Lundi, Février 28 2011 20: 25

Produits chimiques génotoxiques

Évaluer cet élément
(4 votes)

La surveillance biologique humaine utilise des échantillons de fluides corporels ou d'autres matières biologiques facilement disponibles pour la mesure de l'exposition à des substances spécifiques ou non spécifiques et/ou leurs métabolites ou pour la mesure des effets biologiques de cette exposition. La surveillance biologique permet d'estimer l'exposition individuelle totale par différentes voies d'exposition (poumons, peau, tractus gastro-intestinal) et différentes sources d'exposition (air, alimentation, mode de vie ou profession). Il est également connu que dans des situations d'exposition complexes, très souvent rencontrées sur les lieux de travail, différents agents exposants peuvent interagir entre eux, renforçant ou inhibant les effets des composés individuels. Et puisque les individus diffèrent dans leur constitution génétique, ils présentent une variabilité dans leur réponse aux expositions chimiques. Ainsi, il peut être plus raisonnable de rechercher des effets précoces directement chez les individus ou les groupes exposés que d'essayer de prédire les dangers potentiels des schémas d'exposition complexes à partir de données relatives à des composés uniques. C'est un avantage de la biosurveillance génétique pour les effets précoces, une approche utilisant des techniques qui se concentrent sur les dommages cytogénétiques, les mutations ponctuelles ou les adduits à l'ADN dans les tissus humains de substitution (voir l'article « Principes généraux » dans ce chapitre).

Qu'est-ce que la génotoxicité ?

La génotoxicité des agents chimiques est un caractère chimique intrinsèque, basé sur le potentiel électrophile de l'agent à se lier à des sites nucléophiles dans les macromolécules cellulaires comme l'acide désoxyribonucléique, l'ADN, porteur d'informations héréditaires. La génotoxicité est donc une toxicité manifestée dans le matériel génétique des cellules.

La définition de la génotoxicité, telle que discutée dans un rapport de consensus (IARC 1992), est large et inclut à la fois les effets directs et indirects dans l'ADN : (1) l'induction de mutations (géniques, chromosomiques, génomiales, recombinatoires) qui, au niveau moléculaire sont similaires à des événements connus pour être impliqués dans la carcinogenèse, (2) des événements de substitution indirects associés à la mutagenèse (par exemple, la synthèse non programmée d'ADN (UDS) et l'échange de chromatides sœurs (SCE), ou (3) des dommages à l'ADN (par exemple, la formation d'adduits ), ce qui peut éventuellement conduire à des mutations.

Génotoxicité, mutagénicité et cancérogénicité

Les mutations sont des changements héréditaires permanents dans les lignées cellulaires, soit horizontalement dans les cellules somatiques, soit verticalement dans les cellules germinales (sexes) du corps. Autrement dit, les mutations peuvent affecter l'organisme lui-même par des changements dans les cellules du corps, ou elles peuvent être transmises à d'autres générations par l'altération des cellules sexuelles. La génotoxicité précède donc la mutagénicité bien que la plus grande partie de la génotoxicité soit réparée et ne soit jamais exprimée sous forme de mutations. Des mutations somatiques sont induites au niveau cellulaire et dans le cas où elles conduisent à la mort cellulaire ou à des malignités, peuvent se manifester par divers troubles des tissus ou de l'organisme lui-même. On pense que les mutations somatiques sont liées aux effets du vieillissement ou à l'induction de plaques d'athérosclérose (voir figure 1 et le chapitre sur Cancer).

Figure 1. Vue schématique du paradigme scientifique en toxicologie génétique et effets sur la santé humaine

BMO050F1

Des mutations dans la lignée de cellules germinales peuvent être transférées au zygote - l'ovule fécondé - et être exprimées dans la génération de la progéniture (voir aussi le chapitre Système de reproduction). Les troubles mutationnels les plus importants observés chez le nouveau-né sont induits par une mauvaise ségrégation des chromosomes au cours de la gamétogenèse (le développement des cellules germinales) et entraînent des syndromes chromosomiques sévères (p. ex., trisomie 21 ou syndrome de Down, et monosomie X ou syndrome de Turner).

Le paradigme de la génotoxicologie de l'exposition aux effets anticipés peut être simplifié comme le montre la figure 1.

 

 

La relation entre la génotoxicité et la cancérogénicité est bien étayée par divers faits de recherche indirects, comme le montre la figure 2. 

Figure 2. Interrelations entre génotoxicité et cancérogénicité    

BMO050T1 

Cette corrélation fournit la base pour appliquer des biomarqueurs de génotoxicité à utiliser dans la surveillance humaine comme indicateurs de risque de cancer.

