Lundi, Décembre 20 2010 19: 18

Toxicocinétique

Évaluer cet élément
(27 votes)

L'organisme humain représente un système biologique complexe à différents niveaux d'organisation, du niveau moléculaire-cellulaire aux tissus et organes. L'organisme est un système ouvert, échangeant de la matière et de l'énergie avec l'environnement par de nombreuses réactions biochimiques en équilibre dynamique. L'environnement peut être pollué ou contaminé par diverses substances toxiques.

La pénétration de molécules ou d'ions de substances toxiques provenant du milieu de travail ou de vie dans un système biologique aussi fortement coordonné peut perturber de manière réversible ou irréversible les processus biochimiques cellulaires normaux, voire blesser et détruire la cellule (voir « Lésion cellulaire et mort cellulaire »).

La pénétration d'un toxique de l'environnement vers les sites de son effet toxique à l'intérieur de l'organisme peut être divisée en trois phases :

  1. La phase d'exposition englobe tous les processus intervenant entre différents toxiques et/ou l'influence sur ceux-ci de facteurs environnementaux (lumière, température, humidité, etc.). Des transformations chimiques, une dégradation, une biodégradation (par des micro-organismes) ainsi qu'une désintégration de substances toxiques peuvent se produire.
  2. La phase toxicocinétique englobe l'absorption des substances toxiques dans l'organisme et tous les processus qui suivent le transport par les fluides corporels, la distribution et l'accumulation dans les tissus et les organes, la biotransformation en métabolites et l'élimination (excrétion) des substances toxiques et/ou des métabolites de l'organisme.
  3. La phase toxicodynamique fait référence à l'interaction de substances toxiques (molécules, ions, colloïdes) avec des sites d'action spécifiques sur ou à l'intérieur des cellules, les récepteurs, produisant finalement un effet toxique.

 

Ici, nous concentrerons notre attention exclusivement sur les processus toxicocinétiques à l'intérieur de l'organisme humain suite à une exposition à des substances toxiques dans l'environnement.

Les molécules ou les ions de toxiques présents dans l'environnement vont pénétrer dans l'organisme par la peau et les muqueuses, ou les cellules épithéliales des voies respiratoires et gastro-intestinales, selon le point d'entrée. Cela signifie que les molécules et les ions de substances toxiques doivent pénétrer à travers les membranes cellulaires de ces systèmes biologiques, ainsi qu'à travers un système complexe d'endomembranes à l'intérieur de la cellule.

Tous les processus toxicocinétiques et toxicodynamiques se produisent au niveau moléculaire-cellulaire. De nombreux facteurs influencent ces processus et ceux-ci peuvent être divisés en deux groupes de base :

  • constitution chimique et propriétés physico-chimiques des substances toxiques
  • structure de la cellule, en particulier les propriétés et la fonction des membranes autour de la cellule et de ses organites internes.

 

Propriétés physico-chimiques des toxiques

En 1854, le toxicologue russe EV Pelikan a commencé des études sur la relation entre la structure chimique d'une substance et son activité biologique - la relation structure-activité (SAR). La structure chimique détermine directement les propriétés physico-chimiques, dont certaines sont responsables de l'activité biologique.

Pour définir la structure chimique, de nombreux paramètres peuvent être sélectionnés comme descripteurs, qui peuvent être divisés en différents groupes :

1. Physico-chimique :

  • général — point de fusion, point d'ébullition, pression de vapeur, constante de dissociation (pKa)
  • électrique - potentiel d'ionisation, constante diélectrique, moment dipolaire, masse: rapport de charge, etc.
  • chimie quantique - charge atomique, énergie de liaison, énergie de résonance, densité électronique, réactivité moléculaire, etc.

 

 2. Stérique : volume moléculaire, forme et surface, forme de la sous-structure, réactivité moléculaire, etc.
 3. De construction: nombre de liaisons nombre de cycles (dans les composés polycycliques), degré de ramification, etc.

 

Pour chaque substance toxique, il est nécessaire de sélectionner un ensemble de descripteurs liés à un mécanisme d'activité particulier. Cependant, du point de vue toxicocinétique, deux paramètres sont d'une importance générale pour tous les toxiques :

  • Le coefficient de partage de Nernst (P) établit la solubilité des molécules toxiques dans le système octanol (huile)-eau à deux phases, en corrélation avec leur lipo- ou hydrosolubilité. Ce paramètre va grandement influencer la distribution et l'accumulation des molécules toxiques dans l'organisme.
  • La constante de dissociation (pKa) définit le degré d'ionisation (dissociation électrolytique) des molécules d'un toxique en cations et anions chargés à un pH particulier. Cette constante représente le pH auquel 50 % d'ionisation est atteint. Les molécules peuvent être lipophiles ou hydrophiles, mais les ions sont solubles exclusivement dans l'eau des fluides corporels et des tissus. Connaître pKa il est possible de calculer le degré d'ionisation d'une substance pour chaque pH en utilisant l'équation de Henderson-Hasselbach.

 

Pour les poussières et aérosols inhalés, la taille, la forme, la surface et la densité des particules influencent également leur toxicocinétique et leur toxicodynamique.

Structure et propriétés des membranes

La cellule eucaryote des organismes humains et animaux est entourée d'une membrane cytoplasmique régulant le transport des substances et maintenant l'homéostasie cellulaire. Les organites cellulaires (noyau, mitochondries) possèdent également des membranes. Le cytoplasme cellulaire est compartimenté par des structures membraneuses complexes, le réticulum endoplasmique et le complexe de Golgi (endomembranes). Toutes ces membranes sont structurellement similaires, mais varient dans la teneur en lipides et en protéines.

L'armature structurale des membranes est une bicouche de molécules lipidiques (phospholipides, sphyngolipides, cholestérol). Le squelette d'une molécule de phospholipide est le glycérol avec deux de ses groupes -OH estérifiés par des acides gras aliphatiques de 16 à 18 atomes de carbone, et le troisième groupe estérifié par un groupe phosphate et un composé azoté (choline, éthanolamine, sérine). Dans les sphyngolipides, la sphyngosine est la base.

La molécule lipidique est amphipatique car elle est constituée d'une « tête » polaire hydrophile (alcool aminé, phosphate, glycérol) et d'une « queue » jumelle non polaire (acides gras). La bicouche lipidique est disposée de sorte que les têtes hydrophiles constituent la surface externe et interne de la membrane et les queues lipophiles sont étirées vers l'intérieur de la membrane, qui contient de l'eau, divers ions et molécules.

Les protéines et les glycoprotéines sont insérées dans la bicouche lipidique (protéines intrinsèques) ou fixées à la surface de la membrane (protéines extrinsèques). Ces protéines contribuent à l'intégrité structurelle de la membrane, mais elles peuvent également jouer le rôle d'enzymes, de transporteurs, de parois de pores ou de récepteurs.

La membrane représente une structure dynamique qui peut être désintégrée et reconstruite avec une proportion différente de lipides et de protéines, selon les besoins fonctionnels.

La régulation du transport des substances dans et hors de la cellule représente l'une des fonctions de base des membranes externes et internes.

Certaines molécules lipophiles traversent directement la bicouche lipidique. Les molécules hydrophiles et les ions sont transportés via les pores. Les membranes réagissent aux conditions changeantes en ouvrant ou en scellant certains pores de différentes tailles.

Les processus et mécanismes suivants sont impliqués dans le transport de substances, y compris les substances toxiques, à travers les membranes :

  • diffusion à travers la bicouche lipidique
  • diffusion à travers les pores
  • transport par un vecteur (diffusion facilitée).

 

Processus actifs :

  • transport actif par un transporteur
  • endocytose (pinocytose).

 

La diffusion

Cela représente le mouvement des molécules et des ions à travers la bicouche lipidique ou les pores d'une région à forte concentration, ou potentiel électrique élevé, vers une région à faible concentration ou potentiel ("en descente"). La différence de concentration ou de charge électrique est la force motrice qui influence l'intensité du flux dans les deux sens. Dans l'état d'équilibre, l'afflux sera égal à l'efflux. Le taux de diffusion suit la loi de Ficke, indiquant qu'il est directement proportionnel à la surface disponible de la membrane, à la différence de gradient de concentration (charge) et au coefficient de diffusion caractéristique, et inversement proportionnel à l'épaisseur de la membrane.

