Jeudi, Mars 17 2011 16: 30

Vêtements de protection

Évaluer cet élément
(9 votes)

Dangers

Il existe plusieurs catégories générales de risques corporels pour lesquels des vêtements spécialisés peuvent offrir une protection. Ces catégories générales comprennent les dangers chimiques, physiques et biologiques. Le tableau 1 les résume.

Tableau 1. Exemples de catégories de danger cutané

Danger

Exemples

Chemical

Toxines cutanées
Toxines systémiques
Corrosifs
Allergènes

Physique

Risques thermiques (chaud/froid)
Vibration
Radiation
Traumatisme

Dentisterie Biologique

Agents pathogènes humains
Pathogènes animaux
Agents pathogènes environnementaux

 

Risques chimiques

Les vêtements de protection sont un contrôle couramment utilisé pour réduire l'exposition des travailleurs à des produits chimiques potentiellement toxiques ou dangereux lorsque d'autres contrôles ne sont pas possibles. De nombreux produits chimiques présentent plus d'un danger (par exemple, une substance comme le benzène est à la fois toxique et inflammable). Pour les risques chimiques, il y a au moins trois considérations clés qui nécessitent une attention particulière. Il s'agit (1) des effets toxiques potentiels de l'exposition, (2) des voies d'entrée probables et (3) des potentiels d'exposition associés à l'affectation du travail. Des trois aspects, la toxicité du matériau est le plus important. Certaines substances présentent simplement un problème de propreté (par exemple, l'huile et la graisse) tandis que d'autres produits chimiques (par exemple, le contact avec le cyanure d'hydrogène liquide) pourraient présenter une situation immédiatement dangereuse pour la vie et la santé (IDLH). Plus précisément, la toxicité ou la dangerosité de la substance par voie cutanée d'entrée est le facteur critique. D'autres effets indésirables du contact avec la peau, outre la toxicité, comprennent la corrosion, la promotion du cancer de la peau et les traumatismes physiques tels que les brûlures et les coupures.

Un exemple de produit chimique dont la toxicité est la plus élevée par voie cutanée est la nicotine, qui a une excellente perméabilité cutanée mais qui ne présente généralement pas de danger par inhalation (sauf lorsqu'elle est auto-administrée). Ce n'est qu'un des nombreux cas où la voie cutanée présente un danger beaucoup plus important que les autres voies d'entrée. Comme suggéré ci-dessus, il existe de nombreuses substances qui ne sont généralement pas toxiques mais qui sont dangereuses pour la peau en raison de leur nature corrosive ou d'autres propriétés. En fait, certains produits chimiques et matériaux peuvent présenter un risque aigu encore plus élevé par absorption cutanée que les cancérogènes systémiques les plus redoutés. Par exemple, une seule exposition cutanée non protégée à l'acide fluorhydrique (concentration supérieure à 70 %) peut être fatale. Dans ce cas, une brûlure de surface aussi faible que 5% entraîne généralement la mort des effets de l'ion fluorure. Un autre exemple de danger cutané, bien que non aigu, est la promotion du cancer de la peau par des substances telles que les goudrons de houille. Un exemple d'un matériau qui a une forte toxicité humaine mais une faible toxicité cutanée est le plomb inorganique. Dans ce cas, le problème est la contamination du corps ou des vêtements, qui pourrait ultérieurement conduire à l'ingestion ou à l'inhalation, car le solide ne pénétrera pas la peau intacte.

Une fois qu'une évaluation des voies d'entrée et de la toxicité des matériaux a été réalisée, une évaluation de la probabilité d'exposition doit être effectuée. Par exemple, les travailleurs sont-ils suffisamment en contact avec un produit chimique donné pour devenir visiblement mouillés ou l'exposition est-elle peu probable et les vêtements de protection sont-ils destinés à agir simplement comme une mesure de contrôle redondante ? Pour les situations où le matériau est mortel bien que la probabilité de contact soit faible, le travailleur doit évidemment bénéficier du niveau de protection le plus élevé disponible. Pour les situations où l'exposition elle-même représente un risque très minime (par exemple, une infirmière manipulant de l'alcool isopropylique à 20 % dans de l'eau), le niveau de protection n'a pas besoin d'être à sécurité intégrée. Cette logique de sélection repose essentiellement sur une estimation des effets néfastes du matériau associée à une estimation de la probabilité d'exposition.

