Jeudi, Mars 10 2011 17: 36

Hygiène du travail : contrôle des expositions par l'intervention

Évaluer cet élément
(1 Vote)

Une fois qu'un danger a été reconnu et évalué, les interventions (méthodes de contrôle) les plus appropriées pour un danger particulier doivent être déterminées. Les méthodes de contrôle se répartissent généralement en trois catégories :

  1. contrôles techniques
  2. contrôles administratifs
  3. équipement de protection individuelle.

 

Comme pour tout changement dans les processus de travail, une formation doit être dispensée pour assurer le succès des changements.

Les contrôles techniques sont des modifications apportées au processus ou à l'équipement qui réduisent ou éliminent les expositions à un agent. Par exemple, la substitution d'un produit chimique moins toxique dans un processus ou l'installation d'une ventilation par aspiration pour éliminer les vapeurs générées au cours d'une étape du processus sont des exemples de contrôles techniques. Dans le cas du contrôle du bruit, l'installation de matériaux insonorisants, la construction d'enceintes et l'installation de silencieux sur les sorties d'évacuation d'air sont des exemples de contrôles techniques. Un autre type de contrôle technique pourrait être de modifier le processus lui-même. Un exemple de ce type de contrôle serait la suppression d'une ou plusieurs étapes de dégraissage dans un processus qui nécessitait à l'origine trois étapes de dégraissage. En supprimant la nécessité de la tâche qui a produit l'exposition, l'exposition globale du travailleur a été contrôlée. L'avantage des contrôles techniques est la participation relativement faible du travailleur, qui peut effectuer son travail dans un environnement plus contrôlé lorsque, par exemple, les contaminants sont automatiquement éliminés de l'air. Comparez cela à la situation où la méthode de contrôle choisie est un respirateur que le travailleur doit porter pendant qu'il exécute la tâche dans un lieu de travail « non contrôlé ». En plus de l'installation active par l'employeur de contrôles techniques sur l'équipement existant, un nouvel équipement peut être acheté qui contient les contrôles ou d'autres contrôles plus efficaces. Une approche combinée s'est souvent avérée efficace (c.-à-d. installer maintenant certains contrôles techniques et exiger un équipement de protection individuelle jusqu'à ce que de nouveaux équipements arrivent avec des contrôles plus efficaces qui élimineront le besoin d'équipement de protection individuelle). Voici quelques exemples courants de contrôles techniques :

  • ventilation (ventilation par aspiration générale et locale)
  • isolement (placer une barrière entre le travailleur et l'agent)
  • substitution (substitut matière moins toxique, moins inflammable, etc.)
  • modifier le processus (éliminer les étapes dangereuses).

 

L'hygiéniste du travail doit être sensible aux tâches du travailleur et doit solliciter la participation du travailleur lors de la conception ou de la sélection des contrôles techniques. L'installation d'obstacles sur le lieu de travail, par exemple, pourrait nuire considérablement à la capacité d'un travailleur d'effectuer son travail et encourager les « contournements ». Les contrôles techniques sont les méthodes les plus efficaces pour réduire les expositions. Ce sont aussi, souvent, les plus chers. Étant donné que les contrôles techniques sont efficaces et coûteux, il est important de maximiser la participation des travailleurs à la sélection et à la conception des contrôles. Il devrait en résulter une plus grande probabilité que les contrôles réduiront les expositions.

Les contrôles administratifs impliquent des changements dans la façon dont un travailleur accomplit les tâches professionnelles nécessaires, par exemple, combien de temps il travaille dans une zone où des expositions se produisent, ou des changements dans les pratiques de travail telles que l'amélioration du positionnement du corps pour réduire les expositions. Les contrôles administratifs peuvent contribuer à l'efficacité d'une intervention mais présentent plusieurs inconvénients :

  1. La rotation des travailleurs peut réduire l'exposition moyenne globale pour la journée de travail, mais elle offre des périodes d'exposition élevée à court terme à un plus grand nombre de travailleurs. Au fur et à mesure que l'on en sait plus sur les substances toxiques et leurs modes d'action, les pics d'exposition à court terme peuvent représenter un risque supérieur à celui qui serait calculé en fonction de leur contribution à l'exposition moyenne.
  2. La modification des pratiques de travail des travailleurs peut présenter un défi important en matière d'application et de contrôle. La manière dont les pratiques de travail sont appliquées et contrôlées détermine si elles seront efficaces ou non. Cette attention constante de la direction représente un coût important des contrôles administratifs.