Les petites molécules lipophiles traversent facilement la couche lipidique de la membrane, selon le coefficient de partage de Nernst.

Les grosses molécules lipophiles, les molécules hydrosolubles et les ions utiliseront des canaux de pores aqueux pour leur passage. La taille et la stéréoconfiguration influenceront le passage des molécules. Pour les ions, outre la taille, le type de charge sera déterminant. Les molécules de protéines des parois des pores peuvent acquérir une charge positive ou négative. Les pores étroits ont tendance à être sélectifs - les ligands chargés négativement ne permettront le passage qu'aux cations, et les ligands chargés positivement ne permettront le passage qu'aux anions. Avec l'augmentation du diamètre des pores, le flux hydrodynamique est dominant, permettant le libre passage des ions et des molécules, selon la loi de Poiseuille. Cette filtration est une conséquence du gradient osmotique. Dans certains cas, les ions peuvent pénétrer à travers des molécules complexes spécifiques—ionophores—qui peuvent être produits par des micro-organismes à effet antibiotique (nonactine, valinomycine, gramacidine, etc.).

Diffusion facilitée ou catalysée

Cela nécessite la présence d'un transporteur dans la membrane, généralement une molécule de protéine (perméase). Le support lie sélectivement les substances, ressemblant à un complexe substrat-enzyme. Des molécules similaires (y compris des substances toxiques) peuvent entrer en compétition pour le support spécifique jusqu'à ce que son point de saturation soit atteint. Les substances toxiques peuvent concourir pour le transporteur et lorsqu'elles y sont liées de manière irréversible, le transport est bloqué. Le tarif du transport est caractéristique pour chaque type de transporteur. Si le transport s'effectue dans les deux sens, on parle d'échange diffusion.

Transport actif

Pour le transport de certaines substances vitales pour la cellule, un type spécial de transporteur est utilisé, transportant contre le gradient de concentration ou le potentiel électrique ("en montée"). Le porteur est très stéréospécifique et peut être saturé.

Pour le transport en montée, il faut de l'énergie. L'énergie nécessaire est obtenue par clivage catalytique des molécules d'ATP en ADP par l'enzyme adénosine triphosphatase (ATP-ase).

Les toxiques peuvent interférer avec ce transport par inhibition compétitive ou non compétitive du transporteur ou par inhibition de l'activité ATP-ase.

Endocytose

Endocytose est défini comme un mécanisme de transport dans lequel la membrane cellulaire encercle le matériau en se repliant pour former une vésicule le transportant à travers la cellule. Lorsque le matériau est liquide, le processus est appelé pinocytose. Dans certains cas, le matériau est lié à un récepteur et ce complexe est transporté par une vésicule membranaire. Ce type de transport est notamment utilisé par les cellules épithéliales du tractus gastro-intestinal, et les cellules du foie et des reins.

Absorption de substances toxiques

Les personnes sont exposées à de nombreuses substances toxiques présentes dans l'environnement de travail et de vie, qui peuvent pénétrer dans l'organisme humain par trois principales portes d'entrée :

  • via les voies respiratoires par inhalation d'air pollué
  • via le tractus gastro-intestinal par ingestion d'aliments, d'eau et de boissons contaminés
  • à travers la peau par pénétration cutanée cutanée.

 

Dans le cas de l'exposition dans l'industrie, l'inhalation représente la principale voie d'entrée des toxiques, suivie de la pénétration cutanée. En agriculture, l'exposition aux pesticides par absorption cutanée est presque égale aux cas d'inhalation et de pénétration cutanée combinées. La population générale est principalement exposée par ingestion d'aliments, d'eau et de boissons contaminés, puis par inhalation et moins souvent par pénétration cutanée.

Absorption par les voies respiratoires

L'absorption dans les poumons représente la principale voie d'absorption de nombreux toxiques atmosphériques (gaz, vapeurs, émanations, brouillards, fumées, poussières, aérosols, etc.).

Les voies respiratoires (RT) représentent un système d'échange de gaz idéal possédant une membrane d'une surface de 30m2 (expiration) à 100m2 (inspiration profonde), derrière laquelle se situe un réseau d'environ 2,000 XNUMX km de capillaires. Le système, développé au fil de l'évolution, est logé dans un espace relativement petit (cavité thoracique) protégé par des côtes.

Anatomiquement et physiologiquement, la RT peut être divisée en trois compartiments :

  • la partie supérieure du RT, ou nasopharyngé (NP), commençant aux narines du nez et s'étendant jusqu'au pharynx et au larynx ; cette partie sert de système de climatisation
  • l'arbre trachéo-bronchique (TB), englobant de nombreux tubes de différentes tailles, qui amènent l'air aux poumons
  • le compartiment pulmonaire (P), constitué de millions d'alvéoles (sacs à air) disposés en grappes de raisin.

 

Les toxiques hydrophiles sont facilement absorbés par l'épithélium de la région nasopharyngée. L'ensemble de l'épithélium des régions NP et TB est recouvert d'un film d'eau. Les toxiques lipophiles sont partiellement absorbés dans le NP et le TB, mais surtout dans les alvéoles par diffusion à travers les membranes alvéolo-capillaires. Le taux d'absorption dépend de la ventilation pulmonaire, du débit cardiaque (flux sanguin dans les poumons), de la solubilité du toxique dans le sang et de son taux métabolique.

Dans les alvéoles, des échanges gazeux s'effectuent. La paroi alvéolaire est constituée d'un épithélium, d'une trame interstitielle de membrane basale, de tissu conjonctif et de l'endothélium capillaire. La diffusion des toxiques est très rapide à travers ces couches qui ont une épaisseur d'environ 0.8 μm. Dans les alvéoles, le toxique est transféré de la phase air à la phase liquide (sang). Le taux d'absorption (distribution air-sang) d'un toxique dépend de sa concentration dans l'air alvéolaire et du coefficient de partage de Nernst pour le sang (coefficient de solubilité).

Dans le sang, le toxique peut être dissous dans la phase liquide par de simples processus physiques ou lié aux cellules sanguines et/ou aux constituants du plasma selon l'affinité chimique ou par adsorption. La teneur en eau du sang est de 75% et, par conséquent, les gaz et vapeurs hydrophiles présentent une solubilité élevée dans le plasma (par exemple, les alcools). Les toxiques lipophiles (par exemple, le benzène) sont généralement liés aux cellules ou aux macromolécules telles que l'albumine.

Dès le début de l'exposition dans les poumons, deux processus opposés se produisent : l'absorption et la désorption. L'équilibre entre ces processus dépend de la concentration de toxique dans l'air et le sang alvéolaires. Au début de l'exposition, la concentration de toxique dans le sang est de 0 et la rétention dans le sang est de près de 100 %. Avec la poursuite de l'exposition, un équilibre entre l'absorption et la désorption est atteint. Les toxiques hydrophiles atteindront rapidement l'équilibre, et le taux d'absorption dépend de la ventilation pulmonaire plutôt que du débit sanguin. Les toxiques lipophiles ont besoin de plus de temps pour atteindre l'équilibre, et ici le flux de sang insaturé régit le taux d'absorption.

Le dépôt de particules et d'aérosols dans la RT dépend de facteurs physiques et physiologiques, ainsi que de la taille des particules. En bref, plus la particule est petite, plus elle pénétrera profondément dans la RT.

La faible rétention relativement constante des particules de poussière dans les poumons des personnes fortement exposées (par exemple, les mineurs) suggère l'existence d'un système très efficace d'élimination des particules. Dans la partie supérieure du RT (trachéo-bronchique) un tapis mucociliaire assure la clairance. Dans la partie pulmonaire, trois mécanismes différents sont à l'œuvre : (1) couverture mucociliaire, (2) phagocytose et (3) pénétration directe des particules à travers la paroi alvéolaire.

