33. Toxicologie
Rédactrice de chapitre : Ellen K. Silbergeld
Introduction
Ellen K. Silbergeld, rédactrice en chef
Définitions et concepts
Bo Holmberg, Johan Hogberg et Gunnar Johanson
Toxicocinétique
Dušan Djuric
Organe cible et effets critiques
Marek Jakubowski
Effets de l'âge, du sexe et d'autres facteurs
Spomenka Telishman
Déterminants génétiques de la réponse toxique
Daniel W. Nebert et Ross A. McKinnon
Introduction et notions
Philip G. Watanabe
Lésion cellulaire et mort cellulaire
Benjamin F. Trump et Irene K. Berezesky
Toxicologie génétique
R. Rita Misra et Michael P. Waalkes
Immunotoxicologie
Joseph G. Vos et Henk van Loveren
Toxicologie des organes cibles
Ellen K.Silbergeld
Biomarqueurs
Philippe Grandjean
Évaluation de la toxicité génétique
David M. DeMarini et James Huff
Tests de toxicité in vitro
Joanne Zurlo
Structurer les relations d'activité
Ellen K.Silbergeld
Toxicologie dans la réglementation de la santé et de la sécurité
Ellen K.Silbergeld
Principes d'identification des dangers - L'approche japonaise
Masayuki Ikeda
L'approche des États-Unis en matière d'évaluation des risques des toxiques pour la reproduction et des agents neurotoxiques
Ellen K.Silbergeld
Approches d'identification des dangers - IARC
Harri Vainio et Julian Wilbourn
Évaluation du risque cancérigène : autres approches
Cees A. van der Heijden
Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.
Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.
Exposition, dose et réponse
Phytotoxicité est la capacité intrinsèque d'un agent chimique à affecter négativement un organisme.
Xénobiotique est un terme pour "substances étrangères", c'est-à-dire étrangères à l'organisme. Son contraire est les composés endogènes. Les xénobiotiques comprennent les médicaments, les produits chimiques industriels, les poisons naturels et les polluants environnementaux.
Danger est le potentiel de réalisation de la toxicité dans un contexte ou une situation spécifique.
Analyse est la probabilité qu'un effet indésirable spécifique se produise. Il est souvent exprimé en pourcentage de cas dans une population donnée et pendant une période de temps spécifique. Une estimation du risque peut être basée sur des cas réels ou sur une projection de cas futurs, basée sur des extrapolations.
Cote de toxicité et classification de la toxicité peut être utilisé à des fins réglementaires. L'évaluation de la toxicité est une classification arbitraire des doses ou des niveaux d'exposition provoquant des effets toxiques. Le classement peut être « supertoxique », « très toxique », « modérément toxique », etc. Les cotes les plus courantes concernent la toxicité aiguë. La classification de la toxicité concerne le regroupement des produits chimiques en catégories générales selon leur effet toxique le plus important. Ces catégories peuvent inclure les allergènes, les neurotoxiques, les cancérigènes, etc. Cette classification peut avoir une valeur administrative comme avertissement et comme information.
La relation dose-effet est la relation entre la dose et l'effet au niveau individuel. Une augmentation de la dose peut augmenter l'intensité d'un effet, ou un effet plus grave peut en résulter. Une courbe dose-effet peut être obtenue au niveau de l'organisme entier, de la cellule ou de la molécule cible. Certains effets toxiques, comme la mort ou le cancer, ne sont pas classés mais sont des effets « tout ou rien ».
La relation dose-réponse est la relation entre la dose et le pourcentage d'individus présentant un effet spécifique. Avec l'augmentation de la dose, un plus grand nombre d'individus dans la population exposée sera généralement affecté.
Il est essentiel en toxicologie d'établir des relations dose-effet et dose-réponse. Dans les études médicales (épidémiologiques), un critère souvent utilisé pour accepter une relation causale entre un agent et une maladie est que l'effet ou la réponse est proportionnel à la dose.
Plusieurs courbes dose-réponse peuvent être tracées pour un produit chimique, une pour chaque type d'effet. La courbe dose-réponse pour la plupart des effets toxiques (lorsqu'ils sont étudiés dans de grandes populations) a une forme sigmoïde. Il existe généralement une plage de faibles doses où aucune réponse n'est détectée ; à mesure que la dose augmente, la réponse suit une courbe ascendante qui atteint généralement un plateau à une réponse de 100 %. La courbe dose-réponse reflète les variations entre les individus d'une population. La pente de la courbe varie d'un produit chimique à l'autre et entre différents types d'effets. Pour certains produits chimiques ayant des effets spécifiques (cancérigènes, initiateurs, mutagènes), la courbe dose-réponse peut être linéaire à partir de la dose zéro dans une certaine plage de doses. Cela signifie qu'aucun seuil n'existe et que même de petites doses représentent un risque. Au-dessus de cette plage de doses, le risque peut augmenter à un taux supérieur à un taux linéaire.
La variation de l'exposition au cours de la journée et la durée totale d'exposition au cours de la vie peuvent être aussi importantes pour le résultat (réponse) que le niveau de dose moyen ou moyen ou même intégré. Des pics d'exposition élevés peuvent être plus nocifs qu'un niveau d'exposition plus uniforme. C'est le cas de certains solvants organiques. En revanche, pour certains cancérogènes, il a été démontré expérimentalement que le fractionnement d'une dose unique en plusieurs expositions avec la même dose totale peut être plus efficace pour produire des tumeurs.
A dose est souvent exprimée comme la quantité d'un xénobiotique pénétrant dans un organisme (en unités telles que mg/kg de poids corporel). La dose peut être exprimée de différentes manières (plus ou moins informatives) : dose d'exposition, qui est la concentration dans l'air du polluant inhalé pendant une certaine période de temps (en hygiène du travail généralement huit heures), ou la retenu or dose absorbée (en hygiène industrielle aussi appelée charge corporelle), qui est la quantité présente dans le corps à un certain moment pendant ou après l'exposition. Le dose tissulaire est la quantité de substance dans un tissu spécifique et la dose cible est la quantité de substance (généralement un métabolite) liée à la molécule critique. La dose cible peut être exprimée en mg de produit chimique lié par mg d'une macromolécule spécifique dans le tissu. Pour appliquer ce concept, des informations sur le mécanisme d'action toxique au niveau moléculaire sont nécessaires. La dose cible est plus exactement associée à l'effet toxique. La dose d'exposition ou la charge corporelle peuvent être plus facilement disponibles, mais elles sont moins précisément liées à l'effet.
Dans le concept de dose, un aspect temporel est souvent inclus, même s'il n'est pas toujours exprimé. La dose théorique selon la loi de Haber est D = ct, où D est la dose, c est la concentration du xénobiotique dans l'air et t la durée d'exposition au produit chimique. Si ce concept est utilisé au niveau de l'organe cible ou au niveau moléculaire, la quantité par mg de tissu ou de molécule pendant un certain temps peut être utilisée. L'aspect temporel est généralement plus important pour comprendre les expositions répétées et les effets chroniques que pour les expositions uniques et les effets aigus.
Effets additifs se produisent à la suite d'une exposition à une combinaison de produits chimiques, où les toxicités individuelles sont simplement ajoutées les unes aux autres (1+1= 2). Lorsque les produits chimiques agissent par le même mécanisme, l'additivité de leurs effets est supposée bien que ce ne soit pas toujours le cas dans la réalité. L'interaction entre les produits chimiques peut entraîner une inhibition (antagonisme), avec un effet plus faible que celui attendu de l'addition des effets des produits chimiques individuels (1+1 2). Alternativement, une combinaison de produits chimiques peut produire un effet plus prononcé que ce à quoi on pourrait s'attendre par addition (augmentation de la réponse chez les individus ou augmentation de la fréquence de réponse dans une population), c'est ce qu'on appelle synergie (1+1 >2).
Temps de latence est le temps entre la première exposition et l'apparition d'un effet ou d'une réponse détectable. Le terme est souvent utilisé pour les effets cancérigènes, où les tumeurs peuvent apparaître longtemps après le début de l'exposition et parfois longtemps après la fin de l'exposition.
A seuil de dose est un niveau de dose en dessous duquel aucun effet observable ne se produit. On pense qu'il existe des seuils pour certains effets, comme les effets toxiques aigus; mais pas pour d'autres, comme les effets cancérigènes (par des initiateurs formant des adduits d'ADN). La simple absence de réponse dans une population donnée ne doit cependant pas être considérée comme une preuve de l'existence d'un seuil. L'absence de réponse pourrait être due à des phénomènes statistiques simples : un effet indésirable survenant à faible fréquence peut ne pas être détectable dans une petite population.
LD50 (dose efficace) est la dose causant 50 % de létalité dans une population animale. Le DL50 est souvent donnée dans la littérature ancienne comme mesure de la toxicité aiguë des produits chimiques. Plus le DL est élevé50, plus la toxicité aiguë est faible. Un produit chimique hautement toxique (avec une faible LD50) est dit être puissant. Il n'y a pas de corrélation nécessaire entre la toxicité aiguë et chronique. DE50 (dose efficace) est la dose provoquant un effet spécifique autre que la létalité chez 50 % des animaux.
NOËL (NOAËL) signifie le niveau sans effet (nocif) observé, ou la dose la plus élevée qui ne provoque pas d'effet toxique. Pour établir un NOEL, il faut des doses multiples, une grande population et des informations supplémentaires pour s'assurer que l'absence de réponse n'est pas simplement un phénomène statistique. Loël est la dose efficace la plus faible observée sur une courbe dose-réponse, ou la dose la plus faible qui provoque un effet.
A facteur de sécurité est un nombre formel et arbitraire avec lequel on divise la NOEL ou la LOEL dérivée d'expérimentations animales pour obtenir une dose admissible provisoire pour l'homme. Ceci est souvent utilisé dans le domaine de la toxicologie alimentaire, mais peut également être utilisé en toxicologie professionnelle. Un facteur de sécurité peut également être utilisé pour l'extrapolation des données de petites populations à des populations plus importantes. Les facteurs de sécurité vont de 100 - 103. Un facteur de sécurité de deux peut généralement être suffisant pour protéger contre un effet moins grave (comme une irritation) et un facteur aussi grand que 1,000 XNUMX peut être utilisé pour des effets très graves (comme le cancer). Le terme facteur de sécurité pourrait être mieux remplacé par le terme protection facteur ou même, facteur d'incertitude. L'utilisation de ce dernier terme reflète des incertitudes scientifiques, telles que la question de savoir si les données exactes sur la dose-réponse peuvent être traduites des animaux aux humains pour le produit chimique, l'effet toxique ou la situation d'exposition particulière.
Extrapolations sont des estimations qualitatives ou quantitatives théoriques de la toxicité (extrapolations des risques) dérivées de la traduction des données d'une espèce à une autre ou d'un ensemble de données dose-réponse (généralement dans la gamme de doses élevées) aux régions de dose-réponse où aucune donnée n'existe. Des extrapolations doivent généralement être faites pour prédire les réponses toxiques en dehors de la plage d'observation. La modélisation mathématique est utilisée pour des extrapolations basées sur une compréhension du comportement de la substance chimique dans l'organisme (modélisation toxicocinétique) ou basées sur la compréhension des probabilités statistiques que des événements biologiques spécifiques se produiront (modèles biologiques ou mécanistes). Certaines agences nationales ont développé des modèles d'extrapolation sophistiqués comme méthode formalisée pour prédire les risques à des fins réglementaires. (Voir la discussion sur l'évaluation des risques plus loin dans le chapitre.)
Effets systémiques sont des effets toxiques dans les tissus éloignés de la voie d'absorption.
Organe cible est l'organe primaire ou le plus sensible affecté après l'exposition. Le même produit chimique pénétrant dans l'organisme par différentes voies d'exposition (dose, débit de dose, sexe et espèce) peut affecter différents organes cibles. L'interaction entre les produits chimiques ou entre les produits chimiques et d'autres facteurs peut également affecter différents organes cibles.
Effets aigus surviennent après une exposition limitée et peu de temps (heures, jours) après l'exposition et peuvent être réversibles ou irréversibles.
Effets chroniques surviennent après une exposition prolongée (mois, années, décennies) et/ou persistent après l'arrêt de l'exposition.
Aigu exposition est une exposition de courte durée, alors que exposition chronique est une exposition à long terme (parfois toute la vie).
Tolérance à un produit chimique peut se produire lorsque des expositions répétées entraînent une réponse plus faible que celle à laquelle on aurait pu s'attendre sans prétraitement.
Absorption et disposition
Processus de transport
La diffusion. Afin de pénétrer dans l'organisme et d'atteindre un site où des dommages sont produits, une substance étrangère doit franchir plusieurs barrières, dont les cellules et leurs membranes. La plupart des substances toxiques traversent passivement les membranes par diffusion. Cela peut se produire pour les petites molécules hydrosolubles par passage dans des canaux aqueux ou, pour celles liposolubles, par dissolution et diffusion à travers la partie lipidique de la membrane. L'éthanol, une petite molécule qui est à la fois soluble dans l'eau et dans les graisses, se diffuse rapidement à travers les membranes cellulaires.
Diffusion d'acides et de bases faibles. Les acides et les bases faibles peuvent facilement traverser les membranes sous leur forme non ionisée et liposoluble, tandis que les formes ionisées sont trop polaires pour passer. Le degré d'ionisation de ces substances dépend du pH. S'il existe un gradient de pH à travers une membrane, ils s'accumuleront donc d'un côté. L'excrétion urinaire des acides et des bases faibles dépend fortement du pH urinaire. Le pH fœtal ou embryonnaire est un peu plus élevé que le pH maternel, provoquant une légère accumulation d'acides faibles dans le fœtus ou l'embryon.
Diffusion facilitée. Le passage d'une substance peut être facilité par des porteurs dans la membrane. La diffusion facilitée est similaire aux processus enzymatiques en ce sens qu'elle est médiée par des protéines, hautement sélective et saturable. D'autres substances peuvent inhiber le transport facilité des xénobiotiques.
Transport actif. Certaines substances sont activement transportées à travers les membranes cellulaires. Ce transport est médié par des protéines porteuses dans un processus analogue à celui des enzymes. Le transport actif est similaire à la diffusion facilitée, mais il peut se produire contre un gradient de concentration. Il nécessite un apport d'énergie et un inhibiteur métabolique peut bloquer le processus. La plupart des polluants environnementaux ne sont pas transportés activement. Une exception est la sécrétion tubulaire active et la réabsorption des métabolites acides dans les reins.
Phagocytose est un processus où des cellules spécialisées telles que les macrophages engloutissent des particules pour une digestion ultérieure. Ce processus de transport est important, par exemple, pour l'élimination des particules dans les alvéoles.
Débit en vrac. Les substances sont également transportées dans le corps avec le mouvement de l'air dans le système respiratoire pendant la respiration et les mouvements du sang, de la lymphe ou de l'urine.
Filtration. En raison de la pression hydrostatique ou osmotique, l'eau s'écoule en vrac à travers les pores de l'endothélium. Tout soluté suffisamment petit sera filtré avec l'eau. La filtration se produit dans une certaine mesure dans le lit capillaire de tous les tissus, mais elle est particulièrement importante dans la formation de l'urine primaire dans les glomérules rénaux.
Absorption
L'absorption est l'absorption d'une substance de l'environnement dans l'organisme. Le terme comprend généralement non seulement l'entrée dans le tissu barrière, mais également le transport ultérieur dans le sang circulant.
Absorption pulmonaire. Les poumons sont la principale voie de dépôt et d'absorption des petites particules en suspension dans l'air, des gaz, des vapeurs et des aérosols. Pour les gaz et les vapeurs hautement solubles dans l'eau, une partie importante de l'absorption se produit dans le nez et l'arbre respiratoire, mais pour les substances moins solubles, elle se produit principalement dans les alvéoles pulmonaires. Les alvéoles ont une très grande surface (environ 100m2 chez l'homme). De plus, la barrière de diffusion est extrêmement petite, avec seulement deux fines couches cellulaires et une distance de l'ordre du micromètre entre l'air alvéolaire et la circulation sanguine systémique. Cela rend les poumons très efficaces non seulement dans l'échange d'oxygène et de dioxyde de carbone, mais aussi d'autres gaz et vapeurs. En général, la diffusion à travers la paroi alvéolaire est si rapide qu'elle ne limite pas la captation. Le taux d'absorption dépend plutôt du débit (ventilation pulmonaire, débit cardiaque) et de la solubilité (sang : coefficient de partage de l'air). Un autre facteur important est l'élimination métabolique. L'importance relative de ces facteurs pour l'absorption pulmonaire varie considérablement d'une substance à l'autre. L'activité physique entraîne une augmentation de la ventilation pulmonaire et du débit cardiaque, ainsi qu'une diminution du débit sanguin hépatique (et, par conséquent, du taux de biotransformation). Pour de nombreuses substances inhalées, cela conduit à une augmentation marquée de l'absorption pulmonaire.
Absorption percutanée. La peau est une barrière très efficace. Outre son rôle thermorégulateur, il est destiné à protéger l'organisme des micro-organismes, des rayonnements ultraviolets et autres agents délétères, ainsi que des pertes excessives d'eau. La distance de diffusion dans le derme est de l'ordre du dixième de millimètre. De plus, la couche de kératine présente une très grande résistance à la diffusion pour la plupart des substances. Néanmoins, une absorption cutanée importante entraînant une toxicité peut se produire pour certaines substances, des substances hautement toxiques et liposolubles telles que les insecticides organophosphorés et les solvants organiques, par exemple. Une absorption importante est susceptible de se produire après une exposition à des substances liquides. L'absorption percutanée de vapeur peut être importante pour les solvants à très faible pression de vapeur et à forte affinité pour l'eau et la peau.
Absorption gastro-intestinale se produit après une ingestion accidentelle ou intentionnelle. Les particules plus grosses initialement inhalées et déposées dans les voies respiratoires peuvent être avalées après transport mucociliaire vers le pharynx. Pratiquement toutes les substances solubles sont efficacement absorbées dans le tractus gastro-intestinal. Le faible pH de l'intestin peut faciliter l'absorption, par exemple, des métaux.
Autres itinéraires. Dans les tests de toxicité et d'autres expériences, des voies d'administration spéciales sont souvent utilisées pour des raisons de commodité, bien qu'elles soient rares et généralement non pertinentes dans le cadre professionnel. Ces voies comprennent les injections intraveineuses (IV), sous-cutanées (sc), intrapéritonéales (ip) et intramusculaires (im). En général, les substances sont absorbées à un rythme plus élevé et plus complètement par ces voies, surtout après injection IV. Cela conduit à des pics de concentration de courte durée mais élevés qui peuvent augmenter la toxicité d'une dose.
Distribution
La distribution d'une substance dans l'organisme est un processus dynamique qui dépend des taux d'absorption et d'élimination, ainsi que du flux sanguin vers les différents tissus et de leurs affinités pour la substance. Les petites molécules non chargées solubles dans l'eau, les cations univalents et la plupart des anions se diffusent facilement et finiront par atteindre une distribution relativement uniforme dans le corps.
Volume de distribution est la quantité d'une substance dans le corps à un moment donné, divisée par la concentration dans le sang, le plasma ou le sérum à ce moment-là. La valeur n'a aucune signification en tant que volume physique, car de nombreuses substances ne sont pas uniformément réparties dans l'organisme. Un volume de distribution inférieur à un l/kg de poids corporel indique une distribution préférentielle dans le sang (ou le sérum ou le plasma), tandis qu'une valeur supérieure à un indique une préférence pour les tissus périphériques tels que le tissu adipeux pour les substances liposolubles.
Accumulation est l'accumulation d'une substance dans un tissu ou un organe à des niveaux plus élevés que dans le sang ou le plasma. Il peut également faire référence à une accumulation progressive au fil du temps dans l'organisme. De nombreux xénobiotiques sont très liposolubles et ont tendance à s'accumuler dans le tissu adipeux, tandis que d'autres ont une affinité particulière pour les os. Par exemple, le calcium dans les os peut être échangé contre des cations de plomb, de strontium, de baryum et de radium, et les groupes hydroxyle dans les os peuvent être échangés contre du fluorure.
Barrières. Les vaisseaux sanguins du cerveau, des testicules et du placenta ont des caractéristiques anatomiques spéciales qui inhibent le passage de grosses molécules comme les protéines. Ces caractéristiques, souvent appelées barrières hémato-encéphalique, hémato-testiculaire et hémato-placentaire, peuvent donner la fausse impression qu'elles empêchent le passage de toute substance. Ces barrières sont peu ou pas importantes pour les xénobiotiques qui peuvent diffuser à travers les membranes cellulaires.
Liaison au sang. Les substances peuvent être liées aux globules rouges ou aux composants du plasma, ou se trouver non liées dans le sang. Le monoxyde de carbone, l'arsenic, le mercure organique et le chrome hexavalent ont une forte affinité pour les globules rouges, tandis que le mercure inorganique et le chrome trivalent montrent une préférence pour les protéines plasmatiques. Un certain nombre d'autres substances se lient également aux protéines plasmatiques. Seule la fraction non liée est disponible pour la filtration ou la diffusion dans les organes d'élimination. La liaison au sang peut donc augmenter le temps de séjour dans l'organisme mais diminuer l'absorption par les organes cibles.
Élimination
Élimination est la disparition d'une substance dans l'organisme. L'élimination peut impliquer l'excrétion du corps ou la transformation en d'autres substances non capturées par une méthode de mesure spécifique. La vitesse de disparition peut être exprimée par la constante de vitesse d'élimination, la demi-vie biologique ou la clairance.
Courbe concentration-temps. La courbe de concentration dans le sang (ou le plasma) en fonction du temps est un moyen pratique de décrire l'absorption et la disposition d'un xénobiotique.
Aire sous la courbe (ASC) est l'intégrale de la concentration dans le sang (plasma) au fil du temps. Lorsque la saturation métabolique et d'autres processus non linéaires sont absents, l'ASC est proportionnelle à la quantité de substance absorbée.
Mi-temps biologique (ou demi-vie) est le temps nécessaire après la fin de l'exposition pour réduire de moitié la quantité présente dans l'organisme. Comme il est souvent difficile d'évaluer la quantité totale d'une substance, des mesures telles que la concentration dans le sang (plasma) sont utilisées. La demi-vie doit être utilisée avec prudence, car elle peut changer, par exemple, avec la dose et la durée d'exposition. De plus, de nombreuses substances ont des courbes de décroissance complexes avec plusieurs demi-temps.
biodisponibilité est la fraction d'une dose administrée pénétrant dans la circulation systémique. En l'absence de clairance présystémique, ou métabolisme de premier passage, la fraction est un. Lors d'une exposition orale, la clairance présystémique peut être due au métabolisme dans le contenu gastro-intestinal, la paroi intestinale ou le foie. Le métabolisme de premier passage réduira l'absorption systémique de la substance et augmentera plutôt l'absorption des métabolites. Cela peut conduire à un profil de toxicité différent.
Liquidation est le volume de sang (plasma) par unité de temps complètement débarrassé d'une substance. Pour distinguer de la clairance rénale, par exemple, le préfixe total, métabolique ou sanguin (plasma) est souvent ajouté.
Jeu intrinsèque est la capacité des enzymes endogènes à transformer une substance, et s'exprime également en volume par unité de temps. Si la clairance intrinsèque dans un organe est beaucoup plus faible que le flux sanguin, on dit que le métabolisme est limité en capacité. A l'inverse, si la clairance intrinsèque est beaucoup plus élevée que le débit sanguin, le métabolisme est limité en débit.
Excrétion
L'excrétion est la sortie d'une substance et de ses produits de biotransformation hors de l'organisme.
Excrétion dans l'urine et la bile. Les reins sont les organes excréteurs les plus importants. Certaines substances, en particulier les acides à haut poids moléculaire, sont excrétées avec la bile. Une fraction des substances excrétées par les voies biliaires peut être réabsorbée dans les intestins. Ce processus, circulation entérohépatique, est fréquente pour les substances conjuguées après hydrolyse intestinale du conjugué.
Autres voies d'excrétion. Certaines substances, telles que les solvants organiques et les produits de dégradation tels que l'acétone, sont suffisamment volatiles pour qu'une fraction considérable puisse être excrétée par expiration après inhalation. Les petites molécules solubles dans l'eau ainsi que celles liposolubles sont facilement sécrétées par le fœtus via le placenta et dans le lait chez les mammifères. Pour la mère, la lactation peut être une voie d'excrétion quantitativement importante pour les produits chimiques liposolubles persistants. La progéniture peut être secondairement exposée via la mère pendant la grossesse ainsi que pendant l'allaitement. Les composés hydrosolubles peuvent, dans une certaine mesure, être excrétés dans la sueur et la salive. Ces itinéraires sont généralement d'importance mineure. Cependant, comme un grand volume de salive est produit et avalé, l'excrétion de salive peut contribuer à la réabsorption du composé. Certains métaux comme le mercure sont excrétés en se liant de manière permanente aux groupes sulfhydryles de la kératine du cheveu.
Modèles toxicocinétiques
Les modèles mathématiques sont des outils importants pour comprendre et décrire l'absorption et l'élimination des substances étrangères. La plupart des modèles sont compartimentaux, c'est-à-dire que l'organisme est représenté par un ou plusieurs compartiments. Un compartiment est un volume chimiquement et physiquement théorique dans lequel la substance est supposée se répartir de manière homogène et instantanée. Les modèles simples peuvent être exprimés comme une somme de termes exponentiels, tandis que les plus compliqués nécessitent des procédures numériques sur un ordinateur pour leur solution. Les modèles peuvent être subdivisés en deux catégories, descriptives et physiologiques.
In descriptif numériques jumeaux (digital twin models), l'ajustement aux données mesurées est effectué en modifiant les valeurs numériques des paramètres du modèle ou même la structure du modèle elle-même. La structure du modèle a normalement peu à voir avec la structure de l'organisme. Les avantages de l'approche descriptive sont que peu d'hypothèses sont faites et qu'il n'y a pas besoin de données supplémentaires. Un inconvénient des modèles descriptifs est leur utilité limitée pour les extrapolations.
Modèles physiologiques sont construits à partir de données physiologiques, anatomiques et autres données indépendantes. Le modèle est ensuite affiné et validé par comparaison avec des données expérimentales. Un avantage des modèles physiologiques est qu'ils peuvent être utilisés à des fins d'extrapolation. Par exemple, l'influence de l'activité physique sur l'absorption et l'élimination des substances inhalées peut être prédite à partir d'ajustements physiologiques connus de la ventilation et du débit cardiaque. Un inconvénient des modèles physiologiques est qu'ils nécessitent une grande quantité de données indépendantes.
Biotransformation
Biotransformation est un processus qui conduit à une conversion métabolique de composés étrangers (xénobiotiques) dans le corps. Le processus est souvent appelé métabolisme des xénobiotiques. En règle générale, le métabolisme convertit les xénobiotiques liposolubles en grands métabolites hydrosolubles qui peuvent être efficacement excrétés.
Le foie est le principal site de biotransformation. Tous les xénobiotiques prélevés dans l'intestin sont transportés vers le foie par un seul vaisseau sanguin (veine porte). Si elle est absorbée en petites quantités, une substance étrangère peut être complètement métabolisée dans le foie avant d'atteindre la circulation générale et d'autres organes (effet de premier passage). Les xénobiotiques inhalés sont distribués via la circulation générale vers le foie. Dans ce cas, seule une fraction de la dose est métabolisée dans le foie avant d'atteindre d'autres organes.
Les cellules hépatiques contiennent plusieurs enzymes qui oxydent les xénobiotiques. Cette oxydation active généralement le composé - il devient plus réactif que la molécule mère. Dans la plupart des cas, le métabolite oxydé est ensuite métabolisé par d'autres enzymes dans une seconde phase. Ces enzymes conjuguent le métabolite avec un substrat endogène, de sorte que la molécule devient plus grosse et plus polaire. Cela facilite l'excrétion.
Les enzymes qui métabolisent les xénobiotiques sont également présentes dans d'autres organes tels que les poumons et les reins. Dans ces organes, ils peuvent jouer des rôles spécifiques et qualitativement importants dans le métabolisme de certains xénobiotiques. Les métabolites formés dans un organe peuvent ensuite être métabolisés dans un deuxième organe. Les bactéries présentes dans l'intestin peuvent également participer à la biotransformation.
Les métabolites des xénobiotiques peuvent être excrétés par les reins ou via la bile. Ils peuvent également être exhalés via les poumons ou liés à des molécules endogènes dans le corps.
La relation entre la biotransformation et la toxicité est complexe. La biotransformation peut être considérée comme un processus nécessaire à la survie. Il protège l'organisme contre la toxicité en empêchant l'accumulation de substances nocives dans l'organisme. Cependant, des métabolites intermédiaires réactifs peuvent se former lors de la biotransformation, et ceux-ci sont potentiellement nocifs. C'est ce qu'on appelle l'activation métabolique. Ainsi, la biotransformation peut également induire une toxicité. Les métabolites intermédiaires oxydés qui ne sont pas conjugués peuvent se lier aux structures cellulaires et les endommager. Si, par exemple, un métabolite xénobiotique se lie à l'ADN, une mutation peut être induite (voir « Toxicologie génétique »). Si le système de biotransformation est surchargé, une destruction massive des protéines essentielles ou des membranes lipidiques peut se produire. Cela peut entraîner la mort cellulaire (voir « Lésion cellulaire et mort cellulaire »).
Métabolisme est un mot souvent utilisé de manière interchangeable avec biotransformation. Il dénote une décomposition chimique ou des réactions de synthèse catalysées par des enzymes dans le corps. Les nutriments provenant des aliments, les composés endogènes et les xénobiotiques sont tous métabolisés dans le corps.
Activation métabolique signifie qu'un composé moins réactif est converti en une molécule plus réactive. Cela se produit généralement pendant les réactions de phase 1.
Inactivation métabolique signifie qu'une molécule active ou toxique est convertie en un métabolite moins actif. Cela se produit généralement pendant les réactions de phase 2. Dans certains cas, un métabolite inactivé peut être réactivé, par exemple par clivage enzymatique.
Phase 1 réaction fait référence à la première étape du métabolisme des xénobiotiques. Cela signifie généralement que le composé est oxydé. L'oxydation rend généralement le composé plus soluble dans l'eau et facilite les réactions ultérieures.
Les enzymes du cytochrome P450 sont un groupe d'enzymes qui oxydent préférentiellement les xénobiotiques dans les réactions de phase 1. Les différentes enzymes sont spécialisées pour manipuler des groupes spécifiques de xénobiotiques avec certaines caractéristiques. Les molécules endogènes sont également des substrats. Les enzymes du cytochrome P450 sont induites par les xénobiotiques d'une manière spécifique. L'obtention de données d'induction sur le cytochrome P450 peut être informative sur la nature des expositions antérieures (voir « Déterminants génétiques de la réponse toxique »).
Phase 2 réaction fait référence à la deuxième étape du métabolisme des xénobiotiques. Cela signifie généralement que le composé oxydé est conjugué avec (couplé à) une molécule endogène. Cette réaction augmente encore la solubilité dans l'eau. De nombreux métabolites conjugués sont activement excrétés par les reins.
Transferts sont un groupe d'enzymes qui catalysent les réactions de phase 2. Ils conjuguent des xénobiotiques avec des composés endogènes tels que le glutathion, les acides aminés, l'acide glucuronique ou le sulfate.
Le glutathion est une molécule endogène, un tripeptide, qui se conjugue avec des xénobiotiques dans les réactions de Phase 2. Il est présent dans toutes les cellules (et dans les cellules hépatiques à des concentrations élevées) et protège généralement des xénobiotiques activés. Lorsque le glutathion est épuisé, des réactions toxiques entre les métabolites xénobiotiques activés et les protéines, les lipides ou l'ADN peuvent se produire.
Induction signifie que les enzymes impliquées dans la biotransformation sont augmentées (en activité ou en quantité) en réponse à l'exposition aux xénobiotiques. Dans certains cas, en quelques jours, l'activité enzymatique peut être multipliée plusieurs fois. L'induction est souvent équilibrée de sorte que les réactions de phase 1 et de phase 2 sont augmentées simultanément. Cela peut conduire à une biotransformation plus rapide et peut expliquer la tolérance. En revanche, une induction déséquilibrée peut augmenter la toxicité.
Inhibition de biotransformation peut se produire si deux xénobiotiques sont métabolisés par la même enzyme. Les deux substrats doivent entrer en compétition, et généralement l'un des substrats est préféré. Dans ce cas, le second substrat n'est pas métabolisé, ou seulement lentement métabolisé. Comme pour l'induction, l'inhibition peut aussi bien augmenter que diminuer la toxicité.
Activation de l'oxygène peut être déclenchée par les métabolites de certains xénobiotiques. Ils peuvent s'auto-oxyder sous la production d'espèces oxygénées activées. Ces espèces dérivées de l'oxygène, qui comprennent le superoxyde, le peroxyde d'hydrogène et le radical hydroxyle, peuvent endommager l'ADN, les lipides et les protéines des cellules. L'activation de l'oxygène est également impliquée dans les processus inflammatoires.
Variabilité génétique entre les individus est observée dans de nombreux gènes codant pour les enzymes de phase 1 et de phase 2. La variabilité génétique peut expliquer pourquoi certains individus sont plus sensibles aux effets toxiques des xénobiotiques que d'autres.
L'organisme humain représente un système biologique complexe à différents niveaux d'organisation, du niveau moléculaire-cellulaire aux tissus et organes. L'organisme est un système ouvert, échangeant de la matière et de l'énergie avec l'environnement par de nombreuses réactions biochimiques en équilibre dynamique. L'environnement peut être pollué ou contaminé par diverses substances toxiques.
La pénétration de molécules ou d'ions de substances toxiques provenant du milieu de travail ou de vie dans un système biologique aussi fortement coordonné peut perturber de manière réversible ou irréversible les processus biochimiques cellulaires normaux, voire blesser et détruire la cellule (voir « Lésion cellulaire et mort cellulaire »).
La pénétration d'un toxique de l'environnement vers les sites de son effet toxique à l'intérieur de l'organisme peut être divisée en trois phases :
Ici, nous concentrerons notre attention exclusivement sur les processus toxicocinétiques à l'intérieur de l'organisme humain suite à une exposition à des substances toxiques dans l'environnement.
Les molécules ou les ions de toxiques présents dans l'environnement vont pénétrer dans l'organisme par la peau et les muqueuses, ou les cellules épithéliales des voies respiratoires et gastro-intestinales, selon le point d'entrée. Cela signifie que les molécules et les ions de substances toxiques doivent pénétrer à travers les membranes cellulaires de ces systèmes biologiques, ainsi qu'à travers un système complexe d'endomembranes à l'intérieur de la cellule.
Tous les processus toxicocinétiques et toxicodynamiques se produisent au niveau moléculaire-cellulaire. De nombreux facteurs influencent ces processus et ceux-ci peuvent être divisés en deux groupes de base :
Propriétés physico-chimiques des toxiques
En 1854, le toxicologue russe EV Pelikan a commencé des études sur la relation entre la structure chimique d'une substance et son activité biologique - la relation structure-activité (SAR). La structure chimique détermine directement les propriétés physico-chimiques, dont certaines sont responsables de l'activité biologique.
Pour définir la structure chimique, de nombreux paramètres peuvent être sélectionnés comme descripteurs, qui peuvent être divisés en différents groupes :
1. Physico-chimique :
2. Stérique : volume moléculaire, forme et surface, forme de la sous-structure, réactivité moléculaire, etc.
3. De construction: nombre de liaisons nombre de cycles (dans les composés polycycliques), degré de ramification, etc.
Pour chaque substance toxique, il est nécessaire de sélectionner un ensemble de descripteurs liés à un mécanisme d'activité particulier. Cependant, du point de vue toxicocinétique, deux paramètres sont d'une importance générale pour tous les toxiques :
Pour les poussières et aérosols inhalés, la taille, la forme, la surface et la densité des particules influencent également leur toxicocinétique et leur toxicodynamique.
Structure et propriétés des membranes
La cellule eucaryote des organismes humains et animaux est entourée d'une membrane cytoplasmique régulant le transport des substances et maintenant l'homéostasie cellulaire. Les organites cellulaires (noyau, mitochondries) possèdent également des membranes. Le cytoplasme cellulaire est compartimenté par des structures membraneuses complexes, le réticulum endoplasmique et le complexe de Golgi (endomembranes). Toutes ces membranes sont structurellement similaires, mais varient dans la teneur en lipides et en protéines.
L'armature structurale des membranes est une bicouche de molécules lipidiques (phospholipides, sphyngolipides, cholestérol). Le squelette d'une molécule de phospholipide est le glycérol avec deux de ses groupes -OH estérifiés par des acides gras aliphatiques de 16 à 18 atomes de carbone, et le troisième groupe estérifié par un groupe phosphate et un composé azoté (choline, éthanolamine, sérine). Dans les sphyngolipides, la sphyngosine est la base.
La molécule lipidique est amphipatique car elle est constituée d'une « tête » polaire hydrophile (alcool aminé, phosphate, glycérol) et d'une « queue » jumelle non polaire (acides gras). La bicouche lipidique est disposée de sorte que les têtes hydrophiles constituent la surface externe et interne de la membrane et les queues lipophiles sont étirées vers l'intérieur de la membrane, qui contient de l'eau, divers ions et molécules.
Les protéines et les glycoprotéines sont insérées dans la bicouche lipidique (protéines intrinsèques) ou fixées à la surface de la membrane (protéines extrinsèques). Ces protéines contribuent à l'intégrité structurelle de la membrane, mais elles peuvent également jouer le rôle d'enzymes, de transporteurs, de parois de pores ou de récepteurs.
La membrane représente une structure dynamique qui peut être désintégrée et reconstruite avec une proportion différente de lipides et de protéines, selon les besoins fonctionnels.
La régulation du transport des substances dans et hors de la cellule représente l'une des fonctions de base des membranes externes et internes.
Certaines molécules lipophiles traversent directement la bicouche lipidique. Les molécules hydrophiles et les ions sont transportés via les pores. Les membranes réagissent aux conditions changeantes en ouvrant ou en scellant certains pores de différentes tailles.
Les processus et mécanismes suivants sont impliqués dans le transport de substances, y compris les substances toxiques, à travers les membranes :
Processus actifs :
La diffusion
Cela représente le mouvement des molécules et des ions à travers la bicouche lipidique ou les pores d'une région à forte concentration, ou potentiel électrique élevé, vers une région à faible concentration ou potentiel ("en descente"). La différence de concentration ou de charge électrique est la force motrice qui influence l'intensité du flux dans les deux sens. Dans l'état d'équilibre, l'afflux sera égal à l'efflux. Le taux de diffusion suit la loi de Ficke, indiquant qu'il est directement proportionnel à la surface disponible de la membrane, à la différence de gradient de concentration (charge) et au coefficient de diffusion caractéristique, et inversement proportionnel à l'épaisseur de la membrane.
Les petites molécules lipophiles traversent facilement la couche lipidique de la membrane, selon le coefficient de partage de Nernst.
Les grosses molécules lipophiles, les molécules hydrosolubles et les ions utiliseront des canaux de pores aqueux pour leur passage. La taille et la stéréoconfiguration influenceront le passage des molécules. Pour les ions, outre la taille, le type de charge sera déterminant. Les molécules de protéines des parois des pores peuvent acquérir une charge positive ou négative. Les pores étroits ont tendance à être sélectifs - les ligands chargés négativement ne permettront le passage qu'aux cations, et les ligands chargés positivement ne permettront le passage qu'aux anions. Avec l'augmentation du diamètre des pores, le flux hydrodynamique est dominant, permettant le libre passage des ions et des molécules, selon la loi de Poiseuille. Cette filtration est une conséquence du gradient osmotique. Dans certains cas, les ions peuvent pénétrer à travers des molécules complexes spécifiques—ionophores—qui peuvent être produits par des micro-organismes à effet antibiotique (nonactine, valinomycine, gramacidine, etc.).