 

L'équipement de protection individuelle consiste en des dispositifs fournis au travailleur et devant être portés lors de l'exécution de certaines tâches (ou de toutes). Les exemples incluent les respirateurs, les lunettes de protection contre les produits chimiques, les gants de protection et les écrans faciaux. L'équipement de protection individuelle est couramment utilisé dans les cas où les contrôles techniques n'ont pas été efficaces pour contrôler l'exposition à des niveaux acceptables ou lorsque les contrôles techniques ne se sont pas avérés réalisables (pour des raisons de coût ou de fonctionnement). L'équipement de protection individuelle peut fournir une protection importante aux travailleurs s'il est porté et utilisé correctement. Dans le cas de la protection respiratoire, les facteurs de protection (rapport de la concentration à l'extérieur du respirateur à celle à l'intérieur) peuvent être de 1,000 XNUMX ou plus pour les respirateurs à adduction d'air à pression positive ou de dix pour les demi-masques filtrants. Les gants (s'ils sont choisis de manière appropriée) peuvent protéger les mains pendant des heures contre les solvants. Les lunettes peuvent offrir une protection efficace contre les éclaboussures de produits chimiques.

Intervention : Facteurs à considérer

Souvent, une combinaison de contrôles est utilisée pour réduire les expositions à des niveaux acceptables. Quelles que soient les méthodes choisies, l'intervention doit réduire l'exposition et le danger qui en résulte à un niveau acceptable. Cependant, de nombreux autres facteurs doivent être pris en compte lors du choix d'une intervention. Par exemple:

  • efficacité des contrôles
  • facilité d'utilisation par l'employé
  • coût des contrôles
  • adéquation des propriétés d'avertissement du matériau
  • niveau d'exposition acceptable
  • fréquence d'exposition
  • voie(s) d'exposition
  • exigences réglementaires pour des contrôles spécifiques.

 

Efficacité des contrôles

L'efficacité des contrôles est évidemment une considération primordiale lorsqu'il s'agit de prendre des mesures pour réduire les expositions. Lorsque l'on compare un type d'intervention à un autre, le niveau de protection requis doit être adapté au défi ; trop de contrôle est un gaspillage de ressources. Ces ressources pourraient être utilisées pour réduire d'autres expositions ou les expositions d'autres employés. D'autre part, trop peu de contrôle expose le travailleur à des conditions malsaines. Une première étape utile consiste à classer les interventions en fonction de leur efficacité, puis à utiliser ce classement pour évaluer l'importance des autres facteurs.

Facilité d’utilisation

Pour que tout contrôle soit efficace, le travailleur doit être en mesure d'accomplir ses tâches professionnelles avec le contrôle en place. Par exemple, si la méthode de contrôle choisie est la substitution, le travailleur doit connaître les dangers du nouveau produit chimique, être formé aux procédures de manipulation sûres, comprendre les procédures d'élimination appropriées, etc. Si le contrôle est l'isolement - placer une enceinte autour de la substance ou du travailleur - l'enceinte doit permettre au travailleur de faire son travail. Si les mesures de contrôle interfèrent avec les tâches du travail, le travailleur hésitera à les utiliser et pourra trouver des moyens d'accomplir les tâches qui pourraient entraîner une augmentation, et non une diminution, des expositions.

Prix

Chaque organisation a des limites sur les ressources. Le défi consiste à maximiser l'utilisation de ces ressources. Lorsque des expositions dangereuses sont identifiées et qu'une stratégie d'intervention est en cours d'élaboration, le coût doit être un facteur. Le « meilleur achat » ne sera souvent pas les solutions les moins chères ou les plus coûteuses. Le coût ne devient un facteur qu'après que plusieurs méthodes de contrôle viables ont été identifiées. Le coût des contrôles peut ensuite être utilisé pour sélectionner les contrôles qui fonctionneront le mieux dans cette situation particulière. Si le coût est le facteur déterminant au départ, des contrôles médiocres ou inefficaces peuvent être sélectionnés, ou des contrôles qui interfèrent avec le processus dans lequel l'employé travaille. Il serait imprudent de sélectionner un ensemble peu coûteux de contrôles qui interfèrent avec et ralentissent un processus de fabrication. Le processus aurait alors un débit plus faible et un coût plus élevé. En très peu de temps, les coûts « réels » de ces contrôles « low cost » deviendraient énormes. Les ingénieurs industriels comprennent la disposition et le processus global ; les ingénieurs de production comprennent les étapes et les processus de fabrication ; les analystes financiers comprennent les problèmes d'allocation des ressources. Les hygiénistes du travail peuvent fournir un aperçu unique de ces discussions en raison de leur compréhension des tâches spécifiques de l'employé, de l'interaction de l'employé avec l'équipement de fabrication ainsi que de la façon dont les contrôles fonctionneront dans un contexte particulier. Cette approche d'équipe augmente la probabilité de sélectionner le contrôle le plus approprié (à partir d'une variété de perspectives).