Les propriétés de résistance chimique des barrières

Des recherches montrant la diffusion de solvants et d'autres produits chimiques à travers des barrières de vêtements de protection «étanches aux liquides» ont été publiées des années 1980 aux années 1990. Par exemple, dans un test de recherche standard, de l'acétone est appliquée sur du caoutchouc néoprène (d'une épaisseur de gant typique). Après contact direct de l'acétone sur la surface extérieure normale, le solvant peut normalement être détecté sur la surface intérieure (côté peau) en 30 minutes, bien qu'en petites quantités. Ce mouvement d'un produit chimique à travers une barrière vestimentaire de protection est appelé pénétration. Le processus de perméation consiste en la diffusion de produits chimiques au niveau moléculaire à travers les vêtements de protection. La perméation se produit en trois étapes : absorption du produit chimique à la surface de la barrière, diffusion à travers la barrière et désorption du produit chimique sur la surface intérieure normale de la barrière. Le temps écoulé entre le contact initial du produit chimique sur la surface extérieure et la détection sur la surface intérieure est appelé le temps de ruptureL’ taux de perméation est le taux de mouvement à l'état d'équilibre du produit chimique à travers la barrière une fois l'équilibre atteint.

La plupart des tests actuels de résistance à la perméation s'étendent sur des périodes allant jusqu'à huit heures, reflétant des quarts de travail normaux. Cependant, ces tests sont effectués dans des conditions de contact direct liquide ou gazeux qui n'existent généralement pas dans l'environnement de travail. Certains diront donc qu'il existe un «facteur de sécurité» important dans le test. Contre cette hypothèse, il y a le fait que le test de perméation est statique alors que l'environnement de travail est dynamique (impliquant une flexion des matériaux ou des pressions générées par la préhension ou un autre mouvement) et qu'il peut exister des dommages physiques antérieurs au gant ou au vêtement. Étant donné le manque de données publiées sur la perméabilité cutanée et la toxicité cutanée, l'approche adoptée par la plupart des professionnels de la sécurité et de la santé consiste à sélectionner la barrière sans percée pendant la durée du travail ou de la tâche (généralement huit heures), qui est essentiellement une barrière sans dose. concept. Il s'agit d'une approche conservatrice appropriée; cependant, il est important de noter qu'il n'existe actuellement aucune barrière protectrice qui offre une résistance à la perméation à tous les produits chimiques. Pour les situations où les temps de passage sont courts, le professionnel de la sécurité et de la santé doit sélectionner les barrières les plus performantes (c'est-à-dire avec le taux de perméation le plus faible) tout en tenant compte d'autres mesures de contrôle et d'entretien (telles que la nécessité de changer régulièrement de vêtements) .

Outre le processus de perméation que nous venons de décrire, il existe deux autres propriétés de résistance chimique qui préoccupent le professionnel de la sécurité et de la santé. Ceux-ci sont dégradation et pénétration. La dégradation est une modification délétère d'une ou plusieurs des propriétés physiques d'un matériau de protection provoquée par le contact avec un produit chimique. Par exemple, le polymère alcool polyvinylique (PVA) est une très bonne barrière à la plupart des solvants organiques, mais est dégradé par l'eau. Le caoutchouc latex, largement utilisé pour les gants médicaux, est bien sûr résistant à l'eau, mais est facilement soluble dans des solvants tels que le toluène et l'hexane : il serait tout simplement inefficace pour se protéger contre ces produits chimiques. Deuxièmement, les allergies au latex peuvent provoquer des réactions graves chez certaines personnes.

La pénétration est le flux d'un produit chimique à travers des trous d'épingle, des coupures ou d'autres imperfections dans les vêtements de protection à un niveau non moléculaire. Même les meilleures barrières de protection seront rendues inefficaces si elles sont perforées ou déchirées. La protection contre la pénétration est importante lorsque l'exposition est peu probable ou peu fréquente et que la toxicité ou le danger est minime. La pénétration est généralement un problème pour les vêtements utilisés pour la protection contre les éclaboussures.

Plusieurs guides ont été publiés répertoriant les données de résistance chimique (beaucoup sont également disponibles sous forme électronique). En plus de ces guides, la plupart des fabricants des pays industrialisés publient également des données actuelles sur la résistance chimique et physique de leurs produits.

Dangers physiques

Comme indiqué dans le tableau 1, les risques physiques comprennent les conditions thermiques, les vibrations, les radiations et les traumatismes, car tous ont le potentiel d'affecter négativement la peau. Les risques thermiques comprennent les effets néfastes du froid et de la chaleur extrêmes sur la peau. Les attributs de protection des vêtements vis-à-vis de ces dangers sont liés à leur degré d'isolation, tandis que les vêtements de protection contre les embrasements électriques et les embrasements électriques nécessitent des propriétés de résistance aux flammes.