Diffusion facilitée ou catalysée
Cela nécessite la présence d'un transporteur dans la membrane, généralement une molécule de protéine (perméase). Le support lie sélectivement les substances, ressemblant à un complexe substrat-enzyme. Des molécules similaires (y compris des substances toxiques) peuvent entrer en compétition pour le support spécifique jusqu'à ce que son point de saturation soit atteint. Les substances toxiques peuvent concourir pour le transporteur et lorsqu'elles y sont liées de manière irréversible, le transport est bloqué. Le tarif du transport est caractéristique pour chaque type de transporteur. Si le transport s'effectue dans les deux sens, on parle d'échange diffusion.
Transport actif
Pour le transport de certaines substances vitales pour la cellule, un type spécial de transporteur est utilisé, transportant contre le gradient de concentration ou le potentiel électrique ("en montée"). Le porteur est très stéréospécifique et peut être saturé.
Pour le transport en montée, il faut de l'énergie. L'énergie nécessaire est obtenue par clivage catalytique des molécules d'ATP en ADP par l'enzyme adénosine triphosphatase (ATP-ase).
Les toxiques peuvent interférer avec ce transport par inhibition compétitive ou non compétitive du transporteur ou par inhibition de l'activité ATP-ase.
Endocytose
Endocytose est défini comme un mécanisme de transport dans lequel la membrane cellulaire encercle le matériau en se repliant pour former une vésicule le transportant à travers la cellule. Lorsque le matériau est liquide, le processus est appelé pinocytose. Dans certains cas, le matériau est lié à un récepteur et ce complexe est transporté par une vésicule membranaire. Ce type de transport est notamment utilisé par les cellules épithéliales du tractus gastro-intestinal, et les cellules du foie et des reins.
Absorption de substances toxiques
Les personnes sont exposées à de nombreuses substances toxiques présentes dans l'environnement de travail et de vie, qui peuvent pénétrer dans l'organisme humain par trois principales portes d'entrée :
Dans le cas de l'exposition dans l'industrie, l'inhalation représente la principale voie d'entrée des toxiques, suivie de la pénétration cutanée. En agriculture, l'exposition aux pesticides par absorption cutanée est presque égale aux cas d'inhalation et de pénétration cutanée combinées. La population générale est principalement exposée par ingestion d'aliments, d'eau et de boissons contaminés, puis par inhalation et moins souvent par pénétration cutanée.
Absorption par les voies respiratoires
L'absorption dans les poumons représente la principale voie d'absorption de nombreux toxiques atmosphériques (gaz, vapeurs, émanations, brouillards, fumées, poussières, aérosols, etc.).
Les voies respiratoires (RT) représentent un système d'échange de gaz idéal possédant une membrane d'une surface de 30m2 (expiration) à 100m2 (inspiration profonde), derrière laquelle se situe un réseau d'environ 2,000 XNUMX km de capillaires. Le système, développé au fil de l'évolution, est logé dans un espace relativement petit (cavité thoracique) protégé par des côtes.
Anatomiquement et physiologiquement, la RT peut être divisée en trois compartiments :
Les toxiques hydrophiles sont facilement absorbés par l'épithélium de la région nasopharyngée. L'ensemble de l'épithélium des régions NP et TB est recouvert d'un film d'eau. Les toxiques lipophiles sont partiellement absorbés dans le NP et le TB, mais surtout dans les alvéoles par diffusion à travers les membranes alvéolo-capillaires. Le taux d'absorption dépend de la ventilation pulmonaire, du débit cardiaque (flux sanguin dans les poumons), de la solubilité du toxique dans le sang et de son taux métabolique.
Dans les alvéoles, des échanges gazeux s'effectuent. La paroi alvéolaire est constituée d'un épithélium, d'une trame interstitielle de membrane basale, de tissu conjonctif et de l'endothélium capillaire. La diffusion des toxiques est très rapide à travers ces couches qui ont une épaisseur d'environ 0.8 μm. Dans les alvéoles, le toxique est transféré de la phase air à la phase liquide (sang). Le taux d'absorption (distribution air-sang) d'un toxique dépend de sa concentration dans l'air alvéolaire et du coefficient de partage de Nernst pour le sang (coefficient de solubilité).
Dans le sang, le toxique peut être dissous dans la phase liquide par de simples processus physiques ou lié aux cellules sanguines et/ou aux constituants du plasma selon l'affinité chimique ou par adsorption. La teneur en eau du sang est de 75% et, par conséquent, les gaz et vapeurs hydrophiles présentent une solubilité élevée dans le plasma (par exemple, les alcools). Les toxiques lipophiles (par exemple, le benzène) sont généralement liés aux cellules ou aux macromolécules telles que l'albumine.
Dès le début de l'exposition dans les poumons, deux processus opposés se produisent : l'absorption et la désorption. L'équilibre entre ces processus dépend de la concentration de toxique dans l'air et le sang alvéolaires. Au début de l'exposition, la concentration de toxique dans le sang est de 0 et la rétention dans le sang est de près de 100 %. Avec la poursuite de l'exposition, un équilibre entre l'absorption et la désorption est atteint. Les toxiques hydrophiles atteindront rapidement l'équilibre, et le taux d'absorption dépend de la ventilation pulmonaire plutôt que du débit sanguin. Les toxiques lipophiles ont besoin de plus de temps pour atteindre l'équilibre, et ici le flux de sang insaturé régit le taux d'absorption.
Le dépôt de particules et d'aérosols dans la RT dépend de facteurs physiques et physiologiques, ainsi que de la taille des particules. En bref, plus la particule est petite, plus elle pénétrera profondément dans la RT.
La faible rétention relativement constante des particules de poussière dans les poumons des personnes fortement exposées (par exemple, les mineurs) suggère l'existence d'un système très efficace d'élimination des particules. Dans la partie supérieure du RT (trachéo-bronchique) un tapis mucociliaire assure la clairance. Dans la partie pulmonaire, trois mécanismes différents sont à l'œuvre : (1) couverture mucociliaire, (2) phagocytose et (3) pénétration directe des particules à travers la paroi alvéolaire.
Les 17 premières des 23 ramifications de l'arbre trachéo-bronchique possèdent des cellules épithéliales ciliées. Par leurs coups, ces cils déplacent constamment un tapis muqueux vers la bouche. Les particules déposées sur ce tapis mucociliaire seront avalées par la bouche (ingestion). Un tapis muqueux recouvre également la surface de l'épithélium alvéolaire, se déplaçant vers le tapis mucociliaire. De plus, les cellules mobiles spécialisées - les phagocytes - engloutissent les particules et les micro-organismes dans les alvéoles et migrent dans deux directions possibles :
Absorption via le tractus gastro-intestinal
Des substances toxiques peuvent être ingérées en cas d'ingestion accidentelle, d'ingestion d'aliments et de boissons contaminés ou d'ingestion de particules éliminées de la RT.
L'ensemble du tube digestif, de l'œsophage à l'anus, est fondamentalement construit de la même manière. Une couche muqueuse (épithélium) est soutenue par du tissu conjonctif puis par un réseau de capillaires et de muscles lisses. L'épithélium de surface de l'estomac est très plissé pour augmenter la surface d'absorption/sécrétion. La région intestinale contient de nombreuses petites saillies (villosités), qui sont capables d'absorber de la matière en « pompant ». La zone active d'absorption dans les intestins est d'environ 100 m2.
Dans le tractus gastro-intestinal (GIT), tous les processus d'absorption sont très actifs :
Certains ions métalliques toxiques utilisent des systèmes de transport spécialisés pour les éléments essentiels : le thallium, le cobalt et le manganèse utilisent le système du fer, tandis que le plomb semble utiliser le système du calcium.
De nombreux facteurs influencent le taux d'absorption des substances toxiques dans diverses parties du GIT :
Il faut aussi mentionner la circulation entérohépatique. Les toxiques polaires et/ou métabolites (glucuronides et autres conjugués) sont excrétés avec la bile dans le duodénum. Ici, les enzymes de la microflore effectuent une hydrolyse et les produits libérés peuvent être réabsorbés et transportés par la veine porte dans le foie. Ce mécanisme est très dangereux dans le cas des substances hépatotoxiques, permettant leur accumulation temporaire dans le foie.
Dans le cas de substances toxiques biotransformées dans le foie en métabolites moins toxiques ou non toxiques, l'ingestion peut représenter une porte d'entrée moins dangereuse. Après absorption dans le GIT, ces toxiques seront transportés par la veine porte vers le foie, et là ils pourront être partiellement détoxifiés par biotransformation.
Absorption par la peau (dermique, percutanée)
La peau (1.8 m2 de surface chez un humain adulte) avec les membranes muqueuses des orifices corporels, recouvre la surface du corps. Il représente une barrière contre les agents physiques, chimiques et biologiques, en maintenant l'intégrité et l'homéostasie du corps et en effectuant de nombreuses autres tâches physiologiques.
Fondamentalement, la peau se compose de trois couches : l'épiderme, la vraie peau (derme) et le tissu sous-cutané (hypoderme). Du point de vue toxicologique, l'épiderme est ici le plus intéressant. Il est constitué de plusieurs couches de cellules. Une surface cornée de cellules mortes aplaties (stratum corneum) est la couche supérieure, sous laquelle se trouve une couche continue de cellules vivantes (stratum corneum compactum), suivie d'une membrane lipidique typique, puis de stratum lucidum, stratum gramulosum et stratum muqueuse. La membrane lipidique représente une barrière protectrice, mais dans les parties pileuses de la peau, les follicules pileux et les canaux des glandes sudoripares la traversent. Par conséquent, l'absorption cutanée peut se produire par les mécanismes suivants :
Le taux d'absorption à travers la peau dépendra de nombreux facteurs :
Transport de substances toxiques par le sang et la lymphe
Après absorption par l'une de ces portes d'entrée, les substances toxiques atteindront le sang, la lymphe ou d'autres fluides corporels. Le sang représente le principal véhicule de transport des substances toxiques et de leurs métabolites.
Le sang est un organe de circulation fluide, transportant l'oxygène et les substances vitales nécessaires aux cellules et éliminant les déchets du métabolisme. Le sang contient également des composants cellulaires, des hormones et d'autres molécules impliquées dans de nombreuses fonctions physiologiques. Le sang circule à l'intérieur d'un système circulatoire de vaisseaux sanguins à haute pression relativement bien fermé, poussé par l'activité du cœur. En raison de la haute pression, une fuite de liquide se produit. Le système lymphatique représente le système de drainage, sous la forme d'un fin maillage de petits capillaires lymphatiques à parois minces se ramifiant à travers les tissus mous et les organes.
Le sang est un mélange d'une phase liquide (plasma, 55%) et de cellules sanguines solides (45%). Le plasma contient des protéines (albumines, globulines, fibrinogène), des acides organiques (lactique, glutamique, citrique) et de nombreuses autres substances (lipides, lipoprotéines, glycoprotéines, enzymes, sels, xénobiotiques, etc.). Les éléments des cellules sanguines comprennent les érythrocytes (Er), les leucocytes, les réticulocytes, les monocytes et les plaquettes.
Les substances toxiques sont absorbées sous forme de molécules et d'ions. Certaines substances toxiques au pH sanguin forment des particules colloïdales en tant que troisième forme dans ce liquide. Les molécules, les ions et les colloïdes de substances toxiques ont diverses possibilités de transport dans le sang :
La plupart des substances toxiques présentes dans le sang existent partiellement à l'état libre dans le plasma et partiellement liées aux érythrocytes et aux constituants du plasma. La distribution dépend de l'affinité des substances toxiques avec ces constituants. Toutes les fractions sont en équilibre dynamique.
Certaines substances toxiques sont transportées par les éléments sanguins, principalement par les érythrocytes, très rarement par les leucocytes. Les toxiques peuvent être adsorbés à la surface de Er ou peuvent se lier aux ligands du stroma. S'ils pénètrent dans Er, ils peuvent se lier à l'hème (par exemple, le monoxyde de carbone et le sélénium) ou à la globine (Sb111, Petit210). Certains toxiques transportés par Er sont l'arsenic, le césium, le thorium, le radon, le plomb et le sodium. Le chrome hexavalent est exclusivement lié à l'ER et le chrome trivalent aux protéines du plasma. Pour le zinc, une compétition entre Er et le plasma se produit. Environ 96% du plomb est transporté par Er. Le mercure organique est principalement lié à Er et le mercure inorganique est transporté principalement par l'albumine plasmatique. De petites fractions de béryllium, de cuivre, de tellure et d'uranium sont transportées par Er.
La majorité des toxiques sont transportés par le plasma ou les protéines plasmatiques. De nombreux électrolytes sont présents sous forme d'ions en équilibre avec des molécules non dissociées libres ou liées aux fractions plasmatiques. Cette fraction ionique de substances toxiques est très diffusible, pénétrant à travers les parois des capillaires dans les tissus et les organes. Les gaz et les vapeurs peuvent être dissous dans le plasma.
Les protéines plasmatiques possèdent une surface totale d'environ 600 à 800 km2 offert pour l'absorption de substances toxiques. Les molécules d'albumine possèdent environ 109 ligands cationiques et 120 anioniques à la disposition des ions. De nombreux ions sont partiellement transportés par l'albumine (par exemple, le cuivre, le zinc et le cadmium), tout comme des composés tels que les dinitro- et ortho-crésols, les dérivés nitrés et halogénés d'hydrocarbures aromatiques et les phénols.
Les molécules de globuline (alpha et bêta) transportent de petites molécules de substances toxiques ainsi que certains ions métalliques (cuivre, zinc et fer) et des particules colloïdales. Le fibrinogène montre une affinité pour certaines petites molécules. De nombreux types de liaisons peuvent être impliquées dans la liaison des toxiques aux protéines plasmatiques : forces de Van der Waals, attraction de charges, association entre groupes polaires et non polaires, ponts hydrogène, liaisons covalentes.
Les lipoprotéines plasmatiques transportent des substances toxiques lipophiles telles que les PCB. Les autres fractions de plasma servent également de véhicule de transport. L'affinité des substances toxiques pour les protéines plasmatiques suggère leur affinité pour les protéines dans les tissus et les organes pendant la distribution.
Les acides organiques (lactique, glutaminique, citrique) forment des complexes avec certains toxiques. Les alcalino-terreux et les terres rares, ainsi que certains éléments lourds sous forme de cations, sont également complexés avec des oxyacides et des acides aminés organiques. Tous ces complexes sont généralement diffusibles et facilement distribués dans les tissus et les organes.
Les agents chélateurs physiologiques dans le plasma tels que la transferrine et la métallothionéine entrent en compétition avec les acides organiques et les acides aminés pour les cations pour former des chélates stables.
Les ions libres diffusibles, certains complexes et certaines molécules libres sont facilement évacués du sang vers les tissus et les organes. La fraction libre d'ions et de molécules est en équilibre dynamique avec la fraction liée. La concentration d'une substance toxique dans le sang déterminera la vitesse de sa distribution dans les tissus et les organes, ou sa mobilisation à partir d'eux dans le sang.
Distribution des substances toxiques dans l'organisme
L'organisme humain peut être divisé comme suit compartiments. (1) les organes internes, (2) la peau et les muscles, (3) les tissus adipeux, (4) le tissu conjonctif et les os. Cette classification est principalement basée sur le degré de perfusion vasculaire (sanguine) dans un ordre décroissant. Par exemple, les organes internes (y compris le cerveau), qui ne représentent que 12 % du poids corporel total, reçoivent environ 75 % du volume sanguin total. En revanche, les tissus conjonctifs et les os (15 % du poids corporel total) ne reçoivent qu'un pour cent du volume sanguin total.
Les organes internes bien perfusés atteignent généralement la concentration la plus élevée de substances toxiques dans les plus brefs délais, ainsi qu'un équilibre entre le sang et ce compartiment. L'absorption des substances toxiques par les tissus moins perfusés est beaucoup plus lente, mais la rétention est plus élevée et la durée de séjour beaucoup plus longue (accumulation) en raison d'une faible perfusion.
Trois composants sont d'une importance majeure pour la distribution intracellulaire des substances toxiques : la teneur en eau, en lipides et en protéines dans les cellules des différents tissus et organes. L'ordre des compartiments mentionné ci-dessus suit également de près une teneur en eau décroissante dans leurs cellules. Les toxiques hydrophiles seront distribués plus rapidement aux fluides corporels et aux cellules à forte teneur en eau, et les toxiques lipophiles aux cellules à forte teneur en lipides (tissu adipeux).
L'organisme possède certaines barrières qui entravent la pénétration de certains groupes de substances toxiques, principalement hydrophiles, dans certains organes et tissus, tels que :
Comme indiqué précédemment, seules les formes libres de substances toxiques dans le plasma (molécules, ions, colloïdes) sont disponibles pour la pénétration à travers les parois capillaires participant à la distribution. Cette fraction libre est en équilibre dynamique avec la fraction liée. La concentration de substances toxiques dans le sang est en équilibre dynamique avec leur concentration dans les organes et les tissus, régissant leur rétention (accumulation) ou leur mobilisation.
L'état de l'organisme, l'état fonctionnel des organes (en particulier la régulation neuro-humorale), l'équilibre hormonal et d'autres facteurs jouent un rôle dans la distribution.
La rétention d'une substance toxique dans un compartiment particulier est généralement temporaire et une redistribution dans d'autres tissus peut se produire. La rétention et l'accumulation sont basées sur la différence entre les taux d'absorption et d'élimination. La durée de rétention dans un compartiment est exprimée par la demi-vie biologique. Il s'agit de l'intervalle de temps pendant lequel 50 % de la substance toxique est éliminée du tissu ou de l'organe et redistribuée, transloquée ou éliminée de l'organisme.
Les processus de biotransformation se produisent lors de la distribution et de la rétention dans divers organes et tissus. La biotransformation produit des métabolites plus polaires, plus hydrophiles, qui sont plus facilement éliminés. Un faible taux de biotransformation d'un toxique lipophile entraînera généralement son accumulation dans un compartiment.
Les toxiques peuvent être divisés en quatre groupes principaux selon leur affinité, leur rétention prédominante et leur accumulation dans un compartiment particulier :
Accumulation dans les tissus riches en lipides
L'« homme standard » de 70 kg de poids corporel contient environ 15 % de son poids corporel sous forme de tissu adipeux, augmentant avec l'obésité jusqu'à 50 %. Cependant, cette fraction lipidique n'est pas uniformément répartie. Le cerveau (SNC) est un organe riche en lipides et les nerfs périphériques sont enveloppés d'une gaine de myéline riche en lipides et de cellules de Schwann. Tous ces tissus offrent des possibilités d'accumulation de toxiques lipophiles.
Seront distribués dans ce compartiment de nombreux non-électrolytes et toxiques apolaires avec un coefficient de partage de Nernst adapté, ainsi que de nombreux solvants organiques (alcools, aldéhydes, cétones...), des hydrocarbures chlorés (dont des insecticides organochlorés comme le DDT), certains gaz inertes (radon), etc.
Le tissu adipeux accumulera des substances toxiques en raison de sa faible vascularisation et de son faible taux de biotransformation. Ici, l'accumulation de substances toxiques peut représenter une sorte de « neutralisation » temporaire en raison du manque de cibles pour l'effet toxique. Cependant, le danger potentiel pour l'organisme est toujours présent en raison de la possibilité de mobilisation de substances toxiques de ce compartiment vers la circulation.
Le dépôt de substances toxiques dans le cerveau (SNC) ou les tissus riches en lipides de la gaine de myéline du système nerveux périphérique est très dangereux. Les neurotoxiques sont déposés ici directement à côté de leurs cibles. Les substances toxiques retenues dans les tissus riches en lipides des glandes endocrines peuvent produire des troubles hormonaux. Malgré la barrière hémato-encéphalique, de nombreux neurotoxiques de nature lipophile atteignent le cerveau (SNC) : anesthésiques, solvants organiques, pesticides, plomb tétraéthyle, organomercuriels, etc.
Rétention dans le système réticulo-endothélial
Dans chaque tissu et organe, un certain pourcentage de cellules est spécialisé pour l'activité phagocytaire, engloutissant les micro-organismes, les particules, les particules colloïdes, etc. Ce système est appelé le système réticulo-endothélial (RES), comprenant des cellules fixes ainsi que des cellules mobiles (phagocytes). Ces cellules sont présentes sous une forme non active. Une augmentation des microbes et particules mentionnés ci-dessus activera les cellules jusqu'à un point de saturation.
Les toxiques sous forme de colloïdes seront capturés par le SER des organes et des tissus. La distribution dépend de la taille des particules de colloïde. Pour les particules plus grosses, la rétention dans le foie sera favorisée. Avec des particules colloïdales plus petites, une distribution plus ou moins uniforme se produira entre la rate, la moelle osseuse et le foie. L'élimination des colloïdes du RES est très lente, bien que les petites particules soient éliminées relativement plus rapidement.
Accumulation dans les os
Environ 60 éléments peuvent être identifiés comme éléments ostéotropes, ou chercheurs osseux.
Les éléments ostéotropes peuvent être divisés en trois groupes :
Le squelette d'un homme standard représente 10 à 15 % du poids corporel total, ce qui représente un important dépôt potentiel de substances toxiques ostéotropes. L'os est un tissu hautement spécialisé constitué en volume de 54 % de minéraux et de 38 % de matrice organique. La matrice minérale de l'os est l'hydroxyapatite, Ca10(PO4)6(OH)2 , dans lequel le rapport de Ca à P est d'environ 1.5 à un. La surface de minéral disponible pour l'adsorption est d'environ 100 m2 par g d'os.
L'activité métabolique des os du squelette peut être divisée en deux catégories :
Chez le fœtus, le nourrisson et le jeune enfant, l'os métabolique (voir « squelette disponible ») représente près de 100 % du squelette. Avec l'âge, ce pourcentage d'os métabolique diminue. L'incorporation de substances toxiques lors de l'exposition apparaît dans l'os métabolique et dans des compartiments à rotation plus lente.
L'incorporation de substances toxiques dans l'os se produit de deux manières :
Réactions d'échange d'ions
Le minéral osseux, l'hydroxyapatite, représente un système complexe d'échange d'ions. Les cations calcium peuvent être échangés par divers cations. Les anions présents dans l'os peuvent aussi être échangés par des anions : phosphate avec citrates et carbonates, hydroxyle avec fluor. Les ions non échangeables peuvent être adsorbés sur la surface minérale. Lorsque des ions toxiques sont incorporés dans le minéral, une nouvelle couche de minéral peut recouvrir la surface minérale, enterrant le toxique dans la structure osseuse. L'échange d'ions est un processus réversible, qui dépend de la concentration d'ions, du pH et du volume de liquide. Ainsi, par exemple, une augmentation du calcium alimentaire peut diminuer le dépôt d'ions toxiques dans le réseau des minéraux. Il a été mentionné qu'avec l'âge, le pourcentage d'os métabolique diminue, bien que l'échange d'ions se poursuive. Avec le vieillissement, une résorption minérale osseuse se produit, au cours de laquelle la densité osseuse diminue. À ce stade, des substances toxiques dans les os peuvent être libérées (par exemple, le plomb).
Environ 30% des ions incorporés dans les minéraux osseux sont faiblement liés et peuvent être échangés, capturés par des agents chélateurs naturels et excrétés, avec une demi-vie biologique de 15 jours. Les 70 % restants sont plus solidement liés. La mobilisation et l'excrétion de cette fraction montre une demi-vie biologique de 2.5 ans et plus selon le type d'os (processus de remodelage).
Les agents chélateurs (Ca-EDTA, pénicillamine, BAL, etc.) peuvent mobiliser des quantités considérables de certains métaux lourds, et leur excrétion dans les urines est fortement augmentée.
Adsorption colloïdale
Les particules colloïdales sont adsorbées sous forme de film sur la surface minérale (100m2 par g) par les forces de Van der Waals ou la chimisorption. Cette couche de colloïdes sur les surfaces minérales est recouverte de la couche suivante de minéraux formés, et les substances toxiques sont davantage enfouies dans la structure osseuse. Le taux de mobilisation et d'élimination dépend des processus de remodelage.
Accumulation dans les cheveux et les ongles
Les cheveux et les ongles contiennent de la kératine, avec des groupes sulfhydryle capables de chélater les cations métalliques tels que le mercure et le plomb.
Distribution du toxique à l'intérieur de la cellule
Récemment, la distribution des substances toxiques, en particulier certains métaux lourds, dans les cellules des tissus et des organes est devenue importante. Avec des techniques d'ultracentrifugation, diverses fractions de la cellule peuvent être séparées pour déterminer leur teneur en ions métalliques et autres substances toxiques.
Des études animales ont révélé qu'après pénétration dans la cellule, certains ions métalliques sont liés à une protéine spécifique, la métallothionéine. Cette protéine de faible poids moléculaire est présente dans les cellules du foie, des reins et d'autres organes et tissus. Ses groupes sulfhydryle peuvent lier six ions par molécule. La présence accrue d'ions métalliques induit la biosynthèse de cette protéine. Les ions de cadmium sont l'inducteur le plus puissant. La métallothionéine sert également à maintenir l'homéostasie des ions vitaux de cuivre et de zinc. La métallothionéine peut lier le zinc, le cuivre, le cadmium, le mercure, le bismuth, l'or, le cobalt et d'autres cations.
Biotransformation et élimination des toxiques
Pendant leur rétention dans les cellules de divers tissus et organes, les substances toxiques sont exposées à des enzymes qui peuvent les biotransformer (métaboliser) en produisant des métabolites. Il existe de nombreuses voies d'élimination des toxiques et/ou des métabolites : par l'air expiré via les poumons, par l'urine via les reins, par la bile via le tube digestif, par la sueur via la peau, par la salive via la muqueuse buccale, par le lait via les glandes mammaires, ainsi que par les cheveux et les ongles via la croissance normale et le renouvellement cellulaire.
L'élimination d'un toxique absorbé dépend de la porte d'entrée. Dans les poumons, le processus d'absorption/désorption démarre immédiatement et les substances toxiques sont partiellement éliminées par l'air expiré. L'élimination des toxiques absorbés par d'autres voies d'entrée est prolongée et commence après le transport par le sang, pour s'achever après distribution et biotransformation. Au cours de l'absorption, un équilibre existe entre les concentrations d'une substance toxique dans le sang et dans les tissus et organes. L'excrétion diminue la concentration sanguine de la substance toxique et peut induire la mobilisation d'une substance toxique des tissus vers le sang.
De nombreux facteurs peuvent influencer le taux d'élimination des substances toxiques et de leurs métabolites de l'organisme :
On distingue ici deux groupes de compartiments : (1) les système d'échange rapide— dans ces compartiments, la concentration tissulaire de toxique est similaire à celle du sang; et (2) le système d'échange lent, où la concentration tissulaire de substance toxique est plus élevée que dans le sang en raison de la liaison et de l'accumulation - le tissu adipeux, le squelette et les reins peuvent retenir temporairement certaines substances toxiques, par exemple l'arsenic et le zinc.
Un toxique peut être excrété simultanément par deux ou plusieurs voies d'excrétion. Cependant, généralement une route est dominante.
Les scientifiques développent des modèles mathématiques décrivant l'excrétion d'un toxique particulier. Ces modèles sont basés sur le mouvement d'un ou des deux compartiments (systèmes d'échange), la biotransformation, etc.
Élimination par l'air expiré via les poumons
L'élimination par les poumons (désorption) est typique des substances toxiques très volatiles (p. ex. solvants organiques). Les gaz et les vapeurs à faible solubilité dans le sang seront rapidement éliminés de cette manière, tandis que les toxiques à forte solubilité dans le sang seront éliminés par d'autres voies.
Les solvants organiques absorbés par l'intestin ou la peau sont partiellement excrétés par l'air expiré à chaque passage du sang dans les poumons, s'ils ont une pression de vapeur suffisante. L'alcootest utilisé pour les conducteurs en état d'ébriété présumés est basé sur ce fait. La concentration de CO dans l'air expiré est en équilibre avec la teneur sanguine en CO-Hb. Le gaz radioactif radon apparaît dans l'air expiré en raison de la désintégration du radium accumulé dans le squelette.
L'élimination d'un toxique par l'air expiré en fonction de la période post-exposition est généralement exprimée par une courbe triphasée. La première phase représente l'élimination du toxique du sang, montrant une courte demi-vie. La deuxième phase, plus lente, représente l'élimination due à l'échange de sang avec les tissus et les organes (système d'échange rapide). La troisième phase, très lente, est due aux échanges sanguins avec les tissus adipeux et le squelette. Si un toxique ne s'accumule pas dans de tels compartiments, la courbe sera à deux phases. Dans certains cas, une courbe à quatre phases est également possible.
La détermination des gaz et des vapeurs dans l'air expiré au cours de la période post-exposition est parfois utilisée pour évaluer l'exposition des travailleurs.
Excrétion rénale
Le rein est un organe spécialisé dans l'excrétion de nombreux toxiques et métabolites hydrosolubles, maintenant l'homéostasie de l'organisme. Chaque rein possède environ un million de néphrons capables d'effectuer l'excrétion. L'excrétion rénale représente un événement très complexe englobant trois mécanismes différents :
L'excrétion d'un toxique par les reins dans l'urine dépend du coefficient de partage de Nernst, de la constante de dissociation et du pH de l'urine, de la taille et de la forme moléculaires, du taux de métabolisme en métabolites plus hydrophiles, ainsi que de l'état de santé des reins.
La cinétique d'excrétion rénale d'un toxique ou de son métabolite peut être exprimée par une courbe d'excrétion à deux, trois ou quatre phases, selon la distribution du toxique particulier dans divers compartiments corporels différant par le taux d'échange avec le sang.
salive
Certains médicaments et ions métalliques peuvent être excrétés par la muqueuse de la bouche par la salive, par exemple le plomb ("ligne de plomb"), le mercure, l'arsenic, le cuivre, ainsi que les bromures, les iodures, l'alcool éthylique, les alcaloïdes, etc. Les toxiques sont ensuite avalés, atteignant le GIT, où ils peuvent être réabsorbés ou éliminés par les fèces.
Transpirer
De nombreux non-électrolytes peuvent être partiellement éliminés par voie cutanée par la sueur : alcool éthylique, acétone, phénols, sulfure de carbone et hydrocarbures chlorés.
Lait
De nombreux métaux, solvants organiques et certains pesticides organochlorés (DDT) sont sécrétés via la glande mammaire dans le lait maternel. Cette voie peut représenter un danger pour les nourrissons.
Implants
L'analyse des cheveux peut être utilisée comme indicateur de l'homéostasie de certaines substances physiologiques. L'exposition à certaines substances toxiques, en particulier les métaux lourds, peut également être évaluée par ce type d'essai biologique.
L'élimination des substances toxiques du corps peut être augmentée par:
Détermination de l'exposition
La détermination des substances toxiques et des métabolites dans le sang, l'air expiré, l'urine, la sueur, les matières fécales et les cheveux est de plus en plus utilisée pour l'évaluation de l'exposition humaine (tests d'exposition) et/ou l'évaluation du degré d'intoxication. Par conséquent, des limites d'exposition biologique (valeurs MAC biologiques, indices d'exposition biologique - BEI) ont été récemment établies. Ces bioessais montrent « l'exposition interne » de l'organisme, c'est-à-dire l'exposition totale de l'organisme dans les milieux de travail et de vie par toutes les portes d'entrée (voir « Méthodes d'essai toxicologique : Biomarqueurs »).
Effets combinés dus à une exposition multiple
Les personnes dans le milieu de travail et/ou de vie sont généralement exposées simultanément ou consécutivement à divers agents physiques et chimiques. Il faut également tenir compte du fait que certaines personnes consomment des médicaments, fument, consomment de l'alcool et des aliments contenant des additifs, etc. Cela signifie qu'il se produit généralement une exposition multiple. Les agents physiques et chimiques peuvent interagir à chaque étape des processus toxicocinétiques et/ou toxicodynamiques, produisant trois effets possibles :
Cependant, les études sur les effets combinés sont rares. Ce type d'étude est très complexe en raison de la combinaison de divers facteurs et agents.
Nous pouvons conclure que lorsque l'organisme humain est exposé à deux ou plusieurs substances toxiques simultanément ou consécutivement, il est nécessaire de considérer la possibilité de certains effets combinés, qui peuvent augmenter ou diminuer le taux de processus toxicocinétiques.
L'objectif prioritaire de la toxicologie professionnelle et environnementale est d'améliorer la prévention ou la limitation substantielle des effets sanitaires de l'exposition à des agents dangereux en milieu général et professionnel. À cette fin, des systèmes d'évaluation quantitative des risques liés à une exposition donnée ont été développés (voir la section « Toxicologie réglementaire »).
Les effets d'un produit chimique sur des systèmes et des organes particuliers sont liés à l'ampleur de l'exposition et au caractère aigu ou chronique de l'exposition. Compte tenu de la diversité des effets toxiques même au sein d'un système ou d'un organe, une philosophie uniforme concernant l'organe critique et l'effet critique a été proposée aux fins de l'évaluation des risques et de l'élaboration de limites de concentration recommandées pour la santé des substances toxiques dans différents milieux environnementaux. .
Du point de vue de la médecine préventive, il est particulièrement important d'identifier les effets indésirables précoces, sur la base de l'hypothèse générale selon laquelle la prévention ou la limitation des effets précoces peut empêcher l'apparition d'effets plus graves sur la santé.
Une telle approche a été appliquée aux métaux lourds. Bien que les métaux lourds, tels que le plomb, le cadmium et le mercure, appartiennent à un groupe spécifique de substances toxiques où l'effet chronique de l'activité dépend de leur accumulation dans les organes, les définitions présentées ci-dessous ont été publiées par le Task Group on Metal Toxicity (Nordberg 1976).
La définition de l'organe critique proposée par le Groupe de travail sur la toxicité des métaux a été adoptée avec une légère modification : le mot Métal a été remplacée par l'expression substance potentiellement toxique (Duffus 1993).
Le fait qu'un organe ou un système donné soit considéré comme critique dépend non seulement de la toxicomécanique de l'agent dangereux mais aussi de la voie d'absorption et de la population exposée.
La signification biologique de l'effet sous-critique n'est parfois pas connue; il peut s'agir d'un biomarqueur d'exposition, d'un indice d'adaptation ou d'un précurseur d'effet critique (voir « Méthodes d'essai toxicologique : biomarqueurs »). Cette dernière possibilité peut être particulièrement importante compte tenu des activités prophylactiques.
Le tableau 1 présente des exemples d'organes critiques et d'effets pour différents produits chimiques. Dans l'exposition environnementale chronique au cadmium, où la voie d'absorption est d'importance mineure (les concentrations de cadmium dans l'air varient de 10 à 20 μg/m3 en milieu urbain et 1 à 2 μg/m3 dans les zones rurales), l'organe critique est le rein. En milieu professionnel où la TLV atteint 50μg/m3 et l'inhalation constitue la principale voie d'exposition, deux organes, poumon et rein, sont considérés comme critiques.
Tableau 1. Exemples d'organes critiques et d'effets critiques
Substance | Organe critique en exposition chronique | Effet critique |
Cadmium | Poumons | Sans seuil: Cancer du poumon (risque unitaire 4.6 x 10-3) |
Rein | seuil: Augmentation de l'excrétion des protéines de faible poids moléculaire (β2 –M, RBP) dans l'urine |
|
Poumons | Légers changements fonctionnels de l'emphysème | |
Plomb | Adultes Système hématopoïétique |
Augmentation de l'excrétion d'acide delta-aminolévulinique dans l'urine (ALA-U); augmentation de la concentration de protoporphyrine érythrocytaire libre (FEP) dans les érythrocytes |
Système nerveux périphérique | Ralentissement des vitesses de conduction des fibres nerveuses plus lentes | |
Mercure (élémentaire) | Jeunes enfants Système nerveux central |
Diminution du QI et autres effets subtils ; tremblement mercuriel (doigts, lèvres, paupières) |
Mercure (mercurique) | Rein | Protéinurie |
Manganèse | Adultes Système nerveux central |
Altération des fonctions psychomotrices |
Enfants Poumons |
Symptômes respiratoires | |
Système nerveux central | Altération des fonctions psychomotrices | |
Toluène | Membranes muqueuses | Irritation |
Chlorure de vinyle | Foie | Cancer (risque unitaire d'angiosarcome 1 x 10-6 ) |
Acétate d'éthyle | Membrane muqueuse | Irritation |
Pour le plomb, les organes critiques chez l'adulte sont les systèmes hématopoïétique et nerveux périphérique, où les effets critiques (p. ex., concentration élevée de protoporphyrine érythrocytaire libre (FEP), augmentation de l'excrétion d'acide delta-aminolévulinique dans l'urine ou altération de la conduction nerveuse périphérique) se manifestent lorsque la plombémie (indice d'absorption du plomb dans l'organisme) approche 200 à 300 μg/l. Chez les jeunes enfants, l'organe critique est le système nerveux central (SNC), et les symptômes de dysfonctionnement détectés à l'aide d'une batterie de tests psychologiques se sont avérés apparaître dans les populations examinées, même à des concentrations de l'ordre d'environ 100 μg/l Pb en sang.
Un certain nombre d'autres définitions ont été formulées qui pourraient mieux refléter le sens de la notion. Selon l'OMS (1989), l'effet critique a été défini comme « le premier effet indésirable qui apparaît lorsque la concentration ou la dose seuil (critique) est atteinte dans l'organe critique. Les effets indésirables, tels que le cancer, sans concentration seuil définie sont souvent considérés comme critiques. La décision de savoir si un effet est critique est une question de jugement d'expert. Dans les lignes directrices du Programme international sur la sécurité chimique (IPCS) pour l'élaboration de Documents sur les critères de santé environnementale, l'effet critique est décrit comme « l'effet indésirable jugé le plus approprié pour déterminer la dose tolérable ». Cette dernière définition a été formulée directement dans le but d'évaluer les limites d'exposition à visée sanitaire dans l'environnement général. Dans ce contexte, le plus essentiel semble être de déterminer quel effet peut être considéré comme un effet néfaste. Selon la terminologie actuelle, l'effet indésirable est le "changement de morphologie, de physiologie, de croissance, de développement ou de durée de vie d'un organisme qui entraîne une altération de la capacité à compenser un stress supplémentaire ou une augmentation de la sensibilité aux effets nocifs d'autres influences environnementales". La décision de savoir si un effet est négatif ou non nécessite un jugement d'expert.
La figure 1 affiche des courbes dose-réponse hypothétiques pour différents effets. En cas d'exposition au plomb, A peut représenter un effet sous-critique (inhibition de l'ALA-déshydratase érythrocytaire), B l'effet critique (augmentation de la protoporphyrine de zinc érythrocytaire ou augmentation de l'excrétion d'acide delta-aminolévulinique, C l'effet clinique (anémie) et D l'effet fatal (la mort). Pour l'exposition au plomb, il existe de nombreuses preuves illustrant comment les effets particuliers de l'exposition dépendent de la concentration de plomb dans le sang (équivalent pratique de la dose), soit sous la forme de la relation dose-réponse ou en relation avec différentes variables (sexe, âge, etc. .). La détermination des effets critiques et de la relation dose-réponse pour de tels effets chez l'homme permet de prédire la fréquence d'un effet donné pour une dose donnée ou sa contrepartie (concentration dans le matériel biologique) dans une certaine population.