Toxicité génétique dans l'identification des dangers

Le rôle des changements génétiques dans la carcinogenèse souligne l'importance des tests de toxicité génétique dans l'identification des cancérogènes potentiels. Diverses méthodes de test à court terme ont été développées qui sont capables de détecter certains des paramètres de génotoxicité supposés pertinents dans la cancérogenèse.

Plusieurs enquêtes approfondies ont été réalisées pour comparer la cancérogénicité des produits chimiques avec les résultats obtenus en les examinant dans des tests à court terme. La conclusion générale a été qu'étant donné qu'aucun test validé ne peut fournir des informations sur tous les paramètres génétiques mentionnés ci-dessus ; il est nécessaire de tester chaque produit chimique dans plus d'un test. En outre, la valeur des tests à court terme de toxicité génétique pour la prédiction de la cancérogénicité chimique a été discutée et examinée à plusieurs reprises. Sur la base de ces examens, un groupe de travail du Centre international de recherche sur le cancer (CIRC) a conclu que la plupart des agents cancérigènes pour l'homme donnent des résultats positifs dans les tests à court terme couramment utilisés tels que le des salmonelles et les tests d'aberration chromosomique (tableau 1). Cependant, il faut savoir que les cancérogènes épigénétiques, tels que les composés à activité hormonale qui peuvent augmenter l'activité génotoxique sans être eux-mêmes génotoxiques, ne peuvent pas être détectés par des tests à court terme, qui ne mesurent que l'activité génotoxique intrinsèque d'une substance.

Tableau 1. Génotoxicité des produits chimiques évaluée dans les suppléments 6 et 7 aux monographies du CIRC (1986)

Classification de cancérogénicité

Rapport des preuves de génotoxicité/cancérogénicité

%

1 : cancérigènes pour l'homme

24/30

80

2A : cancérigènes humains probables

14/20

70

2B : cancérigènes humains possibles

72/128

56

3 : non classable

19/66

29

 

Biosurveillance génétique

La surveillance génétique utilise des méthodes de toxicologie génétique pour la surveillance biologique des effets génétiques ou l'évaluation de l'exposition génotoxique dans un groupe d'individus avec une exposition définie sur un lieu de travail ou par l'environnement ou le mode de vie. Ainsi, la surveillance génétique a le potentiel d'identifier précocement les expositions génotoxiques dans un groupe de personnes et permet d'identifier les populations à haut risque et donc les priorités d'intervention. L'utilisation de biomarqueurs prédictifs dans une population exposée est justifiée pour gagner du temps (par rapport aux techniques épidémiologiques) et pour prévenir des effets finaux inutiles, à savoir le cancer (figure 3).

Figure 3. La prédictivité des biomarqueurs permet de mener des actions préventives pour diminuer les risques pour la santé des populations humaines

BMO050F2

Les méthodes actuellement utilisées pour la biosurveillance de l'exposition génotoxique et des effets biologiques précoces sont listées dans le tableau 2. Les échantillons utilisés pour la biosurveillance doivent répondre à plusieurs critères, dont la nécessité qu'ils soient à la fois facilement accessibles et comparables au tissu cible.

Tableau 2. Biomarqueurs dans le suivi génétique de l'exposition à la génotoxicité et les échantillons de cellules/tissus les plus couramment utilisés.

Marqueur de suivi génétique

Échantillons de cellules/tissus

Aberrations chromosomiques (AC)

Les lymphocytes

Échanges de chromatides soeurs (SCE)

Les lymphocytes

Micronoyaux (MN)

Les lymphocytes

Mutations ponctuelles (p. ex., gène HPRT)

Lymphocytes et autres tissus

Adduits à l'ADN

ADN isolé à partir de cellules/tissus

Adduits protéiques

Hémoglobine, albumine

ruptures de brins d'ADN

ADN isolé à partir de cellules/tissus

Activation de l'oncogène

ADN ou protéines spécifiques isolées

Mutations/oncoprotéines

Diverses cellules et tissus

Réparation de l'ADN

Cellules isolées à partir d'échantillons de sang

 

Les types de dommages moléculairement reconnaissables à l'ADN comprennent la formation d'adduits à l'ADN et la réorganisation de la séquence d'ADN. Ces types de dommages peuvent être détectés par des mesures d'adduits à l'ADN à l'aide de diverses techniques, par exemple, soit le post-marquage au 32P, soit la détection d'anticorps monoclonaux dirigés contre les adduits à l'ADN. La mesure des ruptures de brins d'ADN est classiquement effectuée en utilisant des tests d'élution alcaline ou de déroulement. Les mutations peuvent être détectées en séquençant l'ADN d'un gène spécifique, par exemple le gène HPRT.

Plusieurs rapports méthodologiques ont paru qui traitent en détail des techniques du tableau 2 (CEC 1987; IARC 1987, 1992, 1993).