Les 17 premières des 23 ramifications de l'arbre trachéo-bronchique possèdent des cellules épithéliales ciliées. Par leurs coups, ces cils déplacent constamment un tapis muqueux vers la bouche. Les particules déposées sur ce tapis mucociliaire seront avalées par la bouche (ingestion). Un tapis muqueux recouvre également la surface de l'épithélium alvéolaire, se déplaçant vers le tapis mucociliaire. De plus, les cellules mobiles spécialisées - les phagocytes - engloutissent les particules et les micro-organismes dans les alvéoles et migrent dans deux directions possibles :

  • vers le tapis mucociliaire qui les transporte vers la bouche
  • à travers les espaces intercellulaires de la paroi alvéolaire jusqu'au système lymphatique des poumons ; les particules peuvent également pénétrer directement par cette voie.

 

Absorption via le tractus gastro-intestinal

Des substances toxiques peuvent être ingérées en cas d'ingestion accidentelle, d'ingestion d'aliments et de boissons contaminés ou d'ingestion de particules éliminées de la RT.

L'ensemble du tube digestif, de l'œsophage à l'anus, est fondamentalement construit de la même manière. Une couche muqueuse (épithélium) est soutenue par du tissu conjonctif puis par un réseau de capillaires et de muscles lisses. L'épithélium de surface de l'estomac est très plissé pour augmenter la surface d'absorption/sécrétion. La région intestinale contient de nombreuses petites saillies (villosités), qui sont capables d'absorber de la matière en « pompant ». La zone active d'absorption dans les intestins est d'environ 100 m2.

Dans le tractus gastro-intestinal (GIT), tous les processus d'absorption sont très actifs :

  •  transport transcellulaire par diffusion à travers la couche lipidique et/ou les pores des membranes cellulaires, ainsi que filtration des pores
  •  diffusion paracellulaire à travers les jonctions entre les cellules
  •  diffusion facilitée et transport actif
  •  l'endocytose et le mécanisme de pompage des villosités.

 

Certains ions métalliques toxiques utilisent des systèmes de transport spécialisés pour les éléments essentiels : le thallium, le cobalt et le manganèse utilisent le système du fer, tandis que le plomb semble utiliser le système du calcium.

De nombreux facteurs influencent le taux d'absorption des substances toxiques dans diverses parties du GIT :

  • les propriétés physico-chimiques des toxiques, notamment le coefficient de partage de Nernst et la constante de dissociation ; pour les particules, la taille des particules est importante - plus la taille est petite, plus la solubilité est élevée
  • quantité de nourriture présente dans le GIT (effet diluant)
  • temps de séjour dans chaque partie du GIT (de quelques minutes dans la bouche à une heure dans l'estomac à plusieurs heures dans les intestins
  • la zone d'absorption et la capacité d'absorption de l'épithélium
  • le pH local, qui régit l'absorption des toxiques dissociés ; dans le pH acide de l'estomac, les composés acides non dissociés seront plus rapidement absorbés
  • péristaltisme (mouvement des intestins par les muscles) et circulation sanguine locale
  • les sécrétions gastriques et intestinales transforment les toxiques en produits plus ou moins solubles ; la bile est un agent émulsifiant produisant des complexes plus solubles (hydrotrophie)
  • exposition combinée à d'autres substances toxiques, qui peuvent produire des effets synergiques ou antagonistes dans les processus d'absorption
  • présence d'agents complexants/chélateurs
  • l'action de la microflore de la RT (environ 1.5 kg), environ 60 espèces bactériennes différentes qui peuvent effectuer la biotransformation des toxiques.

 

Il faut aussi mentionner la circulation entérohépatique. Les toxiques polaires et/ou métabolites (glucuronides et autres conjugués) sont excrétés avec la bile dans le duodénum. Ici, les enzymes de la microflore effectuent une hydrolyse et les produits libérés peuvent être réabsorbés et transportés par la veine porte dans le foie. Ce mécanisme est très dangereux dans le cas des substances hépatotoxiques, permettant leur accumulation temporaire dans le foie.

Dans le cas de substances toxiques biotransformées dans le foie en métabolites moins toxiques ou non toxiques, l'ingestion peut représenter une porte d'entrée moins dangereuse. Après absorption dans le GIT, ces toxiques seront transportés par la veine porte vers le foie, et là ils pourront être partiellement détoxifiés par biotransformation.

Absorption par la peau (dermique, percutanée)

La peau (1.8 m2 de surface chez un humain adulte) avec les membranes muqueuses des orifices corporels, recouvre la surface du corps. Il représente une barrière contre les agents physiques, chimiques et biologiques, en maintenant l'intégrité et l'homéostasie du corps et en effectuant de nombreuses autres tâches physiologiques.

Fondamentalement, la peau se compose de trois couches : l'épiderme, la vraie peau (derme) et le tissu sous-cutané (hypoderme). Du point de vue toxicologique, l'épiderme est ici le plus intéressant. Il est constitué de plusieurs couches de cellules. Une surface cornée de cellules mortes aplaties (stratum corneum) est la couche supérieure, sous laquelle se trouve une couche continue de cellules vivantes (stratum corneum compactum), suivie d'une membrane lipidique typique, puis de stratum lucidum, stratum gramulosum et stratum muqueuse. La membrane lipidique représente une barrière protectrice, mais dans les parties pileuses de la peau, les follicules pileux et les canaux des glandes sudoripares la traversent. Par conséquent, l'absorption cutanée peut se produire par les mécanismes suivants :

  • absorption transépidermique par diffusion à travers la membrane lipidique (barrière), principalement par des substances lipophiles (solvants organiques, pesticides, etc.) et dans une moindre mesure par certaines substances hydrophiles à travers les pores
  • absorption transfolliculaire autour de la tige du poil dans le follicule pileux, en contournant la barrière membranaire ; cette absorption ne se produit que dans les zones poilues de la peau
  • absorption via les conduits des glandes sudoripares, qui ont une section transversale d'environ 0.1 à 1 % de la surface totale de la peau (l'absorption relative est dans cette proportion)
  • absorption par la peau en cas de blessure mécanique, thermique, chimique ou due à des maladies de la peau ; ici, les couches de la peau, y compris la barrière lipidique, sont perturbées et la voie est ouverte à l'entrée de substances toxiques et d'agents nocifs.

 

Le taux d'absorption à travers la peau dépendra de nombreux facteurs :

  • concentration de toxique, type de véhicule (milieu), présence d'autres substances
  • teneur en eau de la peau, pH, température, débit sanguin local, transpiration, surface de peau contaminée, épaisseur de peau
  • caractéristiques anatomiques et physiologiques de la peau dues au sexe, à l'âge, aux variations individuelles, aux différences existant dans les divers groupes ethniques et races, etc.

Transport de substances toxiques par le sang et la lymphe

Après absorption par l'une de ces portes d'entrée, les substances toxiques atteindront le sang, la lymphe ou d'autres fluides corporels. Le sang représente le principal véhicule de transport des substances toxiques et de leurs métabolites.

Le sang est un organe de circulation fluide, transportant l'oxygène et les substances vitales nécessaires aux cellules et éliminant les déchets du métabolisme. Le sang contient également des composants cellulaires, des hormones et d'autres molécules impliquées dans de nombreuses fonctions physiologiques. Le sang circule à l'intérieur d'un système circulatoire de vaisseaux sanguins à haute pression relativement bien fermé, poussé par l'activité du cœur. En raison de la haute pression, une fuite de liquide se produit. Le système lymphatique représente le système de drainage, sous la forme d'un fin maillage de petits capillaires lymphatiques à parois minces se ramifiant à travers les tissus mous et les organes.

Le sang est un mélange d'une phase liquide (plasma, 55%) et de cellules sanguines solides (45%). Le plasma contient des protéines (albumines, globulines, fibrinogène), des acides organiques (lactique, glutamique, citrique) et de nombreuses autres substances (lipides, lipoprotéines, glycoprotéines, enzymes, sels, xénobiotiques, etc.). Les éléments des cellules sanguines comprennent les érythrocytes (Er), les leucocytes, les réticulocytes, les monocytes et les plaquettes.