Figure 1. Courbes dose-réponse hypothétiques pour divers effets
Les effets critiques peuvent être de deux types : ceux considérés comme ayant un seuil et ceux pour lesquels il peut y avoir un certain risque à tout niveau d'exposition (sans seuil, cancérogènes génotoxiques et germes mutagènes). Dans la mesure du possible, des données humaines appropriées doivent être utilisées comme base pour l'évaluation des risques. Afin de déterminer les effets seuils pour la population générale, des hypothèses concernant le niveau d'exposition (dose tolérable, biomarqueurs d'exposition) doivent être faites telles que la fréquence de l'effet critique dans la population exposée à un agent dangereux donné corresponde à la fréquence de cet effet dans la population générale. Dans le cas de l'exposition au plomb, la concentration maximale recommandée de plomb dans le sang pour la population générale (200 μg/l, médiane inférieure à 100 μg/l) (OMS, 1987) est pratiquement inférieure à la valeur seuil de l'effet critique supposé, à savoir le taux élevé de protoporphyrine érythrocytaire libre, bien qu'il n'est pas inférieur au niveau associé à des effets sur le SNC chez les enfants ou la tension artérielle chez les adultes. En général, si les données d'études bien menées sur la population humaine définissant une dose sans effet nocif observé constituent la base de l'évaluation de l'innocuité, alors le facteur d'incertitude de dix a été considéré comme approprié. Dans le cas d'une exposition professionnelle, les effets critiques peuvent concerner une certaine partie de la population (par exemple 10 %). En conséquence, dans l'exposition professionnelle au plomb, la concentration de plomb dans le sang recommandée pour la santé a été adoptée à 400 mg/l chez les hommes, où un niveau de réponse de 10 % pour l'ALA-U de 5 mg/l s'est produit à des concentrations de PbB d'environ 300 à 400 mg/l. . Pour l'exposition professionnelle au cadmium (en supposant que l'excrétion urinaire accrue de protéines de faible poids soit l'effet critique), le niveau de 200 ppm de cadmium dans le cortex rénal a été considéré comme la valeur admissible, car cet effet a été observé chez 10 % des la population exposée. Ces deux valeurs sont à l'étude pour l'abaissement, dans de nombreux pays, à l'heure actuelle (c'est-à-dire, 1996).
Il n'y a pas de consensus clair sur la méthodologie appropriée pour l'évaluation des risques des produits chimiques pour lesquels l'effet critique peut ne pas avoir de seuil, tels que les cancérogènes génotoxiques. Un certain nombre d'approches fondées en grande partie sur la caractérisation de la relation dose-réponse ont été adoptées pour l'évaluation de ces effets. En raison du manque d'acceptation sociopolitique des risques pour la santé causés par les agents cancérigènes dans des documents tels que le Directives sur la qualité de l'air pour l'Europe (OMS 1987), seules les valeurs telles que le risque unitaire à vie (c'est-à-dire le risque associé à une exposition à vie à 1μg/m3 de l'agent dangereux) sont présentés pour les effets sans seuil (voir « Toxicologie réglementaire »).
À l'heure actuelle, l'étape fondamentale des activités d'évaluation des risques consiste à déterminer l'organe critique et les effets critiques. Les définitions de l'effet critique et de l'effet nocif reflètent la responsabilité de décider lequel des effets au sein d'un organe ou d'un système donné doit être considéré comme critique, et cela est directement lié à la détermination ultérieure des valeurs recommandées pour un produit chimique donné dans l'environnement général. -par exemple, Directives sur la qualité de l'air pour l'Europe (OMS 1987) ou les limites d'exposition professionnelle fondées sur la santé (OMS 1980). La détermination de l'effet critique à partir de la plage des effets sous-critiques peut conduire à une situation où les limites recommandées sur la concentration des produits chimiques toxiques dans l'environnement général ou professionnel peuvent être en pratique impossibles à maintenir. Considérer comme critique un effet pouvant se superposer aux effets cliniques précoces peut entraîner l'adoption de valeurs pour lesquelles des effets indésirables peuvent se développer dans une partie de la population. La décision de considérer ou non un effet donné comme critique reste du ressort de groupes d'experts spécialisés dans l'évaluation de la toxicité et des risques.
Il existe souvent de grandes différences entre les humains dans l'intensité de la réponse aux produits chimiques toxiques et les variations de la sensibilité d'un individu au cours d'une vie. Ceux-ci peuvent être attribués à une variété de facteurs capables d'influencer le taux d'absorption, la distribution dans le corps, la biotransformation et/ou le taux d'excrétion d'un produit chimique particulier. Outre les facteurs héréditaires connus dont il a été clairement démontré qu'ils étaient liés à une susceptibilité accrue à la toxicité chimique chez l'homme (voir « Déterminants génétiques de la réponse toxique »), d'autres facteurs comprennent : les caractéristiques constitutionnelles liées à l'âge et au sexe ; états pathologiques préexistants ou réduction de la fonction organique (non héréditaire, c'est-à-dire acquis); les habitudes alimentaires, le tabagisme, la consommation d'alcool et l'utilisation de médicaments ; exposition concomitante à des biotoxines (divers micro-organismes) et à des facteurs physiques (radiations, humidité, températures extrêmement basses ou élevées ou pressions barométriques particulièrement pertinentes pour la pression partielle d'un gaz), ainsi qu'exercice physique concomitant ou situations de stress psychologique ; exposition professionnelle et/ou environnementale antérieure à un produit chimique particulier, et en particulier exposition concomitante à d'autres produits chimiques, ne sauraient nécessairement toxique (p. ex. métaux essentiels). Les contributions possibles des facteurs susmentionnés à l'augmentation ou à la diminution de la sensibilité aux effets nocifs sur la santé, ainsi que les mécanismes de leur action, sont spécifiques à un produit chimique particulier. Par conséquent, seuls les facteurs les plus courants, les mécanismes de base et quelques exemples caractéristiques seront présentés ici, alors que des informations spécifiques concernant chaque produit chimique particulier peuvent être trouvées ailleurs dans ce Encyclopédie.
Selon le stade auquel ces facteurs agissent (absorption, distribution, biotransformation ou excrétion d'un produit chimique particulier), les mécanismes peuvent être grossièrement classés selon deux conséquences fondamentales de l'interaction : (1) un changement de la quantité du produit chimique dans un organe cible, c'est-à-dire au(x) site(s) de son effet dans l'organisme (interactions toxicocinétiques), ou (2) une modification de l'intensité d'une réponse spécifique à la quantité de la substance chimique dans un organe cible (interactions toxicodynamiques) . Les mécanismes les plus courants de l'un ou l'autre type d'interaction sont liés à la compétition avec d'autres produits chimiques pour se lier aux mêmes composés impliqués dans leur transport dans l'organisme (par exemple, des protéines sériques spécifiques) et/ou pour la même voie de biotransformation (par exemple, enzymes spécifiques) entraînant une modification de la vitesse ou de la séquence entre la réaction initiale et l'effet néfaste final sur la santé. Cependant, les interactions toxicocinétiques et toxicodynamiques peuvent influencer la sensibilité individuelle à un produit chimique particulier. L'influence de plusieurs facteurs concomitants peut entraîner soit : (a) effets additifs—l'intensité de l'effet combiné est égale à la somme des effets produits par chaque facteur séparément, (b) effets synergiques—l'intensité de l'effet combiné est supérieure à la somme des effets produits par chaque facteur séparément, ou (c) effets antagonistes—l'intensité de l'effet combiné est inférieure à la somme des effets produits par chaque facteur séparément.
La quantité d'un produit chimique toxique particulier ou d'un métabolite caractéristique au(x) site(s) de son effet dans le corps humain peut être plus ou moins évaluée par une surveillance biologique, c'est-à-dire en choisissant le bon échantillon biologique et le moment optimal pour l'échantillonnage, en prenant en compte les demi-vies biologiques d'un produit chimique particulier à la fois dans l'organe critique et dans le compartiment biologique mesuré. Cependant, des informations fiables concernant d'autres facteurs possibles qui pourraient influencer la susceptibilité individuelle chez l'homme font généralement défaut, et par conséquent la majorité des connaissances concernant l'influence de divers facteurs est basée sur des données expérimentales sur des animaux.
Il convient de souligner que, dans certains cas, des différences relativement importantes existent entre les humains et les autres mammifères dans l'intensité de la réponse à un niveau et/ou une durée d'exposition équivalents à de nombreux produits chimiques toxiques ; par exemple, les humains semblent être considérablement plus sensibles aux effets néfastes sur la santé de plusieurs métaux toxiques que ne le sont les rats (couramment utilisés dans les études expérimentales sur des animaux). Certaines de ces différences peuvent être attribuées au fait que les voies de transport, de distribution et de biotransformation de divers produits chimiques dépendent fortement de changements subtils du pH tissulaire et de l'équilibre redox dans l'organisme (tout comme les activités de diverses enzymes), et que le système redox de l'homme diffère considérablement de celui du rat.
C'est évidemment le cas d'importants antioxydants tels que la vitamine C et le glutathion (GSH), qui sont essentiels au maintien de l'équilibre redox et qui ont un rôle protecteur contre les effets néfastes des radicaux libres dérivés de l'oxygène ou des xénobiotiques qui interviennent dans une variété de conditions pathologiques (Kehrer 1993). L'homme ne peut pas auto-synthétiser la vitamine C, contrairement au rat, et les niveaux ainsi que le taux de renouvellement du GSH érythrocytaire chez l'homme sont considérablement inférieurs à ceux du rat. Les humains manquent également de certaines des enzymes antioxydantes protectrices, par rapport au rat ou à d'autres mammifères (par exemple, la GSH-peroxydase est considérée comme peu active dans le sperme humain). Ces exemples illustrent la vulnérabilité potentiellement plus grande au stress oxydatif chez l'homme (en particulier dans les cellules sensibles, p. divers facteurs chez l'homme par rapport à d'autres mammifères (Telišman 1995).
Influence de l'âge
Comparativement aux adultes, les très jeunes enfants sont souvent plus sensibles à la toxicité chimique en raison de leurs volumes d'inhalation relativement plus élevés et de leur taux d'absorption gastro-intestinale en raison d'une plus grande perméabilité de l'épithélium intestinal, et en raison de systèmes enzymatiques de détoxification immatures et d'un taux d'excrétion relativement plus faible de produits chimiques toxiques. . Le système nerveux central semble être particulièrement sensible au stade précoce du développement en ce qui concerne la neurotoxicité de divers produits chimiques, par exemple le plomb et le méthylmercure. D'autre part, les personnes âgées peuvent être sensibles en raison d'antécédents d'exposition chimique et d'une augmentation des réserves corporelles de certains xénobiotiques, ou d'une fonction préexistante compromise des organes cibles et/ou des enzymes pertinentes entraînant une diminution du taux de détoxification et d'excrétion. Chacun de ces facteurs peut contribuer à l'affaiblissement des défenses de l'organisme - une diminution de la capacité de réserve, entraînant une susceptibilité accrue à une exposition ultérieure à d'autres dangers. Par exemple, les enzymes du cytochrome P450 (impliquées dans les voies de biotransformation de presque tous les produits chimiques toxiques) peuvent être induites ou avoir une activité réduite en raison de l'influence de divers facteurs au cours de la vie (y compris les habitudes alimentaires, le tabagisme, l'alcool, l'utilisation de médicaments et exposition aux xénobiotiques environnementaux).
Influence du sexe
Des différences de sensibilité liées au sexe ont été décrites pour un grand nombre de produits chimiques toxiques (environ 200), et de telles différences se retrouvent chez de nombreuses espèces de mammifères. Il semble que les mâles soient généralement plus sensibles aux toxines rénales et les femelles aux toxines hépatiques. Les causes de la réponse différente entre les hommes et les femmes ont été liées à des différences dans une variété de processus physiologiques (par exemple, les femmes sont capables d'excréter davantage de certains produits chimiques toxiques par la perte de sang menstruel, le lait maternel et/ou le transfert au fœtus, mais elles subissent un stress supplémentaire pendant la grossesse, l'accouchement et l'allaitement), les activités enzymatiques, les mécanismes de réparation génétique, les facteurs hormonaux ou la présence de dépôts de graisse relativement plus importants chez les femelles, entraînant une plus grande accumulation de certains produits chimiques toxiques lipophiles, tels que les solvants organiques et certains médicaments .
Influence des habitudes alimentaires
Les habitudes alimentaires ont une influence importante sur la susceptibilité à la toxicité chimique, principalement parce qu'une nutrition adéquate est essentielle au fonctionnement du système de défense chimique de l'organisme pour le maintien d'une bonne santé. Un apport adéquat en métaux essentiels (y compris les métalloïdes) et en protéines, en particulier les acides aminés soufrés, est nécessaire à la biosynthèse de diverses enzymes détoxifiantes et à l'apport de glycine et de glutathion pour les réactions de conjugaison avec des composés endogènes et exogènes. Les lipides, notamment les phospholipides, et les lipotropes (donneurs de groupes méthyle) sont nécessaires à la synthèse des membranes biologiques. Les glucides fournissent l'énergie nécessaire à divers processus de détoxification et fournissent de l'acide glucuronique pour la conjugaison des produits chimiques toxiques et de leurs métabolites. Le sélénium (un métalloïde essentiel), le glutathion et des vitamines telles que la vitamine C (soluble dans l'eau), la vitamine E et la vitamine A (soluble dans les lipides) jouent un rôle important en tant qu'antioxydants (p. ex., dans le contrôle de la peroxydation des lipides et le maintien de l'intégrité des membranes cellulaires) et des piégeurs de radicaux libres pour la protection contre les produits chimiques toxiques. De plus, divers constituants alimentaires (teneur en protéines et en fibres, minéraux, phosphates, acide citrique, etc.) ainsi que la quantité de nourriture consommée peuvent grandement influencer le taux d'absorption gastro-intestinal de nombreux produits chimiques toxiques (p. sels de plomb pris avec les repas est d'environ 60 %, contre environ XNUMX % chez les sujets à jeun). Cependant, l'alimentation elle-même peut être une source supplémentaire d'exposition individuelle à divers produits chimiques toxiques (par exemple, apports quotidiens considérablement accrus et accumulation d'arsenic, de mercure, de cadmium et/ou de plomb chez les sujets qui consomment des produits de la mer contaminés).
Influence du tabagisme
L'habitude de fumer peut influencer la sensibilité individuelle à de nombreux produits chimiques toxiques en raison de la variété des interactions possibles impliquant le grand nombre de composés présents dans la fumée de cigarette (en particulier les hydrocarbures aromatiques polycycliques, le monoxyde de carbone, le benzène, la nicotine, l'acroléine, certains pesticides, le cadmium et , dans une moindre mesure, le plomb et d'autres métaux toxiques, etc.), dont certains sont capables de s'accumuler dans le corps humain au cours de la vie, y compris la vie prénatale (par exemple, le plomb et le cadmium). Les interactions se produisent principalement parce que divers produits chimiques toxiques entrent en compétition pour le(s) même(s) site(s) de liaison pour le transport et la distribution dans l'organisme et/ou pour la même voie de biotransformation impliquant des enzymes particulières. Par exemple, plusieurs constituants de la fumée de cigarette peuvent induire des enzymes du cytochrome P450, tandis que d'autres peuvent réduire leur activité, et ainsi influencer les voies de biotransformation communes de nombreux autres produits chimiques toxiques, tels que les solvants organiques et certains médicaments. Une forte consommation de cigarettes sur une longue période peut réduire considérablement les mécanismes de défense de l'organisme en diminuant la capacité de réserve pour faire face à l'influence néfaste d'autres facteurs liés au mode de vie.
Influence de l'alcool
La consommation d'alcool (éthanol) peut influencer la sensibilité à de nombreux produits chimiques toxiques de plusieurs façons. Il peut influencer le taux d'absorption et la distribution de certains produits chimiques dans le corps, par exemple, augmenter le taux d'absorption gastro-intestinal du plomb ou diminuer le taux d'absorption pulmonaire de la vapeur de mercure en inhibant l'oxydation qui est nécessaire à la rétention de la vapeur de mercure inhalée. L'éthanol peut également influencer la sensibilité à divers produits chimiques par des changements à court terme du pH des tissus et une augmentation du potentiel redox résultant du métabolisme de l'éthanol, car l'éthanol s'oxydant en acétaldéhyde et l'acétaldéhyde s'oxydant en acétate produisent un équivalent de nicotinamide adénine dinucléotide réduit (NADH) et hydrogène (H+). Étant donné que l'affinité des métaux et métalloïdes essentiels et toxiques pour la liaison à divers composés et tissus est influencée par le pH et les modifications du potentiel redox (Telišman 1995), même une consommation modérée d'éthanol peut entraîner une série de conséquences telles que : ( 1) redistribution du plomb accumulé à long terme dans l'organisme humain en faveur d'une fraction de plomb biologiquement active, (2) remplacement du zinc essentiel par le plomb dans les enzymes contenant du zinc, affectant ainsi l'activité enzymatique ou l'influence de la mobilité plomb isé sur la distribution d'autres métaux et métalloïdes essentiels dans l'organisme tels que le calcium, le fer, le cuivre et le sélénium, (3) augmentation de l'excrétion urinaire de zinc, etc. L'effet des éventuels événements susmentionnés peut être augmenté du fait que les boissons alcoolisées peuvent contenir une quantité appréciable de plomb provenant des récipients ou de la transformation (Prpic-Majic et al. 1984 ; Telišman et al. 1984 ; 1993).
Une autre raison courante des changements de sensibilité liés à l'éthanol est que de nombreux produits chimiques toxiques, par exemple divers solvants organiques, partagent la même voie de biotransformation impliquant les enzymes du cytochrome P450. En fonction de l'intensité de l'exposition aux solvants organiques ainsi que de la quantité et de la fréquence d'ingestion d'éthanol (c.-à-d. consommation aiguë ou chronique d'alcool), l'éthanol peut diminuer ou augmenter les taux de biotransformation de divers solvants organiques et ainsi influencer leur toxicité (Sato 1991) .
Influence des médicaments
L'utilisation courante de divers médicaments peut influer sur la sensibilité aux produits chimiques toxiques, principalement parce que de nombreux médicaments se lient aux protéines sériques et influencent ainsi le transport, la distribution ou le taux d'excrétion de divers produits chimiques toxiques, ou parce que de nombreux médicaments sont capables d'induire des enzymes détoxifiantes pertinentes ou de réduire leur activité. (par exemple, les enzymes du cytochrome P450), affectant ainsi la toxicité des produits chimiques ayant la même voie de biotransformation. La caractéristique de l'un ou l'autre des mécanismes est l'augmentation de l'excrétion urinaire d'acide trichloroacétique (le métabolite de plusieurs hydrocarbures chlorés) lors de l'utilisation de salicylate, de sulfonamide ou de phénylbutazone, et une augmentation de l'hépato-néphrotoxicité du tétrachlorure de carbone lors de l'utilisation de phénobarbital. De plus, certains médicaments contiennent une quantité considérable d'un produit chimique potentiellement toxique, par exemple les antiacides contenant de l'aluminium ou les préparations utilisées pour la prise en charge thérapeutique de l'hyperphosphatémie survenant dans l'insuffisance rénale chronique.
Influence de l'exposition concomitante à d'autres produits chimiques
Les modifications de la susceptibilité aux effets nocifs sur la santé dues à l'interaction de divers produits chimiques (c.-à-d. possibles effets additifs, synergiques ou antagonistes) ont été étudiées presque exclusivement chez des animaux de laboratoire, principalement chez le rat. Les études épidémiologiques et cliniques pertinentes font défaut. Ceci est particulièrement préoccupant compte tenu de l'intensité relativement plus grande de la réponse ou de la variété des effets néfastes sur la santé de plusieurs produits chimiques toxiques chez l'homme par rapport au rat et à d'autres mammifères. Hormis les données publiées dans le domaine de la pharmacologie, la plupart des données ne concernent que des combinaisons de deux produits chimiques différents au sein de groupes spécifiques, tels que divers pesticides, solvants organiques ou métaux et métalloïdes essentiels et/ou toxiques.
L'exposition combinée à divers solvants organiques peut entraîner divers effets additifs, synergiques ou antagonistes (selon la combinaison de certains solvants organiques, leur intensité et la durée d'exposition), principalement en raison de la capacité d'influencer la biotransformation de l'autre (Sato 1991).
Un autre exemple caractéristique sont les interactions des métaux et des métalloïdes à la fois essentiels et/ou toxiques, car ceux-ci sont impliqués dans l'influence possible de l'âge (par exemple, une accumulation corporelle de plomb et de cadmium environnementaux à vie), du sexe (par exemple, une carence en fer courante chez les femmes ), habitudes alimentaires (par exemple, apport alimentaire accru de métaux et métalloïdes toxiques et/ou apport alimentaire insuffisant en métaux et métalloïdes essentiels), tabagisme et consommation d'alcool (par exemple, exposition supplémentaire au cadmium, au plomb et à d'autres métaux toxiques), et utilisation de médicaments (p. ex., une seule dose d'antiacide peut entraîner une augmentation de 50 fois de l'apport quotidien moyen d'aluminium par l'alimentation). La possibilité de divers effets additifs, synergiques ou antagonistes de l'exposition à divers métaux et métalloïdes chez l'homme peut être illustrée par des exemples simples liés aux principaux éléments toxiques (voir tableau 1), à part lesquels d'autres interactions peuvent se produire car des éléments essentiels peuvent également influencer les uns des autres (par exemple, l'effet antagoniste bien connu du cuivre sur le taux d'absorption gastro-intestinal ainsi que sur le métabolisme du zinc, et vice versa). La principale cause de toutes ces interactions est la compétition de divers métaux et métalloïdes pour le même site de liaison (en particulier le groupe sulfhydryle, -SH) dans diverses enzymes, métalloprotéines (en particulier la métallothionéine) et tissus (par exemple, membranes cellulaires et barrières organiques). Ces interactions peuvent avoir un rôle important dans le développement de plusieurs maladies chroniques qui sont médiées par l'action des radicaux libres et le stress oxydatif (Telišman 1995).
Tableau 1. Effets de base des interactions multiples possibles concernant les principaux métaux et métalloïdes toxiques et/ou essentiels chez les mammifères
Métal ou métalloïde toxique | Effets de base de l'interaction avec d'autres métaux ou métalloïdes |
Aluminium (Al) | Diminue le taux d'absorption du Ca et altère le métabolisme du Ca ; une alimentation déficiente en Ca augmente le taux d'absorption d'Al. Altère le métabolisme des phosphates. Les données sur les interactions avec Fe, Zn et Cu sont équivoques (c'est-à-dire le rôle possible d'un autre métal comme médiateur). |
Arsenic (As) | Affecte la distribution de Cu (une augmentation de Cu dans les reins et une diminution de Cu dans le foie, le sérum et l'urine). Altère le métabolisme du Fe (augmentation du Fe dans le foie avec diminution concomitante de l'hématocrite). Zn diminue le taux d'absorption de l'As inorganique et diminue la toxicité de l'As. Le Se diminue la toxicité de l'As et vice versa. |
Cadmium (Cd) | Diminue le taux d'absorption du Ca et altère le métabolisme du Ca ; une carence en Ca alimentaire augmente le taux d'absorption du Cd. Altère le métabolisme des phosphates, c'est-à-dire augmente l'excrétion urinaire des phosphates. Altère le métabolisme du Fe; une alimentation déficiente en Fe augmente le taux d'absorption du Cd. Affecte la distribution de Zn ; Le Zn diminue la toxicité du Cd, alors que son influence sur le taux d'absorption du Cd est équivoque. Le Se diminue la toxicité du Cd. Le Mn diminue la toxicité du Cd lors d'une faible exposition au Cd. Les données sur l'interaction avec Cu sont équivoques (c'est-à-dire le rôle possible de Zn, ou d'un autre métal, en tant que médiateur). Des niveaux alimentaires élevés de Pb, Ni, Sr, Mg ou Cr(III) peuvent diminuer le taux d'absorption du Cd. |
Mercure (Hg) | Affecte la distribution de Cu (une augmentation de Cu dans le foie). Zn diminue le taux d'absorption du Hg inorganique et diminue la toxicité du Hg. Le Se diminue la toxicité du Hg. Le Cd augmente la concentration de Hg dans le rein, mais diminue en même temps la toxicité du Hg dans le rein (l'influence de la synthèse de métallothionéine induite par le Cd). |
Plomb (Pb) | Altère le métabolisme du Ca; une alimentation déficiente en Ca augmente le taux d'absorption du Pb inorganique et augmente la toxicité du Pb. Altère le métabolisme du Fe; une alimentation déficiente en Fe augmente la toxicité du Pb, alors que son influence sur le taux d'absorption du Pb est équivoque. Altère le métabolisme du Zn et augmente l'excrétion urinaire de Zn; une alimentation déficiente en Zn augmente le taux d'absorption du Pb inorganique et augmente la toxicité du Pb. Le Se diminue la toxicité du Pb. Les données sur les interactions avec Cu et Mg sont équivoques (c'est-à-dire le rôle possible du Zn ou d'un autre métal en tant que médiateur). |
Remarque : Les données sont principalement liées à des études expérimentales chez le rat, alors que les données cliniques et épidémiologiques pertinentes (en particulier concernant les relations dose-réponse quantitatives) font généralement défaut (Elsenhans et al. 1991 ; Fergusson 1990 ; Telišman et al. 1993).
Il est reconnu depuis longtemps que la réaction de chaque personne aux produits chimiques environnementaux est différente. L'explosion récente de la biologie moléculaire et de la génétique a permis de mieux comprendre les bases moléculaires d'une telle variabilité. Les principaux déterminants de la réponse individuelle aux produits chimiques comprennent des différences importantes entre plus d'une douzaine de superfamilles d'enzymes, appelées collectivement xénobiotique- (étranger au corps) ou métabolisant les médicaments enzymes. Bien que le rôle de ces enzymes ait été classiquement considéré comme une détoxification, ces mêmes enzymes convertissent également un certain nombre de composés inertes en intermédiaires hautement toxiques. Récemment, de nombreuses différences aussi bien subtiles que grossières dans les gènes codant pour ces enzymes ont été identifiées, lesquelles se sont avérées entraîner des variations marquées de l'activité enzymatique. Il est maintenant clair que chaque individu possède un complément distinct d'activités enzymatiques métabolisant les xénobiotiques ; cette diversité pourrait être considérée comme une « empreinte métabolique ». C'est l'interaction complexe de ces nombreuses superfamilles d'enzymes différentes qui détermine en fin de compte non seulement le devenir et le potentiel de toxicité d'un produit chimique chez un individu donné, mais également l'évaluation de l'exposition. Dans cet article, nous avons choisi d'utiliser la superfamille des enzymes du cytochrome P450 pour illustrer les progrès remarquables réalisés dans la compréhension de la réponse individuelle aux produits chimiques. Le développement de tests basés sur l'ADN relativement simples conçus pour identifier des altérations génétiques spécifiques dans ces enzymes fournit désormais des prédictions plus précises de la réponse individuelle à l'exposition chimique. Nous espérons que le résultat sera une toxicologie préventive. En d'autres termes, chaque individu pourrait en apprendre davantage sur les produits chimiques auxquels il est particulièrement sensible, évitant ainsi une toxicité ou un cancer auparavant imprévisible.
Bien que cela ne soit généralement pas apprécié, les êtres humains sont exposés quotidiennement à un barrage d'innombrables produits chimiques divers. Bon nombre de ces produits chimiques sont hautement toxiques et proviennent d'une grande variété de sources environnementales et alimentaires. La relation entre ces expositions et la santé humaine a été, et continue d'être, un objectif majeur des efforts de recherche biomédicale dans le monde entier.
Quels sont quelques exemples de ce bombardement chimique ? Plus de 400 substances chimiques du vin rouge ont été isolées et caractérisées. On estime qu'au moins 1,000 75,000 produits chimiques sont produits par une cigarette allumée. Il existe d'innombrables produits chimiques dans les cosmétiques et les savons parfumés. L'agriculture est une autre source majeure d'exposition aux produits chimiques : rien qu'aux États-Unis, les terres agricoles reçoivent chaque année plus de XNUMX XNUMX produits chimiques sous forme de pesticides, d'herbicides et d'agents fertilisants ; après absorption par les plantes et les animaux au pâturage, ainsi que par les poissons dans les cours d'eau à proximité, les humains (à la fin de la chaîne alimentaire) ingèrent ces produits chimiques. Deux autres sources de fortes concentrations de produits chimiques absorbés par le corps comprennent (a) les médicaments pris de manière chronique et (b) l'exposition à des substances dangereuses sur le lieu de travail au cours d'une vie d'emploi.
Il est désormais bien établi que l'exposition aux produits chimiques peut avoir des effets néfastes sur de nombreux aspects de la santé humaine, provoquant des maladies chroniques et le développement de nombreux cancers. Au cours de la dernière décennie, la base moléculaire de bon nombre de ces relations a commencé à être dévoilée. De plus, la prise de conscience a émergé que les humains diffèrent nettement dans leur susceptibilité aux effets nocifs de l'exposition chimique.
Les efforts actuels pour prédire la réponse humaine à l'exposition chimique combinent deux approches fondamentales (figure 1) : surveiller l'étendue de l'exposition humaine à l'aide de marqueurs biologiques (biomarqueurs) et prédire la réponse probable d'un individu à un niveau d'exposition donné. Bien que ces deux approches soient extrêmement importantes, il convient de souligner qu'elles sont très différentes l'une de l'autre. Cet article portera sur la les facteurs génétiques susceptibilité individuelle sous-jacente à une exposition chimique particulière. Ce domaine de recherche est généralement appelé écogénétique, ou pharmacogénétique (voir Kalow 1962 et 1992). Bon nombre des progrès récents dans la détermination de la susceptibilité individuelle à la toxicité chimique ont évolué à partir d'une meilleure appréciation des processus par lesquels les humains et les autres mammifères détoxifient les produits chimiques et de la complexité remarquable des systèmes enzymatiques impliqués.
Figure 1. Interrelations entre l'évaluation de l'exposition, les différences ethniques, l'âge, le régime alimentaire, la nutrition et l'évaluation de la susceptibilité génétique - qui jouent tous un rôle dans le risque individuel de toxicité et de cancer
Nous décrirons d'abord la variabilité des réponses toxiques chez l'homme. Nous présenterons ensuite certaines des enzymes responsables d'une telle variation de réponse, due à des différences dans le métabolisme des produits chimiques étrangers. Ensuite, l'histoire et la nomenclature de la superfamille du cytochrome P450 seront détaillées. Cinq polymorphismes P450 humains ainsi que plusieurs polymorphismes non-P450 seront brièvement décrits ; ceux-ci sont responsables des différences humaines dans la réponse toxique. Nous discuterons ensuite d'un exemple pour souligner le fait que les différences génétiques chez les individus peuvent influencer l'évaluation de l'exposition, telle que déterminée par la surveillance environnementale. Enfin, nous discuterons du rôle de ces enzymes métabolisant les xénobiotiques dans les fonctions vitales critiques.
Variation de la réponse toxique parmi la population humaine
Les toxicologues et les pharmacologues parlent couramment de la dose létale moyenne pour 50 % de la population (LD50), la dose maximale moyenne tolérée pour 50 % de la population (MTD50), et la dose efficace moyenne d'un médicament particulier pour 50 % de la population (ED50). Cependant, comment ces doses affectent-elles chacun de nous sur une base individuelle ? En d'autres termes, un individu hautement sensible peut être 500 fois plus affecté ou 500 fois plus susceptible d'être affecté que l'individu le plus résistant d'une population ; pour ces personnes, le LD50 (et MDT50 et DE50) les valeurs auraient peu de sens. LD50, MDT50 et DE50 les valeurs ne sont pertinentes que lorsqu'elles se réfèrent à la population dans son ensemble.
Figure 2 illustre une relation dose-réponse hypothétique pour une réponse toxique par des individus dans une population donnée. Ce diagramme générique pourrait représenter le carcinome bronchique en réponse au nombre de cigarettes fumées, la chloracné en fonction des niveaux de dioxine sur le lieu de travail, l'asthme en fonction des concentrations d'ozone ou d'aldéhyde dans l'air, les coups de soleil en réponse à la lumière ultraviolette, la diminution du temps de coagulation en tant que une fonction de la prise d'aspirine, ou une détresse gastro-intestinale en réponse au nombre de jalapeno piments consommés. Généralement, dans chacun de ces cas, plus l'exposition est importante, plus la réponse toxique est importante. La plupart de la population présentera la moyenne et l'écart type de la réponse toxique en fonction de la dose. La « valeur aberrante résistante » (en bas à droite sur la figure 2) est un individu ayant moins de réponse à des doses ou des expositions plus élevées. Une « valeur aberrante sensible » (en haut à gauche) est un individu ayant une réponse exagérée à une dose ou une exposition relativement faible. Ces valeurs aberrantes, avec des différences extrêmes de réponse par rapport à la majorité des individus de la population, peuvent représenter des variantes génétiques importantes qui peuvent aider les scientifiques à tenter de comprendre les mécanismes moléculaires sous-jacents d'une réponse toxique.
Figure 2. Relation générique entre toute réponse toxique et la dose de tout agent environnemental, chimique ou physique
En utilisant ces valeurs aberrantes dans les études familiales, les scientifiques d'un certain nombre de laboratoires ont commencé à apprécier l'importance de l'hérédité mendélienne pour une réponse toxique donnée. Par la suite, on peut alors se tourner vers la biologie moléculaire et les études génétiques pour identifier le mécanisme sous-jacent au niveau du gène (génotype) responsable de la maladie causée par l'environnement (phénotype).
Enzymes xénobiotiques ou métabolisant les médicaments
Comment le corps réagit-il à la myriade de produits chimiques exogènes auxquels nous sommes exposés ? Les humains et d'autres mammifères ont développé des systèmes enzymatiques métaboliques très complexes comprenant plus d'une douzaine de superfamilles distinctes d'enzymes. Presque tous les produits chimiques auxquels les humains sont exposés seront modifiés par ces enzymes, afin de faciliter l'élimination de la substance étrangère du corps. Collectivement, ces enzymes sont fréquemment appelées enzymes métabolisant les médicaments or enzymes métabolisant les xénobiotiques. En fait, les deux termes sont des abus de langage. Premièrement, bon nombre de ces enzymes métabolisent non seulement des médicaments, mais aussi des centaines de milliers de produits chimiques environnementaux et alimentaires. Deuxièmement, toutes ces enzymes ont également des composés corporels normaux comme substrats ; aucune de ces enzymes ne métabolise uniquement les produits chimiques étrangers.
Depuis plus de quatre décennies, les processus métaboliques médiés par ces enzymes ont généralement été classés en réactions de phase I ou de phase II (figure 3). Les réactions de phase I («fonctionnalisation») impliquent généralement des modifications structurelles relativement mineures de la substance chimique mère par oxydation, réduction ou hydrolyse afin de produire un métabolite plus soluble dans l'eau. Fréquemment, les réactions de phase I fournissent une "manipulation" pour une modification supplémentaire d'un composé par des réactions de phase II ultérieures. Les réactions de phase I sont principalement médiées par une superfamille d'enzymes très polyvalentes, collectivement appelées cytochromes P450, bien que d'autres superfamilles d'enzymes puissent également être impliquées (figure 4).
Figure 3. Désignation classique des enzymes xénobiotiques ou métabolisant les médicaments de phase I et de phase II
Figure 4. Exemples d'enzymes métabolisant les médicaments
Les réactions de phase II impliquent le couplage d'une molécule endogène soluble dans l'eau à un produit chimique (produit chimique parent ou métabolite de phase I) afin de faciliter l'excrétion. Les réactions de phase II sont fréquemment appelées réactions de « conjugaison » ou de « dérivatisation ». Les superfamilles d'enzymes catalysant les réactions de phase II sont généralement nommées en fonction de la fraction de conjugaison endogène impliquée : par exemple, l'acétylation par les N-acétyltransférases, la sulfatation par les sulfotransférases, la conjugaison du glutathion par les glutathion transférases et la glucuronidation par les UDP glucuronosyltransférases (figure 4). . Bien que le foie soit le principal organe du métabolisme des médicaments, les niveaux de certaines enzymes métabolisant les médicaments sont assez élevés dans le tractus gastro-intestinal, les gonades, les poumons, le cerveau et les reins, et ces enzymes sont sans aucun doute présentes dans une certaine mesure dans chaque cellule vivante.
Les enzymes métabolisant les xénobiotiques représentent un double tranchant Swords
Au fur et à mesure que nous en apprenons davantage sur les processus biologiques et chimiques conduisant à des aberrations pour la santé humaine, il est devenu de plus en plus évident que les enzymes métabolisant les médicaments fonctionnent de manière ambivalente (figure 3). Dans la majorité des cas, les produits chimiques liposolubles sont convertis en métabolites hydrosolubles plus facilement excrétés. Cependant, il est clair qu'en de nombreuses occasions, les mêmes enzymes sont capables de transformer d'autres produits chimiques inertes en molécules hautement réactives. Ces intermédiaires peuvent alors interagir avec des macromolécules cellulaires telles que les protéines et l'ADN. Ainsi, pour chaque produit chimique auquel les humains sont exposés, il existe un potentiel pour les voies concurrentes de activation métabolique et désintoxication.
Bref examen de la génétique
En génétique humaine, chaque gène (lieu) est situé sur l'une des 23 paires de chromosomes. Les deux allèles (un présent sur chaque chromosome de la paire) peuvent être identiques ou différents les uns des autres. Par exemple, le B et b allèles, dans lesquels B (yeux marrons) est dominant sur b (yeux bleus) : les individus de phénotype yeux bruns peuvent avoir soit BB or Bb génotypes, alors que les individus de phénotype aux yeux bleus ne peuvent avoir que bb génotype.
A polymorphisme est défini comme deux ou plusieurs phénotypes (traits) hérités de manière stable - dérivés du ou des mêmes gènes - qui sont maintenus dans la population, souvent pour des raisons pas nécessairement évidentes. Pour qu'un gène soit polymorphe, le produit du gène ne doit pas être essentiel au développement, à la vigueur reproductive ou à d'autres processus vitaux critiques. En fait, un « polymorphisme équilibré », dans lequel l'hétérozygote a un avantage de survie distinct sur l'un ou l'autre des homozygotes (par exemple, la résistance au paludisme et l'allèle drépanocytaire de l'hémoglobine) est une explication courante du maintien d'un allèle dans la population à un niveau élevé autrement inexpliqué. fréquences (voir Gonzalez et Nebert 1990).
Polymorphismes humains des enzymes métabolisant les xénobiotiques
Les différences génétiques dans le métabolisme de divers médicaments et produits chimiques environnementaux sont connues depuis plus de quatre décennies (Kalow 1962 et 1992). Ces différences sont fréquemment appelées pharmacogénétique ou, plus largement, polymorphismes écogénétiques. Ces polymorphismes représentent des allèles variants qui se produisent à une fréquence relativement élevée dans la population et sont généralement associés à des aberrations dans l'expression ou la fonction enzymatique. Historiquement, les polymorphismes étaient généralement identifiés suite à des réponses inattendues à des agents thérapeutiques. Plus récemment, la technologie de l'ADN recombinant a permis aux scientifiques d'identifier les altérations précises des gènes responsables de certains de ces polymorphismes. Les polymorphismes ont maintenant été caractérisés dans de nombreuses enzymes métabolisant les médicaments, y compris les enzymes de phase I et de phase II. Au fur et à mesure que de plus en plus de polymorphismes sont identifiés, il devient de plus en plus évident que chaque individu peut posséder un complément distinct d'enzymes métabolisant les médicaments. Cette diversité pourrait être qualifiée d'« empreinte métabolique ». C'est l'interaction complexe des diverses superfamilles d'enzymes métabolisant les médicaments au sein d'un individu qui déterminera finalement sa réponse particulière à un produit chimique donné (Kalow 1962 et 1992 ; Nebert 1988 ; Gonzalez et Nebert 1990 ; Nebert et Weber 1990).