La génotoxicité peut également être surveillée indirectement par la mesure des adduits protéiques, c'est-à-dire dans l'hémoglobine au lieu de l'ADN, ou la surveillance de l'activité de réparation de l'ADN. En tant que stratégie de mesure, l'activité de surveillance peut être ponctuelle ou continue. Dans tous les cas, les résultats doivent être appliqués au développement de conditions de travail sûres.

Biosurveillance cytogénétique

Un raisonnement théorique et empirique relie le cancer aux lésions chromosomiques. Les événements mutationnels altérant l'activité ou l'expression des gènes des facteurs de croissance sont des étapes clés de la cancérogenèse. De nombreux types de cancers ont été associés à des aberrations chromosomiques spécifiques ou non spécifiques. Dans plusieurs maladies humaines héréditaires, l'instabilité chromosomique est associée à une susceptibilité accrue au cancer.

La surveillance cytogénétique des personnes exposées à des produits chimiques ou rayonnements cancérigènes et/ou mutagènes peut mettre en évidence des effets sur le matériel génétique des individus concernés. Les études d'aberration chromosomique des personnes exposées aux rayonnements ionisants sont appliquées à la dosimétrie biologique depuis des décennies, mais des résultats positifs bien documentés ne sont encore disponibles que pour un nombre limité de cancérogènes chimiques.

Les dommages chromosomiques reconnaissables au microscope comprennent à la fois les aberrations chromosomiques structurelles (CA), dans lesquelles un changement brutal de la morphologie (forme) d'un chromosome s'est produit, et les échanges de chromatides soeurs (SCE). SCE est l'échange symétrique de matériel chromosomique entre deux chromatides sœurs. Les micronoyaux (MN) peuvent provenir soit de fragments de chromosomes acentriques, soit de chromosomes entiers en retard. Ces types de changements sont illustrés à la figure 4.

Figure 4. Chromosomes lymphocytaires humains en métaphase, révélant une mutation chromosomique induite (flèche pointant vers un fragment acentrique)

BMO050F3

Les lymphocytes du sang périphérique chez l'homme sont des cellules appropriées pour être utilisées dans les études de surveillance en raison de leur facilité d'accès et parce qu'ils peuvent intégrer l'exposition sur une durée de vie relativement longue. L'exposition à une variété de mutagènes chimiques peut entraîner une augmentation de la fréquence des CA et/ou des SCE dans les lymphocytes sanguins des personnes exposées. En outre, l'étendue des dommages est à peu près corrélée à l'exposition, bien que cela n'ait été démontré qu'avec quelques produits chimiques.

Lorsque des tests cytogénétiques sur des lymphocytes du sang périphérique montrent que le matériel génétique a été endommagé, les résultats ne peuvent être utilisés pour estimer le risque qu'au niveau de la population. Une fréquence accrue d'AC dans une population doit être considérée comme une indication d'un risque accru de cancer, mais les tests cytogénétiques ne permettent pas, en tant que tels, de prédire le risque individuel de cancer.

L'importance pour la santé des dommages génétiques somatiques vus à travers la fenêtre étroite d'un échantillon de lymphocytes du sang périphérique a peu ou pas d'importance pour la santé d'un individu, puisque la plupart des lymphocytes porteurs de dommages génétiques meurent et sont remplacés.

Problèmes et leur contrôle dans les études de biosurveillance humaine

Une conception d'étude rigoureuse est nécessaire dans l'application de toute méthode de biosurveillance humaine, car de nombreux facteurs interindividuels qui ne sont pas liés à l'exposition ou aux expositions chimiques spécifiques d'intérêt peuvent affecter les réponses biologiques étudiées. Étant donné que les études de biosurveillance humaine sont fastidieuses et difficiles à bien des égards, une planification préalable minutieuse est très importante. Lors de la réalisation d'études cytogénétiques humaines, la confirmation expérimentale du potentiel d'endommagement chromosomique du ou des agents exposants doit toujours être une condition préalable expérimentale.

Dans les études de biosurveillance cytogénétique, deux grands types de variations ont été documentés. Le premier comprend des facteurs techniques associés aux écarts de lecture des lames et aux conditions de culture, en particulier au type de milieu, à la température et à la concentration de produits chimiques (tels que la bromodésoxyuridine ou la cytochalasine-B). En outre, les temps d'échantillonnage peuvent modifier les rendements d'aberrations chromosomiques, et peut-être aussi les résultats de l'incidence de SCE, par des changements dans les sous-populations de lymphocytes T et B. Dans les analyses de micronoyaux, les différences méthodologiques (par exemple, l'utilisation de cellules binucléées induites par la cytochalasine-B) affectent assez clairement les résultats de notation.