Les substances toxiques sont absorbées sous forme de molécules et d'ions. Certaines substances toxiques au pH sanguin forment des particules colloïdales en tant que troisième forme dans ce liquide. Les molécules, les ions et les colloïdes de substances toxiques ont diverses possibilités de transport dans le sang :

  •  être physiquement ou chimiquement lié aux éléments sanguins, principalement Er
  •  être physiquement dissous dans le plasma à l'état libre
  •  être lié à un ou plusieurs types de protéines plasmatiques, complexé avec les acides organiques ou fixé à d'autres fractions du plasma.

 

La plupart des substances toxiques présentes dans le sang existent partiellement à l'état libre dans le plasma et partiellement liées aux érythrocytes et aux constituants du plasma. La distribution dépend de l'affinité des substances toxiques avec ces constituants. Toutes les fractions sont en équilibre dynamique.

Certaines substances toxiques sont transportées par les éléments sanguins, principalement par les érythrocytes, très rarement par les leucocytes. Les toxiques peuvent être adsorbés à la surface de Er ou peuvent se lier aux ligands du stroma. S'ils pénètrent dans Er, ils peuvent se lier à l'hème (par exemple, le monoxyde de carbone et le sélénium) ou à la globine (Sb111, Petit210). Certains toxiques transportés par Er sont l'arsenic, le césium, le thorium, le radon, le plomb et le sodium. Le chrome hexavalent est exclusivement lié à l'ER et le chrome trivalent aux protéines du plasma. Pour le zinc, une compétition entre Er et le plasma se produit. Environ 96% du plomb est transporté par Er. Le mercure organique est principalement lié à Er et le mercure inorganique est transporté principalement par l'albumine plasmatique. De petites fractions de béryllium, de cuivre, de tellure et d'uranium sont transportées par Er.

La majorité des toxiques sont transportés par le plasma ou les protéines plasmatiques. De nombreux électrolytes sont présents sous forme d'ions en équilibre avec des molécules non dissociées libres ou liées aux fractions plasmatiques. Cette fraction ionique de substances toxiques est très diffusible, pénétrant à travers les parois des capillaires dans les tissus et les organes. Les gaz et les vapeurs peuvent être dissous dans le plasma.

Les protéines plasmatiques possèdent une surface totale d'environ 600 à 800 km2 offert pour l'absorption de substances toxiques. Les molécules d'albumine possèdent environ 109 ligands cationiques et 120 anioniques à la disposition des ions. De nombreux ions sont partiellement transportés par l'albumine (par exemple, le cuivre, le zinc et le cadmium), tout comme des composés tels que les dinitro- et ortho-crésols, les dérivés nitrés et halogénés d'hydrocarbures aromatiques et les phénols.

Les molécules de globuline (alpha et bêta) transportent de petites molécules de substances toxiques ainsi que certains ions métalliques (cuivre, zinc et fer) et des particules colloïdales. Le fibrinogène montre une affinité pour certaines petites molécules. De nombreux types de liaisons peuvent être impliquées dans la liaison des toxiques aux protéines plasmatiques : forces de Van der Waals, attraction de charges, association entre groupes polaires et non polaires, ponts hydrogène, liaisons covalentes.

Les lipoprotéines plasmatiques transportent des substances toxiques lipophiles telles que les PCB. Les autres fractions de plasma servent également de véhicule de transport. L'affinité des substances toxiques pour les protéines plasmatiques suggère leur affinité pour les protéines dans les tissus et les organes pendant la distribution.

Les acides organiques (lactique, glutaminique, citrique) forment des complexes avec certains toxiques. Les alcalino-terreux et les terres rares, ainsi que certains éléments lourds sous forme de cations, sont également complexés avec des oxyacides et des acides aminés organiques. Tous ces complexes sont généralement diffusibles et facilement distribués dans les tissus et les organes.

Les agents chélateurs physiologiques dans le plasma tels que la transferrine et la métallothionéine entrent en compétition avec les acides organiques et les acides aminés pour les cations pour former des chélates stables.

Les ions libres diffusibles, certains complexes et certaines molécules libres sont facilement évacués du sang vers les tissus et les organes. La fraction libre d'ions et de molécules est en équilibre dynamique avec la fraction liée. La concentration d'une substance toxique dans le sang déterminera la vitesse de sa distribution dans les tissus et les organes, ou sa mobilisation à partir d'eux dans le sang.

Distribution des substances toxiques dans l'organisme

L'organisme humain peut être divisé comme suit compartiments. (1) les organes internes, (2) la peau et les muscles, (3) les tissus adipeux, (4) le tissu conjonctif et les os. Cette classification est principalement basée sur le degré de perfusion vasculaire (sanguine) dans un ordre décroissant. Par exemple, les organes internes (y compris le cerveau), qui ne représentent que 12 % du poids corporel total, reçoivent environ 75 % du volume sanguin total. En revanche, les tissus conjonctifs et les os (15 % du poids corporel total) ne reçoivent qu'un pour cent du volume sanguin total.

Les organes internes bien perfusés atteignent généralement la concentration la plus élevée de substances toxiques dans les plus brefs délais, ainsi qu'un équilibre entre le sang et ce compartiment. L'absorption des substances toxiques par les tissus moins perfusés est beaucoup plus lente, mais la rétention est plus élevée et la durée de séjour beaucoup plus longue (accumulation) en raison d'une faible perfusion.

Trois composants sont d'une importance majeure pour la distribution intracellulaire des substances toxiques : la teneur en eau, en lipides et en protéines dans les cellules des différents tissus et organes. L'ordre des compartiments mentionné ci-dessus suit également de près une teneur en eau décroissante dans leurs cellules. Les toxiques hydrophiles seront distribués plus rapidement aux fluides corporels et aux cellules à forte teneur en eau, et les toxiques lipophiles aux cellules à forte teneur en lipides (tissu adipeux).

L'organisme possède certaines barrières qui entravent la pénétration de certains groupes de substances toxiques, principalement hydrophiles, dans certains organes et tissus, tels que :

  • la barrière hémato-encéphalique (barrière céphalo-rachidienne), qui limite la pénétration de grosses molécules et de substances toxiques hydrophiles dans le cerveau et le SNC ; cette barrière est constituée d'une couche étroitement jointe de cellules endothéliales ; ainsi, les toxiques lipophiles peuvent y pénétrer
  • la barrière placentaire, qui a un effet similaire sur la pénétration de substances toxiques dans le fœtus à partir du sang de la mère
  • la barrière histo-hématologique dans les parois des capillaires, qui est perméable aux molécules de petite et moyenne taille, et à certaines molécules plus grosses, ainsi qu'aux ions.

 

Comme indiqué précédemment, seules les formes libres de substances toxiques dans le plasma (molécules, ions, colloïdes) sont disponibles pour la pénétration à travers les parois capillaires participant à la distribution. Cette fraction libre est en équilibre dynamique avec la fraction liée. La concentration de substances toxiques dans le sang est en équilibre dynamique avec leur concentration dans les organes et les tissus, régissant leur rétention (accumulation) ou leur mobilisation.

L'état de l'organisme, l'état fonctionnel des organes (en particulier la régulation neuro-humorale), l'équilibre hormonal et d'autres facteurs jouent un rôle dans la distribution.

La rétention d'une substance toxique dans un compartiment particulier est généralement temporaire et une redistribution dans d'autres tissus peut se produire. La rétention et l'accumulation sont basées sur la différence entre les taux d'absorption et d'élimination. La durée de rétention dans un compartiment est exprimée par la demi-vie biologique. Il s'agit de l'intervalle de temps pendant lequel 50 % de la substance toxique est éliminée du tissu ou de l'organe et redistribuée, transloquée ou éliminée de l'organisme.

Les processus de biotransformation se produisent lors de la distribution et de la rétention dans divers organes et tissus. La biotransformation produit des métabolites plus polaires, plus hydrophiles, qui sont plus facilement éliminés. Un faible taux de biotransformation d'un toxique lipophile entraînera généralement son accumulation dans un compartiment.