Expression d'enzymes métabolisant les xénobiotiques humains dans la cellule Culture
Comment pourrions-nous développer de meilleurs prédicteurs des réponses toxiques humaines aux produits chimiques ? Les progrès dans la définition de la multiplicité des enzymes métabolisant les médicaments doivent s'accompagner d'une connaissance précise des enzymes qui déterminent le devenir métabolique des produits chimiques individuels. Les données recueillies dans les études de laboratoire sur les rongeurs ont certainement fourni des informations utiles. Cependant, des différences interspécifiques significatives dans les enzymes métabolisant les xénobiotiques nécessitent la prudence dans l'extrapolation des données aux populations humaines. Pour surmonter cette difficulté, de nombreux laboratoires ont développé des systèmes dans lesquels diverses lignées cellulaires en culture peuvent être modifiées pour produire des enzymes humaines fonctionnelles stables et à des concentrations élevées (Gonzalez, Crespi et Gelboin 1991). La production réussie d'enzymes humaines a été obtenue dans une variété de lignées cellulaires diverses provenant de sources comprenant des bactéries, des levures, des insectes et des mammifères.
Afin de définir encore plus précisément le métabolisme des substances chimiques, plusieurs enzymes ont également été produites avec succès dans une seule lignée cellulaire (Gonzalez, Crespi et Gelboin 1991). De telles lignées cellulaires fournissent des informations précieuses sur les enzymes précises impliquées dans le traitement métabolique d'un composé donné et de métabolites potentiellement toxiques. Si ces informations peuvent ensuite être combinées avec des connaissances concernant la présence et le niveau d'une enzyme dans les tissus humains, ces données devraient fournir des prédicteurs précieux de la réponse.
Cytochrome P450
Histoire et nomenclature
La superfamille du cytochrome P450 est l'une des superfamilles d'enzymes métabolisant les médicaments les plus étudiées, présentant une grande variabilité individuelle en réponse aux produits chimiques. Le cytochrome P450 est un terme générique pratique utilisé pour décrire une grande superfamille d'enzymes essentielles dans le métabolisme d'innombrables substrats endogènes et exogènes. Le terme cytochrome P450 a été inventé en 1962 pour décrire un inconnu pigment dans des cellules qui, lorsqu'elles sont réduites et liées avec du monoxyde de carbone, produisent un pic d'absorption caractéristique à 450 nm. Depuis le début des années 1980, la technologie de clonage d'ADNc a permis d'obtenir des informations remarquables sur la multiplicité des enzymes du cytochrome P450. À ce jour, plus de 400 gènes distincts du cytochrome P450 ont été identifiés chez les animaux, les plantes, les bactéries et les levures. Il a été estimé que n'importe quelle espèce de mammifère, comme les humains, peut posséder 60 gènes P450 distincts ou plus (Nebert et Nelson 1991). La multiplicité des gènes P450 a nécessité le développement d'un système de nomenclature standardisé (Nebert et al. 1987 ; Nelson et al. 1993). Proposé pour la première fois en 1987 et mis à jour sur une base semestrielle, le système de nomenclature est basé sur l'évolution divergente des comparaisons de séquences d'acides aminés entre les protéines P450. Les gènes P450 sont divisés en familles et sous-familles : les enzymes d'une famille présentent une similitude d'acides aminés supérieure à 40 %, et celles de la même sous-famille présentent une similitude de 55 %. Les gènes P450 sont nommés avec le symbole racine CYP suivi d'un chiffre arabe désignant la famille P450, d'une lettre désignant la sous-famille et d'un autre chiffre arabe désignant le gène individuel (Nelson et al. 1993; Nebert et al. 1991). Ainsi, CYP1A1 représente le gène P450 1 dans la famille 1 et la sous-famille A.
En février 1995, il y avait 403 CYP gènes dans la base de données, composée de 59 familles et 105 sous-familles. Celles-ci comprennent huit familles d'eucaryotes inférieurs, 15 familles de plantes et 19 familles de bactéries. Les 15 familles de gènes P450 humains comprennent 26 sous-familles, dont 22 ont été cartographiées à des emplacements chromosomiques dans la majeure partie du génome. Certaines séquences sont clairement orthologues dans de nombreuses espèces, par exemple, une seule CYP17 (stéroïde 17α-hydroxylase) a été trouvé chez tous les vertébrés examinés à ce jour ; d'autres séquences au sein d'une sous-famille sont fortement dupliquées, ce qui rend impossible l'identification de paires orthologues (par exemple, le CYP2C sous-famille). Fait intéressant, l'homme et la levure partagent un gène orthologue dans le CYP51 famille. De nombreuses revues complètes sont disponibles pour les lecteurs à la recherche d'informations complémentaires sur la superfamille P450 (Nelson et al. 1993 ; Nebert et al. 1991 ; Nebert et McKinnon 1994 ; Guengerich 1993 ; Gonzalez 1992).
Le succès du système de nomenclature P450 a entraîné le développement de systèmes terminologiques similaires pour les glucuronosyltransférases UDP (Burchell et al. 1991) et les mono-oxygénases contenant de la flavine (Lawton et al. 1994). Des systèmes de nomenclature similaires basés sur une évolution divergente sont également en cours de développement pour plusieurs autres superfamilles d'enzymes métabolisant les médicaments (par exemple, les sulfotransférases, les époxydes hydrolases et les aldéhydes déshydrogénases).
Récemment, nous avons divisé la superfamille des gènes P450 des mammifères en trois groupes (Nebert et McKinnon 1994) - ceux impliqués principalement dans le métabolisme chimique étranger, ceux impliqués dans la synthèse de diverses hormones stéroïdes et ceux participant à d'autres fonctions endogènes importantes. Ce sont les enzymes P450 métabolisant les xénobiotiques qui revêtent le plus d'importance pour la prédiction de la toxicité.
Enzymes P450 métabolisant les xénobiotiques
Les enzymes P450 impliquées dans le métabolisme des composés étrangers et des médicaments se trouvent presque toujours au sein des familles CYP1, CYP2, CYP3 et CYP4. Ces enzymes P450 catalysent une grande variété de réactions métaboliques, avec un seul P450 souvent capable de métaboliser de nombreux composés différents. De plus, plusieurs enzymes P450 peuvent métaboliser un seul composé à différents sites. En outre, un composé peut être métabolisé au même site unique par plusieurs P450, bien qu'à des vitesses variables.
Une propriété très importante des enzymes P450 métabolisant les médicaments est que nombre de ces gènes sont inductibles par les substances mêmes qui leur servent de substrats. D'autre part, d'autres gènes P450 sont induits par des non-substrats. Ce phénomène d'induction enzymatique est à la base de nombreuses interactions médicamenteuses d'importance thérapeutique.
Bien que présentes dans de nombreux tissus, ces enzymes P450 particulières se trouvent à des niveaux relativement élevés dans le foie, site principal du métabolisme des médicaments. Certaines des enzymes P450 métabolisant les xénobiotiques présentent une activité vis-à-vis de certains substrats endogènes (par exemple, l'acide arachidonique). Cependant, on pense généralement que la plupart de ces enzymes P450 métabolisant les xénobiotiques ne jouent pas de rôle physiologique important, bien que cela n'ait pas encore été établi expérimentalement. La perturbation homozygote sélective, ou "knock-out", des gènes P450 métabolisant les xénobiotiques individuels au moyen de méthodologies de ciblage génique chez la souris est susceptible de fournir bientôt des informations sans équivoque en ce qui concerne les rôles physiologiques des P450 métabolisant les xénobiotiques (pour une revue de ciblage génétique, voir Capecchi 1994).
Contrairement aux familles P450 codant pour les enzymes impliquées principalement dans les processus physiologiques, les familles codant pour les enzymes P450 métabolisant les xénobiotiques présentent une spécificité d'espèce marquée et contiennent fréquemment de nombreux gènes actifs par sous-famille (Nelson et al. 1993 ; Nebert et al. 1991). Compte tenu du manque apparent de substrats physiologiques, il est possible que les enzymes P450 des familles CYP1, CYP2, CYP3 et CYP4 qui sont apparus au cours des dernières centaines de millions d'années ont évolué comme un moyen de détoxification des produits chimiques étrangers rencontrés dans l'environnement et l'alimentation. De toute évidence, l'évolution des P450 métabolisant les xénobiotiques se serait produite sur une période qui précède de loin la synthèse de la plupart des produits chimiques synthétiques auxquels les humains sont maintenant exposés. Les gènes de ces quatre familles de gènes peuvent avoir évolué et divergé chez les animaux en raison de leur exposition aux métabolites des plantes au cours des 1.2 dernier milliard d'années - un processus appelé de manière descriptive « guerre animal-plante » (Gonzalez et Nebert 1990). La guerre animal-plante est le phénomène dans lequel les plantes ont développé de nouveaux produits chimiques (phytoalexines) comme mécanisme de défense afin d'empêcher l'ingestion par les animaux, et les animaux, à leur tour, ont répondu en développant de nouveaux gènes P450 pour s'adapter aux substrats diversifiés. Les exemples récemment décrits de guerre chimique plantes-insectes et plantes-champignons impliquant la détoxification P450 de substrats toxiques donnent un nouvel élan à cette proposition (Nebert 1994).
Ce qui suit est une brève introduction à plusieurs des polymorphismes de l'enzyme humaine P450 métabolisant les xénobiotiques dans lesquels on pense que les déterminants génétiques de la réponse toxique sont d'une grande importance. Jusqu'à récemment, les polymorphismes P450 étaient généralement suggérés par une variation inattendue de la réponse du patient aux agents thérapeutiques administrés. Plusieurs polymorphismes P450 sont en effet nommés en fonction du médicament avec lequel le polymorphisme a été identifié pour la première fois. Plus récemment, les efforts de recherche se sont concentrés sur l'identification des enzymes P450 précises impliquées dans le métabolisme des produits chimiques pour lesquels une variance est observée et la caractérisation précise des gènes P450 impliqués. Comme décrit précédemment, l'activité mesurable d'une enzyme P450 vis-à-vis d'un produit chimique modèle peut être appelée le phénotype. Les différences alléliques dans un gène P450 pour chaque individu sont appelées le génotype P450. Au fur et à mesure que l'analyse des gènes P450 est de plus en plus minutieuse, la base moléculaire précise de la variance phénotypique précédemment documentée devient plus claire.
La sous-famille CYP1A
La CYP1A La sous-famille comprend deux enzymes chez l'homme et tous les autres mammifères : celles-ci sont désignées CYP1A1 et CYP1A2 sous la nomenclature standard P450. Ces enzymes présentent un intérêt considérable, car elles sont impliquées dans l'activation métabolique de nombreux procarcinogènes et sont également induites par plusieurs composés d'intérêt toxicologique, dont la dioxine. Par exemple, le CYP1A1 active métaboliquement de nombreux composés présents dans la fumée de cigarette. Le CYP1A2 active métaboliquement de nombreuses arylamines, associées au cancer de la vessie, trouvées dans l'industrie des colorants chimiques. Le CYP1A2 active également métaboliquement la 4-(méthylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), une nitrosamine dérivée du tabac. CYP1A1 et CYP1A2 se trouvent également à des niveaux plus élevés dans les poumons des fumeurs de cigarettes, en raison de l'induction par les hydrocarbures polycycliques présents dans la fumée. Les niveaux d'activité du CYP1A1 et du CYP1A2 sont donc considérés comme des déterminants importants de la réponse individuelle à de nombreux produits chimiques potentiellement toxiques.
Intérêt toxicologique de la CYP1A sous-famille a été considérablement intensifiée par un rapport de 1973 établissant une corrélation entre le niveau d'inductibilité du CYP1A1 chez les fumeurs de cigarettes et la susceptibilité individuelle au cancer du poumon (Kellermann, Shaw et Luyten-Kellermann 1973). La base moléculaire de l'induction du CYP1A1 et du CYP1A2 a été au centre des préoccupations de nombreux laboratoires. Le processus d'induction est médié par une protéine appelée récepteur Ah à laquelle se lient les dioxines et les produits chimiques structurellement apparentés. Le nom Ah est dérivé de la aryl hnature hydrocarbonée de nombreux inducteurs du CYP1A. Fait intéressant, les différences dans le gène codant pour le récepteur Ah entre les souches de souris entraînent des différences marquées dans la réponse chimique et la toxicité. Un polymorphisme du gène du récepteur Ah semble également se produire chez l'homme : environ un dixième de la population présente une induction élevée du CYP1A1 et peut être plus à risque que les autres neuf dixièmes de la population de développer certains cancers induits chimiquement. Le rôle du récepteur Ah dans le contrôle des enzymes dans le CYP1A sous-famille, et son rôle en tant que déterminant de la réponse humaine à l'exposition chimique, a fait l'objet de plusieurs études récentes (Nebert, Petersen et Puga 1991; Nebert, Puga et Vasiliou 1993).
Existe-t-il d'autres polymorphismes qui pourraient contrôler le niveau de protéines CYP1A dans une cellule ? Un polymorphisme dans CYP1A1 a également été identifié, ce qui semble influencer le risque de cancer du poumon chez les fumeurs de cigarettes japonais, bien que ce même polymorphisme ne semble pas influencer le risque dans d'autres groupes ethniques (Nebert et McKinnon 1994).
CYP2C19
Les variations de la vitesse à laquelle les individus métabolisent le médicament anticonvulsivant (S)-méphénytoïne sont bien documentées depuis de nombreuses années (Guengerich 1989). Entre 2% et 5% des Caucasiens et jusqu'à 25% des Asiatiques sont déficients dans cette activité et peuvent être plus à risque de toxicité du médicament. On sait depuis longtemps que ce défaut enzymatique implique un membre de l'humain CYP2C sous-famille, mais la base moléculaire précise de cette déficience a fait l'objet d'une controverse considérable. La principale raison de cette difficulté était les six gènes ou plus dans le corps humain. CYP2C sous-famille. Cependant, il a été récemment démontré qu'une mutation à base unique dans le CYP2C19 est la principale cause de cette déficience (Goldstein et de Morais 1994). Un test ADN simple, basé sur la réaction en chaîne par polymérase (PCR), a également été développé pour identifier rapidement cette mutation dans les populations humaines (Goldstein et de Morais 1994).
CYP2D6
La variation la plus largement caractérisée dans un gène P450 est peut-être celle impliquant le CYP2D6 gène. Plus d'une dizaine d'exemples de mutations, réarrangements et délétions affectant ce gène ont été décrits (Meyer 1994). Ce polymorphisme a été suggéré pour la première fois il y a 20 ans par la variabilité clinique de la réponse des patients à l'agent antihypertenseur débrisoquine. Modifications dans le CYP2D6 gène donnant lieu à une activité enzymatique altérée sont donc collectivement appelés le polymorphisme débrisoquine.
Avant l'avènement des études basées sur l'ADN, les individus étaient classés comme métaboliseurs lents ou intensifs (PM, EM) de la débrisoquine sur la base des concentrations de métabolites dans les échantillons d'urine. Il est maintenant clair que les modifications de la CYP2D6 peut entraîner chez les individus non seulement un métabolisme médiocre ou étendu de la débrisoquine, mais également un métabolisme ultrarapide. La plupart des modifications dans le CYP2D6 gène sont associés à une déficience partielle ou totale de la fonction enzymatique ; cependant, des individus de deux familles ont récemment été décrits qui possèdent de multiples copies fonctionnelles du CYP2D6 gène, donnant lieu à un métabolisme ultrarapide des substrats du CYP2D6 (Meyer 1994). Cette observation remarquable fournit de nouvelles informations sur le large spectre d'activité du CYP2D6 précédemment observé dans les études de population. Les altérations de la fonction CYP2D6 revêtent une importance particulière, compte tenu des plus de 30 médicaments couramment prescrits métabolisés par cette enzyme. La fonction CYP2D6 d'un individu est donc un déterminant majeur de la réponse thérapeutique et toxique à la thérapie administrée. En effet, il a récemment été soutenu que la prise en compte du statut CYP2D6 d'un patient est nécessaire pour l'utilisation sûre des médicaments psychiatriques et cardiovasculaires.
Le rôle de l' CYP2D6 le polymorphisme en tant que déterminant de la susceptibilité individuelle aux maladies humaines telles que le cancer du poumon et la maladie de Parkinson a également fait l'objet d'études approfondies (Nebert et McKinnon 1994 ; Meyer 1994). Bien que les conclusions soient difficiles à définir compte tenu de la diversité des protocoles d'étude utilisés, la majorité des études semblent indiquer une association entre les métaboliseurs extensifs de la débrisoquine (phénotype EM) et le cancer du poumon. Les raisons d'une telle association ne sont pas claires pour le moment. Cependant, il a été démontré que l'enzyme CYP2D6 métabolise la NNK, une nitrosamine dérivée du tabac.
À mesure que les tests basés sur l'ADN s'améliorent, permettant une évaluation encore plus précise du statut du CYP2D6, il est prévu que la relation précise entre le CYP2D6 et le risque de maladie soit clarifiée. Alors que le métaboliseur rapide peut être lié à la susceptibilité au cancer du poumon, le métaboliseur lent (phénotype PM) semble être associé à la maladie de Parkinson de cause inconnue. Alors que ces études sont également difficiles à comparer, il semble que les individus PM ayant une capacité réduite à métaboliser les substrats du CYP2D6 (par exemple, la débrisoquine) ont un risque de développer la maladie de Parkinson de 2 à 2.5 fois.
CYP2E1
La CYP2E1 Le gène code une enzyme qui métabolise de nombreux produits chimiques, y compris des médicaments et de nombreux cancérogènes de faible poids moléculaire. Cette enzyme est également intéressante car elle est hautement inductible par l'alcool et peut jouer un rôle dans les lésions hépatiques induites par des produits chimiques tels que le chloroforme, le chlorure de vinyle et le tétrachlorure de carbone. L'enzyme se trouve principalement dans le foie et le niveau d'enzyme varie considérablement d'un individu à l'autre. Un examen minutieux de la CYP2E1 a abouti à l'identification de plusieurs polymorphismes (Nebert et McKinnon 1994). Une relation a été rapportée entre la présence de certaines variations structurelles dans le CYP2E1 réduction génétique et apparente du risque de cancer du poumon dans certaines études ; cependant, il existe des différences interethniques claires qui nécessitent une clarification de cette relation possible.
La sous-famille CYP3A
Chez l'homme, quatre enzymes ont été identifiées comme membres de la CYP3A sous-famille en raison de leur similitude dans la séquence d'acides aminés. Les enzymes CYP3A métabolisent de nombreux médicaments couramment prescrits tels que l'érythromycine et la cyclosporine. L'aflatoxine B, contaminant alimentaire cancérigène1 est également un substrat du CYP3A. Un membre de l'humain CYP3A sous-famille, désignée CYP3A4, est le principal P450 dans le foie humain et est également présent dans le tractus gastro-intestinal. Comme c'est le cas pour de nombreuses autres enzymes P450, le niveau de CYP3A4 est très variable d'un individu à l'autre. Une deuxième enzyme, désignée CYP3A5, se trouve dans seulement environ 25 % des foies ; la base génétique de cette découverte n'a pas été élucidée. L'importance de la variabilité du CYP3A4 ou du CYP3A5 en tant que facteur dans les déterminants génétiques de la réponse toxique n'a pas encore été établie (Nebert et McKinnon, 1994).
Polymorphismes non P450
De nombreux polymorphismes existent également au sein d'autres superfamilles d'enzymes métabolisant les xénobiotiques (par exemple, les glutathion transférases, les UDP glucuronosyltransférases, les para-oxonases, les déshydrogénases, les N-acétyltransférases et les mono-oxygénases contenant de la flavine). Étant donné que la toxicité ultime de tout intermédiaire généré par P450 dépend de l'efficacité des réactions de détoxification de phase II ultérieures, le rôle combiné des polymorphismes enzymatiques multiples est important pour déterminer la sensibilité aux maladies induites chimiquement. L'équilibre métabolique entre les réactions de phase I et de phase II (figure 3) est donc susceptible d'être un facteur majeur dans les maladies humaines d'origine chimique et les déterminants génétiques de la réponse toxique.
Le polymorphisme du gène GSTM1
Un exemple bien étudié d'un polymorphisme dans une enzyme de phase II est celui impliquant un membre de la superfamille des enzymes glutathion S-transférase, désignée GST mu ou GSTM1. Cette enzyme particulière présente un intérêt toxicologique considérable car elle semble être impliquée dans la détoxification ultérieure des métabolites toxiques produits à partir de produits chimiques dans la fumée de cigarette par l'enzyme CYP1A1. Le polymorphisme identifié dans ce gène de la glutathion transférase implique une absence totale d'enzyme fonctionnelle chez jusqu'à la moitié de tous les Caucasiens étudiés. Cette absence d'enzyme de phase II semble être associée à une susceptibilité accrue au cancer du poumon. En regroupant les individus sur la base des deux variantes CYP1A1 gènes et la délétion ou la présence d'un GSTM1 gène, il a été démontré que le risque de développer un cancer du poumon induit par le tabagisme varie considérablement (Kawajiri, Watanabe et Hayashi 1994). En particulier, les individus présentant une rare CYP1A1 altération génétique, associée à une absence de GSTM1 , présentaient un risque plus élevé (jusqu'à neuf fois) de développer un cancer du poumon lorsqu'ils étaient exposés à un niveau relativement faible de fumée de cigarette. Fait intéressant, il semble y avoir des différences interethniques dans la signification des gènes variants qui nécessitent une étude plus approfondie afin d'élucider le rôle précis de ces altérations dans la susceptibilité à la maladie (Kalow 1962 ; Nebert et McKinnon 1994 ; Kawajiri, Watanabe et Hayashi 1994).
Effet synergique de deux ou plusieurs polymorphismes sur la toxicité RAPIDE
Une réponse toxique à un agent environnemental peut être fortement exagérée par la combinaison de deux défauts pharmacogénétiques chez le même individu, par exemple, les effets combinés du polymorphisme de la N-acétyltransférase (NAT2) et du polymorphisme de la glucose-6-phosphate déshydrogénase (G6PD) .
L'exposition professionnelle aux arylamines constitue un risque grave de cancer de la vessie. Depuis les élégantes études de Cartwright en 1954, il est devenu clair que le statut de N-acétylateur est un déterminant du cancer de la vessie induit par les colorants azoïques. Il existe une corrélation hautement significative entre le phénotype acétyleur lent et la survenue d'un cancer de la vessie, ainsi que le degré d'envahissement de ce cancer dans la paroi vésicale. Au contraire, il existe une association significative entre le phénotype à acétylation rapide et l'incidence du carcinome colorectal. La N-acétyltransférase (NAT1, NAT2) ont été clonés et séquencés, et les tests basés sur l'ADN sont maintenant capables de détecter plus d'une douzaine de variantes alléliques qui expliquent le phénotype à acétyleur lent. Le NAT2 Le gène est polymorphe et responsable de la majeure partie de la variabilité de la réponse toxique aux produits chimiques environnementaux (Weber 1987; Grant 1993).
La glucose-6-phosphate déshydrogénase (G6PD) est une enzyme essentielle à la génération et au maintien du NADPH. Une activité G6PD faible ou absente peut entraîner une hémolyse sévère induite par des médicaments ou des xénobiotiques, en raison de l'absence de taux normaux de glutathion réduit (GSH) dans les globules rouges. Le déficit en G6PD touche au moins 300 millions de personnes dans le monde. Plus de 10% des hommes afro-américains présentent le phénotype le moins sévère, tandis que certaines communautés sardes présentent le «type méditerranéen» plus sévère à des fréquences pouvant atteindre une personne sur trois. Le G6PD Le gène a été cloné et localisé sur le chromosome X, et de nombreuses mutations ponctuelles diverses expliquent le degré élevé d'hétérogénéité phénotypique observée chez les individus déficients en G6PD (Beutler 1992).
La thiozalsulphone, une arylamine sulfamide, s'est avérée provoquer une distribution bimodale de l'anémie hémolytique dans la population traitée. Lorsqu'ils sont traités avec certains médicaments, les individus présentant la combinaison d'un déficit en G6PD et du phénotype d'acétylateur lent sont plus affectés que ceux présentant le déficit en G6PD seul ou le phénotype d'acétylateur lent seul. Les acétyleurs lents déficients en G6PD sont au moins 40 fois plus sensibles que les acétyleurs rapides normaux à la G6PD à l'hémolyse induite par la thiozalsulfone.
Effet des polymorphismes génétiques sur l'évaluation de l'exposition
L'évaluation de l'exposition et la biosurveillance (figure 1) nécessitent également des informations sur la constitution génétique de chaque individu. Étant donné une exposition identique à un produit chimique dangereux, le niveau d'adduits à l'hémoglobine (ou d'autres biomarqueurs) peut varier de deux ou trois ordres de grandeur entre les individus, en fonction de l'empreinte métabolique de chacun.
La même pharmacogénétique combinée a été étudiée chez des ouvriers d'usines chimiques en Allemagne (tableau 1). Les adduits d'hémoglobine chez les travailleurs exposés à l'aniline et à l'acétanilide sont de loin les plus élevés chez les acétyleurs lents déficients en G6PD, par rapport aux autres phénotypes pharmacogénétiques combinés possibles. Cette étude a des implications importantes pour l'évaluation de l'exposition. Ces données démontrent que, bien que deux personnes puissent être exposées au même niveau ambiant de produit chimique dangereux sur le lieu de travail, la quantité d'exposition (via des biomarqueurs tels que les adduits d'hémoglobine) peut être estimée à deux ordres de grandeur ou plus de moins, en raison à la prédisposition génétique sous-jacente de l'individu. De même, le risque résultant d'un effet néfaste sur la santé peut varier de deux ordres de grandeur ou plus.
Tableau 1 : Adduits à l'hémoglobine chez les travailleurs exposés à l'aniline et à l'acétanilide
Statut d'acétylateur | Déficit en G6PD | |||
Rapide | Lent | Non | Oui | Adduits de l'Hb |
+ | + | 2 | ||
+ | + | 30 | ||
+ | + | 20 | ||
+ | + | 100 |
Source : Adapté de Lewalter et Korallus 1985.
Différences génétiques dans la liaison ainsi que dans le métabolisme
Il convient de souligner que le même cas fait ici pour le méta-bolisme peut également être fait pour la liaison. Les différences héréditaires dans la liaison des agents environnementaux affecteront grandement la réponse toxique. Par exemple, les différences dans la souris cdm peut profondément affecter la sensibilité individuelle à la nécrose testiculaire induite par le cadmium (Taylor, Heiniger et Meier 1973). Les différences d'affinité de liaison du récepteur Ah affectent probablement la toxicité induite par la dioxine et le cancer (Nebert, Petersen et Puga 1991; Nebert, Puga et Vasiliou 1993).
La figure 5 résume le rôle du métabolisme et de la liaison dans la toxicité et le cancer. Les agents toxiques, tels qu'ils existent dans l'environnement ou après le métabolisme ou la liaison, déclenchent leurs effets soit par une voie génotoxique (dans laquelle des dommages à l'ADN se produisent) soit par une voie non génotoxique (dans laquelle les dommages à l'ADN et la mutagenèse ne doivent pas se produire). Fait intéressant, il est récemment devenu clair que les agents endommageant l'ADN "classiques" peuvent fonctionner via une voie de transduction de signal non génotoxique dépendante du glutathion réduit (GSH), qui est initiée sur ou près de la surface cellulaire en l'absence d'ADN et à l'extérieur du noyau cellulaire. (Devary et al. 1993). Les différences génétiques dans le métabolisme et la liaison restent cependant les principaux déterminants du contrôle des différentes réponses toxiques individuelles.
Figure 5. Moyens généraux par lesquels la toxicité se produit
Rôle de la fonction cellulaire de l'enzyme métabolisant les médicaments
La variation génétique de la fonction enzymatique métabolisant les médicaments est d'une importance majeure pour déterminer la réponse individuelle aux produits chimiques. Ces enzymes sont essentielles pour déterminer le devenir et l'évolution dans le temps d'un produit chimique étranger après exposition.
Comme l'illustre la figure 5, l'importance des enzymes métabolisant les médicaments dans la sensibilité individuelle à l'exposition chimique peut en fait présenter un problème beaucoup plus complexe que ce qui ressort de cette simple discussion du métabolisme des xénobiotiques. En d'autres termes, au cours des deux dernières décennies, les mécanismes génotoxiques (mesures des adduits à l'ADN et des adduits aux protéines) ont été fortement mis en avant. Cependant, que se passe-t-il si les mécanismes non génotoxiques sont au moins aussi importants que les mécanismes génotoxiques pour provoquer des réponses toxiques ?
Comme mentionné précédemment, les rôles physiologiques de nombreuses enzymes métabolisant les médicaments impliquées dans le métabolisme des xénobiotiques n'ont pas été définis avec précision. Nebert (1994) a proposé qu'en raison de leur présence sur cette planète depuis plus de 3.5 milliards d'années, les enzymes métabolisant les médicaments étaient à l'origine (et sont encore principalement) responsables de la régulation des niveaux cellulaires de nombreux ligands non peptidiques importants dans l'activation transcriptionnelle. de gènes affectant la croissance, la différenciation, l'apoptose, l'homéostasie et les fonctions neuroendocrines. De plus, la toxicité de la plupart, sinon de la totalité, des agents environnementaux se produit au moyen de Agoniste or antagoniste action sur ces voies de transduction du signal (Nebert 1994). Sur la base de cette hypothèse, la variabilité génétique des enzymes métabolisant les médicaments peut avoir des effets assez dramatiques sur de nombreux processus biochimiques critiques au sein de la cellule, entraînant ainsi des différences importantes dans la réponse toxique. Il est en effet possible qu'un tel scénario puisse également être à l'origine de nombreux effets indésirables idiosyncratiques rencontrés chez les patients utilisant des médicaments couramment prescrits.
Conclusions
La dernière décennie a vu des progrès remarquables dans notre compréhension de la base génétique de la réponse différentielle aux produits chimiques dans les médicaments, les aliments et les polluants environnementaux. Les enzymes métabolisant les médicaments ont une profonde influence sur la façon dont les humains réagissent aux produits chimiques. À mesure que notre connaissance de la multiplicité des enzymes métabolisant les médicaments continue d'évoluer, nous sommes de plus en plus en mesure d'améliorer les évaluations du risque toxique pour de nombreux médicaments et produits chimiques environnementaux. Ceci est peut-être le plus clairement illustré dans le cas de l'enzyme CYP2D6 du cytochrome P450. En utilisant des tests basés sur l'ADN relativement simples, il est possible de prédire la réponse probable de tout médicament principalement métabolisé par cette enzyme ; cette prédiction garantira une utilisation plus sûre de médicaments précieux, mais potentiellement toxiques.
L'avenir verra sans aucun doute une explosion dans l'identification d'autres polymorphismes (phénotypes) impliquant des enzymes métabolisant les médicaments. Ces informations seront accompagnées de tests ADN améliorés et peu invasifs pour identifier les génotypes dans les populations humaines.
De telles études devraient être particulièrement instructives pour évaluer le rôle des produits chimiques dans les nombreuses maladies environnementales d'origine actuellement inconnue. La prise en compte de multiples polymorphismes d'enzymes métabolisant les médicaments, en combinaison (par exemple, tableau 1), est également susceptible de représenter un domaine de recherche particulièrement fertile. De telles études permettront de clarifier le rôle des produits chimiques dans l'étiologie des cancers. Collectivement, ces informations devraient permettre de formuler des conseils de plus en plus individualisés sur l'évitement des produits chimiques susceptibles d'être une préoccupation individuelle. C'est le domaine de la toxicologie préventive. De tels conseils aideront sans aucun doute grandement tous les individus à faire face à la charge chimique toujours croissante à laquelle nous sommes exposés.
La toxicologie mécaniste est l'étude de la façon dont les agents chimiques ou physiques interagissent avec les organismes vivants pour provoquer une toxicité. La connaissance du mécanisme de toxicité d'une substance améliore la capacité à prévenir la toxicité et à concevoir des produits chimiques plus souhaitables ; elle constitue la base de la thérapie en cas de surexposition et permet souvent une meilleure compréhension des processus biologiques fondamentaux. Aux fins de ce Encyclopédie l'accent sera mis sur les animaux pour prédire la toxicité humaine. Les différents domaines de la toxicologie comprennent la toxicologie mécaniste, descriptive, réglementaire, médico-légale et environnementale (Klaassen, Amdur et Doull 1991). Tous ces éléments bénéficient de la compréhension des mécanismes fondamentaux de la toxicité.
Pourquoi comprendre les mécanismes de toxicité ?
Comprendre le mécanisme par lequel une substance provoque une toxicité améliore différents domaines de la toxicologie de différentes manières. La compréhension mécaniste aide le régulateur gouvernemental à établir des limites de sécurité juridiquement contraignantes pour l'exposition humaine. Il aide les toxicologues à recommander des plans d'action concernant le nettoyage ou l'assainissement des sites contaminés et, avec les propriétés physiques et chimiques de la substance ou du mélange, peut être utilisé pour sélectionner le degré d'équipement de protection requis. Les connaissances mécanistes sont également utiles pour former la base de la thérapie et de la conception de nouveaux médicaments pour le traitement des maladies humaines. Pour le toxicologue médico-légal, le mécanisme de la toxicité donne souvent un aperçu de la façon dont un agent chimique ou physique peut causer la mort ou une incapacité.
Si le mécanisme de la toxicité est compris, la toxicologie descriptive devient utile pour prédire les effets toxiques des produits chimiques apparentés. Il est important de comprendre, cependant, qu'un manque d'informations mécanistes ne dissuade pas les professionnels de la santé de protéger la santé humaine. Des décisions prudentes basées sur des études animales et l'expérience humaine sont utilisées pour établir des niveaux d'exposition sûrs. Traditionnellement, une marge de sécurité était établie en utilisant le « niveau sans effet nocif » ou le « niveau le plus faible avec effet nocif » provenant d'études sur des animaux (en utilisant des modèles d'exposition répétée) et en divisant ce niveau par un facteur de 100 pour l'exposition professionnelle ou de 1,000 XNUMX pour l'exposition professionnelle. autre exposition environnementale humaine. Le succès de ce processus est évident d'après les quelques incidents d'effets néfastes sur la santé attribués à l'exposition chimique chez les travailleurs pour lesquels des limites d'exposition appropriées avaient été fixées et respectées dans le passé. De plus, la durée de vie humaine continue d'augmenter, tout comme la qualité de vie. Dans l'ensemble, l'utilisation des données de toxicité a conduit à un contrôle réglementaire et volontaire efficace. Une connaissance détaillée des mécanismes toxiques améliorera la prévisibilité des nouveaux modèles de risque en cours d'élaboration et se traduira par une amélioration continue.
La compréhension des mécanismes environnementaux est complexe et suppose une connaissance des perturbations et de l'homéostasie (équilibre) des écosystèmes. Bien que cela ne soit pas abordé dans cet article, une meilleure compréhension des mécanismes toxiques et de leurs conséquences ultimes dans un écosystème aiderait les scientifiques à prendre des décisions prudentes concernant la manipulation des déchets municipaux et industriels. La gestion des déchets est un domaine de recherche en plein essor et continuera d'être très importante à l'avenir.
Techniques d'étude des mécanismes de toxicité
La majorité des études mécanistes débutent par une étude toxicologique descriptive chez l'animal ou des observations cliniques chez l'homme. Idéalement, les études animales comprennent des observations comportementales et cliniques minutieuses, un examen biochimique minutieux des éléments du sang et de l'urine à la recherche de signes de fonctionnement indésirable des principaux systèmes biologiques de l'organisme, et une évaluation post-mortem de tous les systèmes d'organes par examen microscopique pour vérifier blessure (voir les directives d'essai de l'OCDE ; les directives de la CE sur l'évaluation des produits chimiques ; les règles d'essai de l'EPA des États-Unis ; la réglementation japonaise sur les produits chimiques). Ceci est analogue à un examen physique humain approfondi qui aurait lieu dans un hôpital sur une période de deux à trois jours, à l'exception de l'autopsie.
Comprendre les mécanismes de la toxicité est l'art et la science de l'observation, la créativité dans la sélection de techniques pour tester diverses hypothèses et l'intégration innovante des signes et des symptômes dans une relation causale. Les études mécanistes commencent par l'exposition, suivent la distribution temporelle et le devenir dans le corps (pharmacocinétique) et mesurent l'effet toxique résultant à un certain niveau du système et à un certain niveau de dose. Différentes substances peuvent agir à différents niveaux du système biologique en provoquant une toxicité.
Exposition
La voie d'exposition dans les études mécanistes est généralement la même que pour l'exposition humaine. La voie est importante parce qu'il peut y avoir des effets qui se produisent localement au site d'exposition en plus des effets systémiques après que le produit chimique a été absorbé dans le sang et distribué dans tout le corps. Un exemple simple mais convaincant d'un effet local serait l'irritation et la corrosion éventuelle de la peau suite à l'application de solutions acides ou alcalines fortes conçues pour nettoyer les surfaces dures. De même, une irritation et une mort cellulaire peuvent survenir dans les cellules tapissant le nez et/ou les poumons suite à une exposition à des vapeurs ou des gaz irritants tels que les oxydes d'azote ou l'ozone. (Les deux sont des constituants de la pollution de l'air, ou smog). Suite à l'absorption d'un produit chimique dans le sang par la peau, les poumons ou le tractus gastro-intestinal, la concentration dans tout organe ou tissu est contrôlée par de nombreux facteurs qui déterminent la pharmacocinétique du produit chimique dans le corps. Le corps a la capacité d'activer et de détoxifier divers produits chimiques, comme indiqué ci-dessous.
Rôle de la pharmacocinétique dans la toxicité
La pharmacocinétique décrit les relations temporelles pour l'absorption chimique, la distribution, le métabolisme (altérations biochimiques dans le corps) et l'élimination ou l'excrétion du corps. Par rapport aux mécanismes de toxicité, ces variables pharmacocinétiques peuvent être très importantes et, dans certains cas, déterminer si la toxicité se produira ou non. Par exemple, si un matériau n'est pas absorbé en quantité suffisante, la toxicité systémique (à l'intérieur du corps) ne se produira pas. À l'inverse, un produit chimique hautement réactif qui est détoxifié rapidement (en quelques secondes ou minutes) par des enzymes digestives ou hépatiques peut ne pas avoir le temps de provoquer une toxicité. Certaines substances et mélanges halogénés polycycliques ainsi que certains métaux comme le plomb n'entraîneraient pas de toxicité significative si l'excrétion était rapide; mais l'accumulation à des niveaux suffisamment élevés détermine leur toxicité puisque l'excrétion n'est pas rapide (parfois mesurée en années). Heureusement, la plupart des produits chimiques n'ont pas une rétention aussi longue dans le corps. L'accumulation d'un matériau inoffensif n'induirait toujours pas de toxicité. Le taux d'élimination du corps et de détoxication est souvent appelé la demi-vie du produit chimique, qui est le temps nécessaire pour que 50 % du produit chimique soit excrété ou transformé en une forme non toxique.
Cependant, si un produit chimique s'accumule dans une cellule ou un organe particulier, cela peut signaler une raison d'examiner plus avant sa toxicité potentielle dans cet organe. Plus récemment, des modèles mathématiques ont été développés pour extrapoler des variables pharmacocinétiques de l'animal à l'homme. Ces modèles pharmacocinétiques sont extrêmement utiles pour générer des hypothèses et tester si l'animal expérimental peut être une bonne représentation pour l'homme. De nombreux chapitres et textes ont été écrits sur ce sujet (Gehring et al. 1976 ; Reitz et al. 1987 ; Nolan et al. 1995). Un exemple simplifié d'un modèle physiologique est illustré à la figure 1.