Les lésions induites dans l'ADN des lymphocytes par une exposition chimique qui conduisent à la formation d'aberrations chromosomiques structurelles, à l'échange de chromatides sœurs et aux micronoyaux doivent persister in vivo jusqu'à ce que le sang soit prélevé, puis in vitro jusqu'à ce que le lymphocyte cultivé commence la synthèse d'ADN. Il est donc important de noter les cellules directement après la première division (dans le cas d'aberrations chromosomiques ou de micronoyaux) ou après la deuxième division (échanges de chromatides sœurs) afin d'obtenir la meilleure estimation des dommages induits.

Le scoring constitue un élément extrêmement important du biomonitoring cytogénétique. Les lames doivent être randomisées et codées pour éviter autant que possible les biais du correcteur. Des critères de notation cohérents, un contrôle de la qualité et des analyses et rapports statistiques normalisés doivent être maintenus. La deuxième catégorie de variabilité est due aux conditions associées aux sujets, telles que l'âge, le sexe, les médicaments et les infections. Des variations individuelles peuvent également être causées par une susceptibilité génétique aux agents environnementaux.

Il est essentiel d'obtenir un groupe témoin concurrent qui corresponde aussi étroitement que possible sur des facteurs internes tels que le sexe et l'âge ainsi que sur des facteurs tels que le statut tabagique, les infections virales et les vaccinations, la consommation d'alcool et de drogues et l'exposition aux rayons X. . De plus, il est nécessaire d'obtenir des estimations qualitatives (catégorie d'emploi, années d'exposition) et quantitatives (p. ex., échantillons d'air de la zone respiratoire pour analyse chimique et métabolites spécifiques, si possible) ou de l'exposition au(x) agent(s) génotoxique(s) putatif(s) sur le lieu de travail. Une attention particulière doit être accordée au traitement statistique approprié des résultats.

Pertinence de la biosurveillance génétique pour l'évaluation du risque de cancer

Le nombre d'agents dont il a été démontré à plusieurs reprises qu'ils induisent des modifications cytogénétiques chez l'homme est encore relativement limité, mais la plupart des agents cancérigènes connus induisent des dommages dans les chromosomes des lymphocytes.

L'étendue des dommages est fonction du niveau d'exposition, comme il a été démontré que c'est le cas, par exemple, avec le chlorure de vinyle, le benzène, l'oxyde d'éthylène et les agents anticancéreux alkylants. Même si les critères d'évaluation cytogénétiques sont peu sensibles ou spécifiques quant à la détection des expositions survenant dans les milieux professionnels actuels, les résultats positifs de tels tests ont souvent conduit à mettre en place des contrôles d'hygiène même en l'absence de preuves directes d'atteintes chromosomiques somatiques à effets néfastes sur la santé.

La plupart des expériences d'application de la biosurveillance cytogénétique proviennent de situations professionnelles «à forte exposition». Très peu d'expositions ont été confirmées par plusieurs études indépendantes, et la plupart d'entre elles ont été réalisées à l'aide de la biosurveillance des aberrations chromosomiques. La base de données du Centre international de recherche sur le cancer répertorie dans ses volumes mis à jour 43 à 50 des monographies du CIRC un total de 14 cancérogènes professionnels des groupes 1, 2A ou 2B, pour lesquels il existe des données cytogénétiques humaines positives disponibles qui sont dans la plupart des cas soutenu par la cytogénétique animale correspondante (tableau 3). Cette base de données limitée suggère que les produits chimiques cancérigènes ont tendance à être clastogènes et que la clastogénicité a tendance à être associée à des cancérogènes humains connus. De toute évidence, cependant, tous les agents cancérigènes n'induisent pas de dommages cytogénétiques chez l'homme ou les animaux de laboratoire. in vivo. Les cas dans lesquels les données animales sont positives et les résultats humains négatifs peuvent représenter des différences dans les niveaux d'exposition. De plus, les expositions humaines complexes et à long terme au travail peuvent ne pas être comparables à des expérimentations animales à court terme.

Tableau 3. Agents cancérogènes avérés, probables et possibles pour l'homme pour lesquels il existe une exposition professionnelle et pour lesquels des paramètres cytogénétiques ont été mesurés chez l'homme et les animaux de laboratoire

 

Résultats cytogéniques1

 

Les êtres humains

Animaux

Agent/exposition

CA

SCE

MN

CA

SCE

MN

GROUPE 1, Cancérogènes humains

Arsenic et composés d'arsenic

?

?

+

 

+

Amiante

?

 

-

 

-

Benzène

+

 

 

+

+

+

Bis(chlorométhyl)éther et chlorométhylméthyléther (qualité technique)

(+)

 

 

-

 

 

Cyclophosphamide

+

+

 

+

+

+

Composés de chrome hexavalent

+

+

 

+

+

+

Melphalan

+

+

 

+

 

 

Composés de nickel

+

-

 

?