Les vêtements spécialisés peuvent fournir une protection limitée contre certaines formes de rayonnements ionisants et non ionisants. En général, l'efficacité des vêtements qui protègent contre les rayonnements ionisants est basée sur le principe du blindage (comme pour les tabliers et les gants doublés de plomb), alors que les vêtements utilisés contre les rayonnements non ionisants, comme les micro-ondes, sont basés sur la mise à la terre ou l'isolement. Des vibrations excessives peuvent avoir plusieurs effets néfastes sur les parties du corps, principalement les mains. L'exploitation minière (impliquant des perceuses à main) et la réparation des routes (pour lesquelles des marteaux ou des burins pneumatiques sont utilisés), par exemple, sont des professions où des vibrations excessives des mains peuvent entraîner une dégénérescence osseuse et une perte de circulation dans les mains. Les traumatismes cutanés dus à des risques physiques (coupures, écorchures, etc.) sont communs à de nombreuses professions, la construction et la découpe de viande en étant deux exemples. Des vêtements spécialisés (y compris des gants) résistants aux coupures sont maintenant disponibles et sont utilisés dans des applications telles que la découpe de la viande et la foresterie (à l'aide de scies à chaîne). Celles-ci sont basées soit sur la résistance inhérente aux coupures, soit sur la présence d'une masse de fibres suffisante pour obstruer les pièces mobiles (par exemple, les scies à chaîne).

Dangers biologiques

Les risques biologiques comprennent les infections dues à des agents et maladies communs aux humains et aux animaux, et l'environnement de travail. Les dangers biologiques communs aux humains ont reçu une grande attention avec la propagation croissante du SIDA et de l'hépatite à diffusion hématogène. Par conséquent, les professions pouvant impliquer une exposition au sang ou aux fluides corporels nécessitent généralement un certain type de vêtement et de gants résistant aux liquides. Les maladies transmises par les animaux lors de la manipulation (par exemple, l'anthrax) sont reconnues depuis longtemps et nécessitent des mesures de protection similaires à celles utilisées pour la manipulation du type d'agents pathogènes à diffusion hématogène qui affectent les humains. Les environnements de travail qui peuvent présenter un danger dû aux agents biologiques comprennent les laboratoires cliniques et microbiologiques ainsi que d'autres environnements de travail spéciaux.

Types de protection

Les vêtements de protection au sens générique comprennent tous les éléments d'un ensemble de protection (par exemple, vêtements, gants et bottes). Ainsi, les vêtements de protection peuvent inclure tout, d'un doigtier offrant une protection contre les coupures de papier à une combinaison entièrement encapsulante avec un appareil respiratoire autonome utilisé pour une intervention d'urgence en cas de déversement de produits chimiques dangereux.

Les vêtements de protection peuvent être faits de matériaux naturels (p. ex. coton, laine et cuir), de fibres synthétiques (p. ex. nylon) ou de divers polymères (p. ex. plastiques et caoutchoucs tels que le caoutchouc butyle, le chlorure de polyvinyle et le polyéthylène chloré). Les matériaux tissés, cousus ou autrement poreux (non résistants à la pénétration ou à la perméation des liquides) ne doivent pas être utilisés dans les situations où une protection contre un liquide ou un gaz est requise. Les tissus et matériaux poreux spécialement traités ou intrinsèquement ininflammables sont couramment utilisés pour la protection contre les embrasements électriques et les arcs électriques (par exemple, dans l'industrie pétrochimique), mais ne fournissent généralement pas de protection contre une exposition régulière à la chaleur. Il convient de noter ici que la lutte contre l'incendie nécessite des vêtements spécialisés qui offrent une résistance aux flammes (brûlure), une barrière contre l'eau et une isolation thermique (protection contre les températures élevées). Certaines applications spéciales nécessitent également une protection infrarouge (IR) par l'utilisation de revêtements aluminisés (par exemple, la lutte contre les incendies de carburant pétrolier). Le tableau 2 résume les exigences typiques en matière de performances physiques, chimiques et biologiques et les matériaux de protection courants utilisés pour la protection contre les dangers.

Tableau 2. Exigences communes en matière de performances physiques, chimiques et biologiques

Danger

Caractéristique de performance requise

Matériaux courants des vêtements de protection

Thermique

Valeur d'isolation

Coton épais ou autres tissus naturels

Incendie

Isolation et résistance aux flammes

Gants aluminisés; gants traités ignifuges ; fibre d'aramide et autres tissus spéciaux

Abrasion mécanique

Résistance à l'abrasion ; résistance à la traction

Tissus lourds; cuir

Coupures et crevaisons

Résistance aux coupures

Treillis métallique; fibre de polyamide aromatique et autres tissus spéciaux

Chimique/toxicologique

Résistance à la perméation

Matériaux polymères et élastomères ; (y compris latex)

Dentisterie Biologique

"Etanche" ; (résistant à la perforation)

 

Radiologique

Généralement résistance à l'eau ou résistance aux particules (pour les radionucléides)

 

 

Les configurations des vêtements de protection varient considérablement en fonction de l'utilisation prévue. Cependant, les composants normaux sont analogues aux vêtements personnels (c.-à-d. pantalons, veste, capuchon, bottes et gants) pour la plupart des risques physiques. Les articles à usage spécial pour des applications telles que la résistance aux flammes dans les industries impliquant le traitement des métaux en fusion peuvent inclure des jambières, des brassards et des tabliers construits à la fois avec des fibres et des matériaux naturels et synthétiques traités et non traités (un exemple historique serait l'amiante tissé). Les vêtements de protection chimique peuvent être plus spécialisés en termes de construction, comme le montrent les figures 1 et 2.