Figure 1. Un modèle pharmacocinétique simplifié
Différents niveaux et systèmes peuvent être affectés négativement
La toxicité peut être décrite à différents niveaux biologiques. La lésion peut être évaluée sur l'ensemble de la personne (ou de l'animal), du système organique, de la cellule ou de la molécule. Les systèmes organiques comprennent les systèmes immunitaire, respiratoire, cardiovasculaire, rénal, endocrinien, digestif, musculo-squelettique, sanguin, reproducteur et nerveux central. Certains organes clés comprennent le foie, les reins, les poumons, le cerveau, la peau, les yeux, le cœur, les testicules ou les ovaires et d'autres organes majeurs. Au niveau cellulaire/biochimique, les effets indésirables comprennent l'interférence avec la fonction normale des protéines, la fonction des récepteurs endocriniens, l'inhibition de l'énergie métabolique ou l'inhibition ou l'induction d'enzymes xénobiotiques (substances étrangères). Les effets indésirables au niveau moléculaire comprennent l'altération de la fonction normale de la transcription ADN-ARN, de la liaison spécifique aux récepteurs cytoplasmiques et nucléaires, et des gènes ou des produits géniques. En fin de compte, le dysfonctionnement d'un système d'organe majeur est probablement causé par une altération moléculaire dans une cellule cible particulière au sein de cet organe. Cependant, il n'est pas toujours possible de retracer un mécanisme jusqu'à une origine moléculaire de causalité, et ce n'est pas non plus nécessaire. L'intervention et la thérapie peuvent être conçues sans une compréhension complète de la cible moléculaire. Cependant, la connaissance du mécanisme spécifique de la toxicité augmente la valeur prédictive et la précision de l'extrapolation à d'autres produits chimiques. La figure 2 est une représentation schématique des différents niveaux où l'interférence des processus physiologiques normaux peut être détectée. Les flèches indiquent que les conséquences pour un individu peuvent être déterminées de haut en bas (exposition, pharmacocinétique à la toxicité du système/organe) ou de bas en haut (modification moléculaire, effet cellulaire/biochimique à la toxicité du système/organe).
Figure 2. Représentation des mécanismes de toxicité
Exemples de mécanismes de toxicité
Les mécanismes de toxicité peuvent être simples ou très complexes. Souvent, il existe une différence entre le type de toxicité, le mécanisme de toxicité et le niveau d'effet, selon que les effets indésirables sont dus à une seule dose aiguë élevée (comme un empoisonnement accidentel) ou à une dose plus faible. exposition répétée (due à une exposition professionnelle ou environnementale). Classiquement, à des fins de test, une dose élevée unique aiguë est administrée par intubation directe dans l'estomac d'un rongeur ou par exposition à une atmosphère de gaz ou de vapeur pendant deux à quatre heures, selon ce qui ressemble le mieux à l'exposition humaine. Les animaux sont observés pendant une période de deux semaines après l'exposition, puis les principaux organes externes et internes sont examinés pour détecter les blessures. Les tests à doses répétées varient de quelques mois à plusieurs années. Pour les espèces de rongeurs, deux ans sont considérés comme une étude chronique (durée de vie) suffisante pour évaluer la toxicité et la cancérogénicité, tandis que pour les primates non humains, deux ans seraient considérés comme une étude subchronique (moins que la durée de vie) pour évaluer la toxicité à doses répétées. Après l'exposition, un examen complet de tous les tissus, organes et fluides est effectué pour déterminer tout effet indésirable.
Mécanismes de toxicité aiguë
Les exemples suivants sont spécifiques aux effets aigus à forte dose pouvant entraîner la mort ou une incapacité grave. Cependant, dans certains cas, l'intervention entraînera des effets transitoires et entièrement réversibles. La dose ou la gravité de l'exposition déterminera le résultat.
Asphyxiants simples. Le mécanisme de toxicité des gaz inertes et de certaines autres substances non réactives est le manque d'oxygène (anoxie). Ces produits chimiques, qui causent une privation d'oxygène au système nerveux central (SNC), sont appelés asphyxiants simples. Si une personne pénètre dans un espace clos contenant de l'azote sans suffisamment d'oxygène, un appauvrissement immédiat en oxygène se produit dans le cerveau et entraîne une perte de conscience et éventuellement la mort si la personne n'est pas rapidement évacuée. Dans les cas extrêmes (proche de zéro oxygène), l'inconscience peut survenir en quelques secondes. Le sauvetage dépend d'un déplacement rapide vers un environnement oxygéné. La survie avec des lésions cérébrales irréversibles peut survenir à la suite d'un sauvetage retardé, en raison de la mort des neurones, qui ne peuvent pas se régénérer.
Asphyxiants chimiques. Le monoxyde de carbone (CO) entre en compétition avec l'oxygène pour se lier à l'hémoglobine (dans les globules rouges) et prive donc les tissus d'oxygène pour le métabolisme énergétique ; la mort cellulaire peut en résulter. L'intervention comprend l'élimination de la source de CO et le traitement à l'oxygène. L'utilisation directe de l'oxygène est basée sur l'action toxique du CO. Un autre asphyxiant chimique puissant est le cyanure. L'ion cyanure interfère avec le métabolisme cellulaire et l'utilisation de l'oxygène pour l'énergie. Le traitement au nitrite de sodium provoque une modification de l'hémoglobine des globules rouges en méthémoglobine. La méthémoglobine a une plus grande affinité de liaison avec l'ion cyanure que la cible cellulaire du cyanure. Par conséquent, la méthémoglobine lie le cyanure et éloigne le cyanure des cellules cibles. Cela constitue la base du traitement antidote.
Dépresseurs du système nerveux central (SNC). La toxicité aiguë est caractérisée par la sédation ou l'inconscience pour un certain nombre de matériaux comme les solvants qui ne sont pas réactifs ou qui sont transformés en intermédiaires réactifs. On suppose que la sédation/anesthésie est due à une interaction du solvant avec les membranes des cellules du SNC, ce qui altère leur capacité à transmettre des signaux électriques et chimiques. Alors que la sédation peut sembler une forme légère de toxicité et a été à la base du développement des premiers anesthésiques, « la dose fait toujours le poison ». Si une dose suffisante est administrée par ingestion ou inhalation, l'animal peut mourir par arrêt respiratoire. Si la mort anesthésique ne se produit pas, ce type de toxicité est généralement facilement réversible lorsque le sujet est retiré de l'environnement ou que le produit chimique est redistribué ou éliminé du corps.
Effets sur la peau. Les effets indésirables sur la peau peuvent aller de l'irritation à la corrosion, selon la substance rencontrée. Les acides forts et les solutions alcalines sont incompatibles avec les tissus vivants et sont corrosifs, provoquant des brûlures chimiques et d'éventuelles cicatrices. La cicatrisation est due à la mort des cellules cutanées profondes du derme responsables de la régénération. Des concentrations plus faibles peuvent simplement provoquer une irritation de la première couche de peau.
Un autre mécanisme toxique spécifique de la peau est celui de la sensibilisation chimique. Par exemple, la sensibilisation se produit lorsque le 2,4-dinitrochlorobenzène se lie aux protéines naturelles de la peau et que le système immunitaire reconnaît le complexe lié aux protéines altérées comme un corps étranger. En réagissant à ce corps étranger, le système immunitaire active des cellules spéciales pour éliminer le corps étranger en libérant des médiateurs (cytokines) qui provoquent une éruption cutanée ou une dermatite (voir « Immunotoxicologie »). C'est la même réaction du système immunitaire lorsque l'exposition à l'herbe à puce se produit. La sensibilisation immunitaire est très spécifique au produit chimique particulier et nécessite au moins deux expositions avant qu'une réponse ne soit déclenchée. La première exposition sensibilise (prépare les cellules à reconnaître le produit chimique) et les expositions suivantes déclenchent la réponse du système immunitaire. Le retrait du contact et le traitement symptomatique avec des crèmes anti-inflammatoires contenant des stéroïdes sont généralement efficaces pour traiter les personnes sensibilisées. Dans les cas graves ou réfractaires, un immunosuppresseur à action systémique comme la prednisone est utilisé en conjonction avec un traitement topique.
Sensibilisation pulmonaire. Une réponse de sensibilisation immunitaire est provoquée par le diisocyanate de toluène (TDI), mais le site cible est les poumons. La surexposition au TDI chez les personnes sensibles provoque un œdème pulmonaire (accumulation de liquide), une constriction bronchique et une altération de la respiration. Il s'agit d'une affection grave qui nécessite de soustraire l'individu à des expositions ultérieures potentielles. Le traitement est avant tout symptomatique. La sensibilisation de la peau et des poumons suit une dose-réponse. Le dépassement du niveau fixé pour l'exposition professionnelle peut entraîner des effets indésirables.
Effets sur les yeux. Les lésions oculaires vont du rougissement de la couche externe (rougeur de la piscine) à la formation de cataracte de la cornée jusqu'aux lésions de l'iris (partie colorée de l'œil). Des tests d'irritation oculaire sont effectués lorsqu'on pense qu'aucune blessure grave ne se produira. De nombreux mécanismes à l'origine de la corrosion cutanée peuvent également provoquer des lésions oculaires. Les matériaux corrosifs pour la peau, comme les acides forts (pH inférieur à 2) et les alcalis (pH supérieur à 11.5), ne sont pas testés dans les yeux des animaux car la plupart provoqueront la corrosion et la cécité en raison d'un mécanisme similaire à celui qui provoque la corrosion cutanée . De plus, les agents tensioactifs tels que les détergents et les tensioactifs peuvent provoquer des lésions oculaires allant de l'irritation à la corrosion. Un groupe de matériaux qui nécessite de la prudence est celui des tensioactifs chargés positivement (cationiques), qui peuvent provoquer des brûlures, une opacité permanente de la cornée et une vascularisation (formation de vaisseaux sanguins). Un autre produit chimique, le dinitrophénol, a un effet spécifique de formation de cataracte. Cela semble être lié à la concentration de ce produit chimique dans l'œil, qui est un exemple de spécificité de distribution pharmacocinétique.
Bien que la liste ci-dessus soit loin d'être exhaustive, elle est conçue pour donner au lecteur une appréciation des divers mécanismes de toxicité aiguë.
Mécanismes de toxicité subchronique et chronique
Lorsqu'ils sont administrés en une seule dose élevée, certains produits chimiques n'ont pas le même mécanisme de toxicité que lorsqu'ils sont administrés à plusieurs reprises à une dose plus faible mais toujours toxique. Lorsqu'une seule dose élevée est administrée, il y a toujours la possibilité de dépasser la capacité de la personne à détoxifier ou à excréter le produit chimique, ce qui peut entraîner une réponse toxique différente de celle obtenue lorsque des doses répétitives plus faibles sont administrées. L'alcool est un bon exemple. De fortes doses d'alcool entraînent des effets primaires sur le système nerveux central, tandis que des doses répétées plus faibles entraînent des lésions hépatiques.
Inhibition de l'anticholinestérase. La plupart des pesticides organophosphorés, par exemple, ont peu de toxicité pour les mammifères jusqu'à ce qu'ils soient activés métaboliquement, principalement dans le foie. Le principal mécanisme d'action des organophosphorés est l'inhibition de l'acétylcholinestérase (AChE) dans le cerveau et le système nerveux périphérique. L'AChE est l'enzyme normale qui termine la stimulation du neurotransmetteur acétylcholine. Une légère inhibition de l'AChE sur une période prolongée n'a pas été associée à des effets indésirables. À des niveaux d'exposition élevés, l'incapacité à mettre fin à cette stimulation neuronale entraîne une surstimulation du système nerveux cholinergique. La surstimulation cholinergique entraîne finalement une foule de symptômes, y compris un arrêt respiratoire, suivi de la mort si elle n'est pas traitée. Le traitement principal est l'administration d'atropine, qui bloque les effets de l'acétylcholine, et l'administration de chlorure de pralidoxime, qui réactive l'AChE inhibée. Par conséquent, la cause et le traitement de la toxicité des organophosphates sont abordés en comprenant la base biochimique de la toxicité.
Activation métabolique. De nombreux produits chimiques, y compris le tétrachlorure de carbone, le chloroforme, l'acétylaminofluorène, les nitrosamines et le paraquat sont métaboliquement activés en radicaux libres ou autres intermédiaires réactifs qui inhibent et interfèrent avec la fonction cellulaire normale. À des niveaux d'exposition élevés, cela entraîne la mort cellulaire (voir « Lésion cellulaire et mort cellulaire »). Alors que les interactions spécifiques et les cibles cellulaires restent inconnues, les systèmes d'organes qui ont la capacité d'activer ces produits chimiques, comme le foie, les reins et les poumons, sont tous des cibles potentielles de blessures. En effet, des cellules particulières au sein d'un organe ont une capacité plus ou moins grande à activer ou détoxifier ces intermédiaires, et cette capacité détermine la susceptibilité intracellulaire au sein d'un organe. Le métabolisme est l'une des raisons pour lesquelles une compréhension de la pharmacocinétique, qui décrit ces types de transformations ainsi que la distribution et l'élimination de ces intermédiaires, est importante pour reconnaître le mécanisme d'action de ces produits chimiques.
Mécanismes du cancer. Le cancer est une multiplicité de maladies, et bien que la compréhension de certains types de cancer s'améliore rapidement grâce aux nombreuses techniques de biologie moléculaire qui ont été développées depuis 1980, il reste encore beaucoup à apprendre. Cependant, il est clair que le développement du cancer est un processus en plusieurs étapes et que les gènes critiques sont essentiels à différents types de cancer. Des altérations de l'ADN (mutations somatiques) d'un certain nombre de ces gènes critiques peuvent entraîner une susceptibilité accrue ou des lésions cancéreuses (voir « Toxicologie génétique »). L'exposition à des produits chimiques naturels (dans les aliments cuits comme le bœuf et le poisson) ou à des produits chimiques synthétiques (comme la benzidine, utilisée comme colorant) ou à des agents physiques (lumière ultraviolette du soleil, radon du sol, rayonnement gamma provenant de procédures médicales ou d'activités industrielles) sont tous contributeurs aux mutations génétiques somatiques. Cependant, il existe des substances naturelles et synthétiques (comme les antioxydants) et des processus de réparation de l'ADN qui protègent et maintiennent l'homéostasie. Il est clair que la génétique est un facteur important dans le cancer, puisque les syndromes de maladies génétiques telles que le xeroderma pigmentosum, où il y a un manque de réparation normale de l'ADN, augmentent considérablement la susceptibilité au cancer de la peau due à l'exposition à la lumière ultraviolette du soleil.
Mécanismes de reproduction. Comme dans le cas du cancer, de nombreux mécanismes de toxicité pour la reproduction et/ou le développement sont connus, mais il reste encore beaucoup à apprendre. On sait que certains virus (comme la rubéole), des infections bactériennes et des médicaments (comme la thalidomide et la vitamine A) nuiront au développement. Récemment, les travaux de Khera (1991), examinés par Carney (1994), montrent de bonnes preuves que les effets anormaux sur le développement dans les tests sur les animaux avec l'éthylène glycol sont attribuables aux métabolites acides métaboliques maternels. Cela se produit lorsque l'éthylène glycol est métabolisé en métabolites acides, notamment l'acide glycolique et l'acide oxalique. Les effets ultérieurs sur le placenta et le fœtus semblent être dus à ce processus de toxicité métabolique.
Pour aller plus loin
Le but de cet article est de donner une perspective sur plusieurs mécanismes connus de toxicité et la nécessité d'études futures. Il est important de comprendre que les connaissances mécanistes ne sont pas absolument nécessaires pour protéger la santé humaine ou environnementale. Cette connaissance améliorera la capacité du professionnel à mieux prévoir et gérer la toxicité. Les techniques réelles utilisées pour élucider un mécanisme particulier dépendent des connaissances collectives des scientifiques et de la pensée de ceux qui prennent les décisions concernant la santé humaine.
Pratiquement toute la médecine est consacrée soit à prévenir la mort cellulaire, dans des maladies telles que l'infarctus du myocarde, les accidents vasculaires cérébraux, les traumatismes et les chocs, soit à la provoquer, comme dans le cas des maladies infectieuses et du cancer. Il est donc essentiel d'en comprendre la nature et les mécanismes impliqués. La mort cellulaire a été classée comme « accidentelle », c'est-à-dire causée par des agents toxiques, l'ischémie, etc., ou « programmée », comme cela se produit au cours du développement embryologique, y compris la formation des doigts et la résorption de la queue du têtard.
Les lésions cellulaires et la mort cellulaire sont donc importantes à la fois en physiologie et en physiopathologie. La mort cellulaire physiologique est extrêmement importante au cours de l'embryogenèse et du développement embryonnaire. L'étude de la mort cellulaire au cours du développement a conduit à des informations importantes et nouvelles sur la génétique moléculaire impliquée, notamment à travers l'étude du développement chez les animaux invertébrés. Chez ces animaux, la localisation précise et la signification des cellules destinées à subir la mort cellulaire ont été soigneusement étudiées et, grâce à l'utilisation des techniques classiques de mutagénèse, plusieurs gènes impliqués ont maintenant été identifiés. Dans les organes adultes, l'équilibre entre la mort cellulaire et la prolifération cellulaire contrôle la taille de l'organe. Dans certains organes, comme la peau et l'intestin, il y a un renouvellement continu des cellules. Dans la peau, par exemple, les cellules se différencient lorsqu'elles atteignent la surface, et subissent finalement une différenciation terminale et la mort cellulaire au fur et à mesure que la kératinisation se poursuit avec la formation d'enveloppes réticulées.
De nombreuses classes de produits chimiques toxiques sont capables d'induire des lésions cellulaires aiguës suivies de la mort. Ceux-ci comprennent l'anoxie et l'ischémie et leurs analogues chimiques tels que le cyanure de potassium ; les cancérigènes chimiques, qui forment des électrophiles qui se lient de manière covalente aux protéines des acides nucléiques ; des produits chimiques oxydants, entraînant la formation de radicaux libres et des lésions oxydantes ; activation du complément ; et une variété d'ionophores de calcium. La mort cellulaire est également une composante importante de la carcinogenèse chimique; de nombreux carcinogènes chimiques complets, à des doses cancérigènes, produisent une nécrose et une inflammation aiguës suivies d'une régénération et d'une prénéoplasie.
Définitions
Lésion cellulaire
Une lésion cellulaire est définie comme un événement ou un stimulus, tel qu'un produit chimique toxique, qui perturbe l'homéostasie normale de la cellule, provoquant ainsi un certain nombre d'événements (figure 1). Les principales cibles des lésions mortelles illustrées sont l'inhibition de la synthèse d'ATP, la perturbation de l'intégrité de la membrane plasmique ou le retrait des facteurs de croissance essentiels.
Les blessures mortelles entraînent la mort d'une cellule après une période de temps variable, en fonction de la température, du type de cellule et du stimulus ; ou ils peuvent être sublétaux ou chroniques, c'est-à-dire que la lésion entraîne une altération de l'homéostasie qui, bien qu'anormale, n'entraîne pas la mort cellulaire (Trump et Arstila 1971 ; Trump et Berezesky 1992 ; Trump et Berezesky 1995 ; Trump, Berezesky et Osornio-Vargas 1981). Dans le cas d'une blessure mortelle, il y a une phase avant le moment de la mort cellulaire
pendant ce temps, la cellule récupérera; cependant, après un moment donné (le "point de non-retour" ou le point de mort cellulaire), l'élimination de la blessure n'entraîne pas de récupération, mais la cellule subit une dégradation et une hydrolyse, atteignant finalement un équilibre physico-chimique avec le environnement. C'est la phase dite de nécrose. Au cours de la phase prélétale, plusieurs types principaux de changements se produisent, selon la cellule et le type de blessure. Celles-ci sont connues sous le nom d'apoptose et d'oncose.
L'apoptose
L'apoptose est dérivé des mots grecs apo, c'est-à-dire loin de, et ptosis, signifiant tomber. Le terme s'éloigner de vient du fait que, lors de ce type de changement prélétal, les cellules se rétractent et subissent un important bourgeonnement en périphérie. Les bulles se détachent alors et flottent. L'apoptose se produit dans une variété de types de cellules suite à divers types de lésions toxiques (Wyllie, Kerr et Currie 1980). Il est particulièrement important dans les lymphocytes, où il est le mécanisme prédominant de renouvellement des clones de lymphocytes. Les fragments résultants donnent les corps basophiles observés dans les macrophages des ganglions lymphatiques. Dans d'autres organes, l'apoptose se produit typiquement dans des cellules individuelles qui sont rapidement éliminées avant et après la mort par phagocytose des fragments par des cellules parenchymateuses adjacentes ou par des macrophages. L'apoptose survenant dans des cellules individuelles avec phagocytose ultérieure n'entraîne généralement pas d'inflammation. Avant la mort, les cellules apoptotiques présentent un cytosol très dense avec des mitochondries normales ou condensées. Le réticulum endoplasmique (RE) est normal ou peu dilaté. La chromatine nucléaire est nettement agglutinée le long de l'enveloppe nucléaire et autour du nucléole. Le contour nucléaire est également irrégulier et une fragmentation nucléaire se produit. La condensation de la chromatine est associée à la fragmentation de l'ADN qui, dans de nombreux cas, se produit entre les nucléosomes, donnant un aspect caractéristique en échelle lors de l'électrophorèse.
En apoptose, augmentation de [Ca2+]i peut stimuler K+ efflux entraînant un rétrécissement cellulaire, ce qui nécessite probablement de l'ATP. Les blessures qui inhibent totalement la synthèse d'ATP sont donc plus susceptibles d'entraîner l'apoptose. Une augmentation soutenue de [Ca2+]i a un certain nombre d'effets délétères, y compris l'activation des protéases, des endonucléases et des phospholipases. L'activation de l'endonucléase entraîne des ruptures de brins d'ADN simples et doubles qui, à leur tour, stimulent des niveaux accrus de p53 et de ribosylation poly-ADP, et de protéines nucléaires essentielles à la réparation de l'ADN. L'activation des protéases modifie un certain nombre de substrats, y compris l'actine et les protéines apparentées, conduisant à la formation de bulles. Un autre substrat important est la poly(ADP-ribose) polymérase (PARP), qui inhibe la réparation de l'ADN. Augmentation de [Ca2+]i est également associée à l'activation d'un certain nombre de protéines kinases, telles que la MAP kinase, la calmoduline kinase et autres. Ces kinases sont impliquées dans l'activation des facteurs de transcription qui initient la transcription des gènes précoces immédiats, par exemple, c-fos, c-jun et c-myc, et dans l'activation de la phospholipase A2 ce qui se traduit par une perméabilisation de la membrane plasmique et des membranes intracellulaires telles que la membrane interne des mitochondries.
Oncose
Oncose, dérivé du mot grec Est-ce que s, gonfler, est ainsi nommé parce que dans ce type de changement prélétal, la cellule commence à gonfler presque immédiatement après la blessure (Majno et Joris 1995). La raison du gonflement est une augmentation des cations dans l'eau à l'intérieur de la cellule. Le principal cation responsable est le sodium, qui est normalement régulé pour maintenir le volume cellulaire. Cependant, en l'absence d'ATP ou si la Na-ATPase du plasmalemme est inhibée, le contrôle du volume est perdu à cause des protéines intracellulaires et le sodium dans l'eau continue d'augmenter. Parmi les événements précoces de l'oncose sont donc augmentés [Na+]i ce qui conduit à un gonflement cellulaire et à une augmentation de [Ca2+]i résultant soit de l'influx de l'espace extracellulaire, soit de la libération des réserves intracellulaires. Il en résulte un gonflement du cytosol, un gonflement du réticulum endoplasmique et de l'appareil de Golgi, et la formation de bulles aqueuses autour de la surface cellulaire. Les mitochondries subissent initialement une condensation, mais plus tard, elles présentent également un gonflement de grande amplitude en raison de dommages à la membrane mitochondriale interne. Dans ce type de changement prélétal, la chromatine subit une condensation et finalement une dégradation ; cependant, le modèle d'échelle caractéristique de l'apoptose n'est pas observé.
Nécrose
La nécrose fait référence à la série de changements qui se produisent après la mort cellulaire lorsque la cellule est convertie en débris qui sont généralement éliminés par la réponse inflammatoire. Deux types peuvent être distingués : la nécrose oncotique et la nécrose apoptotique. La nécrose oncotique survient généralement dans de grandes zones, par exemple, dans un infarctus du myocarde ou régionalement dans un organe après une toxicité chimique, comme le tubule rénal proximal après administration de HgCl2. De larges zones d'un organe sont atteintes et les cellules nécrotiques provoquent rapidement une réaction inflammatoire, d'abord aiguë puis chronique. En cas de survie de l'organisme, dans de nombreux organes, la nécrose est suivie d'une élimination des cellules mortes et d'une régénération, par exemple dans le foie ou les reins suite à une toxicité chimique. En revanche, la nécrose apoptotique se produit généralement sur une seule cellule et les débris nécrotiques se forment dans les phagocytes des macrophages ou des cellules parenchymateuses adjacentes. Les premières caractéristiques des cellules nécrotiques comprennent des interruptions dans la continuité de la membrane plasmique et l'apparition de densités floconneuses, représentant des protéines dénaturées au sein de la matrice mitochondriale. Dans certaines formes de lésions qui n'interfèrent pas initialement avec l'accumulation de calcium mitochondrial, des dépôts de phosphate de calcium peuvent être observés dans les mitochondries. D'autres systèmes membranaires se fragmentent de la même manière, tels que le RE, les lysosomes et l'appareil de Golgi. En fin de compte, la chromatine nucléaire subit une lyse, résultant de l'attaque par les hydrolases lysosomales. Après la mort cellulaire, les hydrolases lysosomales jouent un rôle important dans l'élimination des débris avec les cathepsines, les nucléolases et les lipases, car celles-ci ont un pH acide optimal et peuvent survivre au faible pH des cellules nécrotiques tandis que d'autres enzymes cellulaires sont dénaturées et inactivées.
Mécanismes
Stimulus initial
Dans le cas de lésions mortelles, les interactions initiales les plus courantes entraînant une lésion entraînant la mort cellulaire sont l'interférence avec le métabolisme énergétique, comme l'anoxie, l'ischémie ou les inhibiteurs de la respiration, et la glycolyse comme le cyanure de potassium, le monoxyde de carbone, l'iodo-acétate et bientôt. Comme mentionné ci-dessus, des doses élevées de composés qui inhibent le métabolisme énergétique entraînent généralement une oncose. L'autre type courant de lésion initiale entraînant une mort cellulaire aiguë est la modification de la fonction de la membrane plasmique (Trump et Arstila 1971 ; Trump, Berezesky et Osornio-Vargas 1981). Cela peut être soit des dommages directs et une perméabilisation, comme dans le cas d'un traumatisme ou de l'activation du complexe C5b-C9 du complément, des dommages mécaniques à la membrane cellulaire ou une inhibition du sodium-potassium (Na+-K+) pompe avec des glycosides tels que l'ouabaïne. Les ionophores calciques tels que l'ionomycine ou A23187, qui transportent rapidement [Ca2+] vers le bas du gradient dans la cellule, provoquent également des blessures mortelles aiguës. Dans certains cas, le schéma du changement prélétal est l'apoptose ; dans d'autres, c'est une oncose.
Voies de signalisation
Avec de nombreux types de lésions, la respiration mitochondriale et la phosphorylation oxydative sont rapidement affectées. Dans certaines cellules, cela stimule la glycolyse anaérobie, qui est capable de maintenir l'ATP, mais avec de nombreuses blessures, cela est inhibé. Le manque d'ATP entraîne une incapacité à dynamiser un certain nombre de processus homéostatiques importants, en particulier le contrôle de l'homéostasie des ions intracellulaires (Trump et Berezesky 1992 ; Trump, Berezesky et Osornio-Vargas 1981). Il en résulte une augmentation rapide de [Ca2+]i, et augmenté [Na+] et [Cl-] entraîne un gonflement des cellules. Augmentation de [Ca2+]i entraîner l'activation d'un certain nombre d'autres mécanismes de signalisation discutés ci-dessous, y compris une série de kinases, ce qui peut entraîner une augmentation immédiate de la transcription précoce des gènes. Augmentation de [Ca2+]i modifie également la fonction cytosquelettique, entraînant en partie la formation de bulles et l'activation des endonucléases, des protéases et des phospholipases. Ceux-ci semblent déclencher bon nombre des effets importants discutés ci-dessus, tels que les dommages à la membrane par l'activation de la protéase et de la lipase, la dégradation directe de l'ADN à partir de l'activation de l'endonucléase et l'activation de kinases telles que la MAP kinase et la calmoduline kinase, qui agissent comme facteurs de transcription.
Grâce à un travail approfondi sur le développement chez les invertébrés C. elegans et Drosophila, ainsi que des cellules humaines et animales, une série de gènes pro-mort ont été identifiés. Certains de ces gènes d'invertébrés se sont avérés avoir des homologues de mammifères. Par exemple, le gène ced-3, essentiel à la mort cellulaire programmée chez C. elegans, a une activité protéase et une forte homologie avec l'enzyme de conversion de l'interleukine de mammifère (ICE). Un gène étroitement apparenté appelé apopain ou prICE a récemment été identifié avec une homologie encore plus étroite (Nicholson et al. 1995). Dans Drosophila, le gène reaper semble être impliqué dans un signal qui conduit à la mort cellulaire programmée. D'autres gènes pro-mort comprennent la protéine membranaire Fas et l'important gène suppresseur de tumeur, p53, qui est largement conservé. p53 est induit au niveau protéique suite à des dommages à l'ADN et, lorsqu'il est phosphorylé, agit comme un facteur de transcription pour d'autres gènes tels que gadd45 et waf-1, qui sont impliqués dans la signalisation de la mort cellulaire. D'autres gènes précoces immédiats tels que c-fos, c-jun et c-myc semblent également être impliqués dans certains systèmes.
En même temps, il existe des gènes anti-mort qui semblent contrecarrer les gènes pro-mort. Le premier d'entre eux à être identifié était ced-9 de C. elegans, qui est homologue à bcl-2 chez l'homme. Ces gènes agissent d'une manière encore inconnue pour empêcher la destruction des cellules par des toxines génétiques ou chimiques. Certaines preuves récentes indiquent que bcl-2 peut agir comme un antioxydant. Actuellement, de nombreux efforts sont en cours pour développer une compréhension des gènes impliqués et pour développer des moyens d'activer ou d'inhiber ces gènes, selon la situation.
La toxicologie génétique, par définition, est l'étude de la façon dont les agents chimiques ou physiques affectent le processus complexe de l'hérédité. Les produits chimiques génotoxiques sont définis comme des composés capables de modifier le matériel héréditaire des cellules vivantes. La probabilité qu'un produit chimique particulier cause des dommages génétiques dépend inévitablement de plusieurs variables, dont le niveau d'exposition de l'organisme au produit chimique, la distribution et la rétention du produit chimique une fois qu'il pénètre dans l'organisme, l'efficacité des systèmes d'activation métabolique et/ou de détoxification dans tissus cibles et la réactivité du produit chimique ou de ses métabolites avec les macromolécules critiques dans les cellules. La probabilité qu'un dommage génétique cause une maladie dépend en fin de compte de la nature du dommage, de la capacité de la cellule à réparer ou à amplifier le dommage génétique, de la possibilité d'exprimer toute altération induite et de la capacité de l'organisme à reconnaître et à supprimer la multiplication des cellules aberrantes.
Dans les organismes supérieurs, l'information héréditaire est organisée en chromosomes. Les chromosomes sont constitués de brins étroitement condensés d'ADN associé à des protéines. Au sein d'un même chromosome, chaque molécule d'ADN existe sous la forme d'une paire de longues chaînes non ramifiées de sous-unités nucléotidiques reliées entre elles par des liaisons phosphodiester qui relient le carbone 5 d'un fragment désoxyribose au carbone 3 du suivant (figure 1). De plus, l'une des quatre bases nucléotidiques différentes (adénine, cytosine, guanine ou thymine) est attachée à chaque sous-unité désoxyribose comme des perles sur une ficelle. En trois dimensions, chaque paire de brins d'ADN forme une double hélice avec toutes les bases orientées vers l'intérieur de la spirale. Au sein de l'hélice, chaque base est associée à sa base complémentaire sur le brin d'ADN opposé ; la liaison hydrogène dicte un appariement fort et non covalent de l'adénine avec la thymine et de la guanine avec la cytosine (figure 1). Étant donné que la séquence des bases nucléotidiques est complémentaire sur toute la longueur de la molécule d'ADN duplex, les deux brins portent essentiellement la même information génétique. En effet, lors de la réplication de l'ADN chaque brin sert de matrice pour la production d'un nouveau brin partenaire.
Figure 1. L'organisation (a) primaire, (b) secondaire et (c) tertiaire de l'information héréditaire humaine
À l'aide d'ARN et d'un ensemble de protéines différentes, la cellule déchiffre finalement les informations codées par la séquence linéaire de bases dans des régions spécifiques de l'ADN (gènes) et produit des protéines essentielles à la survie cellulaire de base ainsi qu'à la croissance et à la différenciation normales. Essentiellement, les nucléotides fonctionnent comme un alphabet biologique utilisé pour coder les acides aminés, les éléments constitutifs des protéines.
Lorsque des nucléotides incorrects sont insérés ou que des nucléotides sont perdus, ou lorsque des nucléotides inutiles sont ajoutés pendant la synthèse de l'ADN, l'erreur est appelée mutation. Il a été estimé que moins d'une mutation se produit pour 109 nucléotides incorporés lors de la réplication normale des cellules. Bien que les mutations ne soient pas nécessairement nocives, les altérations entraînant l'inactivation ou la surexpression de gènes importants peuvent entraîner divers troubles, notamment le cancer, des maladies héréditaires, des anomalies du développement, l'infertilité et la mort embryonnaire ou périnatale. Très rarement, une mutation peut entraîner une amélioration de la survie ; de tels événements sont à la base de la sélection naturelle.
Bien que certains produits chimiques réagissent directement avec l'ADN, la plupart nécessitent une activation métabolique. Dans ce dernier cas, les intermédiaires électrophiles tels que les époxydes ou les ions carbonium sont finalement responsables de l'induction de lésions sur une variété de sites nucléophiles au sein du matériel génétique (figure 2). Dans d'autres cas, la génotoxicité est médiée par des sous-produits de l'interaction du composé avec des lipides intracellulaires, des protéines ou de l'oxygène.
Figure 2. Bioactivation de : a) benzo(a)pyrène ; et b) N-nitrosodiméthylamine
En raison de leur abondance relative dans les cellules, les protéines sont la cible la plus fréquente des interactions toxiques. Cependant, la modification de l'ADN est plus préoccupante en raison du rôle central de cette molécule dans la régulation de la croissance et de la différenciation à travers plusieurs générations de cellules.
Au niveau moléculaire, les composés électrophiles ont tendance à attaquer l'oxygène et l'azote dans l'ADN. Les sites les plus susceptibles d'être modifiés sont illustrés à la figure 3. Bien que les oxygènes au sein des groupes phosphate dans le squelette de l'ADN soient également des cibles de modification chimique, on pense que les dommages aux bases sont biologiquement plus pertinents puisque ces groupes sont considérés comme le principal vecteur d'information. éléments de la molécule d'ADN.
Figure 3. Sites primaires de dommages à l'ADN induits chimiquement
Les composés qui contiennent une fraction électrophile exercent généralement une génotoxicité en produisant des mono-adduits dans l'ADN. De même, les composés qui contiennent deux fractions réactives ou plus peuvent réagir avec deux centres nucléophiles différents et produire ainsi des réticulations intra- ou inter-moléculaires dans le matériel génétique (figure 4). Les réticulations interbrin ADN-ADN et ADN-protéine peuvent être particulièrement cytotoxiques car elles peuvent former des blocs complets pour la réplication de l'ADN. Pour des raisons évidentes, la mort d'une cellule élimine la possibilité qu'elle soit mutée ou transformée de façon néoplasique. Les agents génotoxiques peuvent également agir en induisant des cassures dans le squelette phosphodiester, ou entre les bases et les sucres (produisant des sites abasiques) dans l'ADN. De telles cassures peuvent être le résultat direct de la réactivité chimique au niveau du site endommagé ou peuvent se produire pendant la réparation de l'un des types de lésions de l'ADN susmentionnés.
Figure 4. Différents types de dommages au complexe protéine-ADN
Au cours des trente à quarante dernières années, diverses techniques ont été développées pour surveiller le type de dommages génétiques induits par divers produits chimiques. Ces tests sont décrits en détail ailleurs dans ce chapitre et Encyclopédie.
Une mauvaise réplication de « microlésions » telles que des mono-adduits, des sites abasiques ou des cassures simple brin peut finalement entraîner des substitutions de paires de bases de nucléotides, ou l'insertion ou la suppression de courts fragments de polynucléotides dans l'ADN chromosomique. En revanche, les «macrolésions», telles que les adduits volumineux, les réticulations ou les cassures double brin, peuvent déclencher le gain, la perte ou le réarrangement de morceaux de chromosomes relativement volumineux. Dans tous les cas, les conséquences peuvent être dévastatrices pour l'organisme puisque chacun de ces événements peut entraîner la mort cellulaire, la perte de fonction ou la transformation maligne des cellules. La manière exacte dont les dommages à l'ADN causent le cancer est en grande partie inconnue. On pense actuellement que le processus peut impliquer une activation inappropriée de proto-oncogènes tels que monc et ras, et/ou l'inactivation de gènes suppresseurs de tumeurs récemment identifiés tels que p53. L'expression anormale de l'un ou l'autre type de gène abroge les mécanismes cellulaires normaux pour contrôler la prolifération et/ou la différenciation cellulaire.
La prépondérance des preuves expérimentales indique que le développement d'un cancer suite à une exposition à des composés électrophiles est un événement relativement rare. Cela peut s'expliquer, en partie, par la capacité intrinsèque de la cellule à reconnaître et à réparer l'ADN endommagé ou par l'incapacité des cellules dont l'ADN est endommagé à survivre. Pendant la réparation, la base endommagée, le nucléotide ou le court tronçon de nucléotides entourant le site endommagé est retiré et (en utilisant le brin opposé comme modèle) un nouveau morceau d'ADN est synthétisé et épissé en place. Pour être efficace, la réparation de l'ADN doit se produire avec une grande précision avant la division cellulaire, avant les opportunités de propagation de la mutation.
Des études cliniques ont montré que les personnes présentant des défauts héréditaires dans la capacité de réparer l'ADN endommagé développent fréquemment un cancer et/ou des anomalies du développement à un âge précoce (tableau 1). De tels exemples fournissent des preuves solides reliant l'accumulation de dommages à l'ADN à la maladie humaine. De même, les agents qui favorisent la prolifération cellulaire (tels que l'acétate de tétradécanoylphorbol) améliorent souvent la carcinogenèse. Pour ces composés, la probabilité accrue de transformation néoplasique peut être une conséquence directe d'une diminution du temps disponible pour que la cellule effectue une réparation adéquate de l'ADN.
Tableau 1. Troubles héréditaires prédisposés au cancer qui semblent impliquer des défauts de réparation de l'ADN
Syndrome | Symptômes | Phénotype cellulaire |
Ataxie télangiectasie | Détérioration neurologique Immunodéficience Incidence élevée de lymphome |
Hypersensibilité aux rayonnements ionisants et à certains agents alkylants. Réplication dérégulée de l'ADN endommagé (peut indiquer un temps raccourci pour la réparation de l'ADN) |
Syndrome de Bloom | Anomalies du développement Lésions sur la peau exposée Incidence élevée de tumeurs du système immunitaire et du tractus gastro-intestinal |
Fréquence élevée des aberrations chromosomiques Ligature défectueuse des cassures associées à la réparation de l'ADN |
L'anémie de Fanconi | Retard de croissance Incidence élevée de leucémie |
Hypersensibilité aux agents de réticulation Fréquence élevée des aberrations chromosomiques Réparation défectueuse des liaisons croisées dans l'ADN |
Cancer du côlon héréditaire sans polypose | Forte incidence du cancer du côlon | Défaut dans la réparation des mésappariements d'ADN (lorsque l'insertion d'un mauvais nucléotide se produit pendant la réplication) |
Xéroderma pigmentosum | Incidence élevée d'épithéliome sur les zones exposées de la peau Atteinte neurologique (dans de nombreux cas) |
Hypersensibilité aux rayons UV et à de nombreux cancérigènes chimiques Défauts de réparation par excision et/ou de réplication de l'ADN endommagé |
Les premières théories sur la façon dont les produits chimiques interagissent avec l'ADN remontent aux études menées lors du développement du gaz moutarde utilisé dans la guerre. Une meilleure compréhension est née des efforts visant à identifier des agents anticancéreux qui arrêteraient sélectivement la réplication des cellules tumorales à division rapide. L'inquiétude croissante du public concernant les dangers dans notre environnement a incité des recherches supplémentaires sur les mécanismes et les conséquences de l'interaction chimique avec le matériel génétique. Des exemples de divers types de produits chimiques qui exercent une génotoxicité sont présentés dans le tableau 2.