Les toxiques peuvent être divisés en quatre groupes principaux selon leur affinité, leur rétention prédominante et leur accumulation dans un compartiment particulier :

  1. Les toxiques solubles dans les fluides corporels sont uniformément répartis en fonction de la teneur en eau des compartiments. De nombreux cations monovalents (par exemple, lithium, sodium, potassium, rubidium) et certains anions (par exemple, chlore, brome) sont distribués selon ce schéma.
  2. Les toxiques lipophiles montrent une forte affinité pour les organes riches en lipides (SNC) et les tissus (gras, adipeux).
  3. Les toxiques formant des particules colloïdales sont ensuite piégés par des cellules spécialisées du système réticulo-endothélial (RES) des organes et des tissus. Les cations tri- et quadrivalents (lanthane, césium, hafnium) sont distribués dans le RES des tissus et organes.
  4. Les toxiques présentant une forte affinité pour les os et le tissu conjonctif (éléments ostéotropes, chercheurs d'os) comprennent les cations divalents (p. ex., calcium, baryum, strontium, radon, béryllium, aluminium, cadmium, plomb).

 

Accumulation dans les tissus riches en lipides

L'« homme standard » de 70 kg de poids corporel contient environ 15 % de son poids corporel sous forme de tissu adipeux, augmentant avec l'obésité jusqu'à 50 %. Cependant, cette fraction lipidique n'est pas uniformément répartie. Le cerveau (SNC) est un organe riche en lipides et les nerfs périphériques sont enveloppés d'une gaine de myéline riche en lipides et de cellules de Schwann. Tous ces tissus offrent des possibilités d'accumulation de toxiques lipophiles.

Seront distribués dans ce compartiment de nombreux non-électrolytes et toxiques apolaires avec un coefficient de partage de Nernst adapté, ainsi que de nombreux solvants organiques (alcools, aldéhydes, cétones...), des hydrocarbures chlorés (dont des insecticides organochlorés comme le DDT), certains gaz inertes (radon), etc.

Le tissu adipeux accumulera des substances toxiques en raison de sa faible vascularisation et de son faible taux de biotransformation. Ici, l'accumulation de substances toxiques peut représenter une sorte de « neutralisation » temporaire en raison du manque de cibles pour l'effet toxique. Cependant, le danger potentiel pour l'organisme est toujours présent en raison de la possibilité de mobilisation de substances toxiques de ce compartiment vers la circulation.

Le dépôt de substances toxiques dans le cerveau (SNC) ou les tissus riches en lipides de la gaine de myéline du système nerveux périphérique est très dangereux. Les neurotoxiques sont déposés ici directement à côté de leurs cibles. Les substances toxiques retenues dans les tissus riches en lipides des glandes endocrines peuvent produire des troubles hormonaux. Malgré la barrière hémato-encéphalique, de nombreux neurotoxiques de nature lipophile atteignent le cerveau (SNC) : anesthésiques, solvants organiques, pesticides, plomb tétraéthyle, organomercuriels, etc.

Rétention dans le système réticulo-endothélial

Dans chaque tissu et organe, un certain pourcentage de cellules est spécialisé pour l'activité phagocytaire, engloutissant les micro-organismes, les particules, les particules colloïdes, etc. Ce système est appelé le système réticulo-endothélial (RES), comprenant des cellules fixes ainsi que des cellules mobiles (phagocytes). Ces cellules sont présentes sous une forme non active. Une augmentation des microbes et particules mentionnés ci-dessus activera les cellules jusqu'à un point de saturation.

Les toxiques sous forme de colloïdes seront capturés par le SER des organes et des tissus. La distribution dépend de la taille des particules de colloïde. Pour les particules plus grosses, la rétention dans le foie sera favorisée. Avec des particules colloïdales plus petites, une distribution plus ou moins uniforme se produira entre la rate, la moelle osseuse et le foie. L'élimination des colloïdes du RES est très lente, bien que les petites particules soient éliminées relativement plus rapidement.

Accumulation dans les os

Environ 60 éléments peuvent être identifiés comme éléments ostéotropes, ou chercheurs osseux.

Les éléments ostéotropes peuvent être divisés en trois groupes :

  1. Eléments représentant ou remplaçant des constituants physiologiques de l'os. Vingt de ces éléments sont présents en quantités plus élevées. Les autres apparaissent en quantités infimes. Dans des conditions d'exposition chronique, des métaux toxiques tels que le plomb, l'aluminium et le mercure peuvent également pénétrer dans la matrice minérale des cellules osseuses.
  2. Les alcalino-terreux et autres éléments formant des cations de diamètre ionique proche de celui du calcium sont échangeables avec lui dans le minéral osseux. De plus, certains anions sont échangeables avec des anions (phosphate, hydroxyle) du minéral osseux.
  3. Des éléments formant des microcolloïdes (terres rares) peuvent être adsorbés à la surface du minéral osseux.

 

Le squelette d'un homme standard représente 10 à 15 % du poids corporel total, ce qui représente un important dépôt potentiel de substances toxiques ostéotropes. L'os est un tissu hautement spécialisé constitué en volume de 54 % de minéraux et de 38 % de matrice organique. La matrice minérale de l'os est l'hydroxyapatite, Ca10(PO4)6(OH)2 , dans lequel le rapport de Ca à P est d'environ 1.5 à un. La surface de minéral disponible pour l'adsorption est d'environ 100 m2 par g d'os.

L'activité métabolique des os du squelette peut être divisée en deux catégories :

  • os métabolique actif, dans lequel les processus de résorption et de néoformation osseuse, ou de remodelage de l'os existant, sont très étendus
  • os stable avec un faible taux de remodelage ou de croissance.

 

Chez le fœtus, le nourrisson et le jeune enfant, l'os métabolique (voir « squelette disponible ») représente près de 100 % du squelette. Avec l'âge, ce pourcentage d'os métabolique diminue. L'incorporation de substances toxiques lors de l'exposition apparaît dans l'os métabolique et dans des compartiments à rotation plus lente.

L'incorporation de substances toxiques dans l'os se produit de deux manières :

  1. Pour les ions, un échange d'ions se produit avec des cations calcium physiologiquement présents, ou des anions (phosphate, hydroxyle).
  2. Pour les substances toxiques formant des particules colloïdales, une adsorption sur la surface minérale se produit.

 

Réactions d'échange d'ions

Le minéral osseux, l'hydroxyapatite, représente un système complexe d'échange d'ions. Les cations calcium peuvent être échangés par divers cations. Les anions présents dans l'os peuvent aussi être échangés par des anions : phosphate avec citrates et carbonates, hydroxyle avec fluor. Les ions non échangeables peuvent être adsorbés sur la surface minérale. Lorsque des ions toxiques sont incorporés dans le minéral, une nouvelle couche de minéral peut recouvrir la surface minérale, enterrant le toxique dans la structure osseuse. L'échange d'ions est un processus réversible, qui dépend de la concentration d'ions, du pH et du volume de liquide. Ainsi, par exemple, une augmentation du calcium alimentaire peut diminuer le dépôt d'ions toxiques dans le réseau des minéraux. Il a été mentionné qu'avec l'âge, le pourcentage d'os métabolique diminue, bien que l'échange d'ions se poursuive. Avec le vieillissement, une résorption minérale osseuse se produit, au cours de laquelle la densité osseuse diminue. À ce stade, des substances toxiques dans les os peuvent être libérées (par exemple, le plomb).

Environ 30% des ions incorporés dans les minéraux osseux sont faiblement liés et peuvent être échangés, capturés par des agents chélateurs naturels et excrétés, avec une demi-vie biologique de 15 jours. Les 70 % restants sont plus solidement liés. La mobilisation et l'excrétion de cette fraction montre une demi-vie biologique de 2.5 ans et plus selon le type d'os (processus de remodelage).

Les agents chélateurs (Ca-EDTA, pénicillamine, BAL, etc.) peuvent mobiliser des quantités considérables de certains métaux lourds, et leur excrétion dans les urines est fortement augmentée.

Adsorption colloïdale

Les particules colloïdales sont adsorbées sous forme de film sur la surface minérale (100m2 par g) par les forces de Van der Waals ou la chimisorption. Cette couche de colloïdes sur les surfaces minérales est recouverte de la couche suivante de minéraux formés, et les substances toxiques sont davantage enfouies dans la structure osseuse. Le taux de mobilisation et d'élimination dépend des processus de remodelage.

Accumulation dans les cheveux et les ongles

Les cheveux et les ongles contiennent de la kératine, avec des groupes sulfhydryle capables de chélater les cations métalliques tels que le mercure et le plomb.

Distribution du toxique à l'intérieur de la cellule

Récemment, la distribution des substances toxiques, en particulier certains métaux lourds, dans les cellules des tissus et des organes est devenue importante. Avec des techniques d'ultracentrifugation, diverses fractions de la cellule peuvent être séparées pour déterminer leur teneur en ions métalliques et autres substances toxiques.

Des études animales ont révélé qu'après pénétration dans la cellule, certains ions métalliques sont liés à une protéine spécifique, la métallothionéine. Cette protéine de faible poids moléculaire est présente dans les cellules du foie, des reins et d'autres organes et tissus. Ses groupes sulfhydryle peuvent lier six ions par molécule. La présence accrue d'ions métalliques induit la biosynthèse de cette protéine. Les ions de cadmium sont l'inducteur le plus puissant. La métallothionéine sert également à maintenir l'homéostasie des ions vitaux de cuivre et de zinc. La métallothionéine peut lier le zinc, le cuivre, le cadmium, le mercure, le bismuth, l'or, le cobalt et d'autres cations.

Biotransformation et élimination des toxiques

Pendant leur rétention dans les cellules de divers tissus et organes, les substances toxiques sont exposées à des enzymes qui peuvent les biotransformer (métaboliser) en produisant des métabolites. Il existe de nombreuses voies d'élimination des toxiques et/ou des métabolites : par l'air expiré via les poumons, par l'urine via les reins, par la bile via le tube digestif, par la sueur via la peau, par la salive via la muqueuse buccale, par le lait via les glandes mammaires, ainsi que par les cheveux et les ongles via la croissance normale et le renouvellement cellulaire.

L'élimination d'un toxique absorbé dépend de la porte d'entrée. Dans les poumons, le processus d'absorption/désorption démarre immédiatement et les substances toxiques sont partiellement éliminées par l'air expiré. L'élimination des toxiques absorbés par d'autres voies d'entrée est prolongée et commence après le transport par le sang, pour s'achever après distribution et biotransformation. Au cours de l'absorption, un équilibre existe entre les concentrations d'une substance toxique dans le sang et dans les tissus et organes. L'excrétion diminue la concentration sanguine de la substance toxique et peut induire la mobilisation d'une substance toxique des tissus vers le sang.

De nombreux facteurs peuvent influencer le taux d'élimination des substances toxiques et de leurs métabolites de l'organisme :

  • propriétés physico-chimiques des toxiques, en particulier le coefficient de partage de Nernst (P), la constante de dissociation (pKa), polarité, structure moléculaire, forme et poids
  • niveau d'exposition et temps d'élimination post-exposition
  • Portail d'entrée
  • distribution dans les compartiments du corps, qui diffèrent par leur taux d'échange avec le sang et la perfusion sanguine
  • taux de biotransformation des substances toxiques lipophiles en métabolites plus hydrophiles
  • état de santé général de l'organisme et, en particulier, des organes excréteurs (poumons, reins, GIT, peau, etc.)
  • présence d'autres substances toxiques qui peuvent interférer avec l'élimination.

 

On distingue ici deux groupes de compartiments : (1) les système d'échange rapide— dans ces compartiments, la concentration tissulaire de toxique est similaire à celle du sang; et (2) le système d'échange lent, où la concentration tissulaire de substance toxique est plus élevée que dans le sang en raison de la liaison et de l'accumulation - le tissu adipeux, le squelette et les reins peuvent retenir temporairement certaines substances toxiques, par exemple l'arsenic et le zinc.

Un toxique peut être excrété simultanément par deux ou plusieurs voies d'excrétion. Cependant, généralement une route est dominante.

Les scientifiques développent des modèles mathématiques décrivant l'excrétion d'un toxique particulier. Ces modèles sont basés sur le mouvement d'un ou des deux compartiments (systèmes d'échange), la biotransformation, etc.

Élimination par l'air expiré via les poumons

L'élimination par les poumons (désorption) est typique des substances toxiques très volatiles (p. ex. solvants organiques). Les gaz et les vapeurs à faible solubilité dans le sang seront rapidement éliminés de cette manière, tandis que les toxiques à forte solubilité dans le sang seront éliminés par d'autres voies.

Les solvants organiques absorbés par l'intestin ou la peau sont partiellement excrétés par l'air expiré à chaque passage du sang dans les poumons, s'ils ont une pression de vapeur suffisante. L'alcootest utilisé pour les conducteurs en état d'ébriété présumés est basé sur ce fait. La concentration de CO dans l'air expiré est en équilibre avec la teneur sanguine en CO-Hb. Le gaz radioactif radon apparaît dans l'air expiré en raison de la désintégration du radium accumulé dans le squelette.

L'élimination d'un toxique par l'air expiré en fonction de la période post-exposition est généralement exprimée par une courbe triphasée. La première phase représente l'élimination du toxique du sang, montrant une courte demi-vie. La deuxième phase, plus lente, représente l'élimination due à l'échange de sang avec les tissus et les organes (système d'échange rapide). La troisième phase, très lente, est due aux échanges sanguins avec les tissus adipeux et le squelette. Si un toxique ne s'accumule pas dans de tels compartiments, la courbe sera à deux phases. Dans certains cas, une courbe à quatre phases est également possible.

La détermination des gaz et des vapeurs dans l'air expiré au cours de la période post-exposition est parfois utilisée pour évaluer l'exposition des travailleurs.

Excrétion rénale

Le rein est un organe spécialisé dans l'excrétion de nombreux toxiques et métabolites hydrosolubles, maintenant l'homéostasie de l'organisme. Chaque rein possède environ un million de néphrons capables d'effectuer l'excrétion. L'excrétion rénale représente un événement très complexe englobant trois mécanismes différents :

  • filtration glomérulaire par capsule de Bowman
  • transport actif dans le tubule proximal
  • transport passif dans le tubule distal.

 

L'excrétion d'un toxique par les reins dans l'urine dépend du coefficient de partage de Nernst, de la constante de dissociation et du pH de l'urine, de la taille et de la forme moléculaires, du taux de métabolisme en métabolites plus hydrophiles, ainsi que de l'état de santé des reins.

La cinétique d'excrétion rénale d'un toxique ou de son métabolite peut être exprimée par une courbe d'excrétion à deux, trois ou quatre phases, selon la distribution du toxique particulier dans divers compartiments corporels différant par le taux d'échange avec le sang.

salive

Certains médicaments et ions métalliques peuvent être excrétés par la muqueuse de la bouche par la salive, par exemple le plomb ("ligne de plomb"), le mercure, l'arsenic, le cuivre, ainsi que les bromures, les iodures, l'alcool éthylique, les alcaloïdes, etc. Les toxiques sont ensuite avalés, atteignant le GIT, où ils peuvent être réabsorbés ou éliminés par les fèces.

Transpirer

De nombreux non-électrolytes peuvent être partiellement éliminés par voie cutanée par la sueur : alcool éthylique, acétone, phénols, sulfure de carbone et hydrocarbures chlorés.

Lait

De nombreux métaux, solvants organiques et certains pesticides organochlorés (DDT) sont sécrétés via la glande mammaire dans le lait maternel. Cette voie peut représenter un danger pour les nourrissons.

Implants

L'analyse des cheveux peut être utilisée comme indicateur de l'homéostasie de certaines substances physiologiques. L'exposition à certaines substances toxiques, en particulier les métaux lourds, peut également être évaluée par ce type d'essai biologique.

L'élimination des substances toxiques du corps peut être augmentée par:

  • translocation mécanique par lavage gastrique, transfusion sanguine ou dialyse
  • créer des conditions physiologiques qui mobilisent les substances toxiques par l'alimentation, la modification de l'équilibre hormonal, l'amélioration de la fonction rénale par l'application de diurétiques
  • administration de complexants (citrates, oxalates, salicilates, phosphates), ou de chélateurs (Ca-EDTA, BAL, ATA, DMSA, pénicillamine) ; cette méthode n'est indiquée que chez les personnes sous contrôle médical strict. L'application d'agents chélateurs est souvent utilisée pour éliminer les métaux lourds du corps des travailleurs exposés au cours de leur traitement médical. Cette méthode est également utilisée pour évaluer la charge corporelle totale et le niveau d'exposition passée.

 

Détermination de l'exposition

La détermination des substances toxiques et des métabolites dans le sang, l'air expiré, l'urine, la sueur, les matières fécales et les cheveux est de plus en plus utilisée pour l'évaluation de l'exposition humaine (tests d'exposition) et/ou l'évaluation du degré d'intoxication. Par conséquent, des limites d'exposition biologique (valeurs MAC biologiques, indices d'exposition biologique - BEI) ont été récemment établies. Ces bioessais montrent « l'exposition interne » de l'organisme, c'est-à-dire l'exposition totale de l'organisme dans les milieux de travail et de vie par toutes les portes d'entrée (voir « Méthodes d'essai toxicologique : Biomarqueurs »).

Effets combinés dus à une exposition multiple

Les personnes dans le milieu de travail et/ou de vie sont généralement exposées simultanément ou consécutivement à divers agents physiques et chimiques. Il faut également tenir compte du fait que certaines personnes consomment des médicaments, fument, consomment de l'alcool et des aliments contenant des additifs, etc. Cela signifie qu'il se produit généralement une exposition multiple. Les agents physiques et chimiques peuvent interagir à chaque étape des processus toxicocinétiques et/ou toxicodynamiques, produisant trois effets possibles :

  1. Independent. Chaque agent produit un effet différent en raison d'un mécanisme d'action différent,
  2. Synergique. L'effet combiné est supérieur à celui de chaque agent individuel. Nous distinguons ici deux types : (a) additif, où l'effet combiné est égal à la somme des effets produits par chaque agent séparément et (b) potentialisateur, où l'effet combiné est supérieur à l'effet additif.
  3. Antagoniste. L'effet combiné est inférieur à l'effet additif.

 

Cependant, les études sur les effets combinés sont rares. Ce type d'étude est très complexe en raison de la combinaison de divers facteurs et agents.

Nous pouvons conclure que lorsque l'organisme humain est exposé à deux ou plusieurs substances toxiques simultanément ou consécutivement, il est nécessaire de considérer la possibilité de certains effets combinés, qui peuvent augmenter ou diminuer le taux de processus toxicocinétiques.

 

Retour

Lire 13883 fois Dernière mise à jour le mardi, Juin 14 2011 16: 52

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références toxicologiques

Andersen, KE et HI Maibach. 1985. Tests prédictifs d'allergies de contact sur des cobayes. Type. 14 po Problèmes actuels en dermatologie. Bâle : Karger.

Ashby, J et RW Tennant. 1991. Relations définitives entre la structure chimique, la cancérogénicité et la mutagénicité pour 301 produits chimiques testés par le US NTP. Mutat Res 257: 229-306.

Barlow, S et F Sullivan. 1982. Dangers pour la reproduction des produits chimiques industriels. Londres : Academic Press.

Barrette, JC. 1993a. Mécanismes d'action des agents cancérigènes humains connus. Dans Mécanismes de cancérogenèse dans l'identification des risques, édité par H Vainio, PN Magee, DB McGregor et AJ McMichael. Lyon : Centre international de recherche sur le cancer (CIRC).

—. 1993b. Mécanismes de cancérogenèse en plusieurs étapes et évaluation du risque cancérogène. Perspicacité d'Environ Health 100: 9-20.

Bernstein, ME. 1984. Agents affectant le système reproducteur masculin : effets de la structure sur l'activité. Drug Metab Rev 15: 941-996.

Beutler, E. 1992. La biologie moléculaire des variantes de la G6PD et d'autres défauts des globules rouges. Annu Rev Med 43: 47-59.

Bloom, AD. 1981. Lignes directrices pour les études sur la reproduction dans les populations humaines exposées. White Plains, New York : March of Dimes Foundation.

Borghoff, S, B Short et J Swenberg. 1990. Mécanismes biochimiques et pathobiologie de la néphropathie a-2-globuline. Annu Rev Pharmacol Toxicol 30: 349.

Burchell, B, DW Nebert, DR Nelson, KW Bock, T Iyanagi, PLM Jansen, D Lancet, GJ Mulder, JR Chowdhury, G Siest, TR Tephly et PI Mackenzie. 1991. La superfamille des gènes UPD-glucuronosyltransférase : nomenclature suggérée basée sur la divergence évolutive. ADN Cell Biol 10: 487-494.

Burleson, G, A Munson et J Dean. 1995. Méthodes modernes en immunotoxicologie. New York : Wiley.

Capecchi, M. 1994. Remplacement de gène ciblé. Sci Am 270: 52-59.

Carney, EW. 1994. Une perspective intégrée sur la toxicité pour le développement de l'éthylène glycol. Représentant Toxicol 8: 99-113.

Dean, JH, MI Lustre, AE Munson et moi Kimber. 1994. Immunotoxicologie et immunopharmacologie. New York : Raven Press.

Descotes, J. 1986. Immunotoxicologie des médicaments et des produits chimiques. Amsterdam : Elsevier.

Devary, Y, C Rosette, JA DiDonato et M Karin. 1993. Activation de NFkB par la lumière ultraviolette non dépendante d'un signal nucléaire. Sciences 261: 1442-1445.

Dixon, RL. 1985. Toxicologie de la reproduction. New York : Raven Press.

Duffus, JH. 1993. Glossaire pour les chimistes des termes utilisés en toxicologie. Chimie pure Appl 65: 2003-2122.

Elsenhans, B, K Schuemann et W Forth. 1991. Métaux toxiques : Interactions avec les métaux essentiels. Dans Nutrition, toxicité et cancer, édité par IR Rowland. Boca-Raton : CRC Press.

Agence de protection de l'environnement (EPA). 1992. Lignes directrices pour l'évaluation de l'exposition. Règl. fédéral 57: 22888-22938.

—. 1993. Principes d'évaluation des risques de neurotoxicité. Règl. fédéral 58: 41556-41598.

—. 1994. Lignes directrices pour l'évaluation de la toxicité pour la reproduction. Washington, DC : US EPA : Bureau de la recherche et du développement.

Fergusson, JE. 1990. Les éléments lourds. Type. 15 po Chimie, impact environnemental et effets sur la santé. Oxford : Pergame.

Gehring, PJ, PG Watanabe et GE Blau. 1976. Études pharmacocinétiques dans l'évaluation des risques toxicologiques et environnementaux des produits chimiques. Nouveaux concepts Saf Eval 1(Partie 1, Chapitre 8):195-270.

Goldstein, JA et SMF de Morais. 1994. Biochimie et biologie moléculaire de l'humain CYP2C sous-famille. Pharmacogénétique 4: 285-299.

Gonzalez, FJ. 1992. Cytochromes humains P450 : Problèmes et perspectives. Trends Pharmacol Sci 13: 346-352.

Gonzalez, FJ, CL Crespi et HV Gelboin. 1991. Cytochrome humain P450 exprimé par l'ADNc : une nouvelle ère en toxicologie moléculaire et évaluation des risques pour l'homme. Mutat Res 247: 113-127.

Gonzalez, FJ et DW Nebert. 1990. Évolution de la superfamille des gènes P450 : « guerre » animal-plante, entraînement moléculaire et différences génétiques humaines dans l'oxydation des médicaments. Tendances Genet 6: 182-186.