Figure 1. Un travailleur portant des gants et un vêtement de protection chimique versant des produits chimiques

PPE070F3

Figure 2. Deux travailleurs portant différentes configurations de vêtements de protection contre les produits chimiques

PPE070F5

Les gants de protection chimique sont généralement disponibles dans une grande variété de polymères et de combinaisons ; certains gants en coton, par exemple, sont enduits du polymère d'intérêt (au moyen d'un procédé de trempage). (Voir figure 3). Certains des nouveaux «gants» en aluminium et multilaminés ne sont que bidimensionnels (plats) - et ont donc certaines contraintes ergonomiques, mais sont très résistants aux produits chimiques. Ces gants fonctionnent généralement mieux lorsqu'un gant extérieur en polymère moulant est porté par-dessus le gant plat intérieur (cette technique est appelée double gantage) pour conformer le gant intérieur à la forme des mains. Les gants en polymère sont disponibles dans une grande variété d'épaisseurs allant du poids très léger (<2 mm) au poids lourd (>5 mm) avec et sans doublures intérieures ou substrats (appelés canevas). Les gants sont également couramment disponibles dans une variété de longueurs allant d'environ 30 centimètres pour la protection des mains à des gantelets d'environ 80 centimètres, s'étendant de l'épaule du travailleur jusqu'au bout de la main. Le choix correct de la longueur dépend de l'étendue de la protection requise ; cependant, la longueur devrait normalement être suffisante pour s'étendre au moins jusqu'aux poignets du travailleur afin d'empêcher le drainage dans le gant. (Voir figure 4).

Figure 3. Différents types de gants résistants aux produits chimiques

DISPARU

Figure 4. Gants en fibres naturelles ; illustre également une longueur suffisante pour la protection du poignet

PPE070F7

Les bottes sont disponibles dans une grande variété de longueurs allant de la longueur des hanches à celles qui ne couvrent que le bas du pied. Les bottes de protection contre les produits chimiques ne sont disponibles que dans un nombre limité de polymères car elles nécessitent un degré élevé de résistance à l'abrasion. Les polymères et caoutchoucs couramment utilisés dans la construction de bottes résistantes aux produits chimiques comprennent le PVC, le caoutchouc butyle et le caoutchouc néoprène. Des bottes laminées spécialement construites utilisant d'autres polymères peuvent également être obtenues mais sont assez chères et en quantité limitée à l'échelle internationale à l'heure actuelle.

Les vêtements de protection contre les produits chimiques peuvent être obtenus sous la forme d'un vêtement monobloc entièrement encapsulant (étanche aux gaz) avec des gants et des bottes attachés ou sous la forme de plusieurs composants (par exemple, pantalon, veste, cagoule, etc.). Certains matériaux de protection utilisés pour la construction d'ensembles auront plusieurs couches ou lamelles. Les matériaux en couches sont généralement requis pour les polymères qui n'ont pas une intégrité physique inhérente et des propriétés de résistance à l'abrasion suffisamment bonnes pour permettre la fabrication et l'utilisation comme vêtement ou gant (par exemple, le caoutchouc butyle par rapport au Teflon®). Les tissus de support courants sont le nylon, le polyester, les aramides et la fibre de verre. Ces substrats sont revêtus ou stratifiés par des polymères tels que le chlorure de polyvinyle (PVC), le Téflon®, le polyuréthane et le polyéthylène.

Au cours de la dernière décennie, il y a eu une énorme croissance de l'utilisation de polyéthylène non tissé et de matériaux microporeux pour la construction de combinaisons jetables. Ces costumes filés-collés, parfois appelés à tort « costumes en papier », sont fabriqués à l'aide d'un procédé spécial dans lequel les fibres sont liées ensemble plutôt que tissées. Ces vêtements de protection sont peu coûteux et très légers. Les matériaux microporeux non enduits (appelés "respirants" car ils permettent une certaine transmission de la vapeur d'eau et sont donc moins stressants à la chaleur) et les vêtements non tissés ont de bonnes applications comme protection contre les particules mais ne sont normalement pas résistants aux produits chimiques ou aux liquides. Les vêtements spun-bonded sont également disponibles avec divers revêtements tels que le polyéthylène et le Saranex®. Selon les caractéristiques du revêtement, ces vêtements peuvent offrir une bonne résistance chimique à la plupart des substances courantes.