Tableau 2. Exemples de produits chimiques qui présentent une génotoxicité dans les cellules humaines
Classe de produit chimique | Exemple | Source d'exposition | Lésion génotoxique probable |
Aflatoxines | Aflatoxine B1 | Nourriture contaminée | Adduits volumineux à l'ADN |
Amines aromatiques | 2-Acétylaminofluorène | Environnement | Adduits volumineux à l'ADN |
Quinones d'aziridine | Mitomycine c | Chimiothérapie anticancéreuse | Mono-adduits, réticulations interbrins et cassures simple brin dans l'ADN. |
Hydrocarbures chlorés | Chlorure de vinyle | Environnement | Mono-adduits dans l'ADN |
Métaux et composés métalliques | Cisplatine | Chimiothérapie anticancéreuse | Crosslinks intra- et inter-brins dans l'ADN |
Composés de nickel | Environnement | Mono-adduits et cassures simple brin dans l'ADN | |
Moutardes à l'azote | Cyclophosphamide | Chimiothérapie anticancéreuse | Mono-adduits et réticulations interbrins dans l'ADN |
Nitrosamines | N-Nitrosodiméthylamine | Nourriture contaminée | Mono-adduits dans l'ADN |
Hydrocarbures aromatiques polycycliques | Benzo (a) pyrène | Environnement | Adduits volumineux à l'ADN |
Les fonctions du système immunitaire sont de protéger le corps contre les agents infectieux envahisseurs et d'assurer une surveillance immunitaire contre les cellules tumorales qui apparaissent. Il possède une première ligne de défense non spécifique qui peut initier elle-même des réactions effectrices, et une branche spécifique acquise, dans laquelle les lymphocytes et les anticorps portent la spécificité de reconnaissance et de réactivité ultérieure vis-à-vis de l'antigène.
L'immunotoxicologie a été définie comme « la discipline concernée par l'étude des événements pouvant entraîner des effets indésirables du fait de l'interaction des xénobiotiques avec le système immunitaire. Ces événements indésirables peuvent résulter (1) d'un effet direct et/ou indirect du xénobiotique (et/ou de son produit de biotransformation) sur le système immunitaire, ou (2) d'une réponse immunologique de l'hôte au composé et/ou son ou ses métabolites, ou des antigènes hôtes modifiés par le composé ou ses métabolites » (Berlin et al. 1987).
Lorsque le système immunitaire agit comme une cible passive d'agressions chimiques, il peut en résulter une diminution de la résistance aux infections et à certaines formes de néoplasie, ou une dérégulation/stimulation immunitaire pouvant exacerber les allergies ou l'auto-immunité. Dans le cas où le système immunitaire répond à la spécificité antigénique du xénobiotique ou de l'antigène hôte modifié par le composé, la toxicité peut se manifester sous forme d'allergies ou de maladies auto-immunes.
Des modèles animaux pour étudier la suppression immunitaire induite par des produits chimiques ont été développés, et un certain nombre de ces méthodes sont validées (Burleson, Munson et Dean 1995 ; IPCS 1996). À des fins de test, une approche à plusieurs niveaux est suivie pour effectuer une sélection adéquate parmi le nombre écrasant de tests disponibles. Généralement, l'objectif du premier niveau est d'identifier les immunotoxiques potentiels. Si une immunotoxicité potentielle est identifiée, un deuxième niveau de test est effectué pour confirmer et caractériser davantage les changements observés. Les enquêtes de troisième niveau comprennent des études spéciales sur le mécanisme d'action du composé. Plusieurs xénobiotiques ont été identifiés comme immunotoxiques provoquant une immunosuppression dans de telles études avec des animaux de laboratoire.
La base de données sur les perturbations de la fonction immunitaire chez les humains par les produits chimiques environnementaux est limitée (Descotes 1986; NRC Subcommittee on Immunotoxicology 1992). L'utilisation de marqueurs d'immunotoxicité a reçu peu d'attention dans les études cliniques et épidémiologiques pour étudier l'effet de ces produits chimiques sur la santé humaine. De telles études n'ont pas été réalisées fréquemment et leur interprétation ne permet souvent pas de tirer des conclusions univoques, en raison par exemple du caractère non contrôlé de l'exposition. Par conséquent, à l'heure actuelle, l'évaluation de l'immunotoxicité chez les rongeurs, avec extrapolation ultérieure à l'homme, constitue la base des décisions concernant les dangers et les risques.
Les réactions d'hypersensibilité, notamment l'asthme allergique et la dermatite de contact, sont d'importants problèmes de santé au travail dans les pays industrialisés (Vos, Younes et Smith 1995). Le phénomène de sensibilisation par contact a d'abord été étudié chez le cobaye (Andersen et Maibach 1985). Jusqu'à récemment, c'était l'espèce de choix pour les tests prédictifs. De nombreuses méthodes de test de cobaye sont disponibles, les plus fréquemment utilisées étant le test de maximisation du cobaye et le patch test occlus de Buehler. Les tests sur le cobaye et les nouvelles approches développées chez la souris, telles que les tests de gonflement des oreilles et le test des ganglions lymphatiques locaux, fournissent au toxicologue les outils nécessaires pour évaluer le risque de sensibilisation cutanée. La situation en matière de sensibilisation des voies respiratoires est très différente. Il n'existe pas encore de méthodes bien validées ou largement acceptées pour l'identification des allergènes respiratoires chimiques, bien que des progrès dans le développement de modèles animaux pour l'étude de l'allergie respiratoire chimique aient été réalisés chez le cobaye et la souris.
Les données humaines montrent que les agents chimiques, en particulier les médicaments, peuvent provoquer des maladies auto-immunes (Kammüller, Bloksma et Seinen 1989). Il existe un certain nombre de modèles animaux expérimentaux de maladies auto-immunes humaines. Ceux-ci comprennent à la fois une pathologie spontanée (par exemple le lupus érythémateux disséminé chez des souris noires de Nouvelle-Zélande) et des phénomènes auto-immuns induits par une immunisation expérimentale avec un auto-antigène à réaction croisée (par exemple l'arthrite induite par l'adjuvant H37Ra chez des rats de souche Lewis). Ces modèles sont appliqués dans l'évaluation préclinique des médicaments immunosuppresseurs. Très peu d'études ont abordé le potentiel de ces modèles pour évaluer si un xénobiotique exacerbe l'auto-immunité induite ou congénitale. Les modèles animaux qui conviennent pour étudier la capacité des produits chimiques à induire des maladies auto-immunes font pratiquement défaut. Un modèle qui est utilisé dans une mesure limitée est le test des ganglions lymphatiques poplités chez la souris. À l'instar de la situation chez l'homme, les facteurs génétiques jouent un rôle crucial dans le développement de maladies auto-immunes (MA) chez les animaux de laboratoire, ce qui limitera la valeur prédictive de tels tests.
Le système immunitaire
La fonction principale du système immunitaire est la défense contre les bactéries, les virus, les parasites, les champignons et les cellules néoplasiques. Ceci est réalisé par les actions de divers types de cellules et de leurs médiateurs solubles dans un concert finement réglé. La défense de l'hôte peut être grossièrement divisée en résistance non spécifique ou innée et en immunité spécifique ou acquise médiée par les lymphocytes (Roitt, Brostoff et Male 1989).
Les composants du système immunitaire sont présents dans tout le corps (Jones et al. 1990). Le compartiment lymphocytaire se trouve au sein des organes lymphoïdes (figure 1). La moelle osseuse et le thymus sont classés comme organes lymphoïdes primaires ou centraux ; les organes lymphoïdes secondaires ou périphériques comprennent les ganglions lymphatiques, la rate et le tissu lymphoïde le long des surfaces de sécrétion telles que les voies gastro-intestinales et respiratoires, le soi-disant tissu lymphoïde associé à la muqueuse (MALT). Environ la moitié des lymphocytes du corps se trouvent à tout moment dans le MALT. De plus, la peau est un organe important pour l'induction de réponses immunitaires aux antigènes présents sur la peau. Les cellules épidermiques de Langerhans qui ont une fonction de présentation d'antigène sont importantes dans ce processus.
Figure 1. Organes et tissus lymphoïdes primaires et secondaires
Les cellules phagocytaires de la lignée monocyte/macrophage, appelées système phagocytaire mononucléaire (MPS), sont présentes dans les organes lymphoïdes et également au niveau des sites extranodaux ; les phagocytes extranodaux comprennent les cellules de Kupffer dans le foie, les macrophages alvéolaires dans les poumons, les macrophages mésangiaux dans les reins et les cellules gliales dans le cerveau. Les leucocytes polymorphonucléaires (PMN) sont présents principalement dans le sang et la moelle osseuse, mais s'accumulent aux sites d'inflammation.
Défense non spécifique
Une première ligne de défense contre les micro-organismes est réalisée par une barrière physique et chimique, telle qu'au niveau de la peau, des voies respiratoires et du tube digestif. Cette barrière est aidée par des mécanismes de protection non spécifiques, notamment les cellules phagocytaires, telles que les macrophages et les leucocytes polymorphonucléaires, qui sont capables de tuer les agents pathogènes, et les cellules tueuses naturelles, qui peuvent lyser les cellules tumorales et les cellules infectées par des virus. Le système du complément et certains inhibiteurs microbiens (par exemple, le lysozyme) participent également à la réponse non spécifique.
Immunité spécifique
Après le contact initial de l'hôte avec l'agent pathogène, des réponses immunitaires spécifiques sont induites. La caractéristique de cette deuxième ligne de défense est la reconnaissance spécifique de déterminants, appelés antigènes ou épitopes, des agents pathogènes par des récepteurs à la surface cellulaire des lymphocytes B et T. Suite à l'interaction avec l'antigène spécifique, la cellule portant le récepteur est stimulée pour subir une prolifération et une différenciation, produisant un clone de cellules descendantes qui sont spécifiques de l'antigène déclenchant. Les réponses immunitaires spécifiques aident la défense non spécifique présentée aux agents pathogènes en stimulant l'efficacité des réponses non spécifiques. Une caractéristique fondamentale de l'immunité spécifique est que la mémoire se développe. Le contact secondaire avec le même antigène provoque une réponse plus rapide et plus vigoureuse mais bien régulée.
Le génome n'a pas la capacité de porter les codes d'un ensemble de récepteurs antigéniques suffisant pour reconnaître le nombre d'antigènes pouvant être rencontrés. Le répertoire de spécificité se développe par un processus de réarrangements de gènes. Il s'agit d'un processus aléatoire, au cours duquel différentes spécificités sont induites. Cela inclut des spécificités pour les composants autonomes, qui ne sont pas souhaitables. Un processus de sélection qui a lieu dans le thymus (cellules T), ou la moelle osseuse (cellules B) opère pour supprimer ces spécificités indésirables.
La fonction effectrice immunitaire normale et la régulation homéostatique de la réponse immunitaire dépendent d'une variété de produits solubles, connus collectivement sous le nom de cytokines, qui sont synthétisés et sécrétés par les lymphocytes et par d'autres types de cellules. Les cytokines ont des effets pléiotropes sur les réponses immunitaires et inflammatoires. La coopération entre différentes populations cellulaires est nécessaire pour la réponse immunitaire - la régulation des réponses d'anticorps, l'accumulation de cellules et de molécules immunitaires sur les sites inflammatoires, l'initiation de réponses de phase aiguë, le contrôle de la fonction cytotoxique des macrophages et de nombreux autres processus essentiels à la résistance de l'hôte . Celles-ci sont influencées par des cytokines agissant individuellement ou de concert, et dans de nombreux cas en dépendent.
Deux bras d'immunité spécifique sont reconnus - l'immunité humorale et l'immunité à médiation cellulaire ou cellulaire :
Immunité humorale. Dans le bras humoral, les lymphocytes B sont stimulés suite à la reconnaissance de l'antigène par les récepteurs de surface cellulaire. Les récepteurs antigéniques sur les lymphocytes B sont des immunoglobulines (Ig). Les lymphocytes B matures (cellules plasmatiques) déclenchent la production d'immunoglobulines spécifiques de l'antigène qui agissent comme des anticorps dans le sérum ou le long des surfaces muqueuses. Il existe cinq grandes classes d'immunoglobulines : (1) IgM, Ig pentamérique à capacité agglutinante optimale, qui est d'abord produite après stimulation antigénique ; (2) IgG, la principale Ig en circulation, qui peut passer le placenta ; (3) IgA, Ig sécrétoire pour la protection des surfaces muqueuses ; (4) IgE, Ig se fixant aux mastocytes ou aux granulocytes basophiles impliqués dans les réactions d'hypersensibilité immédiate et (5) IgD, dont la fonction principale est celle de récepteur sur les lymphocytes B.
Immunité à médiation cellulaire. Le bras cellulaire du système immunitaire spécifique est médié par les lymphocytes T. Ces cellules ont également des récepteurs antigéniques sur leurs membranes. Ils reconnaissent l'antigène s'il est présenté par des cellules présentatrices d'antigène dans le contexte des antigènes d'histocompatibilité. Par conséquent, ces cellules ont une restriction en plus de la spécificité antigénique. Les lymphocytes T fonctionnent comme des cellules auxiliaires pour diverses réponses immunitaires (y compris humorales), interviennent dans le recrutement de cellules inflammatoires et peuvent, en tant que lymphocytes T cytotoxiques, tuer les cellules cibles après la reconnaissance spécifique de l'antigène.
Mécanismes d'immunotoxicité
Immunosuppression
Une résistance efficace de l'hôte dépend de l'intégrité fonctionnelle du système immunitaire, qui à son tour exige que les cellules et molécules constitutives qui orchestrent les réponses immunitaires soient disponibles en nombre suffisant et sous une forme opérationnelle. Les immunodéficiences congénitales chez l'homme sont souvent caractérisées par des défauts dans certaines lignées de cellules souches, entraînant une production altérée ou absente de cellules immunitaires. Par analogie avec les maladies d'immunodéficience humaine congénitale et acquise, l'immunosuppression induite par des produits chimiques peut résulter simplement d'un nombre réduit de cellules fonctionnelles (IPCS 1996). L'absence ou le nombre réduit de lymphocytes peut avoir des effets plus ou moins profonds sur l'état immunitaire. Certains états d'immunodéficience et d'immunosuppression sévère, comme cela peut se produire lors d'une transplantation ou d'une thérapie cytostatique, ont été associés en particulier à des incidences accrues d'infections opportunistes et de certaines maladies néoplasiques. Les infections peuvent être bactériennes, virales, fongiques ou protozoaires, et le type prédominant d'infection dépend de l'immunodéficience associée. On peut s'attendre à ce que l'exposition à des produits chimiques environnementaux immunosuppresseurs entraîne des formes plus subtiles d'immunosuppression, qui peuvent être difficiles à détecter. Ceux-ci peuvent conduire, par exemple, à une incidence accrue d'infections telles que la grippe ou le rhume.
Compte tenu de la complexité du système immunitaire, avec la grande variété de cellules, de médiateurs et de fonctions qui forment un réseau compliqué et interactif, les composés immunotoxiques ont de nombreuses possibilités d'exercer un effet. Bien que la nature des lésions initiales induites par de nombreux produits chimiques immunotoxiques n'ait pas encore été élucidée, de plus en plus d'informations sont disponibles, principalement issues d'études sur des animaux de laboratoire, concernant les changements immunobiologiques qui entraînent une dépression de la fonction immunitaire (Dean et al. 1994) . Des effets toxiques peuvent se produire au niveau des fonctions critiques suivantes (et quelques exemples sont donnés de composés immunotoxiques affectant ces fonctions) :
Allergie
Allergie peuvent être définis comme les effets néfastes sur la santé qui résultent de l'induction et du déclenchement de réponses immunitaires spécifiques. Lorsque des réactions d'hypersensibilité surviennent sans implication du système immunitaire, le terme pseudo-allergie est utilisé. Dans le contexte de l'immunotoxicologie, l'allergie résulte d'une réponse immunitaire spécifique aux produits chimiques et aux médicaments d'intérêt. La capacité d'un produit chimique à sensibiliser les individus est généralement liée à sa capacité à se lier de manière covalente aux protéines corporelles. Les réactions allergiques peuvent prendre diverses formes et celles-ci diffèrent en ce qui concerne à la fois les mécanismes immunologiques sous-jacents et la vitesse de la réaction. Quatre types principaux de réactions allergiques ont été reconnus : Réactions d'hypersensibilité de type I, qui sont provoquées par les anticorps IgE et où les symptômes se manifestent dans les minutes suivant l'exposition de l'individu sensibilisé. Les réactions d'hypersensibilité de type II résultent de l'endommagement ou de la destruction des cellules hôtes par les anticorps. Dans ce cas, les symptômes apparaissent en quelques heures. Les réactions d'hypersensibilité de type III, ou Arthus, sont également médiées par des anticorps, mais contre un antigène soluble, et résultent de l'action locale ou systémique de complexes immuns. Les réactions d'hypersensibilité de type IV, ou de type retardé, sont provoquées par les lymphocytes T et normalement les symptômes se développent 24 à 48 heures après l'exposition de l'individu sensibilisé.
Les deux types d'allergie chimique les plus pertinents pour la santé au travail sont la sensibilité de contact ou allergie cutanée et l'allergie des voies respiratoires.
Hypersensibilité de contact. Un grand nombre de produits chimiques sont capables de provoquer une sensibilisation cutanée. Suite à l'exposition topique d'un individu sensible à un allergène chimique, une réponse lymphocytaire T est induite dans les ganglions lymphatiques drainants. Dans la peau, l'allergène interagit directement ou indirectement avec les cellules épidermiques de Langerhans, qui transportent le produit chimique vers les ganglions lymphatiques et le présentent sous une forme immunogène aux lymphocytes T réactifs. Les lymphocytes T activés par les allergènes prolifèrent, entraînant une expansion clonale. L'individu est maintenant sensibilisé et répondra à une deuxième exposition cutanée au même produit chimique par une réponse immunitaire plus agressive, entraînant une dermatite de contact allergique. La réaction inflammatoire cutanée qui caractérise la dermatite allergique de contact est secondaire à la reconnaissance de l'allergène dans la peau par des lymphocytes T spécifiques. Ces lymphocytes s'activent, libèrent des cytokines et provoquent l'accumulation locale d'autres leucocytes mononucléaires. Les symptômes se développent environ 24 à 48 heures après l'exposition de l'individu sensibilisé, et la dermatite allergique de contact représente donc une forme d'hypersensibilité de type retardé. Les causes courantes de dermatite de contact allergique comprennent les produits chimiques organiques (tels que le 2,4-dinitrochlorobenzène), les métaux (tels que le nickel et le chrome) et les produits végétaux (tels que l'urushiol de l'herbe à puce).
Hypersensibilité respiratoire. L'hypersensibilité respiratoire est généralement considérée comme une réaction d'hypersensibilité de type I. Cependant, les réactions de phase tardive et les symptômes plus chroniques associés à l'asthme peuvent impliquer des processus immunitaires à médiation cellulaire (type IV). Les symptômes aigus associés à l'allergie respiratoire sont provoqués par des anticorps IgE dont la production est provoquée suite à l'exposition de l'individu sensible à l'allergène chimique inducteur. L'anticorps IgE se distribue de manière systémique et se lie, via des récepteurs membranaires, aux mastocytes qui se trouvent dans les tissus vascularisés, y compris les voies respiratoires. Suite à l'inhalation du même produit chimique, une réaction d'hypersensibilité respiratoire sera déclenchée. L'allergène s'associe aux protéines et se lie aux anticorps IgE liés aux mastocytes et les réticule. Cela provoque à son tour la dégranulation des mastocytes et la libération de médiateurs inflammatoires tels que l'histamine et les leucotriènes. De tels médiateurs provoquent une bronchoconstriction et une vasodilatation, entraînant des symptômes d'allergie respiratoire ; asthme et/ou rhinite. Les produits chimiques connus pour provoquer une hypersensibilité respiratoire chez l'homme comprennent les anhydrides acides (tels que l'anhydride trimellitique), certains diisocyanates (tels que le diisocyanate de toluène), les sels de platine et certains colorants réactifs. De plus, l'exposition chronique au béryllium est connue pour causer une maladie pulmonaire d'hypersensibilité.
auto-immunité
auto-immunité peut être défini comme la stimulation de réponses immunitaires spécifiques dirigées contre des antigènes endogènes du "soi". L'auto-immunité induite peut résulter soit d'altérations de l'équilibre des lymphocytes T régulateurs, soit de l'association d'un xénobiotique avec des composants tissulaires normaux de manière à les rendre immunogènes ("altéred self"). Les médicaments et les produits chimiques connus pour induire ou exacerber accidentellement des effets comme ceux de la maladie auto-immune (MA) chez les personnes sensibles sont des composés de faible poids moléculaire (poids moléculaire de 100 à 500) qui sont généralement considérés comme non immunogènes eux-mêmes. Le mécanisme de la MA par exposition chimique est pour la plupart inconnu. La maladie peut être produite directement au moyen d'anticorps circulants, indirectement par la formation de complexes immuns ou à la suite d'une immunité à médiation cellulaire, mais elle se produit probablement par une combinaison de mécanismes. La pathogénie est surtout connue dans les troubles hémolytiques immunitaires induits par les médicaments :
Une variété de produits chimiques et de médicaments, en particulier ces derniers, se sont avérés induire des réponses de type auto-immune (Kamüller, Bloksma et Seinen 1989). L'exposition professionnelle à des produits chimiques peut incidemment entraîner des syndromes de type MA. L'exposition au chlorure de vinyle monomère, au trichloroéthylène, au perchloroéthylène, aux résines époxy et à la poussière de silice peut induire des syndromes de type sclérodermique. Un syndrome similaire au lupus érythémateux disséminé (LED) a été décrit après exposition à l'hydrazine. L'exposition au diisocyanate de toluène a été associée à l'induction de purpura thrombocytopénique. Les métaux lourds tels que le mercure ont été impliqués dans certains cas de glomérulonéphrite à complexes immuns.
Évaluation des risques humains
L'évaluation de l'état immunitaire humain est effectuée principalement à l'aide de sang périphérique pour l'analyse de substances humorales telles que les immunoglobulines et le complément, et de leucocytes sanguins pour la composition de sous-ensembles et la fonctionnalité de sous-populations. Ces méthodes sont généralement les mêmes que celles utilisées pour étudier l'immunité humorale et à médiation cellulaire ainsi que la résistance non spécifique des patients suspectés d'immunodéficience congénitale. Pour les études épidémiologiques (par exemple, des populations professionnellement exposées), les paramètres doivent être sélectionnés sur la base de leur valeur prédictive dans les populations humaines, des modèles animaux validés et la biologie sous-jacente des marqueurs (voir tableau 1). La stratégie de dépistage des effets immunotoxiques après une exposition (accidentelle) à des polluants environnementaux ou à d'autres substances toxiques dépend beaucoup des circonstances, telles que le type d'immunodéficience à prévoir, le temps écoulé entre l'exposition et l'évaluation de l'état immunitaire, le degré d'exposition et le nombre d'individus exposés. Le processus d'évaluation du risque immunotoxique d'un xénobiotique particulier chez l'homme est extrêmement difficile et souvent impossible, en grande partie en raison de la présence de divers facteurs de confusion d'origine endogène ou exogène qui influencent la réponse des individus aux dommages toxiques. Cela est particulièrement vrai pour les études qui étudient le rôle de l'exposition chimique dans les maladies auto-immunes, où les facteurs génétiques jouent un rôle crucial.
Tableau 1. Classification des tests pour les marqueurs immunitaires
Catégorie d'essai | Caractéristiques | Tests spécifiques |
Général de base Doit être inclus avec les panneaux généraux |
Indicateurs de la santé générale et de l'état du système organique | Azote uréique sanguin, glycémie, etc. |
Immunité basique Doit être inclus avec les panneaux généraux |
Indicateurs généraux de l'état immunitaire Coût relativement bas Les méthodes d'analyse sont standardisées entre les laboratoires Les résultats en dehors des plages de référence sont cliniquement interprétables |
Numérations sanguines complètes Taux sériques d'IgG, IgA, IgM Phénotypes de marqueurs de surface pour les principaux sous-ensembles de lymphocytes |
Concentré/réflexe Doit être inclus lorsque cela est indiqué par des résultats cliniques, des expositions suspectées ou des résultats de tests antérieurs |
Indicateurs de fonctions/événements immunitaires spécifiques Le coût varie Les méthodes d'analyse sont standardisées entre les laboratoires Les résultats en dehors des plages de référence sont cliniquement interprétables |
Génotype d'histocompatibilité Anticorps contre les agents infectieux IgE sériques totales IgE spécifique de l'allergène Auto-anticorps Tests cutanés pour l'hypersensibilité Sursaut oxydatif des granulocytes Histopathologie (biopsie tissulaire) |
Recherche Doit être inclus uniquement avec des populations témoins et une conception d'étude minutieuse |
Indicateurs de fonctions/événements immunitaires généraux ou spécifiques Le coût varie; souvent cher Les méthodes d'analyse ne sont généralement pas standardisées entre les laboratoires Les résultats en dehors des plages de référence ne sont souvent pas interprétables cliniquement |
Essais de stimulation in vitro Marqueurs de surface d'activation cellulaire Concentrations sériques de cytokines Essais de clonalité (anticorps, cellulaire, génétique) Tests de cytotoxicité |
Comme des données humaines adéquates sont rarement disponibles, l'évaluation du risque d'immunosuppression induite par des produits chimiques chez l'homme est dans la majorité des cas basée sur des études animales. L'identification des xénobiotiques immunotoxiques potentiels est entreprise principalement dans des études contrôlées chez les rongeurs. Les études d'exposition in vivo présentent, à cet égard, l'approche optimale pour estimer le potentiel immunotoxique d'un composé. Cela est dû à la nature multifactorielle et complexe du système immunitaire et des réponses immunitaires. Les études in vitro sont de plus en plus utiles pour élucider les mécanismes de l'immunotoxicité. De plus, en étudiant les effets du composé à l'aide de cellules d'origine animale et humaine, des données peuvent être générées pour la comparaison des espèces, qui peuvent être utilisées dans l'approche «parallélogramme» pour améliorer le processus d'évaluation des risques. Si des données sont disponibles pour les trois pierres angulaires du parallélogramme (animal in vivo, et animal in vitro et humain), il peut être plus facile de prédire le résultat à la pierre angulaire restante, c'est-à-dire le risque chez l'homme.
Lorsque l'évaluation du risque d'immunosuppression induite par des produits chimiques doit reposer uniquement sur des données provenant d'études animales, une approche peut être suivie dans l'extrapolation à l'homme en appliquant des facteurs d'incertitude à la dose sans effet nocif observé (NOAEL). Ce niveau peut être basé sur des paramètres déterminés dans des modèles pertinents, tels que des tests de résistance de l'hôte et une évaluation in vivo des réactions d'hypersensibilité et de la production d'anticorps. Idéalement, la pertinence de cette approche pour l'évaluation des risques nécessite une confirmation par des études chez l'homme. Ces études devraient combiner l'identification et la mesure de la substance toxique, les données épidémiologiques et les évaluations de l'état immunitaire.
Pour prédire l'hypersensibilité de contact, des modèles de cobayes sont disponibles et sont utilisés dans l'évaluation des risques depuis les années 1970. Bien que sensibles et reproductibles, ces tests ont des limites car ils dépendent d'une évaluation subjective ; cela peut être surmonté par des méthodes plus récentes et plus quantitatives développées chez la souris. Concernant l'hypersensibilité chimique induite par l'inhalation ou l'ingestion d'allergènes, des tests doivent être développés et évalués quant à leur valeur prédictive chez l'homme. Lorsqu'il s'agit de fixer des niveaux d'exposition professionnelle sûrs aux allergènes potentiels, il faut tenir compte de la nature biphasique de l'allergie : la phase de sensibilisation et la phase de déclenchement. La concentration requise pour déclencher une réaction allergique chez un individu précédemment sensibilisé est considérablement inférieure à la concentration nécessaire pour induire une sensibilisation chez l'individu immunologiquement naïf mais sensible.
Comme les modèles animaux pour prédire l'auto-immunité induite par des produits chimiques font pratiquement défaut, l'accent devrait être mis sur le développement de tels modèles. Pour le développement de tels modèles, nos connaissances sur l'auto-immunité induite par des produits chimiques chez l'homme doivent être avancées, y compris l'étude des marqueurs génétiques et du système immunitaire pour identifier les individus sensibles. Les humains qui sont exposés à des médicaments qui induisent l'auto-immunité offrent une telle opportunité.
L'étude et la caractérisation des produits chimiques et autres agents pour leurs propriétés toxiques sont souvent entreprises sur la base d'organes et de systèmes d'organes spécifiques. Dans ce chapitre, deux cibles ont été sélectionnées pour une discussion approfondie : le système immunitaire et le gène. Ces exemples ont été choisis pour représenter un système d'organe cible complexe et une cible moléculaire dans les cellules. Pour une discussion plus complète de la toxicologie des organes cibles, le lecteur est renvoyé aux textes de toxicologie standard tels que Casarett et Doull, et Hayes. Le Programme international sur la sécurité chimique (IPCS) a également publié plusieurs documents de référence sur la toxicologie des organes cibles, par système d'organes.
Les études de toxicologie des organes cibles sont généralement entreprises sur la base d'informations indiquant le potentiel d'effets toxiques spécifiques d'une substance, soit à partir de données épidémiologiques, soit à partir d'études générales de toxicité aiguë ou chronique, soit sur la base de préoccupations particulières visant à protéger certaines fonctions d'organes, telles que que la reproduction ou le développement fœtal. Dans certains cas, des tests de toxicité pour des organes cibles spécifiques sont expressément mandatés par des autorités statutaires, tels que les tests de neurotoxicité en vertu de la loi américaine sur les pesticides (voir « L'approche des États-Unis pour l'évaluation des risques des toxiques pour la reproduction et des agents neurotoxiques », et les tests de mutagénicité en vertu de la loi japonaise sur les produits chimiques). Loi sur le contrôle des substances (voir « Principes d'identification des dangers : l'approche japonaise »).
Comme indiqué dans la section « Organe cible et effets critiques », l'identification d'un organe critique est basée sur la détection de l'organe ou du système d'organes qui réagit le premier négativement ou aux doses ou expositions les plus faibles. Ces informations sont ensuite utilisées pour concevoir des investigations toxicologiques spécifiques ou des tests de toxicité plus définis qui sont conçus pour élucider des indications plus sensibles d'intoxication dans l'organe cible. Les études de toxicologie des organes cibles peuvent également être utilisées pour déterminer les mécanismes d'action, utiles dans l'évaluation des risques (voir « L'approche des États-Unis pour l'évaluation des risques des toxiques pour la reproduction et des agents neurotoxiques »).
Méthodes d'études de toxicité pour les organes cibles
Les organes cibles peuvent être étudiés par exposition d'organismes intacts et analyse détaillée de la fonction et de l'histopathologie dans l'organe cible, ou par exposition in vitro de cellules, de tranches de tissus ou d'organes entiers maintenus pendant des périodes de courte ou de longue durée en culture (voir "Mécanismes de toxicologie : Introduction et concepts »). Dans certains cas, des tissus de sujets humains peuvent également être disponibles pour des études de toxicité sur des organes cibles, et ceux-ci peuvent fournir des opportunités pour valider les hypothèses d'extrapolation inter-espèces. Cependant, il faut garder à l'esprit que de telles études ne fournissent pas d'informations sur la toxicocinétique relative.
En général, les études de toxicité pour les organes cibles partagent les caractéristiques communes suivantes : examen histopathologique détaillé de l'organe cible, y compris examen post mortem, poids des tissus et examen des tissus fixés ; études biochimiques des voies critiques dans l'organe cible, telles que les systèmes enzymatiques importants ; des études fonctionnelles de la capacité de l'organe et des constituants cellulaires à remplir les fonctions métaboliques et autres attendues ; et l'analyse des biomarqueurs d'exposition et des effets précoces dans les cellules des organes cibles.
Une connaissance détaillée de la physiologie, de la biochimie et de la biologie moléculaire des organes cibles peut être intégrée aux études sur les organes cibles. Par exemple, étant donné que la synthèse et la sécrétion de protéines de faible poids moléculaire constituent un aspect important de la fonction rénale, les études de néphrotoxicité accordent souvent une attention particulière à ces paramètres (IPCS 1991). Étant donné que la communication de cellule à cellule est un processus fondamental du fonctionnement du système nerveux, les études d'organes cibles sur la neurotoxicité peuvent inclure des mesures neurochimiques et biophysiques détaillées de la synthèse, de l'absorption, du stockage, de la libération et de la liaison aux récepteurs des neurotransmetteurs, ainsi que des mesures électrophysiologiques des modifications de la membrane. potentiel associé à ces événements.
Un degré élevé d'accent est mis sur le développement de méthodes in vitro pour la toxicité des organes cibles, pour remplacer ou réduire l'utilisation d'animaux entiers. Des progrès substantiels dans ces méthodes ont été réalisés pour les substances toxiques pour la reproduction (Heindel et Chapin 1993).
En résumé, les études de toxicité pour les organes cibles sont généralement entreprises comme test d'ordre supérieur pour déterminer la toxicité. La sélection d'organes cibles spécifiques pour une évaluation plus approfondie dépend des résultats des tests de dépistage, tels que les tests aigus ou subchroniques utilisés par l'OCDE et l'Union européenne ; certains organes et systèmes d'organes cibles peuvent être candidats a priori à une enquête spéciale en raison du souci de prévenir certains types d'effets néfastes sur la santé.
Le mot biomarqueur est l'abréviation de marqueur biologique, un terme qui fait référence à un événement mesurable se produisant dans un système biologique, tel que le corps humain. Cet événement est alors interprété comme le reflet, ou le marqueur, d'un état plus général de l'organisme ou de l'espérance de vie. En santé au travail, un biomarqueur est généralement utilisé comme indicateur de l'état de santé ou du risque de maladie.
Les biomarqueurs sont utilisés pour des études in vitro et in vivo qui peuvent inclure des humains. Habituellement, trois types spécifiques de marqueurs biologiques sont identifiés. Bien que quelques biomarqueurs puissent être difficiles à classer, ils sont généralement séparés en biomarqueurs d'exposition, biomarqueurs d'effet ou biomarqueurs de sensibilité (voir tableau 1).
Tableau 1. Exemples de biomarqueurs d'exposition ou biomarqueurs d'effet utilisés dans les études toxicologiques en santé au travail
Échantillon | Mesure | Objectif |
Biomarqueurs d'exposition | ||
Tissu adipeux | dioxine | Exposition aux dioxines |
sanguins | Plomb | Exposition au plomb |
Greffe Osseuse | Aluminium | Exposition à l'aluminium |
Souffle expiré | Toluène | Exposition au toluène |
Implants | Mercury | Exposition au méthylmercure |
Sérum | Benzène | Exposition au benzène |
Urine | Phénol | Exposition au benzène |
Biomarqueurs d'effet | ||
sanguins | Carboxyhémoglobine | Exposition au monoxyde de carbone |
des globules rouges | Zinc-protoporphyrine | Exposition au plomb |
Sérum | Cholinestérase | Exposition aux organophosphorés |
Urine | Microglobulines | Exposition néphrotoxique |
Les globules blancs | Adduits à l'ADN | Exposition mutagène |
Avec un degré de validité acceptable, les biomarqueurs peuvent être utilisés à plusieurs fins. Sur une base individuelle, un biomarqueur peut être utilisé pour étayer ou réfuter un diagnostic d'un type particulier d'empoisonnement ou d'un autre effet indésirable d'origine chimique. Chez un sujet sain, un biomarqueur peut également refléter l'hypersensibilité individuelle à des expositions chimiques spécifiques et peut donc servir de base pour la prédiction des risques et le conseil. Dans les groupes de travailleurs exposés, certains biomarqueurs d'exposition peuvent être appliqués pour évaluer le degré de conformité aux réglementations antipollution ou l'efficacité des efforts de prévention en général.
Biomarqueurs d'exposition
Un biomarqueur d'exposition peut être un composé exogène (ou un métabolite) dans le corps, un produit interactif entre le composé (ou le métabolite) et un composant endogène, ou un autre événement lié à l'exposition. Le plus souvent, les biomarqueurs des expositions à des composés stables, tels que les métaux, comprennent des mesures des concentrations de métaux dans des échantillons appropriés, tels que le sang, le sérum ou l'urine. Avec les produits chimiques volatils, leur concentration dans l'air expiré (après inhalation d'air non contaminé) peut être évaluée. Si le composé est métabolisé dans l'organisme, un ou plusieurs métabolites peuvent être choisis comme biomarqueur de l'exposition ; les métabolites sont souvent déterminés dans des échantillons d'urine.
Les méthodes modernes d'analyse peuvent permettre la séparation d'isomères ou de congénères de composés organiques et la détermination de la spéciation de composés métalliques ou des rapports isotopiques de certains éléments. Des analyses sophistiquées permettent de déterminer les changements dans la structure de l'ADN ou d'autres macromolécules provoqués par la liaison avec des produits chimiques réactifs. Ces techniques avancées gagneront sans aucun doute considérablement en importance pour les applications dans les études de biomarqueurs, et des limites de détection plus basses et une meilleure validité analytique rendront probablement ces biomarqueurs encore plus utiles.
Des développements particulièrement prometteurs ont eu lieu avec des biomarqueurs d'exposition à des produits chimiques mutagènes. Ces composés sont réactifs et peuvent former des adduits avec des macromolécules, telles que des protéines ou de l'ADN. Des adduits d'ADN peuvent être détectés dans les globules blancs ou des biopsies tissulaires, et des fragments d'ADN spécifiques peuvent être excrétés dans l'urine. Par exemple, l'exposition à l'oxyde d'éthylène entraîne des réactions avec les bases de l'ADN et, après excision de la base endommagée, la N-7-(2-hydroxyéthyl)guanine sera éliminée dans les urines. Certains adduits peuvent ne pas se référer directement à une exposition particulière. Par exemple, la 8-hydroxy-2´-désoxyguanosine reflète les dommages oxydatifs de l'ADN, et cette réaction peut être déclenchée par plusieurs composés chimiques, dont la plupart induisent également une peroxydation lipidique.
D'autres macromolécules peuvent également être modifiées par formation d'adduits ou oxydation. D'un intérêt particulier, de tels composés réactifs peuvent générer des adduits d'hémoglobine qui peuvent être déterminés en tant que biomarqueurs d'exposition aux composés. L'avantage est que de grandes quantités d'hémoglobine peuvent être obtenues à partir d'un échantillon de sang et, étant donné la durée de vie de quatre mois des globules rouges, les adduits formés avec les acides aminés de la protéine indiqueront l'exposition totale pendant cette période.