Adéquation des propriétés d'avertissement

Lors de la protection d'un travailleur contre un risque pour la santé au travail, les propriétés d'avertissement du matériau, telles que l'odeur ou l'irritation, doivent être prises en compte. Par exemple, si un travailleur de semi-conducteurs travaille dans une zone où le gaz arsine est utilisé, l'extrême toxicité du gaz présente un danger potentiel important. La situation est aggravée par les très mauvaises propriétés d'avertissement de l'arsine - les travailleurs ne peuvent pas détecter le gaz arsine à la vue ou à l'odorat tant qu'il n'est pas bien au-dessus des niveaux acceptables. Dans ce cas, les contrôles qui sont légèrement efficaces pour maintenir les expositions en dessous des niveaux acceptables ne doivent pas être envisagés car les dépassements des niveaux acceptables ne peuvent pas être détectés par les travailleurs. Dans ce cas, des contrôles techniques doivent être installés pour isoler le travailleur du matériau. De plus, un moniteur de gaz arsine en continu doit être installé pour avertir les travailleurs de la défaillance des contrôles techniques. Dans les situations impliquant une toxicité élevée et de faibles propriétés d'avertissement, une hygiène professionnelle préventive est pratiquée. L'hygiéniste du travail doit faire preuve de souplesse et de réflexion lorsqu'il aborde un problème d'exposition.

Niveau d'exposition acceptable

Si des contrôles sont envisagés pour protéger un travailleur d'une substance telle que l'acétone, où le niveau d'exposition acceptable peut être de l'ordre de 800 ppm, le contrôle à un niveau de 400 ppm ou moins peut être atteint relativement facilement. Comparez l'exemple du contrôle de l'acétone au contrôle du 2-éthoxyéthanol, où le niveau d'exposition acceptable peut être de l'ordre de 0.5 ppm. Pour obtenir le même pourcentage de réduction (0.5 ppm à 0.25 ppm), il faudrait probablement des contrôles différents. En fait, à ces faibles niveaux d'exposition, l'isolement du matériau peut devenir le principal moyen de contrôle. À des niveaux d'exposition élevés, la ventilation peut fournir la réduction nécessaire. Par conséquent, le niveau acceptable déterminé (par le gouvernement, l'entreprise, etc.) pour une substance peut limiter le choix des contrôles.

Fréquence d'exposition

Lors de l'évaluation de la toxicité, le modèle classique utilise la relation suivante :

TEMPS x CONCENTRATION = DOSE 

La dose, dans ce cas, est la quantité de matière rendue disponible pour l'absorption. La discussion précédente s'est concentrée sur la minimisation (abaissement) de la partie concentration de cette relation. On pourrait également réduire le temps passé à être exposé (la raison sous-jacente des contrôles administratifs). Cela réduirait également la dose. Le problème ici n'est pas l'employé qui passe du temps dans une pièce, mais la fréquence à laquelle une opération (tâche) est effectuée. La distinction est importante. Dans le premier exemple, l'exposition est contrôlée en retirant les travailleurs lorsqu'ils sont exposés à une quantité sélectionnée de toxique ; l'effort d'intervention ne vise pas à contrôler la quantité de toxique (dans de nombreuses situations, il peut y avoir une approche combinée). Dans le second cas, la fréquence de l'opération est utilisée pour fournir les contrôles appropriés, et non pour déterminer un horaire de travail. Par exemple, si une opération telle que le dégraissage est effectuée de manière routinière par un employé, les contrôles peuvent inclure une ventilation, la substitution d'un solvant moins toxique ou même l'automatisation du processus. Si l'opération est effectuée rarement (par exemple, une fois par trimestre), un équipement de protection individuelle peut être une option (en fonction de nombreux facteurs décrits dans cette section). Comme l'illustrent ces deux exemples, la fréquence à laquelle une opération est effectuée peut affecter directement la sélection des commandes. Quelle que soit la situation d'exposition, la fréquence à laquelle un travailleur exécute les tâches doit être prise en compte et prise en compte dans le choix du contrôle.

La voie d'exposition va évidemment affecter la méthode de contrôle. Si un irritant respiratoire est présent, une ventilation, des respirateurs, etc., seraient envisagés. Le défi pour l'hygiéniste du travail est d'identifier toutes les voies d'exposition. Par exemple, les éthers de glycol sont utilisés comme solvant porteur dans les opérations d'impression. Les concentrations dans l'air de la zone respiratoire peuvent être mesurées et des contrôles mis en place. Les éthers de glycol, cependant, sont rapidement absorbés par la peau intacte. La peau représente une voie d'exposition importante et doit être prise en compte. En fait, si les mauvais gants sont choisis, l'exposition cutanée peut se poursuivre longtemps après la diminution des expositions à l'air (en raison du fait que l'employé continue d'utiliser des gants qui ont subi une percée). L'hygiéniste doit évaluer la substance - ses propriétés physiques, ses propriétés chimiques et toxicologiques, etc. - pour déterminer quelles voies d'exposition sont possibles et plausibles (en fonction des tâches effectuées par l'employé).

