Smolander, Juhani

Smolander, Juhani

Adresse : Département de physiologie, Institut finlandais de la santé au travail, Laajaniityntie 1, 01620 Vantaa

Pays : Finlande

Téléphone: 358 0 890 713

Télécopieur : 358 0 890 713

Courriel : jsmo@occuphealth.fi

Poste(s) antérieur(s) : Assistant de recherche; Chercheur; Chercheur spécialisé

L'Education: Doctorat, 1987, Université de Kuopio

Centres d'intérêt: Physiologie du travail, thermique et du vieillissement

Mardi 08 Mars 2011 21: 01

Travail musculaire

Travail musculaire dans les activités professionnelles

Dans les pays industrialisés, environ 20 % des travailleurs occupent encore des emplois exigeant un effort musculaire (Rutenfranz et al. 1990). Le nombre de travaux physiques lourds conventionnels a diminué, mais, en revanche, de nombreux travaux sont devenus plus statiques, asymétriques et stationnaires. Dans les pays en voie de développement, le travail musculaire sous toutes ses formes est encore très courant.

Le travail musculaire dans les activités professionnelles peut être grossièrement divisé en quatre groupes : le travail musculaire dynamique lourd, la manutention manuelle de matériaux, le travail statique et le travail répétitif. Les tâches lourdes et dynamiques se retrouvent par exemple dans la sylviculture, l'agriculture et l'industrie de la construction. La manutention des matériaux est courante, par exemple, dans les soins infirmiers, le transport et l'entreposage, tandis que les charges statiques existent dans le travail de bureau, l'industrie électronique et les tâches de réparation et d'entretien. Les tâches répétitives se retrouvent par exemple dans les industries agro-alimentaires et de transformation du bois.

Il est important de noter que la manutention manuelle de matériaux et le travail répétitif sont essentiellement des travaux musculaires dynamiques ou statiques, ou une combinaison des deux.

Physiologie du travail musculaire

Travail musculaire dynamique

Dans un travail dynamique, les muscles squelettiques actifs se contractent et se détendent en rythme. Le flux sanguin vers les muscles est augmenté pour répondre aux besoins métaboliques. L'augmentation du flux sanguin est obtenue grâce à un pompage accru du cœur (débit cardiaque), à ​​une diminution du flux sanguin vers les zones inactives, telles que les reins et le foie, et à une augmentation du nombre de vaisseaux sanguins ouverts dans la musculature active. La fréquence cardiaque, la pression artérielle et l'extraction d'oxygène dans les muscles augmentent de manière linéaire en fonction de l'intensité du travail. De plus, la ventilation pulmonaire est accrue en raison d'une respiration plus profonde et d'une fréquence respiratoire accrue. Le but de l'activation de l'ensemble du système cardio-respiratoire est d'améliorer l'apport d'oxygène aux muscles actifs. Le niveau de consommation d'oxygène mesuré lors d'un travail musculaire dynamique intense indique l'intensité du travail. La consommation maximale d'oxygène (VO2max) indique la capacité maximale de la personne pour le travail aérobie. Les valeurs de consommation d'oxygène peuvent être traduites en dépense énergétique (1 litre de consommation d'oxygène par minute correspond à environ 5 kcal/min ou 21 kJ/min).

Dans le cas d'un travail dynamique, lorsque la masse musculaire active est plus petite (comme dans les bras), la capacité de travail maximale et la consommation maximale d'oxygène sont plus faibles que dans le travail dynamique avec de gros muscles. A même rendement de travail externe, le travail dynamique avec de petits muscles induit des réponses cardio-respiratoires (par exemple, fréquence cardiaque, tension artérielle) plus élevées que le travail avec de gros muscles (figure 1).

Figure 1. Travail statique versus travail dynamique    

ERG060F2

Travail musculaire statique

Dans le travail statique, la contraction musculaire ne produit pas de mouvement visible, comme par exemple dans un membre. Le travail statique augmente la pression à l'intérieur du muscle, ce qui, associé à la compression mécanique, obstrue partiellement ou totalement la circulation sanguine. L'apport de nutriments et d'oxygène au muscle et l'élimination des produits métaboliques finaux du muscle sont entravés. Ainsi, dans un travail statique, les muscles se fatiguent plus facilement que dans un travail dynamique.

La caractéristique circulatoire la plus importante du travail statique est une augmentation de la pression artérielle. La fréquence cardiaque et le débit cardiaque ne changent pas beaucoup. Au-delà d'une certaine intensité d'effort, la tension artérielle augmente en relation directe avec l'intensité et la durée de l'effort. De plus, à la même intensité relative d'effort, le travail statique avec de grands groupes musculaires produit une réponse tensionnelle plus importante que le travail avec des muscles plus petits. (Voir figure 2)

Figure 2. Le modèle de contrainte-déformation étendu modifié de Rohmert (1984)

ERG060F1

En principe, la régulation de la ventilation et de la circulation dans le travail statique est similaire à celle du travail dynamique, mais les signaux métaboliques des muscles sont plus forts et induisent un schéma de réponse différent.