Les adduits peuvent être déterminés par des techniques sensibles telles que la chromatographie lipidique à haute performance, et certaines méthodes immunologiques sont également disponibles. En général, les méthodes analytiques sont nouvelles, coûteuses et nécessitent un développement et une validation supplémentaires. Une meilleure sensibilité peut être obtenue en utilisant le 32Test de post-marquage P, qui est une indication non spécifique que des dommages à l'ADN ont eu lieu. Toutes ces techniques sont potentiellement utiles pour la surveillance biologique et ont été appliquées dans un nombre croissant d'études. Cependant, des méthodes analytiques plus simples et plus sensibles sont nécessaires. Compte tenu de la spécificité limitée de certaines méthodes à de faibles niveaux d'exposition, le tabagisme ou d'autres facteurs peuvent avoir un impact significatif sur les résultats de mesure, entraînant ainsi des difficultés d'interprétation.
L'exposition à des composés mutagènes ou à des composés qui sont métabolisés en mutagènes peut également être déterminée en évaluant la mutagénicité de l'urine d'un individu exposé. L'échantillon d'urine est incubé avec une souche de bactéries dans laquelle une mutation ponctuelle spécifique est exprimée d'une manière qui peut être facilement mesurée. Si des produits chimiques mutagènes sont présents dans l'échantillon d'urine, un taux accru de mutations se produira dans les bactéries.
Les biomarqueurs d'exposition doivent être évalués au regard de la variation temporelle de l'exposition et de la relation aux différents compartiments. Ainsi, la ou les périodes de temps représentées par le biomarqueur, c'est-à-dire la mesure dans laquelle la mesure du biomarqueur reflète l'exposition ou les expositions passées et/ou la charge corporelle accumulée, doivent être déterminées à partir des données toxicocinétiques afin d'interpréter le résultat. En particulier, le degré auquel le biomarqueur indique une rétention dans des organes cibles spécifiques doit être pris en compte. Bien que les échantillons de sang soient souvent utilisés pour les études de biomarqueurs, le sang périphérique n'est généralement pas considéré comme un compartiment en tant que tel, bien qu'il agisse comme un milieu de transport entre les compartiments. La mesure dans laquelle la concentration dans le sang reflète les niveaux dans différents organes varie considérablement entre les différents produits chimiques et dépend généralement aussi de la durée de l'exposition ainsi que du temps écoulé depuis l'exposition.
Parfois, ce type de preuve est utilisé pour classer un biomarqueur comme un indicateur de dose absorbée (totale) ou un indicateur de dose efficace (c'est-à-dire la quantité qui a atteint le tissu cible). Par exemple, l'exposition à un solvant particulier peut être évaluée à partir de données sur la concentration réelle du solvant dans le sang à un moment particulier après l'exposition. Cette mesure reflétera la quantité de solvant qui a été absorbée par le corps. Une partie de la quantité absorbée sera expirée en raison de la pression de vapeur du solvant. En circulant dans le sang, le solvant interagira avec divers composants du corps et finira par être dégradé par les enzymes. Le résultat des processus métaboliques peut être évalué en déterminant des acides mercapturiques spécifiques produits par conjugaison avec le glutathion. L'excrétion cumulée des acides mercapturiques peut mieux refléter la dose efficace que la concentration sanguine.
Les événements de la vie, tels que la reproduction et la sénescence, peuvent affecter la distribution d'un produit chimique. La distribution des produits chimiques dans le corps est considérablement affectée par la grossesse, et de nombreux produits chimiques peuvent traverser la barrière placentaire, provoquant ainsi une exposition du fœtus. La lactation peut entraîner l'excrétion de produits chimiques liposolubles, entraînant ainsi une diminution de la rétention chez la mère ainsi qu'une augmentation de l'absorption par le nourrisson. Pendant la perte de poids ou le développement de l'ostéoporose, des produits chimiques stockés peuvent être libérés, ce qui peut alors entraîner une exposition «endogène» renouvelée et prolongée des organes cibles. D'autres facteurs peuvent affecter l'absorption individuelle, le métabolisme, la rétention et la distribution des composés chimiques, et certains biomarqueurs de sensibilité sont disponibles (voir ci-dessous).
Biomarqueurs d'effet
Un marqueur d'effet peut être un composant endogène, ou une mesure de la capacité fonctionnelle, ou un autre indicateur de l'état ou de l'équilibre du corps ou du système organique, tel qu'affecté par l'exposition. De tels marqueurs d'effets sont généralement des indicateurs précliniques d'anomalies.
Ces biomarqueurs peuvent être spécifiques ou non spécifiques. Les biomarqueurs spécifiques sont utiles car ils indiquent un effet biologique d'une exposition particulière, fournissant ainsi des preuves qui peuvent potentiellement être utilisées à des fins préventives. Les biomarqueurs non spécifiques n'indiquent pas une cause individuelle de l'effet, mais ils peuvent refléter l'effet total intégré dû à une exposition mixte. Les deux types de biomarqueurs peuvent donc être d'une utilité considérable en santé au travail.
Il n'y a pas de distinction claire entre les biomarqueurs d'exposition et les biomarqueurs d'effet. Par exemple, on pourrait dire que la formation d'adduits reflète un effet plutôt que l'exposition. Cependant, les biomarqueurs d'effet indiquent généralement des changements dans les fonctions des cellules, des tissus ou de l'ensemble du corps. Certains chercheurs incluent des changements brutaux, tels qu'une augmentation du poids du foie des animaux de laboratoire exposés ou une diminution de la croissance chez les enfants, comme biomarqueurs d'effet. Aux fins de la santé au travail, les biomarqueurs d'effets devraient être limités à ceux qui indiquent des modifications biochimiques subcliniques ou réversibles, telles que l'inhibition des enzymes. Le biomarqueur d'effet le plus fréquemment utilisé est probablement l'inhibition de la cholinestérase causée par certains insecticides, c'est-à-dire les organophosphorés et les carbamates. Dans la plupart des cas, cet effet est entièrement réversible et l'inhibition enzymatique reflète l'exposition totale à ce groupe particulier d'insecticides.
Certaines expositions n'entraînent pas d'inhibition enzymatique mais plutôt une activité accrue d'une enzyme. C'est le cas de plusieurs enzymes appartenant à la famille P450 (voir « Déterminants génétiques de la réponse toxique »). Ils peuvent être induits par des expositions à certains solvants et hydrocarbures polyaromatiques (HAP). Étant donné que ces enzymes sont principalement exprimées dans les tissus à partir desquels une biopsie peut être difficile à obtenir, l'activité enzymatique est déterminée indirectement in vivo en administrant un composé qui est métabolisé par cette enzyme particulière, puis le produit de dégradation est mesuré dans l'urine ou le plasma.
D'autres expositions peuvent induire la synthèse d'une protéine protectrice dans l'organisme. Le meilleur exemple est probablement la métallothionéine, qui lie le cadmium et favorise l'excrétion de ce métal ; l'exposition au cadmium est l'un des facteurs qui entraînent une expression accrue du gène de la métallothionéine. Des protéines protectrices similaires peuvent exister mais n'ont pas encore été suffisamment explorées pour être acceptées comme biomarqueurs. Parmi les candidats à une utilisation possible en tant que biomarqueurs figurent les protéines dites de stress, appelées à l'origine protéines de choc thermique. Ces protéines sont générées par une gamme d'organismes différents en réponse à une variété d'expositions nocives.
Les dommages oxydatifs peuvent être évalués en déterminant la concentration de malondialdéhyde dans le sérum ou l'exhalation d'éthane. De même, l'excrétion urinaire de protéines de faible poids moléculaire, comme l'albumine, peut être utilisée comme biomarqueur d'une atteinte rénale précoce. Plusieurs paramètres couramment utilisés en pratique clinique (par exemple, les taux sériques d'hormones ou d'enzymes) peuvent également être utiles en tant que biomarqueurs. Cependant, bon nombre de ces paramètres peuvent ne pas être suffisamment sensibles pour détecter une déficience précoce.
Un autre groupe de paramètres d'effet concerne les effets génotoxiques (modifications de la structure des chromosomes). De tels effets peuvent être détectés par microscopie des globules blancs qui subissent une division cellulaire. De graves dommages aux chromosomes - aberrations chromosomiques ou formation de micronoyaux - peuvent être observés au microscope. Les dommages peuvent également être révélés en ajoutant un colorant aux cellules lors de la division cellulaire. L'exposition à un agent génotoxique peut alors être visualisée comme un échange accru du colorant entre les deux chromatides de chaque chromosome (échange de chromatides sœurs). Les aberrations chromosomiques sont liées à un risque accru de développer un cancer, mais la signification d'un taux accru d'échange de chromatides sœurs est moins claire.
Une évaluation plus sophistiquée de la génotoxicité est basée sur des mutations ponctuelles particulières dans les cellules somatiques, c'est-à-dire les globules blancs ou les cellules épithéliales obtenues à partir de la muqueuse buccale. Une mutation à un locus spécifique peut rendre les cellules capables de se développer dans une culture contenant un produit chimique autrement toxique (comme la 6-thioguanine). En variante, un produit génique spécifique peut être évalué (par exemple, des concentrations sériques ou tissulaires d'oncoprotéines codées par des oncogènes particuliers). De toute évidence, ces mutations reflètent le total des dommages génotoxiques subis et n'indiquent pas nécessairement quoi que ce soit sur l'exposition causale. Ces méthodes ne sont pas encore prêtes pour une utilisation pratique en médecine du travail, mais des progrès rapides dans cette ligne de recherche suggèrent que de telles méthodes deviendront disponibles d'ici quelques années.
Biomarqueurs de susceptibilité
Un marqueur de susceptibilité, qu'il soit héréditaire ou induit, est un indicateur que l'individu est particulièrement sensible à l'effet d'un xénobiotique ou aux effets d'un groupe de tels composés. La plus grande attention a été portée sur la susceptibilité génétique, bien que d'autres facteurs puissent être au moins aussi importants. L'hypersensibilité peut être due à un trait héréditaire, à la constitution de l'individu ou à des facteurs environnementaux.
La capacité à métaboliser certains produits chimiques est variable et déterminée génétiquement (voir « Déterminants génétiques de la réponse toxique »). Plusieurs enzymes pertinentes semblent être contrôlées par un seul gène. Par exemple, l'oxydation de produits chimiques étrangers est principalement réalisée par une famille d'enzymes appartenant à la famille P450. D'autres enzymes rendent les métabolites plus solubles dans l'eau par conjugaison (par exemple, N-acétyltransférase et μ-glutathion-S-transférase). L'activité de ces enzymes est contrôlée génétiquement et varie considérablement. Comme mentionné ci-dessus, l'activité peut être déterminée en administrant une petite dose d'un médicament, puis en déterminant la quantité du métabolite dans l'urine. Certains des gènes ont maintenant été caractérisés et des techniques sont disponibles pour déterminer le génotype. Des études importantes suggèrent qu'un risque de développer certaines formes de cancer est lié à la capacité de métaboliser des composés étrangers. De nombreuses questions restent encore en suspens, ce qui limite à ce jour l'utilisation de ces potentiels biomarqueurs de susceptibilité en santé au travail.
D'autres traits hérités, tels que l'alpha1-le déficit en antitrypsine ou déficit en glucose-6-phosphate déshydrogénase, entraînent également des mécanismes de défense déficients dans l'organisme, provoquant ainsi une hypersensibilité à certaines expositions.
La plupart des recherches liées à la susceptibilité ont porté sur la prédisposition génétique. D'autres facteurs jouent également un rôle et ont été en partie négligés. Par exemple, les personnes atteintes d'une maladie chronique peuvent être plus sensibles à une exposition professionnelle. De plus, si un processus pathologique ou une exposition antérieure à des produits chimiques toxiques a causé des dommages subcliniques aux organes, la capacité de résister à une nouvelle exposition toxique est susceptible d'être moindre. Des indicateurs biochimiques du fonctionnement des organes peuvent dans ce cas être utilisés comme biomarqueurs de susceptibilité. Le meilleur exemple concernant l'hypersensibilité concerne peut-être les réactions allergiques. Si un individu est devenu sensibilisé à une exposition particulière, des anticorps spécifiques peuvent être détectés dans le sérum. Même si l'individu n'a pas été sensibilisé, d'autres expositions actuelles ou passées peuvent augmenter le risque de développer un effet indésirable lié à une exposition professionnelle.
Un problème majeur est de déterminer l'effet conjoint des expositions mixtes au travail. De plus, les habitudes personnelles et la consommation de drogues peuvent entraîner une sensibilité accrue. Par exemple, la fumée de tabac contient généralement une quantité considérable de cadmium. Ainsi, avec une exposition professionnelle au cadmium, un gros fumeur qui a accumulé des quantités substantielles de ce métal dans le corps sera plus à risque de développer une maladie rénale liée au cadmium.
Application en santé au travail
Les biomarqueurs sont extrêmement utiles dans la recherche toxicologique et nombre d'entre eux peuvent s'appliquer à la surveillance biologique. Néanmoins, les limites doivent également être reconnues. De nombreux biomarqueurs n'ont jusqu'à présent été étudiés que sur des animaux de laboratoire. Les schémas toxicocinétiques chez d'autres espèces ne reflètent pas nécessairement la situation chez les êtres humains, et l'extrapolation peut nécessiter des études de confirmation chez des volontaires humains. Il faut également tenir compte des variations individuelles dues à des facteurs génétiques ou constitutionnels.
Dans certains cas, les biomarqueurs d'exposition peuvent ne pas être réalisables du tout (par exemple, pour les produits chimiques à courte durée de vie in vivo). D'autres produits chimiques peuvent être stockés dans des organes auxquels il n'est pas possible d'accéder par des procédures de routine, tels que le système nerveux, ou les affecter. La voie d'exposition peut également affecter le schéma de distribution et donc également la mesure du biomarqueur et son interprétation. Par exemple, une exposition directe du cerveau via le nerf olfactif est susceptible d'échapper à la détection par la mesure des biomarqueurs d'exposition. Quant aux biomarqueurs d'effet, beaucoup d'entre eux ne sont pas du tout spécifiques et le changement peut être dû à diverses causes, y compris des facteurs liés au mode de vie. Peut-être en particulier avec les biomarqueurs de sensibilité, l'interprétation doit être très prudente pour le moment, car de nombreuses incertitudes subsistent quant à l'importance globale pour la santé des génotypes individuels.
En santé au travail, le biomarqueur idéal doit répondre à plusieurs exigences. Tout d'abord, le prélèvement et l'analyse des échantillons doivent être simples et fiables. Pour une qualité analytique optimale, une normalisation est nécessaire, mais les exigences spécifiques varient considérablement. Les principaux domaines de préoccupation comprennent : la préparation de l'individu, la procédure d'échantillonnage et la manipulation des échantillons, et la procédure de mesure ; ce dernier englobe des facteurs techniques, tels que les procédures d'étalonnage et d'assurance qualité, et des facteurs liés à l'individu, tels que l'éducation et la formation des opérateurs.
Pour la documentation de la validité analytique et de la traçabilité, les matériaux de référence doivent être basés sur des matrices pertinentes et avec des concentrations appropriées de substances toxiques ou de métabolites pertinents à des niveaux appropriés. Pour que les biomarqueurs soient utilisés pour la surveillance biologique ou à des fins de diagnostic, les laboratoires responsables doivent disposer de procédures analytiques bien documentées avec des caractéristiques de performance définies et des enregistrements accessibles pour permettre la vérification des résultats. Dans le même temps, néanmoins, les aspects économiques de la caractérisation et de l'utilisation de matériaux de référence pour compléter les procédures d'assurance qualité en général doivent être pris en compte. Ainsi, la qualité réalisable des résultats et les utilisations qui en sont faites doivent être mises en balance avec les coûts supplémentaires de l'assurance qualité, y compris les matériaux de référence, la main-d'œuvre et l'instrumentation.
Une autre exigence est que le biomarqueur doit être spécifique, au moins dans les circonstances de l'étude, pour un type particulier d'exposition, avec une relation claire avec le degré d'exposition. Sinon, le résultat de la mesure du biomarqueur peut être trop difficile à interpréter. Pour une interprétation correcte du résultat de mesure d'un biomarqueur d'exposition, la validité diagnostique doit être connue (c'est-à-dire la traduction de la valeur du biomarqueur en ampleur des risques possibles pour la santé). Dans ce domaine, les métaux servent de paradigme pour la recherche de biomarqueurs. Des recherches récentes ont démontré la complexité et la subtilité des relations dose-réponse, avec des difficultés considérables pour identifier les niveaux sans effet et donc aussi pour définir les expositions tolérables. Cependant, ce type de recherche a également illustré les types d'enquête et le raffinement qui sont nécessaires pour découvrir les informations pertinentes. Pour la plupart des composés organiques, les associations quantitatives entre les expositions et les effets nocifs correspondants sur la santé ne sont pas encore disponibles ; dans de nombreux cas, même les principaux organes cibles ne sont pas connus avec certitude. De plus, l'évaluation des données de toxicité et des concentrations de biomarqueurs est souvent compliquée par l'exposition à des mélanges de substances, plutôt que par l'exposition à un seul composé à la fois.
Avant que le biomarqueur ne soit appliqué à des fins de santé au travail, certaines considérations supplémentaires sont nécessaires. Premièrement, le biomarqueur doit refléter uniquement un changement subclinique et réversible. Deuxièmement, étant donné que les résultats des biomarqueurs peuvent être interprétés en fonction des risques pour la santé, des efforts de prévention doivent être disponibles et doivent être considérés comme réalistes au cas où les données des biomarqueurs suggèrent la nécessité de réduire l'exposition. Troisièmement, l'utilisation pratique du biomarqueur doit être généralement considérée comme éthiquement acceptable.
Les mesures d'hygiène industrielle peuvent être comparées aux limites d'exposition applicables. De même, les résultats sur les biomarqueurs d'exposition ou les biomarqueurs d'effet peuvent être comparés à des limites d'action biologique, parfois appelées indices d'exposition biologique. Ces limites devraient être fondées sur les meilleurs conseils des cliniciens et des scientifiques des disciplines appropriées, et les administrateurs responsables en tant que « gestionnaires des risques » devraient alors tenir compte des facteurs éthiques, sociaux, culturels et économiques pertinents. La base scientifique devrait, si possible, inclure des relations dose-réponse complétées par des informations sur les variations de sensibilité au sein de la population à risque. Dans certains pays, les travailleurs et les membres du grand public sont impliqués dans le processus de normalisation et apportent une contribution importante, en particulier lorsque l'incertitude scientifique est considérable. L'une des principales incertitudes est de savoir comment définir un effet nocif sur la santé qui devrait être évité, par exemple, si la formation d'adduits en tant que biomarqueur d'exposition représente en soi un effet nocif (c'est-à-dire un biomarqueur d'effet) qui devrait être prévenu. Des questions difficiles sont susceptibles de se poser lorsqu'il s'agit de décider s'il est éthiquement défendable, pour un même composé, d'avoir des limites différentes pour l'exposition fortuite, d'une part, et l'exposition professionnelle, d'autre part.
Les informations générées par l'utilisation des biomarqueurs doivent généralement être transmises aux personnes examinées dans le cadre de la relation médecin-patient. Les préoccupations éthiques doivent notamment être prises en compte dans le cadre d'analyses de biomarqueurs très expérimentales qui ne peuvent actuellement être interprétées en détail en termes de risques réels pour la santé. Pour la population générale, par exemple, il existe actuellement peu d'orientations concernant l'interprétation des biomarqueurs d'exposition autres que la plombémie. La confiance dans les données générées est également importante (c'est-à-dire si un échantillonnage approprié a été effectué et si de bonnes procédures d'assurance qualité ont été utilisées dans le laboratoire concerné). Un domaine supplémentaire d'inquiétude particulière concerne l'hypersensibilité individuelle. Ces questions doivent être prises en compte lors de la restitution de l'étude.
Tous les secteurs de la société concernés par ou concernés par la réalisation d'une étude de biomarqueurs doivent être impliqués dans le processus de prise de décision sur la manière de traiter les informations générées par l'étude. Des procédures spécifiques pour prévenir ou surmonter les conflits éthiques inévitables doivent être développées dans les cadres juridiques et sociaux de la région ou du pays. Cependant, chaque situation représente un ensemble différent de questions et de pièges, et aucune procédure unique de participation du public ne peut être développée pour couvrir toutes les applications des biomarqueurs d'exposition.
L'évaluation de la toxicité génétique est l'évaluation des agents pour leur capacité à induire l'un des trois types généraux de changements (mutations) dans le matériel génétique (ADN) : gène, chromosomique et génomique. Dans des organismes tels que les humains, les gènes sont composés d'ADN, qui se compose d'unités individuelles appelées bases nucléotidiques. Les gènes sont disposés dans des structures physiques discrètes appelées chromosomes. La génotoxicité peut entraîner des effets importants et irréversibles sur la santé humaine. Les dommages génotoxiques sont une étape critique dans l'induction du cancer et peuvent également être impliqués dans l'induction de malformations congénitales et de mort fœtale. Les trois classes de mutations mentionnées ci-dessus peuvent se produire dans l'un ou l'autre des deux types de tissus possédés par des organismes tels que les humains : les spermatozoïdes ou les ovules (cellules germinales) et le tissu restant (cellules somatiques).
Les tests qui mesurent la mutation génique sont ceux qui détectent la substitution, l'addition ou la suppression de nucléotides dans un gène. Les tests qui mesurent la mutation chromosomique sont ceux qui détectent les cassures ou les réarrangements chromosomiques impliquant un ou plusieurs chromosomes. Les tests qui mesurent la mutation génomique sont ceux qui détectent les changements dans le nombre de chromosomes, une condition appelée aneuploïdie. L'évaluation de la toxicité génétique a considérablement évolué depuis la mise au point par Herman Muller en 1927 du premier test de détection d'agents génotoxiques (mutagènes). Depuis lors, plus de 200 tests ont été développés pour mesurer les mutations de l'ADN ; cependant, moins de dix tests sont couramment utilisés aujourd'hui pour l'évaluation de la toxicité génétique. Cet article passe en revue ces essais, décrit ce qu'ils mesurent et explore le rôle de ces essais dans l'évaluation de la toxicité.
Identification des risques de cancerAvant le développement du Domaine de la toxicologie génétique
La toxicologie génétique est devenue une partie intégrante du processus global d'évaluation des risques et s'est récemment imposée comme un prédicteur fiable de l'activité cancérigène. Cependant, avant le développement de la toxicologie génétique (avant 1970), d'autres méthodes étaient et sont toujours utilisées pour identifier les risques potentiels de cancer chez l'homme. Il existe six grandes catégories de méthodes actuellement utilisées pour identifier les risques de cancer chez l'homme : les études épidémiologiques, les bioessais in vivo à long terme, les bioessais in vivo à moyen terme, les bioessais in vivo et in vitro à court terme, l'intelligence artificielle (structure-activité), et l'inférence basée sur le mécanisme.
Le tableau 1 donne les avantages et les inconvénients de ces méthodes.
Tableau 1. Avantages et inconvénients des méthodes actuelles d'identification des risques de cancer chez l'homme
Avantages | Désavantages | |
Les études épidémiologiques | (1) les humains sont les indicateurs ultimes de la maladie ; (2) évaluer les populations sensibles ou sensibles ; (3) cohortes d'exposition professionnelle; (4) alertes sentinelles environnementales |
(1) généralement rétrospectif (certificats de décès, biais de rappel, etc.) ; (2) insensible, coûteux, long ; (3) des données d'exposition fiables parfois indisponibles ou difficiles à obtenir ; (4) expositions combinées, multiples et complexes; manque de cohortes de contrôle appropriées; (5) les expériences sur les humains ne sont pas faites ; (6) détection du cancer, pas prévention |
Essais biologiques in vivo à long terme | (1) évaluations prospectives et rétrospectives (validation) ; (2) excellente corrélation avec les carcinogènes humains identifiés; (3) niveaux et conditions d'exposition connus; (4) identifie la toxicité chimique et les effets cancérigènes ; (5) des résultats obtenus assez rapidement ; (6) comparaisons qualitatives entre classes chimiques; (7) systèmes biologiques intégratifs et interactifs étroitement liés aux humains | (1) rarement reproduit, gourmand en ressources ; (3) des installations limitées adaptées à de telles expériences ; (4) débat sur l'extrapolation des espèces; (5) les expositions utilisées sont souvent à des niveaux bien supérieurs à ceux subis par les humains; (6) l'exposition à un seul produit chimique n'imite pas les expositions humaines, qui sont généralement à plusieurs produits chimiques simultanément |
Essais biologiques in vivo et in vitro à moyen et court terme | (1) plus rapide et moins cher que les autres tests ; (2) de grands échantillons facilement reproductibles ; (3) les points limites biologiquement significatifs sont mesurés (mutation, etc.); (4) peuvent être utilisés comme essais de dépistage pour sélectionner des produits chimiques pour des essais biologiques à long terme |
(1) in vitro pas entièrement prédictif d'in vivo; (2) généralement spécifiques à un organisme ou à un organe ; (3) puissances non comparables à des animaux entiers ou à des humains |
Associations structure chimique–activité biologique | (1) relativement facile, rapide et peu coûteux ; (2) fiable pour certaines classes chimiques (par exemple, les colorants nitrosamines et benzidine); (3) développé à partir de données biologiques mais non dépendant d'expérimentations biologiques supplémentaires | (1) non « biologique » ; (2) de nombreuses exceptions aux règles formulées; (3) rétrospective et rarement (mais devenant) prospective |
Inférences basées sur le mécanisme | (1) raisonnablement précis pour certaines classes de produits chimiques ; (2) permet d'affiner les hypothèses ; (3) peut orienter les évaluations des risques vers les populations sensibles | (1) mécanismes de carcinogenèse chimique indéfinis, multiples et probablement chimiques ou spécifiques à une classe ; (2) peut ne pas mettre en évidence les exceptions aux mécanismes généraux |
Justification et fondement conceptuel des tests de toxicologie génétique
Bien que les types et le nombre exacts de tests utilisés pour l'évaluation de la toxicité génétique évoluent constamment et varient d'un pays à l'autre, les plus courants incluent des tests pour (1) la mutation génique dans les bactéries et/ou les cellules de mammifères cultivées et (2) la mutation chromosomique dans des cellules de mammifères cultivées et/ou de la moelle osseuse chez des souris vivantes. Certains des tests de cette deuxième catégorie peuvent également détecter l'aneuploïdie. Bien que ces tests ne détectent pas les mutations dans les cellules germinales, ils sont principalement utilisés en raison du coût supplémentaire et de la complexité de la réalisation des tests sur les cellules germinales. Néanmoins, les tests sur les cellules germinales chez la souris sont utilisés lorsque des informations sur les effets sur les cellules germinales sont souhaitées.
Des études systématiques sur une période de 25 ans (1970-1995), en particulier au US National Toxicology Program en Caroline du Nord, ont abouti à l'utilisation d'un nombre discret de tests pour détecter l'activité mutagène des agents. La raison d'être de l'évaluation de l'utilité des tests reposait sur leur capacité à détecter des agents qui causent le cancer chez les rongeurs et qui sont soupçonnés de causer le cancer chez l'homme (c.-à-d., des agents cancérigènes). En effet, des études menées au cours des dernières décennies ont indiqué que les cellules cancéreuses contiennent des mutations dans certains gènes et que de nombreux agents cancérigènes sont également mutagènes. Ainsi, les cellules cancéreuses sont considérées comme contenant des mutations des cellules somatiques et la carcinogenèse est considérée comme un type de mutagenèse des cellules somatiques.
Les tests de toxicité génétique les plus couramment utilisés aujourd'hui ont été sélectionnés non seulement en raison de leur grande base de données, de leur coût relativement faible et de leur facilité d'exécution, mais aussi parce qu'il a été démontré qu'ils détectent de nombreux cancérogènes chez les rongeurs et, par présomption, chez l'homme. Par conséquent, des tests de toxicité génétique sont utilisés pour prédire la cancérogénicité potentielle des agents.
Un développement conceptuel et pratique important dans le domaine de la toxicologie génétique a été la reconnaissance que de nombreux cancérogènes étaient modifiés par des enzymes dans le corps, créant des formes altérées (métabolites) qui étaient souvent la forme cancérigène et mutagène ultime de la substance chimique mère. Pour dupliquer ce métabolisme dans une boîte de Pétri, Heinrich Malling a montré que l'inclusion d'une préparation de foie de rongeur contenait de nombreuses enzymes nécessaires pour effectuer cette conversion ou activation métabolique. Ainsi, de nombreux tests de toxicité génétique effectués dans des boîtes ou des tubes (in vitro) emploient l'addition de préparations enzymatiques similaires. Les préparations simples sont appelées mélange S9 et les préparations purifiées sont appelées microsomes. Certaines cellules bactériennes et mammifères ont maintenant été génétiquement modifiées pour contenir certains des gènes de rongeurs ou d'humains qui produisent ces enzymes, réduisant ainsi la nécessité d'ajouter un mélange S9 ou des microsomes.
Dosages et techniques de toxicologie génétique
Les principaux systèmes bactériens utilisés pour le dépistage de la toxicité génétique sont le test de mutagénicité de Salmonella (Ames) et, dans une bien moindre mesure, la souche WP2 de Escherichia coli. Des études menées au milieu des années 1980 ont indiqué que l'utilisation de seulement deux souches du système Salmonella (TA98 et TA100) était suffisante pour détecter environ 90 % des mutagènes connus de Salmonella. Ainsi, ces deux souches sont utilisées pour la plupart des objectifs de dépistage ; cependant, diverses autres souches sont disponibles pour des tests plus approfondis.
Ces dosages sont effectués de diverses manières, mais deux procédures générales sont les dosages d'incorporation sur plaque et de suspension liquide. Dans le test d'incorporation sur plaque, les cellules, le produit chimique d'essai et (le cas échéant) le S9 sont ajoutés ensemble dans une gélose liquéfiée et versés sur la surface d'une boîte de Pétri d'agar. La gélose supérieure durcit en quelques minutes et les plaques sont incubées pendant deux à trois jours, après quoi les cellules mutantes se sont développées pour former des amas de cellules détectables visuellement appelées colonies, qui sont ensuite comptées. Le milieu gélosé contient des agents sélectifs ou est composé d'ingrédients tels que seules les cellules nouvellement mutées se développeront. Le test d'incubation liquide est similaire, sauf que les cellules, l'agent de test et S9 sont incubés ensemble dans un liquide qui ne contient pas d'agar liquéfié, puis les cellules sont lavées sans l'agent de test et S9 et ensemencées sur l'agar.
Les mutations dans les cellules de mammifères en culture sont principalement détectées dans l'un des deux gènes suivants : hprt et tk. Comme pour les tests bactériens, les lignées cellulaires de mammifères (développées à partir de cellules de rongeurs ou humaines) sont exposées à l'agent de test dans des boîtes ou des tubes de culture en plastique, puis sont ensemencées dans des boîtes de culture contenant un milieu avec un agent sélectif qui permet uniquement aux cellules mutantes de se développer. . Les tests utilisés à cette fin comprennent le CHO/HPRT, le TK6 et le lymphome de souris L5178Y/TK+/- dosages. D'autres lignées cellulaires contenant diverses mutations de réparation de l'ADN ainsi que certains gènes humains impliqués dans le métabolisme sont également utilisées. Ces systèmes permettent la récupération de mutations au sein du gène (mutation génique) ainsi que de mutations impliquant des régions du chromosome flanquant le gène (mutation chromosomique). Cependant, ce dernier type de mutation est beaucoup plus récupéré par la tk systèmes de gènes que par le hprt systèmes de gènes en raison de l'emplacement du tk .
Semblable au test d'incubation liquide pour la mutagénicité bactérienne, les tests de mutagénicité sur les cellules de mammifères impliquent généralement l'exposition des cellules dans des boîtes ou des tubes de culture en présence de l'agent de test et de S9 pendant plusieurs heures. Les cellules sont ensuite lavées, cultivées pendant plusieurs jours supplémentaires pour permettre la dégradation des produits géniques normaux (de type sauvage) et l'expression et l'accumulation des produits géniques nouvellement mutants, puis elles sont ensemencées dans un milieu contenant un agent sélectif qui permet seules les cellules mutantes se développent. Comme les tests bactériens, les cellules mutantes se développent en colonies visuellement détectables qui sont ensuite comptées.
La mutation chromosomique est identifiée principalement par des tests cytogénétiques, qui impliquent d'exposer des rongeurs et/ou des cellules de rongeurs ou humaines dans des boîtes de culture à un produit chimique d'essai, permettant à une ou plusieurs divisions cellulaires de se produire, de colorer les chromosomes, puis d'examiner visuellement les chromosomes au microscope. détecter des altérations de la structure ou du nombre de chromosomes. Bien qu'une variété de paramètres puissent être examinés, les deux qui sont actuellement acceptés par les organismes de réglementation comme étant les plus significatifs sont les aberrations chromosomiques et une sous-catégorie appelée micronoyaux.
Une formation et une expertise considérables sont nécessaires pour évaluer la présence d'aberrations chromosomiques dans les cellules, ce qui en fait une procédure coûteuse en temps et en argent. En revanche, les micronoyaux nécessitent peu de formation et leur détection peut être automatisée. Les micronoyaux apparaissent sous forme de petits points dans la cellule qui sont distincts du noyau, qui contient les chromosomes. Les micronoyaux résultent soit d'une rupture chromosomique, soit d'une aneuploïdie. En raison de la facilité de notation des micronoyaux par rapport aux aberrations chromosomiques, et parce que des études récentes indiquent que les agents qui induisent des aberrations chromosomiques dans la moelle osseuse des souris vivantes induisent généralement des micronoyaux dans ce tissu, les micronoyaux sont maintenant couramment mesurés comme une indication de la capacité d'un agent pour induire la mutation chromosomique.
Bien que les tests sur les cellules germinales soient utilisés beaucoup moins fréquemment que les autres tests décrits ci-dessus, ils sont indispensables pour déterminer si un agent présente un risque pour les cellules germinales, dont les mutations peuvent entraîner des effets sur la santé des générations suivantes. Les tests de cellules germinales les plus couramment utilisés sont chez la souris et impliquent des systèmes qui détectent (1) les translocations héréditaires (échanges) entre les chromosomes (test de translocation héréditaire), (2) les mutations génétiques ou chromosomiques impliquant des gènes spécifiques (locus visible ou biochimique spécifique). tests) et (3) les mutations qui affectent la viabilité (dosage létal dominant). Comme pour les tests sur les cellules somatiques, l'hypothèse de travail avec les tests sur les cellules germinales est que les agents positifs dans ces tests sont présumés être des mutagènes potentiels des cellules germinales humaines.
Situation actuelle et perspectives d'avenir
Des études récentes ont indiqué que seulement trois éléments d'information étaient nécessaires pour détecter environ 90 % d'un ensemble de 41 cancérogènes chez les rongeurs (c.-à-d., cancérogènes humains présumés et mutagènes des cellules somatiques). Celles-ci comprenaient (1) la connaissance de la structure chimique de l'agent, en particulier s'il contient des fractions électrophiles (voir la section sur les relations structure-activité) ; (2) Données sur la mutagénicité de Salmonella ; et (3) les données d'un test de toxicité chronique de 90 jours chez les rongeurs (souris et rats). En effet, pratiquement tous les cancérogènes humains déclarés par le CIRC sont détectables en tant que mutagènes en utilisant uniquement le test Salmonella et le test du micronoyau de moelle osseuse de souris. L'utilisation de ces essais de mutagénicité pour détecter des cancérogènes humains potentiels est étayée par la découverte que la plupart des cancérogènes pour l'homme sont cancérigènes à la fois pour les rats et les souris (cancérigènes trans-espèces) et que la plupart des cancérogènes trans-espèces sont mutagènes pour Salmonella et/ou induisent des micronoyaux. dans la moelle osseuse de souris.
Avec les progrès de la technologie de l'ADN, le projet du génome humain et une meilleure compréhension du rôle de la mutation dans le cancer, de nouveaux tests de génotoxicité sont en cours de développement et seront probablement intégrés aux procédures de dépistage standard. Parmi ceux-ci figurent l'utilisation de cellules transgéniques et de rongeurs. Les systèmes transgéniques sont ceux dans lesquels un gène d'une autre espèce a été introduit dans une cellule ou un organisme. Par exemple, des souris transgéniques sont maintenant utilisées à titre expérimental pour permettre la détection d'une mutation dans n'importe quel organe ou tissu de l'animal, sur la base de l'introduction d'un gène bactérien dans la souris. Des cellules bactériennes, telles que Salmonella, et des cellules de mammifères (y compris des lignées cellulaires humaines) sont désormais disponibles et contiennent des gènes impliqués dans le métabolisme d'agents cancérigènes/mutagènes, tels que les gènes P450. L'analyse moléculaire des mutations réelles induites dans le trans-gène chez les rongeurs transgéniques, ou dans les gènes natifs tels que hprt, ou les gènes cibles au sein de Salmonella peuvent maintenant être analysés, de sorte que la nature exacte des mutations induites par les produits chimiques puisse être déterminée, fournissant des informations sur le mécanisme d'action du produit chimique et permettant des comparaisons avec des mutations chez des humains présumés exposés à l'agent .
Les progrès moléculaires de la cytogénétique permettent maintenant une évaluation plus détaillée des mutations chromosomiques. Celles-ci incluent l'utilisation de sondes (petits morceaux d'ADN) qui se fixent (s'hybrident) à des gènes spécifiques. Des réarrangements de gènes sur le chromosome peuvent alors être révélés par la localisation altérée des sondes, qui sont fluorescentes et facilement visualisables sous forme de secteurs colorés sur les chromosomes. Le test d'électrophorèse sur gel unicellulaire pour la rupture de l'ADN (communément appelé le test «comète») permet la détection des ruptures d'ADN dans des cellules individuelles et peut devenir un outil extrêmement utile en combinaison avec des techniques cytogénétiques pour détecter les dommages chromosomiques.
Après de nombreuses années d'utilisation et la génération d'une base de données importante et systématiquement développée, l'évaluation de la toxicité génétique peut désormais être effectuée avec seulement quelques tests pour un coût relativement faible dans un court laps de temps (quelques semaines). Les données produites peuvent être utilisées pour prédire la capacité d'un agent à être un rongeur et, par présomption, un cancérigène humain/mutagène des cellules somatiques. Une telle capacité permet de limiter l'introduction dans l'environnement d'agents mutagènes et cancérigènes et de développer des agents alternatifs non mutagènes. Les études futures devraient conduire à des méthodes encore meilleures avec une plus grande prédictivité que les tests actuels.
L'émergence de technologies sophistiquées en biologie moléculaire et cellulaire a stimulé une évolution relativement rapide dans les sciences de la vie, y compris la toxicologie. En effet, le centre d'intérêt de la toxicologie se déplace des animaux entiers et des populations d'animaux entiers vers les cellules et les molécules d'animaux et d'humains individuels. Depuis le milieu des années 1980, les toxicologues ont commencé à utiliser ces nouvelles méthodologies pour évaluer les effets des produits chimiques sur les systèmes vivants. En tant que progression logique, ces méthodes sont adaptées aux fins d'essais de toxicité. Ces avancées scientifiques se sont conjuguées à des facteurs sociaux et économiques pour modifier l'évaluation de la sécurité des produits et des risques potentiels.
Les facteurs économiques sont spécifiquement liés au volume de matériaux qui doivent être testés. Une multitude de nouveaux produits cosmétiques, pharmaceutiques, pesticides, chimiques et ménagers sont introduits sur le marché chaque année. Tous ces produits doivent être évalués pour leur toxicité potentielle. En outre, il existe un arriéré de produits chimiques déjà utilisés qui n'ont pas été suffisamment testés. L'énorme tâche d'obtenir des informations détaillées sur la sécurité de tous ces produits chimiques en utilisant des méthodes traditionnelles d'expérimentation sur des animaux entiers serait coûteuse en termes d'argent et de temps, si elle pouvait même être accomplie.