Dans toute discussion sur les contrôles, l'un des facteurs qui doivent être pris en compte est les exigences réglementaires en matière de contrôles. Il peut très bien exister des codes de pratique, des réglementations, etc., qui exigent un ensemble spécifique de contrôles. L'hygiéniste du travail a une flexibilité au-delà des exigences réglementaires, mais les contrôles obligatoires minimaux doivent être installés. Un autre aspect des exigences réglementaires est que les contrôles obligatoires peuvent ne pas fonctionner aussi bien ou peuvent entrer en conflit avec le meilleur jugement de l'hygiéniste du travail. L'hygiéniste doit faire preuve de créativité dans ces situations et trouver des solutions qui satisfont aux objectifs réglementaires ainsi qu'aux meilleures pratiques de l'organisation.

Formation et étiquetage

Quelle que soit la forme d'intervention finalement choisie, une formation et d'autres formes de notification doivent être fournies pour s'assurer que les travailleurs comprennent les interventions, pourquoi elles ont été choisies, quelles réductions d'exposition sont attendues et le rôle des travailleurs dans la réalisation de ces réductions. . Sans la participation et la compréhension de la main-d'œuvre, les interventions échoueront probablement ou du moins fonctionneront avec une efficacité réduite. La formation sensibilise le personnel aux dangers. Cette nouvelle prise de conscience peut être d'une valeur inestimable pour l'hygiéniste du travail dans l'identification et la réduction des expositions précédemment non reconnues ou des nouvelles expositions.

La formation, l'étiquetage et les activités connexes peuvent faire partie d'un programme de conformité réglementaire. Il serait prudent de vérifier les réglementations locales pour s'assurer que, quel que soit le type de formation ou d'étiquetage entrepris, il satisfait aux exigences réglementaires et opérationnelles.

Conclusion

Dans cette courte discussion sur les interventions, quelques considérations générales ont été présentées pour stimuler la réflexion. En pratique, ces règles deviennent très complexes et ont souvent des ramifications importantes pour la santé des salariés et de l'entreprise. Le jugement professionnel de l'hygiéniste du travail est essentiel pour sélectionner les meilleurs contrôles. Best est un terme avec de nombreuses significations différentes. L'hygiéniste du travail doit devenir apte à travailler en équipe et à solliciter l'apport des travailleurs, de la direction et du personnel technique.

 

Retour

Lire 7979 fois Dernière modification le jeudi 13 octobre 2011 20:43

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références en hygiène du travail

Abraham, MH, GS Whiting, Y Alarie et al. 1990. Liaison hydrogène 12. Un nouveau QSAR pour l'irritation des voies respiratoires supérieures par des produits chimiques en suspension dans l'air chez la souris. Activité Quant Struc Relat 9:6-10.

Adkins, LE et al. 1990. Lettre à l'éditeur. Appl Occup Environ Hyg 5(11):748-750.

Alarie, Y. 1981. Analyse dose-réponse dans les études animales : prédiction des réponses humaines. Environ Health Persp 42:9-13.

Conférence américaine des hygiénistes industriels gouvernementaux (ACGIH). 1994. 1993-1994 Valeurs limites d'exposition pour les substances chimiques et les agents physiques et indices d'exposition biologique. Cincinnati : ACGIH.

—. 1995. Documentation des valeurs limites de seuil. Cincinnati : ACGIH.

Baetjer, AM. 1980. Les débuts de l'hygiène industrielle : leur contribution aux problèmes actuels. Am Ind Hyg Assoc J 41:773-777.

Bailer, JC, EAC Crouch, R Shaikh et D Spiegelman. 1988. Modèles à un coup de cancérogenèse : Conservateur ou non ? Risque Anal 8:485-490.

Bogers, M, LM Appelman, VJ Feron, et al. 1987. Effets du profil d'exposition sur la toxicité par inhalation du tétrachlorure de carbone chez les rats mâles. J Appl Toxicol 7:185-191.

Boleij, JSM, E Buringh, D Heederik et H Kromhour. 1995. Hygiène du travail pour les agents chimiques et biologiques. Amsterdam : Elsevier.

Bouyer, J et D Hémon. 1993. Étudier les performances d'une matrice d'exposition professionnelle. Int J Epidémiol 22(6) Suppl. 2 : S65-S71.

Bowditch, M, DK Drinker, P Drinker, HH Haggard et A Hamilton. 1940. Code pour les concentrations sûres de certaines substances toxiques courantes utilisées dans l'industrie. J Ind Hyg Toxicol 22:251.

Burdorf, A. 1995. Certification des hygiénistes du travail—Enquête sur les programmes existants dans le monde. Stockholm : Association internationale d'hygiène du travail (IOHA).