Approbation, certification et normes

La disponibilité, la construction et la conception des vêtements de protection varient considérablement à travers le monde. Comme on pouvait s'y attendre, les systèmes d'approbation, les normes et les certifications varient également. Néanmoins, il existe des normes volontaires de performance similaires aux États-Unis (par exemple, American Society for Testing and Materials—ASTM—normes), en Europe (Comité européen de normalisation—CEN—normes) et dans certaines parties de l'Asie (normes locales telles que comme au Japon). Le développement de normes de performance mondiales a commencé par le biais du Comité technique 94 de l'Organisation internationale de normalisation pour les vêtements et équipements de protection individuelle. De nombreuses normes et méthodes d'essai pour mesurer les performances développées par ce groupe étaient basées soit sur les normes CEN, soit sur celles d'autres pays comme les États-Unis par le biais de l'ASTM.

Aux États-Unis, au Mexique et dans la majeure partie du Canada, aucune certification ou approbation n'est requise pour la plupart des vêtements de protection. Des exceptions existent pour les applications spéciales telles que les vêtements des applicateurs de pesticides (régis par les exigences d'étiquetage des pesticides). Néanmoins, de nombreuses organisations publient des normes volontaires, telles que l'ASTM mentionnée précédemment, la National Fire Protection Association (NFPA) aux États-Unis et l'Organisation canadienne de normalisation (CSO) au Canada. Ces normes volontaires affectent de manière significative la commercialisation et la vente de vêtements de protection et agissent donc comme des normes obligatoires.

En Europe, la fabrication d'équipements de protection individuelle est réglementée par la directive communautaire européenne 89/686/CEE. Cette directive définit à la fois les produits qui relèvent du champ d'application de la directive et les classe en différentes catégories. Pour les catégories d'équipements de protection où le risque n'est pas minime et où l'utilisateur ne peut pas identifier facilement le danger, l'équipement de protection doit répondre aux normes de qualité et de fabrication détaillées dans la directive.

Aucun produit d'équipement de protection ne peut être vendu dans la Communauté européenne s'il ne porte pas le marquage CE (Communauté européenne). Les exigences de test et d'assurance qualité doivent être respectées pour recevoir le marquage CE.

Capacités et besoins individuels

Dans tous les cas, sauf quelques-uns, l'ajout de vêtements et d'équipements de protection diminuera la productivité et augmentera l'inconfort des travailleurs. Cela peut également entraîner une diminution de la qualité, car les taux d'erreur augmentent avec l'utilisation de vêtements de protection. Pour les vêtements de protection contre les produits chimiques et certains vêtements ignifuges, certaines directives générales doivent être prises en compte concernant les conflits inhérents entre le confort, l'efficacité et la protection des travailleurs. Premièrement, plus la barrière est épaisse, mieux c'est (augmente le temps de percée ou offre une meilleure isolation thermique); cependant, plus la barrière est épaisse, plus elle diminue la facilité de mouvement et le confort de l'utilisateur. Des barrières plus épaisses augmentent également le potentiel de stress thermique. Deuxièmement, les barrières qui ont une excellente résistance chimique ont tendance à augmenter le niveau d'inconfort et de stress thermique du travailleur car la barrière agira normalement aussi comme une barrière à la transmission de la vapeur d'eau (c'est-à-dire la transpiration). Troisièmement, plus la protection globale des vêtements est élevée, plus une tâche donnée prendra de temps à accomplir et plus le risque d'erreurs sera élevé. Il existe également quelques tâches où l'utilisation de vêtements de protection pourrait augmenter certaines classes de risque (par exemple, autour de machines en mouvement, où le risque de stress thermique est supérieur au risque chimique). Bien que cette situation soit rare, elle doit être considérée.

D'autres problèmes sont liés aux limitations physiques imposées par l'utilisation de vêtements de protection. Par exemple, un travailleur muni d'une paire de gants épais ne sera pas en mesure d'effectuer facilement des tâches nécessitant un degré élevé de dextérité et des mouvements répétitifs. Comme autre exemple, un peintre au pistolet dans une combinaison totalement encapsulante ne pourra généralement pas regarder sur le côté, vers le haut ou vers le bas, car généralement le respirateur et la visière de la combinaison restreignent le champ de vision dans ces configurations de combinaison. Ce ne sont là que quelques exemples des restrictions ergonomiques associées au port de vêtements et d'équipements de protection.

La situation de travail doit toujours être prise en compte dans le choix des vêtements de protection pour le travail. La solution optimale consiste à sélectionner le niveau minimum de vêtements et d'équipement de protection nécessaire pour effectuer le travail en toute sécurité.

Éducation et formation

Une éducation et une formation adéquates pour les utilisateurs de vêtements de protection sont essentielles. La formation et l'éducation devraient inclure :

  • la nature et l'étendue des risques
  • les conditions dans lesquelles les vêtements de protection doivent être portés
  • quels vêtements de protection sont nécessaires
  • l'utilisation et les limites des vêtements de protection à attribuer
  • comment inspecter, enfiler, retirer, ajuster et porter correctement les vêtements de protection
  • procédures de décontamination, si nécessaire
  • signes et symptômes de surexposition ou de défaillance vestimentaire
  • premiers soins et procédures d'urgence
  • le stockage, la durée de vie, l'entretien et l'élimination appropriés des vêtements de protection.