 

 

Radon

+

 

 

-

 

 

Fumée de tabac

+

+

+

 

+

 

Chlorure de vinyle

+

?

 

+

+

+

GROUPE 2A, Cancérogènes humains probables

Acrylonitrile

-

 

 

-

 

-

Adriamycine

+

+

 

+

+

+

Cadmium et composés de cadmium

-

(-)

 

-

 

 

Cisplatine

+

 

+

+

 

Épichlorhydrine

+

 

 

?

+

-

Dibromure d'éthylène

-

-

 

-

+

-

Oxyde d'éthylène

+

+

+

+

+

+

Formaldéhyde

?

?

 

-

 

-

GROUPE 2B, cancérigènes humains possibles

Herbicides chlorophénoxy (2,4-D et 2,4,5-T)

-

-

 

+

+

-

DDT

?

 

 

+

 

-

Diméthylformamide

(+)

 

 

 

-

-

Composés de plomb

?

?

 

?

-

?

Styrène

+

?

+

?

+

+

2,3,7,8-tétrachlorodibenzo-para-dioxine

?

 

 

-

-

-

Émanations de soudure

+

+

 

-

-

 

1 CA, aberration chromosomique ; SCE, échange de chromatides sœurs ; MN, micronoyaux.
(–) = relation négative pour une étude ; – = relation négative ;
(+) = relation positive pour une étude ; + = relation positive ;
? = non concluant ; zone vide = non étudié

Source : CIRC, 1987 ; mis à jour dans les volumes 43 à 50 des monographies du CIRC.

 

Les études de génotoxicité chez les humains exposés comprennent divers paramètres autres que les paramètres chromosomiques, tels que les dommages à l'ADN, l'activité de réparation de l'ADN et les adduits dans l'ADN et dans les protéines. Certains de ces paramètres peuvent être plus pertinents que d'autres pour la prédiction du risque cancérogène. Les changements génétiques stables (par exemple, les réarrangements chromosomiques, les délétions et les mutations ponctuelles) sont très pertinents, car ces types de dommages sont connus pour être liés à la cancérogenèse. L'importance des adduits à l'ADN dépend de leur identification chimique et de la preuve qu'ils résultent de l'exposition. Certains paramètres, tels que SCE, UDS, SSB, rupture de brin d'ADN, sont des indicateurs et/ou des marqueurs potentiels d'événements génétiques ; cependant, leur valeur est réduite en l'absence d'une compréhension mécaniste de leur capacité à conduire à des événements génétiques. De toute évidence, le marqueur génétique le plus pertinent chez l'homme serait l'induction d'une mutation spécifique qui a été directement associée au cancer chez les rongeurs exposés à l'agent à l'étude (figure 5).

Figure 5. Pertinence des différents effets de la biosurveillance génétique pour le risque potentiel de cancer

BMO050T5

Considérations éthiques pour la biosurveillance génétique

Les progrès rapides des techniques de génétique moléculaire, la vitesse accrue de séquençage du génome humain et l'identification du rôle des gènes suppresseurs de tumeurs et des proto-oncogènes dans la carcinogenèse humaine, soulèvent des questions éthiques dans l'interprétation, la communication et l'utilisation de ce type de informations personnelles. L'amélioration rapide des techniques d'analyse des gènes humains permettra bientôt l'identification d'encore plus de gènes de susceptibilité héréditaires chez des individus sains et asymptomatiques (US Office of Technology Assessment 1990), se prêtant à être utilisés dans le dépistage génétique.

De nombreuses questions d'ordre social et éthique se poseront si l'application du dépistage génétique devient bientôt une réalité. Déjà à l'heure actuelle, environ 50 traits génétiques du métabolisme, des polymorphismes enzymatiques et de la réparation de l'ADN sont suspectés pour des sensibilités spécifiques à des maladies, et un test ADN de diagnostic est disponible pour environ 300 maladies génétiques. Doit-on effectuer un quelconque dépistage génétique sur le lieu de travail ? Qui doit décider qui subira le test et comment l'information sera-t-elle utilisée dans les décisions d'embauche ? Qui aura accès aux informations issues du dépistage génétique et comment les résultats seront-ils communiqués aux personnes concernées ? Bon nombre de ces questions sont fortement liées aux normes sociales et aux valeurs éthiques dominantes. L'objectif principal doit être la prévention de la maladie et de la souffrance humaine, mais le respect doit être accordé à la volonté propre et aux prémisses éthiques de l'individu. Certaines des questions éthiques pertinentes auxquelles il faut répondre bien avant le début de toute étude de biosurveillance en milieu de travail sont présentées dans le tableau 4 et sont également abordées dans le chapitre Questions éthiques.