Conséquences de la surcharge musculaire dans les activités professionnelles

Le degré d'effort physique subi par un travailleur dans le cadre d'un travail musculaire dépend de la taille de la masse musculaire au travail, du type de contractions musculaires (statiques, dynamiques), de l'intensité des contractions et des caractéristiques individuelles.

Lorsque la charge de travail musculaire ne dépasse pas les capacités physiques du travailleur, le corps s'adapte à la charge et la récupération est rapide à l'arrêt du travail. Si la charge musculaire est trop élevée, la fatigue s'ensuit, la capacité de travail est réduite et la récupération ralentie. Des charges de pointe ou une surcharge prolongée peuvent entraîner des lésions organiques (sous la forme de maladies professionnelles ou liées au travail). D'autre part, un travail musculaire d'une certaine intensité, fréquence et durée peut également entraîner des effets d'entraînement, car, d'autre part, des demandes musculaires excessivement faibles peuvent provoquer des effets de désentraînement. Ces relations sont représentées par ce que l'on appelle concept de contrainte-déformation étendu développé par Rohmert (1984) (figure 3).

Figure 3. Analyse des charges de travail acceptables

ERG060F3

En général, il existe peu de preuves épidémiologiques que la surcharge musculaire soit un facteur de risque de maladies. Cependant, la mauvaise santé, le handicap et la surcharge subjective au travail convergent dans les emplois physiquement exigeants, en particulier chez les travailleurs âgés. De plus, de nombreux facteurs de risque de maladies musculo-squelettiques liées au travail sont liés à différents aspects de la charge de travail musculaire, tels que l'effort de force, les mauvaises postures de travail, le levage et les charges de pointe soudaines.

L'un des objectifs de l'ergonomie a été de déterminer des limites acceptables pour les charges musculaires qui pourraient être appliquées pour la prévention de la fatigue et des troubles. Alors que la prévention des effets chroniques est au centre de l'épidémiologie, la physiologie du travail traite surtout des effets à court terme, c'est-à-dire la fatigue dans les tâches de travail ou au cours d'une journée de travail.

Charge de travail acceptable dans le travail musculaire dynamique lourd

L'évaluation de la charge de travail acceptable dans les tâches de travail dynamiques est traditionnellement basée sur des mesures de la consommation d'oxygène (ou, de manière correspondante, de la dépense énergétique). La consommation d'oxygène peut être mesurée avec une relative facilité sur le terrain avec des appareils portables (par exemple, sac Douglas, respiromètre Max Planck, Oxylog, Cosmed), ou elle peut être estimée à partir d'enregistrements de fréquence cardiaque, qui peuvent être effectués de manière fiable sur le lieu de travail, par exemple. , avec l'appareil SportTester. L'utilisation de la fréquence cardiaque dans l'estimation de la consommation d'oxygène nécessite qu'elle soit calibrée individuellement par rapport à la consommation d'oxygène mesurée dans un mode de travail standard en laboratoire, c'est-à-dire que l'investigateur doit connaître la consommation d'oxygène du sujet individuel à une fréquence cardiaque donnée. Les enregistrements de fréquence cardiaque doivent être traités avec prudence car ils sont également affectés par des facteurs tels que la condition physique, la température ambiante, les facteurs psychologiques et la taille de la masse musculaire active. Ainsi, les mesures de la fréquence cardiaque peuvent conduire à des surestimations de la consommation d'oxygène de la même manière que les valeurs de consommation d'oxygène peuvent donner lieu à des sous-estimations de la contrainte physiologique globale en ne reflétant que les besoins énergétiques.

Effort aérobie relatif (RAS) est défini comme la fraction (exprimée en pourcentage) de la consommation d'oxygène d'un travailleur mesurée au travail par rapport à sa VO2max mesuré en laboratoire. Si seules des mesures de fréquence cardiaque sont disponibles, une approximation proche de RAS peut être faite en calculant une valeur pour la plage de fréquence cardiaque en pourcentage (plage de FC en %) avec la formule dite de Karvonen comme dans la figure 3.

VO2max est généralement mesuré sur un vélo ergomètre ou un tapis roulant, dont le rendement mécanique est élevé (20-25%). Lorsque la masse musculaire active est plus petite ou que la composante statique est plus élevée, VO2max et l'efficacité mécanique sera plus faible que dans le cas d'un exercice avec de grands groupes musculaires. Par exemple, il a été constaté que lors du tri des colis postaux, le VO2max des travailleurs n'était que de 65 % du maximum mesuré sur un vélo ergomètre, et l'efficacité mécanique de la tâche était inférieure à 1 %. Lorsque les directives sont basées sur la consommation d'oxygène, le mode de test dans le test maximal doit être aussi proche que possible de la tâche réelle. Cet objectif est cependant difficile à atteindre.