Autobus, JS et JE Gibson. 1994. Mécanismes de défense du corps à l'exposition aux substances toxiques. Dans Patty's Industrial Hygiene and Toxicology, édité par RL Harris, L Cralley et LV Cralley. New York : Wiley.

Butterworth, BE et T Slaga. 1987. Mécanismes non génotoxiques dans la cancérogenèse : Rapport Banbury 25. Cold Spring Harbor, New York : Cold Spring Harbor Laboratory.

Calabrese, EJ. 1983. Principes d'extrapolation animale. New York : Wiley.

Casaret, LJ. 1980. Dans Casarett et Doull's Toxicology: The Basic Science of Poisons, édité par J Doull, CD Klaassen et MO Amdur. New York : Macmillan.

Castleman, BI et GE Ziem. 1988. Influence des entreprises sur les valeurs limites de seuil. Am J Ind Med 13(5).

Checkoway, H et CH Rice. 1992. Moyennes pondérées dans le temps, pics et autres indices d'exposition en épidémiologie professionnelle. Am J Ind Med 21:25-33.

Comité Européen de Normalisation (CEN). 1994. Atmosphères du lieu de travail—Conseils pour l'évaluation de l'exposition aux agents chimiques à des fins de comparaison avec les valeurs limites et la stratégie de mesure. EN 689, préparé par le Comité Technique 137 du CEN. Bruxelles : CEN.

Cook, WA. 1945. Concentrations maximales admissibles de contaminants industriels. Ind Med 14(11):936-946.

—. 1986. Limites d'exposition professionnelle—dans le monde entier. Akron, Ohio : Association américaine d'hygiène industrielle (AIHA).

Cooper, WC. 1973. Indicateurs de sensibilité aux produits chimiques industriels. J Occup Med 15(4):355-359.

Corn, M. 1985. Stratégies d'échantillonnage de l'air. Scand J Work Environ Health 11:173-180.

Dinardi, SR. 1995. Méthodes de calcul pour l'hygiène industrielle. New York : Van Nostrand Reinhold.

Doull, J. 1994. L'approche et la pratique de l'ACGIH. Appl Occup Environ Hyg 9(1):23-24.

Dourson, MJ et JF Stara. 1983. Historique de la réglementation et support expérimental des facteurs d'incertitude (sécurité). Regul Toxicol Pharmacol 3:224-238.

Droz, PO. 1991. Quantification des résultats concomitants de surveillance biologique et atmosphérique. Appl Ind Hyg 6:465-474.

—. 1992. Quantification de la variabilité biologique. Ann Occup Health 36:295-306.

Fieldner, AC, SH Katz et SP Kenney. 1921. Masques à gaz pour les gaz rencontrés dans la lutte contre les incendies. Bulletin n° 248. Pittsburgh : Bureau américain des mines.

Finklea, JA. 1988. Valeurs limites de seuil : un regard opportun. Am J Ind Med 14:211-212.

Finley, B, D Proctor et DJ Paustenbach. 1992. Une alternative à la concentration de référence par inhalation proposée par l'USEPA pour le chrome hexavalent et trivalent. Regul Toxicol Pharmacol 16:161-176.

Fiserova-Bergerova, V. 1987. Développement de l'utilisation des BEI et leur mise en œuvre. Appl Ind Hyg 2(2):87-92.

Flury, F et F Zernik. 1931. Schadliche Gase, Dampfe, Nebel, Rauch-und Staubarten. Berlin : Springer.

Goldberg, M, H Kromhout, P Guénel, AC Fletcher, M Gérin, DC Glass, D Heederik, T Kauppinen et A Ponti. 1993. Matrices d'exposition professionnelle dans l'industrie. Int J Epidémiol 22(6) Suppl. 2 :S10-S15.

Gressel, MG et JA Gédéon. 1991. Un aperçu des techniques d'évaluation des risques de processus. Am Ind Hyg Assoc J 52(4):158-163.

Henderson, Y et HH Haggard. 1943. Les gaz nocifs et les principes de la respiration influençant leur action. New York : Reinhold.

Hickey, JLS et PC Reist. 1979. Ajustement des limites d'exposition professionnelle pour le travail au noir, les heures supplémentaires et les expositions environnementales. Am Ind Hyg Assoc J 40:727-734.

Hodgson, JT et RD Jones. 1990. Mortalité d'une cohorte de mineurs d'étain 1941-1986. Br J Ind Med 47:665-676.

Holzner, CL, RB Hirsh et JB Perper. 1993. Gestion des informations sur l'exposition en milieu de travail. Am Ind Hyg Assoc J 54(1):15-21.

Houba, R, D Heederik, G Doekes et PEM van Run. 1996. Relation exposition-sensibilisation aux allergènes alpha-amylase dans l'industrie de la boulangerie. Am J Resp Crit Care Med 154(1):130-136.

Congrès international sur la santé au travail (ICOH). 1985. Conférences invitées du XXIe Congrès international sur la santé au travail, Dublin. Scand J Work Environ Health 11(3):199-206.

Jacobs, RJ. 1992. Stratégies de reconnaissance des agents biologiques dans le milieu de travail et possibilités d'établir des normes pour les agents biologiques. IOHA first International Science Conference, Bruxelles, Belgique 7-9 décembre 1992.

Jahr, J. 1974. Base dose-réponse pour l'établissement d'une valeur limite de seuil de quartz. Arch Environ Health 9:338-340.

Kane, LE et Y Alarie. 1977. Irritation sensorielle au formaldéhyde et à l'acroléine lors d'expositions uniques et répétées dans les usines. Am Ind Hyg Assoc J 38:509-522.

Kobert, R. 1912. Les plus petites quantités de gaz industriels nocifs qui sont toxiques et les quantités qui peuvent être supportées. Comp Pract Toxicol 5:45.

Kromhout, H, E Symanski et SM Rappaport. 1993. Évaluation complète des composantes intra- et inter-travailleurs de l'exposition professionnelle aux agents chimiques. Ann Occup Hyg 37:253-270.

LaNier, ME. 1984. Valeurs limites de seuil : discussion et index sur 35 ans avec recommandations (TLV : 1946-81). Cincinnati : ACGIH.

Lehmann, KB. 1886. Experimentelle Studien über den Einfluss Technisch und Hygienisch Wichtiger Gase und Dampfe auf Organismus: Ammoniak et Salzsauregas. Arch Hyg 5:1-12.

Lehmann, KB et F Flury. 1938. Toxikologie und Hygiene der Technischen Losungsmittel. Berlin : Springer.

Lehmann, KB et L Schmidt-Kehl. 1936. Die 13 Wichtigsten Chlorkohlenwasserstoffe der Fettreihe vom Standpunkt der Gewerbehygiene. Arch Hyg Bakteriol 116:131-268.

Leidel, NA, KA Busch et JR Lynch. 1977. NIOSH Occupational Exposure Sampling Strategy Manuel. Washington, DC : NIOSH.

Leung, HW et DJ Paustenbach. 1988a. Fixation de limites d'exposition professionnelle aux acides et bases organiques irritants en fonction de leurs constantes de dissociation à l'équilibre. Appl Ind Hyg 3:115-118.

—. 1988b. Application de la pharmacocinétique pour dériver des indices d'exposition biologique à partir de valeurs limites. Amer Ind Hyg Assoc J 49:445-450.

Leung, HW, FJ Murray et DJ Paustenbach. 1988. Une limite d'exposition professionnelle proposée pour 2, 3, 7, 8 - TCDD. Amer Ind Hyg Assoc J 49:466-474.

Lundberg, P. 1994. Approches nationales et internationales de la normalisation professionnelle en Europe. Appl Occup Environ Hyg 9:25-27.

Lynch, JR. 1995. Mesure de l'exposition des travailleurs. Dans Patty's Industrial Hygiene and Toxicology, édité par RL Harris, L Cralley et LV Cralley. New York : Wiley.

Maslansky, CJ et SP Maslansky. 1993. Instrumentation de surveillance de l'air. New York : Van Nostrand Reinhold.

Menzel, DB. 1987. Modélisation pharmacocinétique physiologique. Environ Sci Technol 21:944-950.

Miller, FJ et JH Overton. 1989. Problèmes critiques de la dosimétrie intra- et interspécifique de l'ozone. Dans Atmospheric Ozone Research and Its Policy Implications, édité par T Schneider, SD Lee, GJR Wolters et LD Grant. Amsterdam : Elsevier.

National Academy of Sciences (NAS) et National Research Council (NRC). 1983. Évaluation des risques au gouvernement fédéral : gestion du processus. Washington, DC : NAS.

Conseil national de sécurité (NSC). 1926. Rapport final du Comité du secteur de la chimie et du caoutchouc sur le benzène. Washington, DC : Bureau national des assureurs multirisques et cautions.

Ness, SA. 1991. Surveillance de l'air pour les expositions toxiques. New York : Van Nostrand Reinhold.

Nielsen, GD. 1991. Mécanismes d'activation du récepteur sensoriel irritant. CRC Rev Toxicol 21:183-208.

Nollen, SD. 1981. La semaine de travail comprimée : cela en vaut-il la peine ? Ing Ing :58-63.

Nollen, SD et VH Martin. 1978. Horaires de travail alternatifs. Partie 3 : La semaine de travail comprimée. New York : AMACOM.

Olishifski, JB. 1988. Aspects administratifs et cliniques dans le chapitre Hygiène industrielle. In Occupational Medicine: Principles and Practical Applications, édité par C Zenz. Chicago : Annuaire Médical.

Panett, B, D Coggon et ED Acheson. 1985. Matrice d'exposition professionnelle à utiliser dans les études basées sur la population en Angleterre et au Pays de Galles. Br J Ind Med 42:777-783.

Parc, C et R Snee. 1983. Évaluation quantitative des risques : état de l'art pour la cancérogenèse. Fund Appl Toxicol 3:320-333.

Patty, FA. 1949. Hygiène industrielle et toxicologie. Vol. II. New York : Wiley.

Paustenbach, DJ. 1990a. Évaluation des risques sanitaires et pratique de l'hygiène industrielle. Am Ind Hyg Assoc J 51:339-351.

—. 1990b. Limites d'exposition professionnelle : leur rôle critique dans la médecine préventive et la gestion des risques. Am Ind Hyg Assoc J 51:A332-A336.

—. 1990c. Que nous apprend le processus d'évaluation des risques sur les VLE ? Présenté à la Conférence conjointe de 1990 sur l'hygiène industrielle. Vancouver, C.-B., 24 octobre.

—. 1994. Limites d'exposition professionnelle, pharmacocinétique et quarts de travail inhabituels. Dans Patty's Industrial Hygiene and Toxicology. Vol. IIIa (4e éd.). New York : Wiley.

—. 1995. La pratique de l'évaluation des risques pour la santé aux États-Unis (1975-1995) : Comment les États-Unis et d'autres pays peuvent bénéficier de cette expérience. Hum Ecol Risk Evaluer 1:29-79.

—. 1997. Programme de l'OSHA pour la mise à jour des limites d'exposition admissibles (PEL) : L'évaluation des risques peut-elle aider à « faire avancer la balle » ? Risque dans les Perspectives 5(1):1-6. École de santé publique de l'Université de Harvard.

Paustenbach, DJ et RR Langner. 1986. Établissement des limites d'exposition des entreprises : état de l'art. Am Ind Hyg Assoc J 47:809-818.

Peto, J, H Seidman et IJ Selikoff. 1982. Mortalité par mésothéliome chez les travailleurs de l'amiante : implications pour les modèles de cancérogenèse et d'évaluation des risques. Br J Cancer 45:124-134.

Comité de prévention de la phtisie. 1916. Rapport des mineurs. Johannesburg : Comité de prévention de la phtisie.

Post, WK, D Heederik, H Kromhout et D Kromhout. 1994. Expositions professionnelles estimées par une matrice emploi-exposition spécifique à la population et taux d'incidence sur 25 ans des maladies pulmonaires chroniques non spécifiques (CNSLD) : l'étude Zutphen. Eur Resp J 7:1048-1055.

Ramazinni, B. 1700. De Morbis Atrificum Diatriba [Maladies des travailleurs]. Chicago : L'Univ. de Chicago Press.

Rappaport, SM. 1985. Lissage de la variabilité de l'exposition au niveau du récepteur : Implications pour les normes de santé. Ann Occup Hyg 29:201-214.

—. 1991. Évaluation des expositions à long terme aux substances toxiques dans l'air. Ann Occup Hyg 35:61-121.

—. 1995. Interprétation des niveaux d'exposition aux agents chimiques. Dans Patty's Industrial Hygiene and Toxicology, édité par RL Harris, L Cralley et LV Cralley. New York : Wiley.

Rappaport, SM, E Symanski, JW Yager et LL Kupper. 1995. La relation entre la surveillance environnementale et les marqueurs biologiques dans l'évaluation de l'exposition. Environ Health Persp 103 Suppl. 3:49-53.

René, LE. 1978. L'enquête sur l'hygiène industrielle et personnelle. Dans Patty's Industrial Hygiene and Toxicology, édité par GD Clayton et FE Clayton. New York : Wiley.

Roach, SA. 1966. Une base plus rationnelle pour les programmes d'échantillonnage de l'air. Am Ind Hyg Assoc J 27:1-12.

—. 1977. Une base plus rationnelle pour les programmes d'échantillonnage de l'air. Am Ind Hyg Assoc J 20:67-84.

Roach, SA et SM Rappaport. 1990. Mais ce ne sont pas des seuils : Une analyse critique de la documentation des valeurs limites de seuil. Am J Ind Med 17:727-753.

Rodricks, JV, A Brett et G Wrenn. 1987. Décisions sur les risques importants dans les organismes de réglementation fédéraux. Regul Toxicol Pharmacol 7:307-320.

Rosen, G. 1993. Utilisation combinée PIMEX d'instruments de prélèvement d'air et de tournage vidéo : expérience et résultats pendant six ans d'utilisation. Appl Occup Environ Hyg 8(4).

Rylander, R. 1994. Agents responsables des maladies liées à la poussière organique : Actes d'un atelier international, Suède. Am J Ind Med 25:1-11.

Sayers, RR. 1927. Toxicologie des gaz et des vapeurs. Dans International Critical Tables of Numerical Data, Physics, Chemistry and Toxicology. New York : McGraw Hill.