Tableau 4. Quelques principes éthiques relatifs au besoin de savoir dans les études de biosurveillance génétique professionnelle

 

Groupes à qui l'information est donnée

Informations données

Personnes étudiées

Unité de santé au travail

Employeur

Ce qui est étudié

     

Pourquoi l'étude est-elle réalisée

     

Y a-t-il des risques encourus

     

Problèmes de confidentialité

     

Préparation à d'éventuelles améliorations hygiéniques, réductions d'exposition indiquées

     

 

Du temps et des efforts doivent être consacrés à la phase de planification de toute étude de biosurveillance génétique, et toutes les parties nécessaires - les employés, les employeurs et le personnel médical du lieu de travail collaborateur - doivent être bien informées avant l'étude, et les résultats communiqués à eux aussi après l'étude. Avec des soins appropriés et des résultats fiables, la biosurveillance génétique peut aider à garantir des lieux de travail plus sûrs et à améliorer la santé des travailleurs.

 

Retour

Lire 12468 fois Dernière modification le jeudi 13 octobre 2011 20:21
Plus dans cette catégorie: « Solvants organiques Pesticides »

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références de surveillance biologique

Alcini, D, M Maroni, A Colombi, D Xaiz et V Foà. 1988. Évaluation d'une méthode européenne standardisée pour la détermination de l'activité de la cholinestérase dans le plasma et les érythrocytes. Méd Lavoro 79(1):42-53.

Alessio, L, A Berlin et V Foà. 1987. Facteurs d'influence autres que l'exposition sur les niveaux des indicateurs biologiques. In Occupational and Environmental Chemical Hazards, édité par V Foà, FA Emmett, M ​​Maroni et A Colombi. Chichester : Wiley.

Alessio, L, L Apostoli, L Minoia et E Sabbioni. 1992. Des macro- aux micro-doses : Valeurs de référence pour les métaux toxiques. Dans Science of the Total Environment, édité par L Alessio, L Apostoli, L Minoia et E Sabbioni. New York: Elsevier Science.

Conférence américaine des hygiénistes industriels gouvernementaux (ACGIH). 1997. 1996-1997 Valeurs limites d'exposition pour les substances chimiques et les agents physiques et indices d'exposition biologique. Cincinnati, Ohio : ACGIH.

—. 1995. 1995-1996 Valeurs limites d'exposition pour les substances chimiques et les agents physiques et indices d'exposition biologique. Cincinnati, Ohio : ACGIH.

Augustinsson, KB. 1955. La variation normale de l'activité de la cholinestérase sanguine humaine. Acta Physiol Scand 35:40-52.

Barquet, A, C Morgade et CD Pfaffenberger. 1981. Détermination des pesticides organochlorés et des métabolites dans l'eau potable, le sang humain, le sérum et le tissu adipeux. J. Toxicol Environ Health 7:469-479.

Berlin, A, RE Yodaiken et BA Henman. 1984. Évaluation des agents toxiques sur le lieu de travail. Rôles de la surveillance ambiante et biologique. Actes du Séminaire international tenu à Luxembourg du 8 au 12 décembre. 1980. Lancaster, Royaume-Uni : Martinus Nijhoff.

Bernard, A et R Lauwerys. 1987. Principes généraux pour la surveillance biologique de l'exposition aux produits chimiques. Dans Biological Monitoring of Exposure to Chemicals: Organic Compounds, édité par MH Ho et KH Dillon. New York : Wiley.

Brugnone, F, L Perbellini, E Gaffuri et P Apostoli. 1980. Biosurveillance de l'exposition aux solvants industriels de l'air alvéolaire des travailleurs. Int Arch Occup Environ Health 47:245-261.

Bullock, DG, NJ Smith et TP Whitehead. 1986. Évaluation externe de la qualité des dosages de plomb dans le sang. Clin Chem 32:1884-1889.

Canossa, E, G Angiuli, G Garasto, A Buzzoni et E De Rosa. 1993. Indicateurs de dose chez les travailleurs agricoles exposés au mancozèbe. Méd Lavoro 84(1):42-50.

Catenacci, G, F Barbieri, M Bersani, A Ferioli, D Cottica et M Maroni. 1993. Surveillance biologique de l'exposition humaine à l'atrazine. Toxicol Letters 69:217-222.

Chalermchaikit, T, LJ Felice et MJ Murphy. 1993. Détermination simultanée de huit rodenticides anticoagulants dans le sérum sanguin et le foie. J Anal Toxicol 17:56-61.

Colosio, C, F Barbieri, M Bersani, H Schlitt et M Maroni. 1993. Marqueurs d'exposition professionnelle au pentachlorophénol. B Environ Contam Tox 51:820-826.