Selon l'étude classique d'Åstrand (1960), le RAS ne devrait pas dépasser 50 % au cours d'une journée de travail de huit heures. Dans ses expériences, à une charge de travail de 50 %, le poids corporel a diminué, la fréquence cardiaque n'a pas atteint un état stable et l'inconfort subjectif a augmenté pendant la journée. Elle a recommandé une limite RAS de 50% pour les hommes et les femmes. Plus tard, elle a découvert que les travailleurs de la construction choisissaient spontanément un niveau moyen de RAS de 40 % (fourchette de 25 à 55 %) au cours d'une journée de travail. Plusieurs études plus récentes ont indiqué que le RAS acceptable est inférieur à 50 %. La plupart des auteurs recommandent 30 à 35 % comme niveau RAS acceptable pour toute la journée de travail.

À l'origine, les niveaux RAS acceptables ont été développés pour le travail musculaire dynamique pur, ce qui se produit rarement dans la vie professionnelle réelle. Il peut arriver que les niveaux RAS acceptables ne soient pas dépassés, par exemple lors d'une tâche de levage, mais la charge locale sur le dos peut largement dépasser les niveaux acceptables. Malgré ses limites, la détermination RAS a été largement utilisée dans l'évaluation de la contrainte physique dans différents emplois.

En plus de la mesure ou de l'estimation de la consommation d'oxygène, d'autres méthodes de terrain physiologiques utiles sont également disponibles pour la quantification du stress ou de la contrainte physique dans les travaux dynamiques lourds. Des techniques d'observation peuvent être utilisées dans l'estimation de la dépense énergétique (par exemple, à l'aide de la Échelle d'Edholm) (Edholm 1966). Évaluation de l'effort perçu (RPE) indique l'accumulation subjective de la fatigue. De nouveaux systèmes ambulatoires de surveillance de la pression artérielle permettent des analyses plus détaillées des réponses circulatoires.

Charge de travail acceptable dans la manutention manuelle des matériaux

La manutention manuelle des matériaux comprend des tâches telles que le levage, le transport, la poussée et la traction de diverses charges externes. La plupart des recherches dans ce domaine se sont concentrées sur les problèmes de lombalgie dans les tâches de levage, en particulier du point de vue biomécanique.

Un niveau RAS de 20 à 35 % a été recommandé pour les tâches de levage, lorsque la tâche est comparée à une consommation maximale d'oxygène individuelle obtenue à partir d'un test de bicyclette ergométrique.

Les recommandations pour une fréquence cardiaque maximale autorisée sont soit absolues, soit liées à la fréquence cardiaque au repos. Les valeurs absolues pour les hommes et les femmes sont de 90 à 112 battements par minute dans la manutention manuelle continue des matériaux. Ces valeurs sont à peu près les mêmes que les valeurs recommandées pour l'augmentation de la fréquence cardiaque au-dessus des niveaux de repos, c'est-à-dire 30 à 35 battements par minute. Ces recommandations sont également valables pour le travail musculaire dynamique lourd pour les hommes et les femmes jeunes et en bonne santé. Cependant, comme mentionné précédemment, les données de fréquence cardiaque doivent être traitées avec prudence, car elles sont également affectées par d'autres facteurs que le travail musculaire.

Les lignes directrices sur la charge de travail acceptable pour la manutention manuelle de matériaux basées sur des analyses biomécaniques comprennent plusieurs facteurs, tels que le poids de la charge, la fréquence de manutention, la hauteur de levage, la distance de la charge par rapport au corps et les caractéristiques physiques de la personne.

Dans une étude de terrain à grande échelle (Louhevaara, Hakola et Ollila 1990), il a été constaté que des travailleurs masculins en bonne santé pouvaient manipuler des colis postaux pesant de 4 à 5 kilogrammes pendant un quart de travail sans aucun signe de fatigue objective ou subjective. La plupart des manutentions se sont déroulées sous le niveau des épaules, la fréquence moyenne de manutention était inférieure à 8 colis par minute et le nombre total de colis était inférieur à 1,500 101 par quart de travail. La fréquence cardiaque moyenne des travailleurs était de 1.0 battements par minute et leur consommation moyenne d'oxygène de 31 l/min, ce qui correspondait à XNUMX % de RAS par rapport au maximum du vélo.