Il existe également des problèmes de société liés à la santé et à la sécurité publiques, ainsi qu'une préoccupation croissante du public concernant l'utilisation d'animaux pour les tests de sécurité des produits. En ce qui concerne la sécurité humaine, les groupes d'intérêt public et de défense de l'environnement ont exercé une pression importante sur les agences gouvernementales pour qu'elles appliquent des réglementations plus strictes sur les produits chimiques. Un exemple récent de cela a été un mouvement de certains groupes environnementaux pour interdire le chlore et les composés contenant du chlore aux États-Unis. L'une des motivations d'une telle action extrême réside dans le fait que la plupart de ces composés n'ont jamais été suffisamment testés. D'un point de vue toxicologique, le concept d'interdire toute une classe de produits chimiques divers sur la simple base de la présence de chlore est à la fois scientifiquement non fondé et irresponsable. Pourtant, il est compréhensible que du point de vue du public, il doit y avoir une certaine assurance que les produits chimiques rejetés dans l'environnement ne posent pas de risque important pour la santé. Une telle situation souligne la nécessité de méthodes plus efficaces et rapides pour évaluer la toxicité.
L'autre préoccupation sociétale qui a eu un impact sur le domaine des tests de toxicité est le bien-être animal. Le nombre croissant de groupes de protection des animaux à travers le monde ont exprimé une opposition considérable à l'utilisation d'animaux entiers pour les tests de sécurité des produits. Des campagnes actives ont été menées contre les fabricants de cosmétiques, de produits ménagers et de soins personnels et de produits pharmaceutiques pour tenter d'arrêter les tests sur les animaux. Ces efforts en Europe ont abouti à l'adoption du sixième amendement à la directive 76/768/CEE (la directive sur les cosmétiques). La conséquence de cette directive est que les produits cosmétiques ou les ingrédients cosmétiques qui ont été testés sur des animaux après le 1er janvier 1998 ne peuvent être commercialisés dans l'Union européenne, sauf si des méthodes alternatives sont insuffisamment validées. Bien que cette directive n'ait aucune compétence sur la vente de ces produits aux États-Unis ou dans d'autres pays, elle affectera de manière significative les entreprises qui ont des marchés internationaux qui incluent l'Europe.
La notion d'alternatives, qui est à la base du développement de tests autres que ceux sur animaux entiers, est définie par les trois Rs: réduction du nombre d'animaux utilisés; raffinement de protocoles pour que les animaux ressentent moins de stress ou d'inconfort ; et remplacement des tests actuels sur les animaux avec des tests in vitro (c'est-à-dire des tests effectués en dehors de l'animal vivant), des modèles informatiques ou des tests sur des vertébrés inférieurs ou des espèces d'invertébrés. Les trois Rs ont été introduits dans un livre publié en 1959 par deux scientifiques britanniques, WMS Russell et Rex Burch, Les principes de la technique expérimentale humaine. Russell et Burch ont soutenu que la seule façon d'obtenir des résultats scientifiques valables était le traitement humain des animaux et pensaient que des méthodes devraient être développées pour réduire l'utilisation des animaux et finalement la remplacer. Fait intéressant, les principes énoncés par Russell et Burch ont reçu peu d'attention jusqu'à la résurgence du mouvement de protection des animaux au milieu des années 1970. Aujourd'hui, le concept des trois Rs est très à l'avant-garde en matière de recherche, d'essais et d'éducation.
En résumé, le développement de méthodologies d'essais in vitro a été influencé par une variété de facteurs qui ont convergé au cours des dix à vingt dernières années. Il est difficile de déterminer si l'un de ces facteurs à lui seul aurait eu un effet aussi profond sur les stratégies d'essais de toxicité.
Concept des tests de toxicité in vitro
Cette section se concentrera uniquement sur les méthodes in vitro d'évaluation de la toxicité, comme l'une des alternatives aux tests sur l'animal entier. D'autres alternatives non animales telles que la modélisation informatique et les relations quantitatives structure-activité sont abordées dans d'autres articles de ce chapitre.
Les études in vitro sont généralement menées sur des cellules ou des tissus animaux ou humains à l'extérieur du corps. In vitro signifie littéralement « dans du verre », et fait référence à des procédures effectuées sur du matériel vivant ou des composants de matériel vivant cultivés dans des boîtes de Pétri ou dans des tubes à essai dans des conditions définies. Celles-ci peuvent être opposées aux études in vivo, ou celles réalisées « chez l'animal vivant ». Bien qu'il soit difficile, voire impossible, de projeter les effets d'un produit chimique sur un organisme complexe lorsque les observations se limitent à un seul type de cellules dans une boîte, les études in vitro fournissent également une quantité importante d'informations sur la toxicité intrinsèque. que les mécanismes cellulaires et moléculaires de la toxicité. De plus, elles offrent de nombreux avantages par rapport aux études in vivo en ce sens qu'elles sont généralement moins coûteuses et qu'elles peuvent être réalisées dans des conditions plus contrôlées. De plus, malgré le fait qu'un petit nombre d'animaux sont encore nécessaires pour obtenir des cellules pour les cultures in vitro, ces méthodes peuvent être considérées comme des alternatives de réduction (puisque beaucoup moins d'animaux sont utilisés par rapport aux études in vivo) et des alternatives de raffinement (car elles éliminent le besoin soumettre les animaux aux conséquences toxiques néfastes imposées par les expériences in vivo).
Afin d'interpréter les résultats des tests de toxicité in vitro, de déterminer leur utilité potentielle dans l'évaluation de la toxicité et de les relier au processus toxicologique global in vivo, il est nécessaire de comprendre quelle partie du processus toxicologique est examinée. L'ensemble du processus toxicologique consiste en des événements qui commencent par l'exposition de l'organisme à un agent physique ou chimique, progressent par des interactions cellulaires et moléculaires et se manifestent finalement dans la réponse de l'organisme entier. Les tests in vitro sont généralement limités à la partie du processus toxicologique qui se déroule au niveau cellulaire et moléculaire. Les types d'informations pouvant être obtenues à partir d'études in vitro comprennent les voies métaboliques, l'interaction des métabolites actifs avec des cibles cellulaires et moléculaires et des paramètres toxiques potentiellement mesurables qui peuvent servir de biomarqueurs moléculaires pour l'exposition. Dans une situation idéale, le mécanisme de toxicité de chaque produit chimique résultant de l'exposition à la manifestation de l'organisme serait connu, de sorte que les informations obtenues à partir des tests in vitro pourraient être entièrement interprétées et liées à la réponse de l'organisme entier. Cependant, cela est pratiquement impossible, puisque relativement peu de mécanismes toxicologiques complets ont été élucidés. Ainsi, les toxicologues sont confrontés à une situation dans laquelle les résultats d'un test in vitro ne peuvent pas être utilisés comme une prédiction entièrement précise de la toxicité in vivo car le mécanisme est inconnu. Cependant, fréquemment au cours du processus de développement d'un test in vitro, les composants du ou des mécanismes cellulaires et moléculaires de la toxicité sont élucidés.
L'une des principales questions non résolues entourant le développement et la mise en œuvre des tests in vitro est liée à la considération suivante : doivent-ils être basés sur des mécanismes ou suffit-il qu'ils soient descriptifs ? Il est incontestablement préférable, d'un point de vue scientifique, de n'utiliser que des tests basés sur des mécanismes pour remplacer les tests in vivo. Cependant, en l'absence de connaissances mécanistes complètes, la perspective de développer des tests in vitro pour remplacer complètement les tests sur des animaux entiers dans un avenir proche est presque nulle. Cela n'exclut toutefois pas l'utilisation de types de tests plus descriptifs comme outils de dépistage précoce, ce qui est le cas actuellement. Ces écrans ont entraîné une réduction significative de l'utilisation des animaux. Par conséquent, jusqu'à ce que des informations plus mécanistes soient générées, il peut être nécessaire d'employer, dans une mesure plus limitée, des tests dont les résultats sont simplement bien corrélés avec ceux obtenus in vivo.
Tests in vitro de cytotoxicité
Dans cette section, plusieurs tests in vitro qui ont été développés pour évaluer le potentiel cytotoxique d'un produit chimique seront décrits. Pour la plupart, ces tests sont faciles à réaliser et l'analyse peut être automatisée. Un test in vitro couramment utilisé pour la cytotoxicité est le test au rouge neutre. Ce test est effectué sur des cellules en culture et, pour la plupart des applications, les cellules peuvent être maintenues dans des boîtes de culture contenant 96 petits puits de 6.4 mm de diamètre chacun. Étant donné que chaque puits peut être utilisé pour une seule détermination, cet arrangement peut accueillir plusieurs concentrations du produit chimique d'essai ainsi que des contrôles positifs et négatifs avec un nombre suffisant de répétitions pour chacun. Après traitement des cellules avec diverses concentrations du produit chimique d'essai allant d'au moins deux ordres de grandeur (par exemple, de 0.01 mM à 1 mM), ainsi que des produits chimiques témoins positifs et négatifs, les cellules sont rincées et traitées avec du rouge neutre, un colorant qui ne peut être absorbé et retenu que par les cellules vivantes. Le colorant peut être ajouté lors du retrait du produit chimique d'essai pour déterminer les effets immédiats, ou il peut être ajouté à différents moments après le retrait du produit chimique d'essai pour déterminer les effets cumulatifs ou différés. L'intensité de la couleur dans chaque puits correspond au nombre de cellules vivantes dans ce puits. L'intensité de la couleur est mesurée par un spectrophotomètre qui peut être équipé d'un lecteur de plaques. Le lecteur de plaque est programmé pour fournir des mesures individuelles pour chacun des 96 puits de la boîte de culture. Cette méthodologie automatisée permet à l'investigateur d'effectuer rapidement une expérience concentration-réponse et d'obtenir des données statistiquement utiles.
Un autre test relativement simple de cytotoxicité est le test MTT. Le MTT (bromure de 3[4,5-diméthylthiazol-2-yl]-2,5-diphényltétrazolium) est un colorant tétrazolium qui est réduit par les enzymes mitochondriales à une couleur bleue. Seules les cellules possédant des mitochondries viables conserveront la capacité de réaliser cette réaction ; par conséquent, l'intensité de la couleur est directement liée au degré d'intégrité mitochondriale. Il s'agit d'un test utile pour détecter les composés cytotoxiques généraux ainsi que les agents qui ciblent spécifiquement les mitochondries.
La mesure de l'activité de la lactate déshydrogénase (LDH) est également utilisée comme test à grande échelle pour la cytotoxicité. Cette enzyme est normalement présente dans le cytoplasme des cellules vivantes et est libérée dans le milieu de culture cellulaire par les membranes cellulaires non étanches des cellules mortes ou mourantes qui ont été affectées par un agent toxique. De petites quantités de milieu de culture peuvent être retirées à divers moments après le traitement chimique des cellules pour mesurer la quantité de LDH libérée et déterminer une évolution temporelle de la toxicité. Bien que le test de libération de LDH soit une évaluation très générale de la cytotoxicité, il est utile car il est facile à réaliser et peut être effectué en temps réel.
De nombreuses nouvelles méthodes sont en cours de développement pour détecter les dommages cellulaires. Des méthodes plus sophistiquées utilisent des sondes fluorescentes pour mesurer une variété de paramètres intracellulaires, tels que la libération de calcium et les changements de pH et de potentiel de membrane. En général, ces sondes sont très sensibles et peuvent détecter des changements cellulaires plus subtils, réduisant ainsi la nécessité d'utiliser la mort cellulaire comme point final. De plus, bon nombre de ces tests fluorescents peuvent être automatisés par l'utilisation de plaques à 96 puits et de lecteurs de plaques fluorescentes.
Une fois que des données ont été recueillies sur une série de produits chimiques à l'aide de l'un de ces tests, les toxicités relatives peuvent être déterminées. La toxicité relative d'un produit chimique, telle que déterminée dans un essai in vitro, peut être exprimée comme la concentration qui exerce un effet de 50 % sur la réponse finale des cellules non traitées. Cette détermination est appelée CE50 (Effectif Conconcentration pour 50% des cellules) et peut être utilisé pour comparer les toxicités de différents produits chimiques in vitro. (Un terme similaire utilisé pour évaluer la toxicité relative est IC50, indiquant la concentration d'un produit chimique qui provoque une inhibition de 50% d'un processus cellulaire, par exemple, la capacité d'absorber le rouge neutre.) Il n'est pas facile d'évaluer si la toxicité relative in vitro des produits chimiques est comparable à leur relative dans toxicités in vivo, car il existe de nombreux facteurs de confusion dans le système in vivo, tels que la toxicocinétique, le métabolisme, les mécanismes de réparation et de défense. De plus, étant donné que la plupart de ces tests mesurent les paramètres généraux de cytotoxicité, ils ne sont pas basés sur des mécanismes. Par conséquent, l'accord entre les toxicités relatives in vitro et in vivo est simplement corrélatif. Malgré les nombreuses complexités et difficultés d'extrapolation d'in vitro à in vivo, ces tests in vitro s'avèrent très précieux car ils sont simples et peu coûteux à réaliser et peuvent être utilisés comme écrans pour signaler des médicaments ou des produits chimiques hautement toxiques aux premiers stades de la développement.
Toxicité pour les organes cibles
Des tests in vitro peuvent également être utilisés pour évaluer la toxicité spécifique d'un organe cible. Il existe un certain nombre de difficultés associées à la conception de tels tests, la plus notable étant l'incapacité des systèmes in vitro à conserver de nombreuses caractéristiques de l'organe in vivo. Fréquemment, lorsque des cellules sont prélevées sur des animaux et placées en culture, elles ont tendance soit à dégénérer rapidement et/ou à se dédifférencier, c'est-à-dire à perdre leurs fonctions d'organe et à devenir plus génériques. Cela pose un problème en ce que dans un court laps de temps, généralement quelques jours, les cultures ne sont plus utiles pour évaluer les effets spécifiques d'un organe d'une toxine.
Beaucoup de ces problèmes sont en train d'être surmontés grâce aux progrès récents de la biologie moléculaire et cellulaire. Les informations obtenues sur l'environnement cellulaire in vivo peuvent être utilisées pour moduler les conditions de culture in vitro. Depuis le milieu des années 1980, de nouveaux facteurs de croissance et cytokines ont été découverts, et nombre d'entre eux sont maintenant disponibles dans le commerce. L'ajout de ces facteurs aux cellules en culture aide à préserver leur intégrité et peut également aider à conserver des fonctions plus différenciées pendant de plus longues périodes. D'autres études fondamentales ont permis d'approfondir la connaissance des besoins nutritionnels et hormonaux des cellules en culture, permettant de formuler de nouveaux milieux. Des progrès récents ont également été réalisés dans l'identification de matrices extracellulaires naturelles et artificielles sur lesquelles des cellules peuvent être cultivées. La culture de cellules sur ces différentes matrices peut avoir des effets profonds à la fois sur leur structure et leur fonction. Un avantage majeur dérivé de cette connaissance est la capacité de contrôler de manière complexe l'environnement des cellules en culture et d'examiner individuellement les effets de ces facteurs sur les processus cellulaires de base et sur leurs réponses à différents agents chimiques. En bref, ces systèmes peuvent fournir un excellent aperçu des mécanismes de toxicité spécifiques aux organes.
De nombreuses études de toxicité pour les organes cibles sont menées dans des cellules primaires, qui par définition sont fraîchement isolées d'un organe et présentent généralement une durée de vie finie en culture. Il y a de nombreux avantages à avoir des cultures primaires d'un seul type de cellule à partir d'un organe pour l'évaluation de la toxicité. D'un point de vue mécaniste, de telles cultures sont utiles pour étudier des cibles cellulaires spécifiques d'un produit chimique. Dans certains cas, deux ou plusieurs types de cellules d'un organe peuvent être cultivés ensemble, ce qui offre un avantage supplémentaire de pouvoir examiner les interactions cellule-cellule en réponse à une toxine. Certains systèmes de co-culture pour la peau ont été conçus de sorte qu'ils forment une structure tridimensionnelle ressemblant à la peau in vivo. Il est également possible de co-culturer des cellules de différents organes, par exemple le foie et les reins. Ce type de culture serait utile pour évaluer les effets propres aux cellules rénales d'une substance chimique qui doit être bioactivée dans le foie.
Les outils de biologie moléculaire ont également joué un rôle important dans le développement de lignées cellulaires continues qui peuvent être utiles pour les tests de toxicité sur les organes cibles. Ces lignées cellulaires sont générées en transfectant de l'ADN dans des cellules primaires. Dans la procédure de transfection, les cellules et l'ADN sont traités de sorte que l'ADN puisse être absorbé par les cellules. L'ADN provient généralement d'un virus et contient un gène ou des gènes qui, lorsqu'ils sont exprimés, permettent aux cellules de s'immortaliser (c'est-à-dire capables de vivre et de croître pendant de longues périodes de temps en culture). L'ADN peut également être modifié de manière à ce que le gène immortalisant soit contrôlé par un promoteur inductible. L'avantage de ce type de construction est que les cellules ne se diviseront que lorsqu'elles recevront le stimulus chimique approprié pour permettre l'expression du gène immortalisant. Un exemple d'une telle construction est le grand gène de l'antigène T du virus simien 40 (SV40) (le gène immortalisant), précédé de la région promotrice du gène de la métallothionéine, qui est induite par la présence d'un métal dans le milieu de culture. Ainsi, après que le gène est transfecté dans les cellules, les cellules peuvent être traitées avec de faibles concentrations de zinc pour stimuler le promoteur MT et activer l'expression du gène de l'antigène T. Dans ces conditions, les cellules prolifèrent. Lorsque le zinc est éliminé du milieu, les cellules arrêtent de se diviser et, dans des conditions idéales, reviennent à un état où elles expriment leurs fonctions spécifiques aux tissus.
La capacité de générer des cellules immortalisées combinée aux progrès de la technologie de la culture cellulaire a grandement contribué à la création de lignées cellulaires à partir de nombreux organes différents, notamment le cerveau, les reins et le foie. Cependant, avant que ces lignées cellulaires puissent être utilisées comme substitut des types de cellules authentiques, elles doivent être soigneusement caractérisées pour déterminer à quel point elles sont vraiment « normales ».
D'autres systèmes in vitro pour étudier la toxicité d'un organe cible impliquent une complexité croissante. Au fur et à mesure que les systèmes in vitro progressent en complexité, de la cellule unique à la culture d'organes entiers, ils deviennent plus comparables au milieu in vivo, mais en même temps, ils deviennent beaucoup plus difficiles à contrôler compte tenu du nombre accru de variables. Par conséquent, ce qui peut être gagné en passant à un niveau supérieur d'organisation peut être perdu dans l'incapacité du chercheur à contrôler l'environnement expérimental. Le tableau 1 compare certaines des caractéristiques de divers systèmes in vitro qui ont été utilisés pour étudier l'hépatotoxicité.
Tableau 1. Comparaison des systèmes in vitro pour les études d'hépatotoxicité
Système | Complexité (niveau d'interaction) |
Capacité à conserver les fonctions spécifiques du foie | Durée potentielle de culture | Capacité à contrôler l'environnement |
Lignées cellulaires immortalisées | certains de cellule à cellule (varie selon la lignée cellulaire) | médiocre à bon (varie selon la lignée cellulaire) | indéfini | excellente |
Cultures primaires d'hépatocytes | cellule à cellule | passable à excellent (varie selon les conditions de culture) | jours à semaines | excellente |
Co-cultures de cellules hépatiques | cellule à cellule (entre le même type de cellule et des types de cellules différents) | bon à excellent | semaines | excellente |
Tranches de foie | cellule à cellule (parmi tous les types de cellules) | bon à excellent | heures en jours | Bien |
Foie isolé et perfusé | cellule à cellule (parmi tous les types de cellules) et intra-organe | excellente | heures | juste |
Les tranches de tissu coupées avec précision sont utilisées plus largement pour les études toxicologiques. Il existe de nouveaux instruments disponibles qui permettent au chercheur de couper des tranches de tissu uniformes dans un environnement stérile. Les tranches de tissu offrent un certain avantage par rapport aux systèmes de culture cellulaire en ce que tous les types de cellules de l'organe sont présents et qu'ils conservent leur architecture in vivo et leur communication intercellulaire. Ainsi, des études in vitro peuvent être menées pour déterminer le type de cellule cible dans un organe ainsi que pour étudier la toxicité spécifique d'un organe cible. Un inconvénient des tranches est qu'elles dégénèrent rapidement après les premières 24 heures de culture, principalement en raison d'une mauvaise diffusion de l'oxygène vers les cellules à l'intérieur des tranches. Cependant, des études récentes ont indiqué qu'une aération plus efficace peut être obtenue par une rotation douce. Ceci, associé à l'utilisation d'un milieu plus complexe, permet aux tranches de survivre jusqu'à 96 heures.
Les explants de tissus sont similaires dans leur concept aux tranches de tissus et peuvent également être utilisés pour déterminer la toxicité de produits chimiques dans des organes cibles spécifiques. Les explants de tissus sont établis en prélevant un petit morceau de tissu (pour les études de tératogénicité, un embryon intact) et en le plaçant en culture pour une étude plus approfondie. Les cultures d'explants ont été utiles pour les études de toxicité à court terme, y compris l'irritation et la corrosivité de la peau, les études sur l'amiante dans la trachée et les études de neurotoxicité dans les tissus cérébraux.
Des organes perfusés isolés peuvent également être utilisés pour évaluer la toxicité des organes cibles. Ces systèmes offrent un avantage similaire à celui des tranches de tissu et des explants en ce que tous les types de cellules sont présents, mais sans le stress sur le tissu introduit par les manipulations impliquées dans la préparation des tranches. De plus, ils permettent le maintien des interactions intra-organes. Un inconvénient majeur est leur viabilité à court terme, ce qui limite leur utilisation pour les tests de toxicité in vitro. En termes de service d'alternative, ces cultures peuvent être considérées comme un raffinement puisque les animaux ne subissent pas les conséquences néfastes d'un traitement in vivo avec des substances toxiques. Cependant, leur utilisation ne diminue pas de manière significative le nombre d'animaux nécessaires.
En résumé, il existe plusieurs types de systèmes in vitro disponibles pour évaluer la toxicité des organes cibles. Il est possible d'acquérir de nombreuses informations sur les mécanismes de toxicité en utilisant une ou plusieurs de ces techniques. La difficulté reste de savoir extrapoler d'un système in vitro, qui représente une part relativement faible du processus toxicologique, à l'ensemble du processus se déroulant in vivo.
Tests in vitro pour l'irritation oculaire
Le test de toxicité sur l'animal entier le plus controversé du point de vue du bien-être animal est peut-être le test de Draize pour l'irritation des yeux, qui est effectué sur des lapins. Dans ce test, une petite dose fixe d'un produit chimique est placée dans l'un des yeux du lapin tandis que l'autre œil est utilisé comme témoin. Le degré d'irritation et d'inflammation est évalué à différents moments après l'exposition. Un effort important est fait pour développer des méthodologies pour remplacer ce test, qui a été critiqué non seulement pour des raisons humanitaires, mais aussi en raison de la subjectivité des observations et de la variabilité des résultats. Il est intéressant de noter que malgré les sévères critiques que le test de Draize a reçues, il s'est avéré remarquablement efficace pour prédire les irritants oculaires humains, en particulier les substances légèrement à modérément irritantes, qui sont difficiles à identifier par d'autres méthodes. Ainsi, les demandes sur les alternatives in vitro sont grandes.
La recherche d'alternatives au test de Draize est compliquée, même si elle devrait être couronnée de succès. De nombreuses alternatives in vitro et autres ont été développées et, dans certains cas, elles ont été mises en œuvre. Les alternatives de raffinement au test de Draize, qui, par définition, sont moins douloureuses ou stressantes pour les animaux, comprennent le test oculaire à faible volume, dans lequel de plus petites quantités de matériel de test sont placées dans les yeux des lapins, non seulement pour des raisons humanitaires, mais pour imiter plus fidèlement les quantités auxquelles les personnes peuvent être accidentellement exposées. Un autre raffinement est que les substances qui ont un pH inférieur à 2 ou supérieur à 11.5 ne sont plus testées sur les animaux car elles sont connues pour être sévèrement irritantes pour les yeux.
Entre 1980 et 1989, il y a eu une baisse estimée à 87 % du nombre de lapins utilisés pour les tests d'irritation oculaire des cosmétiques. Des tests in vitro ont été incorporés dans le cadre d'une approche de test à plusieurs niveaux pour provoquer cette vaste réduction des tests sur des animaux entiers. Cette approche est un processus en plusieurs étapes qui commence par un examen approfondi des données historiques sur l'irritation oculaire et une analyse physique et chimique du produit chimique à évaluer. Si ces deux processus ne fournissent pas suffisamment d'informations, une batterie de tests in vitro est réalisée. Les données supplémentaires obtenues à partir des tests in vitro pourraient alors être suffisantes pour évaluer la sécurité de la substance. Si ce n'est pas le cas, la dernière étape consisterait à effectuer des tests in vivo limités. Il est facile de voir comment cette approche peut éliminer ou au moins réduire considérablement le nombre d'animaux nécessaires pour prédire l'innocuité d'une substance d'essai.
La batterie de tests in vitro utilisée dans le cadre de cette stratégie de tests à plusieurs niveaux dépend des besoins de l'industrie en question. Les tests d'irritation oculaire sont effectués par une grande variété d'industries, des cosmétiques aux produits pharmaceutiques en passant par les produits chimiques industriels. Le type d'informations requises par chaque industrie varie et il n'est donc pas possible de définir une seule batterie de tests in vitro. Une batterie de tests est généralement conçue pour évaluer cinq paramètres : la cytotoxicité, les modifications de la physiologie et de la biochimie des tissus, les relations quantitatives structure-activité, les médiateurs de l'inflammation, ainsi que la récupération et la réparation. Un exemple de test de cytotoxicité, qui est une cause possible d'irritation, est le test au rouge neutre utilisant des cellules en culture (voir ci-dessus). Les modifications de la physiologie cellulaire et de la biochimie résultant de l'exposition à un produit chimique peuvent être dosées dans des cultures de cellules épithéliales cornéennes humaines. Alternativement, les enquêteurs ont également utilisé des globes oculaires de bovin ou de poulet intacts ou disséqués provenant d'abattoirs. De nombreux paramètres mesurés dans ces cultures d'organes entiers sont les mêmes que ceux mesurés in vivo, tels que l'opacité cornéenne et le gonflement cornéen.
L'inflammation est souvent une composante des lésions oculaires induites par des produits chimiques, et il existe un certain nombre de tests disponibles pour examiner ce paramètre. Divers dosages biochimiques détectent la présence de médiateurs libérés au cours du processus inflammatoire tels que l'acide arachidonique et les cytokines. La membrane chorioallantoïque (CAM) de l'œuf de poule peut également être utilisée comme indicateur d'inflammation. Dans le test CAM, un petit morceau de la coquille d'un embryon de poulet de dix à 14 jours est retiré pour exposer le CAM. Le produit chimique est ensuite appliqué sur la CAM et les signes d'inflammation, tels qu'une hémorragie vasculaire, sont notés à divers moments par la suite.
L'un des processus in vivo les plus difficiles à évaluer in vitro est la récupération et la réparation des lésions oculaires. Un instrument nouvellement développé, le microphysiomètre au silicium, mesure de petits changements dans le pH extracellulaire et peut être utilisé pour surveiller les cellules cultivées en temps réel. Cette analyse s'est avérée assez bien corrélée avec la récupération in vivo et a été utilisée comme test in vitro pour ce processus. Ceci a été un bref aperçu des types de tests utilisés comme alternatives au test de Draize pour l'irritation oculaire. Il est probable qu'au cours des prochaines années, une série complète de batteries de tests in vitro sera définie et chacune sera validée pour son objectif spécifique.
Validation
La clé de l'acceptation réglementaire et de la mise en œuvre des méthodologies de test in vitro est la validation, le processus par lequel la crédibilité d'un test candidat est établie dans un but spécifique. Des efforts pour définir et coordonner le processus de validation ont été faits tant aux États-Unis qu'en Europe. L'Union européenne a créé le Centre européen pour la validation des méthodes alternatives (ECVAM) en 1993 pour y coordonner les efforts et interagir avec des organisations américaines telles que le Johns Hopkins Center for Alternatives to Animal Testing (CAAT), un centre universitaire aux États-Unis. , et l'Interagency Coordinating Committee for the Validation of Alternative Methods (ICCVAM), composé de représentants des National Institutes of Health, de l'Environmental Protection Agency des États-Unis, de la Food and Drug Administration des États-Unis et de la Consumer Products Safety Commission.
La validation des tests in vitro nécessite une organisation et une planification importantes. Il doit y avoir un consensus entre les régulateurs gouvernementaux et les scientifiques industriels et universitaires sur les procédures acceptables, et une surveillance suffisante par un conseil consultatif scientifique pour s'assurer que les protocoles respectent les normes établies. Les études de validation doivent être réalisées dans une série de laboratoires de référence à l'aide d'ensembles étalonnés de produits chimiques provenant d'une banque de produits chimiques et de cellules ou de tissus provenant d'une source unique. La répétabilité intralaboratoire et la reproductibilité interlaboratoire d'un test candidat doivent être démontrées et les résultats soumis à une analyse statistique appropriée. Une fois les résultats des différentes composantes des études de validation compilés, le comité consultatif scientifique peut faire des recommandations sur la validité du ou des tests candidats dans un but précis. De plus, les résultats des études devraient être publiés dans des revues à comité de lecture et placés dans une base de données.
La définition du processus de validation est actuellement un travail en cours. Chaque nouvelle étude de validation apportera des informations utiles à la conception de l'étude suivante. La communication et la coopération internationales sont essentielles pour le développement rapide d'une série de protocoles largement acceptables, en particulier compte tenu de l'urgence accrue imposée par l'adoption de la directive CE sur les cosmétiques. Cette législation peut en effet donner l'impulsion nécessaire pour qu'un sérieux effort de validation soit entrepris. Ce n'est qu'après l'achèvement de ce processus que l'acceptation des méthodes in vitro par les diverses communautés réglementaires peut commencer.
Pour aller plus loin
Cet article a fourni un large aperçu de l'état actuel des tests de toxicité in vitro. La science de la toxicologie in vitro est relativement jeune, mais elle connaît une croissance exponentielle. Le défi pour les années à venir est d'intégrer les connaissances mécanistes générées par les études cellulaires et moléculaires dans le vaste inventaire des données in vivo pour fournir une description plus complète des mécanismes toxicologiques ainsi que pour établir un paradigme par lequel les données in vitro peuvent être utilisées. prédire la toxicité in vivo. Ce ne sera que grâce aux efforts concertés des toxicologues et des représentants gouvernementaux que la valeur intrinsèque de ces méthodes in vitro pourra être réalisée.
L'analyse des relations structure-activité (SAR) consiste à utiliser des informations sur la structure moléculaire des produits chimiques pour prédire des caractéristiques importantes liées à la persistance, à la distribution, à l'absorption et à l'absorption et à la toxicité. Le SAR est une méthode alternative d'identification des produits chimiques potentiellement dangereux, qui promet d'aider les industries et les gouvernements à hiérarchiser les substances pour une évaluation plus approfondie ou pour la prise de décision à un stade précoce pour de nouveaux produits chimiques. La toxicologie est une entreprise de plus en plus coûteuse et gourmande en ressources. Les préoccupations croissantes concernant le potentiel des produits chimiques à causer des effets néfastes sur les populations humaines exposées ont incité les organismes de réglementation et de santé à élargir la gamme et la sensibilité des tests pour détecter les risques toxicologiques. Dans le même temps, les charges réelles et perçues de la réglementation sur l'industrie ont suscité des inquiétudes quant à l'aspect pratique des méthodes d'essais de toxicité et de l'analyse des données. À l'heure actuelle, la détermination de la cancérogénicité chimique dépend de tests sur la durée de vie d'au moins deux espèces, des deux sexes, à plusieurs doses, avec une analyse histopathologique minutieuse de plusieurs organes, ainsi que la détection de changements prénéoplasiques dans les cellules et les organes cibles. Aux États-Unis, on estime que le test biologique du cancer coûte plus de 3 millions de dollars (dollars de 1995).
Même avec des ressources financières illimitées, la charge de tester les quelque 70,000 1984 produits chimiques existants produits dans le monde aujourd'hui dépasserait les ressources disponibles des toxicologues qualifiés. Des siècles seraient nécessaires pour réaliser ne serait-ce qu'une évaluation de premier niveau de ces produits chimiques (NRC 1993). Dans de nombreux pays, les préoccupations éthiques concernant l'utilisation d'animaux dans les tests de toxicité ont augmenté, ce qui exerce des pressions supplémentaires sur l'utilisation des méthodes standard de test de toxicité. Le SAR a été largement utilisé dans l'industrie pharmaceutique pour identifier les molécules ayant un potentiel d'utilisation bénéfique dans le traitement (Hansch et Zhang 1979). Dans la politique de santé environnementale et professionnelle, le SAR est utilisé pour prédire la dispersion des composés dans l'environnement physico-chimique et pour sélectionner de nouveaux produits chimiques pour une évaluation plus approfondie de la toxicité potentielle. En vertu de la Toxic Substances Control Act (TSCA) des États-Unis, l'EPA utilise depuis 5 une approche SAR comme « premier crible » des nouveaux produits chimiques dans le processus de notification avant fabrication (PMN) ; L'Australie utilise une approche similaire dans le cadre de sa procédure de notification des nouveaux produits chimiques (NICNAS). Aux États-Unis, l'analyse SAR est une base importante pour déterminer qu'il existe une base raisonnable pour conclure que la fabrication, le traitement, la distribution, l'utilisation ou l'élimination de la substance présentera un risque déraisonnable de préjudice pour la santé humaine ou l'environnement, comme l'exige la section 6(f) de la TSCA. Sur la base de cette découverte, l'EPA peut alors exiger des tests réels de la substance en vertu de la section XNUMX de la TSCA.
Justification du SAR
La justification scientifique du SAR est basée sur l'hypothèse que la structure moléculaire d'un produit chimique prédira des aspects importants de son comportement dans les systèmes physico-chimiques et biologiques (Hansch et Leo 1979).
Processus SAR
Le processus d'examen SAR comprend l'identification de la structure chimique, y compris les formulations empiriques ainsi que le composé pur ; identification de substances structurellement analogues ; rechercher des bases de données et de la littérature pour obtenir des informations sur les analogues structuraux ; et l'analyse de la toxicité et d'autres données sur les analogues structuraux. Dans de rares cas, les informations sur la structure du composé à elles seules peuvent être suffisantes pour étayer certaines analyses SAR, basées sur des mécanismes de toxicité bien compris. Plusieurs bases de données sur le SAR ont été compilées, ainsi que des méthodes informatiques pour la prédiction de la structure moléculaire.
Avec ces informations, les paramètres suivants peuvent être estimés avec SAR :
Il convient de noter qu'il n'existe pas de méthodes SAR pour des paramètres de santé aussi importants que la cancérogénicité, la toxicité pour le développement, la toxicité pour la reproduction, la neurotoxicité, l'immunotoxicité ou d'autres effets sur les organes cibles. Cela est dû à trois facteurs : l'absence d'une grande base de données sur laquelle tester les hypothèses SAR, le manque de connaissances sur les déterminants structurels de l'action toxique et la multiplicité des cellules cibles et des mécanismes impliqués dans ces paramètres (voir "The United States approche d'évaluation des risques des substances toxiques pour la reproduction et des agents neurotoxiques »). Quelques tentatives limitées d'utilisation du SAR pour prédire la pharmacocinétique en utilisant des informations sur les coefficients de partage et la solubilité (Johanson et Naslund 1988). Un SAR quantitatif plus étendu a été réalisé pour prédire le métabolisme dépendant du P450 d'une gamme de composés et la liaison des molécules de type dioxine et PCB au récepteur cytosolique de la « dioxine » (Hansch et Zhang 1993).
Il a été démontré que le DAS a une prévisibilité variable pour certains des paramètres énumérés ci-dessus, comme indiqué dans le tableau 1. Ce tableau présente les données de deux comparaisons de l'activité prévue avec les résultats réels obtenus par des mesures empiriques ou des tests de toxicité. Le SAR, tel qu'il a été mené par des experts de l'US EPA, a obtenu de moins bons résultats pour prédire les propriétés physico-chimiques que pour prédire l'activité biologique, y compris la biodégradation. Pour les paramètres de toxicité, le SAR a obtenu les meilleurs résultats pour prédire la mutagénicité. Ashby et Tennant (1991) dans une étude plus approfondie ont également trouvé une bonne prévisibilité de la génotoxicité à court terme dans leur analyse des produits chimiques NTP. Ces résultats ne sont pas surprenants, compte tenu des connaissances actuelles sur les mécanismes moléculaires de la génotoxicité (voir « Toxicologie génétique ») et le rôle de l'électrophilie dans la liaison à l'ADN. En revanche, le SAR avait tendance à sous-estimer la toxicité systémique et subchronique chez les mammifères et à surestimer la toxicité aiguë pour les organismes aquatiques.
Tableau 1. Comparaison des données SAR et des tests : analyses OCDE/NTP
Endpoint | Une entente (%) | Désaccord (%) | Numéro |
Point d'ébullition | 50 | 50 | 30 |
Pression de vapeur | 63 | 37 | 113 |
Solubilité dans l'eau | 68 | 32 | 133 |
Coefficient de partage | 61 | 39 | 82 |
Biodégradation | 93 | 7 | 107 |
Toxicité pour les poissons | 77 | 22 | 130 |
Toxicité de la daphnie | 67 | 33 | 127 |
Toxicité aiguë pour les mammifères (DL50 ) | 80 | 201 | 142 |
Irritation de la peau | 82 | 18 | 144 |
Irritation de l'oeil | 78 | 22 | 144 |
Sensibilisation cutanée | 84 | 16 | 144 |
Toxicité subchronique | 57 | 32 | 143 |
Mutagénicité2 | 88 | 12 | 139 |
Mutagénicité3 | 82-944 | 1-10 | 301 |
Cancérogénicité3 : Essai biologique de deux ans | 72-954 | - | 301 |
Source : Données de l'OCDE, communication personnelle C. Auer, US EPA. Seuls les paramètres pour lesquels des prédictions de DAS comparables et des données de test réelles étaient disponibles ont été utilisés dans cette analyse. Les données du NTP proviennent d'Ashby et Tennant 1991.
1 L'incapacité du SAR à prédire la toxicité aiguë de 12 % des produits chimiques testés était préoccupante.
2 Données OCDE, basées sur la concordance du test d'Ames avec le DAS
3 Données du NTP, basées sur des analyses de genetox comparées aux prévisions de DAS pour plusieurs classes de « produits chimiques structurellement alertants ».
4 La concordance varie selon la classe; la concordance la plus élevée était avec les composés amino/nitro aromatiques; le plus bas avec des structures « diverses ».
Pour d'autres paramètres toxiques, comme indiqué ci-dessus, le DAS a une utilité moins démontrable. Les prévisions de toxicité pour les mammifères sont compliquées par le manque de SAR pour la toxicocinétique des molécules complexes. Néanmoins, certaines tentatives ont été faites pour proposer des principes SAR pour des critères complexes de toxicité pour les mammifères (par exemple, voir Bernstein (1984) pour une analyse SAR des substances potentiellement toxiques pour la reproduction mâle). Dans la plupart des cas, la base de données est trop petite pour permettre des tests rigoureux des prédictions basées sur la structure.
À ce stade, on peut conclure que le SAR peut être utile principalement pour hiérarchiser l'investissement dans les ressources d'essais de toxicité ou pour soulever rapidement des préoccupations concernant un danger potentiel. Ce n'est qu'en cas de mutagénicité qu'il est probable que l'analyse SAR en elle-même puisse être utilisée avec fiabilité pour éclairer d'autres décisions. Pour aucun effet, il est probable que le DAS puisse fournir le type d'informations quantitatives requises à des fins d'évaluation des risques, comme indiqué ailleurs dans ce chapitre et Encyclopédie.
" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."