 

Cette formation devrait intégrer au moins tous les éléments énumérés ci-dessus et toute autre information pertinente qui n'a pas déjà été fournie au travailleur par le biais d'autres programmes. Pour les domaines d'actualité déjà fournis au travailleur, un résumé de rappel doit toujours être fourni à l'utilisateur de vêtements. Par exemple, si les signes et symptômes de surexposition ont déjà été signalés aux travailleurs dans le cadre de leur formation pour travailler avec des produits chimiques, les symptômes qui résultent d'expositions cutanées importantes par rapport à l'inhalation doivent être à nouveau soulignés. Enfin, les travailleurs devraient avoir la possibilité d'essayer les vêtements de protection pour un travail particulier avant qu'une sélection finale ne soit faite.

La connaissance du danger et des limites des vêtements de protection réduit non seulement le risque pour le travailleur, mais fournit également au professionnel de la santé et de la sécurité un travailleur capable de fournir une rétroaction sur l'efficacité de l'équipement de protection.

Entretien

Le stockage, l'inspection, le nettoyage et la réparation appropriés des vêtements de protection sont importants pour la protection globale fournie par les produits à l'utilisateur.

Certains vêtements de protection auront des limitations de stockage telles qu'une durée de conservation prescrite ou une protection requise contre les rayons UV (par exemple, la lumière du soleil, les éclairs de soudage, etc.), l'ozone, l'humidité, les températures extrêmes ou la prévention du pliage du produit. Par exemple, les produits en caoutchouc naturel nécessitent généralement toutes les mesures de précaution que nous venons d'énumérer. Comme autre exemple, de nombreuses combinaisons en polymère d'encapsulation peuvent être endommagées si elles sont pliées plutôt que laissées pendre debout. Le fabricant ou le distributeur doit être consulté pour toute limitation de stockage de leurs produits.

L'inspection des vêtements de protection doit être effectuée par l'utilisateur sur une base fréquente (par exemple, à chaque utilisation). L'inspection par des collègues est une autre technique qui peut être utilisée pour impliquer les porteurs dans l'assurance de l'intégrité des vêtements de protection qu'ils doivent utiliser. En tant que politique de gestion, il est également conseillé d'exiger des superviseurs qu'ils inspectent les vêtements de protection (à des intervalles appropriés) qui sont utilisés régulièrement. Les critères d'inspection dépendront de l'utilisation prévue de l'article de protection ; cependant, il comprendrait normalement un examen des déchirures, des trous, des imperfections et de la dégradation. À titre d'exemple de technique d'inspection, les gants en polymère utilisés pour la protection contre les liquides doivent être gonflés à l'air pour vérifier leur intégrité contre les fuites.

Le nettoyage des vêtements de protection destinés à être réutilisés doit être effectué avec soin. Les tissus naturels peuvent être nettoyés par des méthodes de lavage normales s'ils ne sont pas contaminés par des matériaux toxiques. Les procédures de nettoyage adaptées aux fibres et matériaux synthétiques sont généralement limitées. Par exemple, certains produits traités pour résister aux flammes perdront leur efficacité s'ils ne sont pas correctement nettoyés. Les vêtements utilisés pour la protection contre les produits chimiques qui ne sont pas solubles dans l'eau ne peuvent souvent pas être décontaminés par simple lavage avec du savon ou un détergent et de l'eau. Les tests effectués sur les vêtements des applicateurs de pesticides indiquent que les procédures de lavage normales ne sont pas efficaces pour de nombreux pesticides. Le nettoyage à sec est déconseillé du tout car il est souvent inefficace et peut dégrader ou contaminer le produit. Il est important de consulter le fabricant ou le distributeur des vêtements avant de tenter des procédures de nettoyage qui ne sont pas spécifiquement connues pour être sûres et réalisables.

La plupart des vêtements de protection ne sont pas réparables. Des réparations peuvent être effectuées sur quelques articles tels que des combinaisons en polymère entièrement encapsulantes. Cependant, le fabricant doit être consulté pour les procédures de réparation appropriées.

Utilisation et mauvaise utilisation

Utilisez. Avant tout, la sélection et l'utilisation correcte des vêtements de protection doivent être basées sur une évaluation des risques liés à la tâche pour laquelle la protection est requise. À la lumière de l'évaluation, une définition précise des exigences de performance et des contraintes ergonomiques du poste peut être déterminée. Enfin, une sélection qui équilibre la protection des travailleurs, la facilité d'utilisation et le coût peut être faite.

Une approche plus formelle consisterait à développer un programme modèle écrit, une méthode qui réduirait le risque d'erreur, augmenterait la protection des travailleurs et établirait une approche cohérente pour la sélection et l'utilisation des vêtements de protection. Un programme modèle pourrait contenir les éléments suivants :

  1. un schéma d'organisation et un plan administratif
  2. une méthodologie d'évaluation des risques
  3. une évaluation des autres options de contrôle pour protéger le travailleur
  4. critères de performance pour les vêtements de protection
  5. critères et procédures de sélection pour déterminer le choix optimal
  6. spécifications d'achat des vêtements de protection
  7. un plan de validation de la sélection effectuée
  8. critères de décontamination et de réutilisation, le cas échéant
  9. un programme de formation des utilisateurs
  10. 10.un plan d'audit pour s'assurer que les procédures sont systématiquement suivies.

 

Abuser. Il existe plusieurs exemples d'utilisation abusive de vêtements de protection que l'on peut couramment observer dans l'industrie. Une mauvaise utilisation est généralement le résultat d'un manque de compréhension des limites des vêtements de protection de la part de la direction, des travailleurs ou des deux. Un exemple clair de mauvaise pratique est l'utilisation de vêtements de protection non ignifuges pour les travailleurs qui manipulent des solvants inflammables ou qui travaillent dans des situations où des flammes nues, des charbons ardents ou des métaux en fusion sont présents. Les vêtements de protection faits de matériaux polymères tels que le polyéthylène peuvent favoriser la combustion et peuvent même fondre dans la peau, provoquant une brûlure encore plus grave.

Un deuxième exemple courant est la réutilisation de vêtements de protection (y compris des gants) où le produit chimique a contaminé l'intérieur des vêtements de protection de sorte que le travailleur augmente son exposition à chaque utilisation ultérieure. On observe fréquemment une autre variante de ce problème lorsque les travailleurs utilisent des gants en fibres naturelles (par exemple, en cuir ou en coton) ou leurs propres chaussures personnelles pour travailler avec des produits chimiques liquides. Si des produits chimiques sont renversés sur les fibres naturelles, ils seront retenus pendant de longues périodes et migreront vers la peau elle-même. Une autre variante de ce problème consiste à rapporter à la maison des vêtements de travail contaminés pour les nettoyer. Cela peut entraîner l'exposition de toute une famille à des produits chimiques nocifs, un problème courant car les vêtements de travail sont généralement nettoyés avec les autres vêtements de la famille. Étant donné que de nombreux produits chimiques ne sont pas solubles dans l'eau, ils peuvent se propager à d'autres vêtements simplement par action mécanique. Plusieurs cas de cette propagation de contaminants ont été constatés, notamment dans les industries qui fabriquent des pesticides ou traitent des métaux lourds (par exemple, empoisonnement des familles de travailleurs manipulant du mercure et du plomb). Ce ne sont là que quelques-uns des exemples les plus frappants d'utilisation abusive de vêtements de protection. Ces problèmes peuvent être surmontés en comprenant simplement l'utilisation appropriée et les limites des vêtements de protection. Ces informations doivent être facilement disponibles auprès du fabricant et des experts en santé et sécurité.

 

Retour

Lire 10792 fois Dernière modification le jeudi 13 octobre 2011 20:44

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références de protection personnelle

Association américaine d'hygiène industrielle (AIHA). 1991. Protection respiratoire : un manuel et des lignes directrices. Fairfax, Virginie : AIHA.

Institut national américain de normalisation (ANSI). 1974. Méthode de mesure de la protection de l'oreille réelle des protecteurs auditifs et de l'atténuation physique des cache-oreilles. Document n° S3.19-1974 (ASA Std 1-1975). New York : ANSI.

—. 1984. Méthode de mesure de l'atténuation de l'oreille réelle des protecteurs auditifs. Document n° S12.6-1984 (ASA STD55-1984). New York : ANSI.

—. 1989. Pratique pour la protection professionnelle et éducative des yeux et du visage. Document n° ANSI Z 87.1-1989. New York : ANSI.

—. 1992. Norme nationale américaine de protection respiratoire. Document n° ANSI Z 88.2. New York : ANSI.

Berger, EH. 1988. Protecteurs auditifs - Spécifications, montage, utilisation et performances. Dans Hearing Conservation in Industry, Schools and the Military, édité par DM Lipscomb. Boston: College-Hill Press.

—. 1991. HPD à réponse plate, à atténuation modérée et dépendant du niveau : comment ils fonctionnent et ce qu'ils peuvent faire pour vous. Spectre 8 Suppl. 1:17.

Berger, EH, JR Franks et F Lindgren. 1996. Revue internationale des études de terrain sur l'atténuation des protecteurs auditifs. Dans Actes du Cinquième Symposium International : Effets du bruit sur l'audition, édité par A Axelsson, H Borchgrevink, L Hellstrom, RP Hamernik, D Henderson et RJ Salvi. New York : Thieme Medical.

Berger, EH, JE Kerivan et F Mintz. 1982. Variabilité inter-laboratoires dans la mesure de l'atténuation des protections auditives. J Sound Vibrat 16(1):14-19.

Institut britannique de normalisation (BSI). 1994. Protecteurs auditifs - Recommandations pour la sélection, l'utilisation, l'entretien et la maintenance - Document d'orientation. Document n° BSI EN 458:1994. Londres : BSI.

Bureau des statistiques du travail. 1980. Rapport sur les blessures au travail - Un rapport administratif sur les accidents impliquant des blessures aux pieds. Washington, DC : Bureau des statistiques du travail, ministère du Travail.

Comité européen de normalisation (CEN). 1993. Casques de sécurité industrielle. Norme européenne EN 397-1993. Bruxelles : CEN.

Communauté économique européenne (CEE). 1989. Directive 89/686/CEE sur le rapprochement des législations des États membres relatives aux équipements de protection individuelle. Luxembourg : CEE.

Norme européenne (EN). 1995. Spécification pour les filtres de soudage à transmission lumineuse commutable et les filtres de soudage à double transmission lumineuse. Projet final réf. non. pr EN 379 : 1993E.

Registre fédéral. 1979. Exigences d'étiquetage du bruit pour les protecteurs auditifs. Nourris. s'inscrire. 44 (190), 40 CFR, partie 211 : 56130-56147. Washington, DC : GPO.

—. 1983. Exposition professionnelle au bruit : amendement sur la conservation de l'ouïe : règle finale. Registre de la Fed. 48 (46) : 9738-9785. Washington, DC : GPO.

—. 1994. Protection respiratoire. Registre de la Fed. Titre 29, partie 1910, sous-partie 134. Washington, DC : GPO.

Francs, JR. 1988. Nombre de travailleurs exposés au bruit professionnel. Sem Hearing 9(4):287-298, édité par W. Melnick.

Franks, JR, CL Themann et C Sherris. 1995. Compendium NIOSH des dispositifs de protection auditive. Numéro de parution 95-105. Cincinnati, Ohio : NIOSH.

Organisation internationale de normalisation (ISO). 1977. Casques de sécurité industrielle. ISO 3873. Genève : ISO.

—. 1979. Protecteurs oculaires personnels pour le soudage et les techniques connexes - Filtres - Exigences d'utilisation et de transmission. Norme internationale ISO 4850. Genève : ISO.

—. 1981. Protecteurs oculaires personnels – Filtres et protecteurs oculaires contre le rayonnement laser. ISO 6161-1981. Genève : ISO.

—. 1990. Acoustique - Protecteurs auditifs - Partie 1 : Méthode subjective de mesure de l'atténuation sonore. ISO 4869-1:1990(E). Genève : ISO.

—. 1994. Acoustique - Protecteurs auditifs - Partie 2 : Estimation des niveaux de pression acoustique efficaces pondérés A lorsque des protecteurs auditifs sont portés. ISO 4869-2:1994(E). Genève : ISO.

Luz, J, S Melamed, T Najenson, N Bar et MS Green. 1991. L'indice structuré du niveau de stress ergonomique (ESL) en tant que facteur prédictif des accidents et des congés de maladie chez les employés industriels de sexe masculin. Dans Actes de la conférence ICCEF 90, édité par L Fechter. Baltimore : ICCEF.

Marais, JL. 1984. Évaluation du test d'ajustement qualitatif à la saccharine pour les respirateurs. Am Ind Hyg Assoc J 45(6):371-376.

Miura, T. 1978. Chaussures et hygiène des pieds (en japonais). Tokyo : Bureau d'édition Bunka.

—. 1983. Protection des yeux et du visage. Dans Encyclopaedia of Occupational Health and Safety, 3e édition. Genève : OIT.

Institut national pour la sécurité et la santé au travail (NIOSH). 1987. NIOSH Respirator Decision Logic. Cincinnati, Ohio : NIOSH, Division de l'élaboration des normes et du transfert de technologie.

Conseil national de sécurité. Nd Safety Hats, Fiche technique 1-561 Rev 87. Chicago : National Safety Council.

Nelson, TJ, OT Skredtvedt, JL Loschiavo et SW Dixon. 1984. Développement d'un test d'ajustement qualitatif amélioré utilisant l'acétate d'isoamyle. J Int Soc Respir Prot 2(2):225-248.

Nixon, CW et EH Berger. 1991. Dispositifs de protection auditive. Dans Handbook of Acoustical Measurements and Noise Control, édité par CM Harris. New York : McGraw Hill.

Prichard, JA. 1976. Guide de protection respiratoire industrielle. Cincinnati, Ohio : NIOSH.

Rosenstock, LR. 1995. Lettre du 13 mars 1995 de L. Rosenstock, directeur, National Institute for Occupational Safety and Health, à James R. Petrie, président du comité, Mine Safety and Health Administration, US Department of Labour.

Scalone, AA, RD Davidson et DT Brown. 1977. Développement de méthodes et de procédures d'essai pour la protection des pieds. Cincinnati, Ohio : NIOSH.