Les observations des postures de travail et de l'utilisation de la force effectuées par exemple selon la méthode OWAS (Karhu, Kansi et Kuorinka 1977), les évaluations de l'effort perçu et les enregistrements ambulatoires de la pression artérielle sont également des méthodes appropriées pour l'évaluation du stress et de la fatigue dans la manutention manuelle des matériaux. L'électromyographie peut être utilisée pour évaluer les réponses aux contraintes locales, par exemple dans les muscles des bras et du dos.

Charge de travail acceptable pour le travail musculaire statique

Le travail musculaire statique est demandé principalement dans le maintien des postures de travail. Le temps d'endurance de la contraction statique dépend de manière exponentielle de la force relative de contraction. Cela signifie, par exemple, que lorsque la contraction statique nécessite 20 % de la force maximale, le temps d'endurance est de 5 à 7 minutes, et lorsque la force relative est de 50 %, le temps d'endurance est d'environ 1 minute.

Des études plus anciennes ont indiqué qu'aucune fatigue ne se développera lorsque la force relative est inférieure à 15 % de la force maximale. Cependant, des études plus récentes ont indiqué que la force relative acceptable est spécifique au muscle ou au groupe de muscles et est de 2 à 5 % de la force statique maximale. Ces limites d'efforts sont cependant difficilement utilisables dans des situations pratiques de travail car elles nécessitent des enregistrements électromyographiques.

Pour le praticien, moins de méthodes de terrain sont disponibles pour la quantification de la contrainte dans le travail statique. Certaines méthodes d'observation (par exemple, la méthode OWAS) existent pour analyser la proportion de mauvaises postures de travail, c'est-à-dire les postures s'écartant des positions médianes normales des articulations principales. Les mesures de la tension artérielle et les évaluations de l'effort perçu peuvent être utiles, alors que la fréquence cardiaque n'est pas aussi applicable.

Charge de travail acceptable dans le travail répétitif

Le travail répétitif avec de petits groupes musculaires ressemble au travail musculaire statique du point de vue des réponses circulatoires et métaboliques. En règle générale, lors d'un travail répétitif, les muscles se contractent plus de 30 fois par minute. Lorsque la force relative de contraction dépasse 10 % de la force maximale, le temps d'endurance et la force musculaire commencent à diminuer. Cependant, il existe de grandes variations individuelles dans les temps d'endurance. Par exemple, le temps d'endurance varie entre deux et cinquante minutes lorsque le muscle se contracte de 90 à 110 fois par minute à un niveau de force relative de 10 à 20 % (Laurig 1974).

Il est très difficile d'établir des critères définitifs pour le travail répétitif, car même des niveaux de travail très légers (comme avec l'utilisation d'une souris de micro-ordinateur) peuvent provoquer des augmentations de la pression intramusculaire, ce qui peut parfois entraîner un gonflement des fibres musculaires, des douleurs et une réduction dans la force musculaire.

Le travail musculaire répétitif et statique entraînera de la fatigue et une capacité de travail réduite à des niveaux de force relative très faibles. Par conséquent, les interventions ergonomiques doivent viser à minimiser autant que possible le nombre de mouvements répétitifs et de contractions statiques. Très peu de méthodes de terrain sont disponibles pour l'évaluation des contraintes dans le travail répétitif.

Prévention de la surcharge musculaire

Il existe relativement peu de preuves épidémiologiques démontrant que la charge musculaire est nocive pour la santé. Cependant, des études physiologiques et ergonomiques du travail indiquent que la surcharge musculaire entraîne de la fatigue (c'est-à-dire une diminution de la capacité de travail) et peut réduire la productivité et la qualité du travail.

La prévention de la surcharge musculaire peut viser le contenu du travail, l'environnement de travail et le travailleur. La charge peut être ajustée par des moyens techniques, qui portent sur l'environnement de travail, les outils et/ou les méthodes de travail. Le moyen le plus rapide de réguler la charge musculaire est d'augmenter la flexibilité du temps de travail sur une base individuelle. Cela signifie concevoir des régimes travail-repos qui tiennent compte de la charge de travail ainsi que des besoins et des capacités de chaque travailleur.

Le travail musculaire statique et répétitif doit être réduit au minimum. Des phases ponctuelles de travail dynamique lourd peuvent être utiles pour le maintien d'une forme physique de type endurance. La forme d'activité physique la plus utile pouvant être intégrée à une journée de travail est probablement la marche rapide ou la montée d'escaliers.

Cependant, la prévention de la surcharge musculaire est très difficile si la forme physique ou les compétences professionnelles d'un travailleur sont médiocres. Une formation appropriée améliorera les compétences de travail et peut réduire les charges musculaires au travail. Aussi, l'exercice physique régulier pendant le travail ou les loisirs augmentera les capacités musculaires et cardio-respiratoires du travailleur.

 

Retour

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières