— Organización Säkerhetsanalys av industriell. Estocolmo: Arbetarskyddsnämnden.

Kletz, T. 1988. Aprendiendo de los Accidentes en la Industria. Londres: Butterworth.

Knox, NW y RW Eicher. 1992. Manual del usuario de MORT. Informe No. SSDC-4, Rev. 3. Idaho Falls, EE. UU.: Centro de desarrollo de seguridad del sistema.

Kruysse, HW. 1993. Condiciones para un comportamiento de tráfico seguro. Tesis doctoral, Facultad de Ciencias Sociales, Universidad de Leiden, Países Bajos.

Nertney, RJ. 1975. Manual de preparación para el uso de la ocupación: consideraciones de seguridad. Informe No. SSDC-1. Idaho Falls, EE. UU.: Centro de desarrollo de seguridad del sistema.

Pascale, RTA y AG Athos. 1980. El arte de la gestión japonesa. Londres: pingüino.

Peters, TJ y RH Waterman. 1982. En busca de la excelencia. Lecciones de las empresas mejor administradas de Estados Unidos. Nueva York: Haysen & Row.

Petroski, H. 1992. To Engineer is Human: The Role of Failure in Success Design. Nueva York: Vendimia.

Rasmussen, J. 1988. Procesamiento de información e interacción hombre-máquina y enfoque de la ingeniería cognitiva. Ámsterdam: Elsevier.

Razón, JT. 1990. Error humano. Cambridge: COPA.

Reason, JT, R Shotton, WA Wagenaar y PTW Hudson. 1989. TRÍPODE, Una base de principios para operaciones más seguras. Informe preparado para Shell Internationale Petroleum Maatschappij, Exploración y Producción.

Roggeveen, V. 1994. Care Structuur in Arbeidsomstandighedenzorg. Lector del curso Post Hoger Onderwijs Hogere Veiligheids, Ámsterdam.

Ruuhilehto, K. 1993. El árbol de supervisión y riesgo de gestión (MORT). En Quality Management of Safety and Risk Analysis, editado por J Suokas y V Rouhiainen. Ámsterdam: Elsevier.


Schein, EH. 1989. Cultura Organizacional y Liderazgo. Oxford: Jossey-Bass.

Scott, WR. 1978. Perspectivas teóricas. En Entornos y Organizaciones, editado por MW Meyer. San Francisco: Jossey-Bass.

Gestión Exitosa de Salud y Seguridad: Appl.1. 1991. Londres: HMSO.

Van der Schrier, JH, J Groeneweg y VR van Amerongen. 1994. Análisis de accidentes utilizando el método TRIPOD top-down. Tesis de maestría, Centro de Investigación de Seguridad, Universidad de Leiden, Países Bajos.

Waganaar, WA. 1992. Influir en el comportamiento humano. Hacia un enfoque práctico para E&P. J Petrol Tech 11:1261-1281.

Wagenaar, WA y J. Groeneweg. 1987. Accidentes en el mar: Múltiples causas y consecuencias imposibles. Revista Internacional de Estudios Hombre-Máquina 27:587-598.