Schrenk, HH. 1947. Interprétation des limites admissibles. Am Ind Hyg Assoc Q 8:55-60.

Seiller, JP. 1977. Seuils apparents et réels : Une étude de deux mutagènes. In Progress in Genetic Toxicology, édité par D Scott, BA Bridges et FH Sobels. New York : Elsevier Biomédical.

Seixas, NS, TG Robins et M Becker. 1993. Une nouvelle approche de la caractérisation de l'exposition cumulée pour l'étude des maladies professionnelles chroniques. Am J Epidemiol 137:463-471.

Smith, RG et JB Olishifski. 1988. Toxicologie industrielle. Dans Fundamentals of Industrial Hygiene, édité par JB Olishifski. Chicago : Conseil national de sécurité.

Smith, TJ. 1985. Développement et application d'un modèle d'estimation des niveaux de poussières alvéolaires et interstitielles. Ann Occup Hyg 29:495-516.

—. 1987. Évaluation de l'exposition pour l'épidémiologie professionnelle. Am J Ind Med 12:249-268.

Smyth, HF. 1956. Communication améliorée : norme hygiénique pour l'inhalation quotidienne. Am Ind Hyg Assoc Q 17:129-185.

Stokinger, HE. 1970. Critères et procédures d'évaluation des réactions toxiques aux produits chimiques industriels. Dans Niveaux admissibles de substances toxiques dans l'environnement de travail. Genève : OIT.

—. 1977. Les arguments en faveur des TLV cancérigènes continuent d'être solides. Occup Health Safety 46 (mars-avril):54-58.

—. 1981. Valeurs limites de seuil : Partie I. Dang Prop Ind Mater Rep (mai-juin) :8-13.

Stott, WT, RH Reitz, AM Schumann et PG Watanabe. 1981. Événements génétiques et non génétiques dans la néoplasie. Food Cosmet Toxicol 19:567-576.

Suter, AH. 1993. Bruit et conservation de l'ouïe. Dans Manuel de conservation de l'audition. Milwaukee, Wisc : Conseil d'accréditation en conservation de l'ouïe professionnelle.

Tait, K. 1992. Le système expert d'évaluation de l'exposition sur le lieu de travail (WORK SPERT). Am Ind Hyg Assoc J 53(2):84-98.

Tarlau, ES. 1990. Hygiène industrielle sans limites. Un éditorial invité. Am Ind Hyg Assoc J 51:A9-A10.

Travis, CC, SA Richter, EA Crouch, R Wilson et E Wilson. 1987. Gestion des risques de cancer : examen de 132 décisions réglementaires fédérales. Environ Sci Technol 21(5):415-420.

Watanabe, PG, RH Reitz, AM Schumann, MJ McKenna et PJ Gehring. 1980. Implications des mécanismes de tumorigénicité pour l'évaluation des risques. Dans The Scientific Basis of Toxicity Assessment, édité par M Witschi. Amsterdam : Elsevier.

Wegman, DH, EA Eisen, SR Woskie et X Hu. 1992. Mesure de l'exposition pour l'étude épidémiologique des effets aigus. Am J Ind Med 21:77-89.

Weil, CS. 1972. Statistiques versus facteurs de sécurité et jugement scientifique dans l'évaluation de la sécurité pour l'homme. Toxicol Appl Pharmacol 21:454-463.

Wilkinson, CF. 1988. Etre plus réaliste sur la carcinogenèse chimique. Environ Sci Technol 9:843-848.

Wong, O. 1987. Une étude de mortalité à l'échelle de l'industrie des travailleurs de la chimie professionnellement exposés au benzène. II Analyses dose-réponse. Br J Ind Med 44:382-395.

Commission mondiale sur l'environnement et le développement (CMED). 1987. Notre avenir commun. Rapport Bruntland. Oxford : OUP.

Organisation mondiale de la santé (OMS). 1977. Méthodes utilisées pour établir les niveaux admissibles d'exposition professionnelle aux agents nocifs. Rapport technique n° 601. Genève : Organisation internationale du Travail (OIT).

—. 1992a. Notre planète, notre santé. Rapport de la Commission Santé et Environnement de l'OMS. Genève : OMS.

—. 1992b. Hygiène du travail en Europe : évolution de la profession. European Occupational Health Series No. 3. Copenhague : Bureau régional de l'OMS pour l'Europe.

Zielhuis, RL et van der FW Kreek. 1979a. Calculs d'un facteur de sécurité dans l'établissement de niveaux admissibles fondés sur la santé pour l'exposition professionnelle. Une proposition. I. Int Arch Occup Environ Health 42:191-201.

Ziem, GE et BI Castleman. 1989. Valeurs limites d'exposition : perspective historique et pratique actuelle. J Occup Med 13:910-918.