Commission des Communautés européennes (CCE). 1983. Indicateurs biologiques pour l'évaluation de l'exposition humaine aux produits chimiques industriels. Dans EUR 8676 EN, édité par L Alessio, A Berlin, R Roi et M Boni. Luxembourg : CEC.

—. 1984. Indicateurs biologiques pour l'évaluation de l'exposition humaine aux produits chimiques industriels. Dans EUR 8903 EN, édité par L Alessio, A Berlin, R Roi et M Boni. Luxembourg : CEC.

—. 1986. Indicateurs biologiques pour l'évaluation de l'exposition humaine aux produits chimiques industriels. Dans EUR 10704 EN, édité par L Alessio, A Berlin, R Roi et M Boni. Luxembourg : CEC.

—. 1987. Indicateurs biologiques pour l'évaluation de l'exposition humaine aux produits chimiques industriels. Dans EUR 11135 EN, édité par L Alessio, A Berlin, R Roi et M Boni. Luxembourg : CEC.

—. 1988a. Indicateurs biologiques pour l'évaluation de l'exposition humaine aux produits chimiques industriels. Dans EUR 11478 EN, édité par L Alessio, A Berlin, R Roi et M Boni. Luxembourg : CEC.

—. 1988b. Indicateurs d'évaluation de l'exposition et des effets biologiques des produits chimiques génotoxiques. 11642 EUR Luxembourg : CEC.

—. 1989. Indicateurs biologiques pour l'évaluation de l'exposition humaine aux produits chimiques industriels. Dans EUR 12174 EN, édité par L Alessio, A Berlin, R Roi et M Boni. Luxembourg : CEC.

Cranmer, M. 1970. Détermination du p-nitrophénol dans l'urine humaine. B Environ Contam Tox 5:329-332.

Dale, WE, A Curley et C Cueto. 1966. Insecticides chlorés extractibles à l'hexane dans le sang humain. Vie Sci 5:47-54.

Dawson, JA, DF Heath, JA Rose, EM Thain et JB Ward. 1964. L'excrétion par l'homme du phénol dérivé in vivo du 2-isopropoxyphényl-N-méthylcarbamate. Bull OMS 30:127-134.

DeBernardis, MJ et WA Wargin. 1982. Détermination par chromatographie liquide à haute performance du carbaryl et du 1 naphtol dans les fluides biologiques. J Chromatogr 246:89-94.

Deutsche Forschungsgemeinschaft (DFG). 1996. Concentrations maximales sur le lieu de travail (MAK) et valeurs de tolérance biologique (CBAT) pour les matériaux de travail. Rapport n°28.VCH. Weinheim, Allemagne : Commission d'enquête sur les risques pour la santé des composés chimiques dans la zone de travail.

—. 1994. Liste des valeurs MAK et BAT 1994. Weinheim, Allemagne : VCH.

Dillon, HK et MH Ho. 1987. Surveillance biologique de l'exposition aux pesticides organophosphorés. Dans Biological Monitoring of Exposure to Chemicals: Organic Compounds, édité par HK Dillon et MH Ho. New York : Wiley.

Draper, WM. 1982. Une procédure multi-résidus pour la détermination et la confirmation des résidus d'herbicides acides dans l'urine humaine. J Agricul Food Chem 30:227-231.

Eadsforth, CV, PC Bragt et NJ van Sittert. 1988. Études d'excrétion de dose chez l'homme avec des insecticides pyréthrinoïdes cyperméthrine et alphacyperméthrine : Pertinence pour la surveillance biologique. Xenobiotica 18:603-614.

Ellman, GL, KD Courtney, V Andres et RM Featherstone. 1961. Une détermination colorimétrique nouvelle et rapide de l'activité de l'acétylcholinestérase. Biochem Pharmacol 7:88-95.

Gagé, JC. 1967. L'importance des mesures de l'activité de la cholinestérase sanguine. Résidu Ap 18 : 159-167.

Responsable de la santé et de la sécurité (HSE). 1992. Surveillance biologique des expositions chimiques en milieu de travail. Note d'orientation EH 56. Londres : HMSO.

Centre international de recherche sur le cancer (CIRC). 1986. Monographies du CIRC sur l'évaluation des risques cancérigènes pour l'homme - Une mise à jour des monographies du CIRC (sélectionnées) des volumes 1 à 42. Supplément 6 : Effets génétiques et apparentés ; Supplément 7 : Évaluation globale de la cancérogénicité. Lyon : CIRC.

—. 1987. Méthode de détection des agents endommageant l'ADN chez l'homme : applications à l'épidémiologie et à la prévention du cancer. IARC Scientific Publications, No.89, édité par H Bartsch, K Hemminki et IK O'Neill. Lyon : CIRC.

—. 1992. Mécanismes de cancérogenèse dans l'identification des risques. Publications scientifiques du CIRC, n° 116, édité par H Vainio. Lyon : CIRC.

—. 1993. Adducts d'ADN : identification et importance biologique. Publications scientifiques du CIRC, n° 125, édité par K Hemminki. Lyon : CIRC.

Kolmodin-Hedman, B, A Swensson et M Akerblom. 1982. Exposition professionnelle à certains pyréthroïdes synthétiques (perméthrine et fenvalérate). Arch Toxicol 50:27-33.

Kurttio, P, T Vartiainen et K Savolainen. 1990. Surveillance environnementale et biologique de l'exposition aux fongicides à base d'éthylènebisdithiocarbamate et d'éthylènethiourée. Br J Ind Med 47:203-206.

Lauwerys, R et P Hoet. 1993. Exposition chimique industrielle : Lignes directrices pour la surveillance biologique. Boca Raton : Lewis.

Lois, ERJ. 1991. Diagnostic et traitement des empoisonnements. Dans Handbook of Pesticide Toxicology, édité par WJJ Hayes et ERJ Laws. New York : Presse académique.

Lucas, AD, AD Jones, MH Goodrow et SG Saiz. 1993. Détermination des métabolites de l'atrazine dans l'urine humaine : développement d'un biomarqueur d'exposition. Chem Res Toxicol 6:107-116.

Maroni, M, A Ferioli, A Fait et F Barbieri. 1992. Messa a punto del rischio tossicologico per l'uomo connesso alla produzione ed uso di antiparassitari. Préc Oggi 4:72-133.

Reid, SJ et RR Watts. 1981. Une méthode pour la détermination des résidus de phosphate de diaklyle dans l'urine. J Anal Toxicol 5.

Richter, E. 1993. Pesticides organophosphorés : Une étude épidémiologique multinationale. Copenhague : Programme de santé au travail et Bureau régional de l'OMS pour l'Europe.

Shafik, MT, DE Bradway, HR Enos et AR Yobs. 1973a. Exposition humaine aux pesticides organophosphorés : une procédure modifiée pour l'analyse par chromatographie gaz-liquide des métabolites d'alkylphosphate dans l'urine. J Agricul Food Chem 21:625-629.

Shafik, MT, HC Sullivan et HR Enos. 1973b. Procédure multirésidus pour les halo- et nitrophénols : Mesures d'exposition aux pesticides biodégradables produisant ces composés sous forme de métabolites. J Agricul Food Chem 21:295-298.

Summers, LA. 1980. Les herbicides Bipyridylium. Londres : Academic Press.

Tordoir, WF, M Maroni et F He. 1994. Surveillance de la santé des travailleurs des pesticides : un manuel pour les professionnels de la santé au travail. Toxicologie 91.

Bureau américain d'évaluation de la technologie. 1990. Surveillance et dépistage génétiques en milieu de travail. OTA-BA-455. Washington, DC : Bureau d'impression du gouvernement des États-Unis.

van Sittert, NJ et EP Dumas. 1990. Étude de terrain sur l'exposition et les effets sur la santé d'un pesticide organophosphoré pour le maintien de l'homologation aux Philippines. Med Lavoro 81:463-473.

van Sittert, NJ et WF Tordoir. 1987. Aldrine et dieldrine. Dans Biological Indicators for the Assessment of Human Exposure to Industrial Chemicals, édité par L Alessio, A Berlin, M Boni et R Roi. Luxembourg : CEC.

Verberk, MM, DH Brouwer, EJ Brouer et DP Bruyzeel. 1990. Effets sur la santé des pesticides dans la culture des bulbes à fleurs en Hollande. Méd Lavoro 81(6):530-541.

Westgard, JO, PL Barry, MR Hunt et T Groth. 1981. Un graphique de Shewhart multi-règles pour le contrôle de la qualité en chimie clinique. Clin Chem 27:493-501.

Whitehead, TP. 1977. Contrôle de qualité en chimie clinique. New York : Wiley.

Organisation mondiale de la santé (OMS). 1981. Évaluation externe de la qualité des laboratoires de santé. Rapports et études de l'EURO 36. Copenhague : Bureau régional de l'OMS pour l'Europe.

—. 1982a. Enquête de terrain sur l'exposition aux pesticides, protocole standard. Document. N° VBC/82.1 Genève : OMS.

—. 1982b. Limites sanitaires recommandées pour l'exposition professionnelle aux pesticides. Série de rapports techniques, n° 677. Genève : OMS.

—. 1994. Lignes directrices sur la surveillance biologique de l'exposition chimique sur le lieu de travail. Vol. 1. Genève : OMS.