Grant, DM. 1993. Génétique moléculaire des N-acétyltransférases. Pharmacogénétique 3: 45-50.

Gray, LE, J Ostby, R Sigmon, J Ferrel, R Linder, R Cooper, J Goldman et J Laskey. 1988. L'élaboration d'un protocole pour évaluer les effets sur la reproduction des substances toxiques chez le rat. Représentant Toxicol 2: 281-287.

Guengerich, FP. 1989. Polymorphisme du cytochrome P450 chez l'homme. Trends Pharmacol Sci 10: 107-109.

—. 1993. Enzymes du cytochrome P450. Suis Sci 81: 440-447.

Hansch, C et A Leo. 1979. Constantes de substituant pour l'analyse de corrélation en chimie et biologie. New York : Wiley.

Hansch, C et L Zhang. 1993. Relations quantitatives structure-activité du cytochrome P450. Drug Metab Rev 25: 1-48.

Hayes AW. 1988. Principes et méthodes de toxicologie. 2e éd. New York : Raven Press.

Heindell, JJ et RE Chapin. 1993. Méthodes en toxicologie : toxicologie de la reproduction masculine et féminine. Vol. 1 et 2. San Diego, Californie : Academic Press.

Centre international de recherche sur le cancer (CIRC). 1992. Rayonnement solaire et ultraviolet. Lyon : CIRC.

—. 1993. Expositions professionnelles des coiffeurs et des barbiers et utilisation personnelle de colorants capillaires : certains colorants capillaires, colorants cosmétiques, colorants industriels et amines aromatiques. Lyon : CIRC.

—. 1994a. Préambule. Lyon : CIRC.

—. 1994b. Certains produits chimiques industriels. Lyon : CIRC.

Commission internationale de protection radiologique (CIPR). 1965. Principes de surveillance environnementale liés à la manipulation de matières radioactives. Rapport du Comité IV de la Commission internationale de protection radiologique. Oxford : Pergame.

Programme international sur la sécurité chimique (IPCS). 1991. Principes et méthodes d'évaluation de la néphrotoxicité associée à l'exposition aux produits chimiques, EHC 119. Genève : OMS.

—. 1996. Principes et méthodes d'évaluation Immunotoxicité directe associée à l'exposition aux produits chimiques, EHC180. Genève : OMS.

Johanson, G et PH Naslund. 1988. Programmation de feuille de calcul - une nouvelle approche dans la modélisation physiologique de la toxicocinétique des solvants. Lettres toxicol 41: 115-127.

Johnson, BL. 1978. Prévention des maladies neurotoxiques dans les populations actives. New York : Wiley.

Jones, JC, JM Ward, U Mohr et RD Hunt. 1990. Système hématopoïétique, monographie ILSI, Berlin : Springer Verlag.

Kalow, W. 1962. Pharmacogénétique : hérédité et réponse aux médicaments. Philadelphie : WB Saunders.

—. 1992. Pharmacogénétique du métabolisme des médicaments. New York : Pergame.

Kammüller, ME, N Bloksma et W Seinen. 1989. Auto-immunité et toxicologie. Dérégulation immunitaire induite par les médicaments et les produits chimiques. Amsterdam : Elsevier Sciences.

Kawajiri, K, J Watanabe et SI Hayashi. 1994. Polymorphisme génétique de P450 et cancer humain. Dans Cytochrome P450 : Biochimie, Biophysique et Biologie Moléculaire, édité par MC Lechner. Paris : John Libbey Eurotext.

Kehrer, JP. 1993. Radicaux libres en tant que médiateurs de lésions tissulaires et de maladies. Crit Rév Toxicol 23: 21-48.

Kellerman, G, CR Shaw et M Luyten-Kellerman. 1973. Inductibilité de l'arylhydrocarbure hydroxylase et carcinome bronchogénique. New Engl J Med 289: 934-937.

Khera, KS. 1991. Altérations induites chimiquement de l'homéostasie maternelle et de l'histologie du conceptus : leur signification étiologique dans les anomalies fœtales du rat. Tératologie 44: 259-297.

Kimmel, CA, GL Kimmel et V Frankos. 1986. Atelier du Groupe de liaison réglementaire interagences sur l'évaluation des risques de toxicité pour la reproduction. Perspicacité d'Environ Health 66: 193-221.

Klaassen, CD, MO Amdur et J Doull (eds.). 1991. Toxicologie de Casarett et Doull. New York : Presse de Pergamon.

Kramer, HJ, EJHM Jansen, MJ Zeilmaker, HJ van Kranen et ED Kroese. 1995. Méthodes quantitatives en toxicologie pour l'évaluation de la dose-réponse humaine. Rapport RIVM nr. 659101004.

Kress, S, C Sutter, PT Strickland, H Mukhtar, J Schweizer et M Schwarz. 1992. Modèle de mutation carcinogène spécifique dans le gène p53 dans les carcinomes épidermoïdes induits par le rayonnement ultraviolet B de la peau de souris. Cancer Res 52: 6400-6403.

Krewski, D, D Gaylor, M Szyazkowicz. 1991. Une approche sans modèle d'extrapolation à faible dose. Env H Pers 90: 270-285.

Lawton, MP, T Cresteil, AA Elfarra, E Hodgson, J Ozols, RM Philpot, AE Rettie, DE Williams, JR Cashman, CT Dolphin, RN Hines, T Kimura, IR Phillips, LL Poulsen, EA Shephare et DM Ziegler. 1994. Une nomenclature pour la famille de gènes de monooxygénase contenant de la flavine de mammifère basée sur les identités de séquence d'acides aminés. Arch Bichem Biophys 308: 254-257.

Lewalter, J et U Korallus. 1985. Conjugués de protéines sanguines et acétylation d'amines aromatiques. Nouvelles découvertes sur la surveillance biologique. Int Arch Occup Environ Santé 56: 179-196.

Majno, G et moi Joris. 1995. Apoptose, oncose et nécrose : Un aperçu de la mort cellulaire. Suis J Pathol 146: 3-15.

Mattison, DR et PJ Thomford. 1989. Le mécanisme d'action des toxiques pour la reproduction. Toxicol pathol 17: 364-376.

Meyer, UA. 1994. Polymorphismes du cytochrome P450 CYP2D6 comme facteur de risque dans la cancérogenèse. Dans Cytochrome P450 : Biochimie, Biophysique et Biologie Moléculaire, édité par MC Lechner. Paris : John Libbey Eurotext.

Moller, H, H Vainio et E Heseltine. 1994. Estimation quantitative et prédiction du risque au Centre international de recherche sur le cancer. Cancer Rés. 54 : 3625-3627.

Moolenaar, RJ. 1994. Hypothèses par défaut dans l'évaluation des risques cancérigènes utilisées par les organismes de réglementation. Régul Toxicol Pharmacol 20: 135-141.

Moser, VC. 1990. Approches de dépistage de la neurotoxicité : une batterie d'observations fonctionnelles. J Am Coll Toxicol 1: 85-93.

Conseil national de recherches (CNRC). 1983. Évaluation des risques au gouvernement fédéral : gestion du processus. Washington, D.C. : NAS Press.

—. 1989. Marqueurs biologiques de la toxicité reproductive. Washington, D.C. : NAS Press.

—. 1992. Marqueurs biologiques en immunotoxicologie. Sous-comité de toxicologie. Washington, D.C. : NAS Press.

Nebert, DW. 1988. Gènes codant pour les enzymes métabolisant les médicaments : rôle possible dans les maladies humaines. Dans Variation phénotypique dans les populations, édité par AD Woodhead, MA Bender et RC Leonard. New York : édition du plénum.

—. 1994. Enzymes métabolisant les médicaments dans la transcription modulée par un ligand. Biochem Pharmacol 47: 25-37.

Nebert, DW et WW Weber. 1990. Pharmacogénétique. Dans Principes d'action des médicaments. La base de la pharmacologie, édité par WB Pratt et PW Taylor. New York : Churchill-Livingstone.

Nebert, DW et DR Nelson. 1991. Nomenclature du gène P450 basée sur l'évolution. Dans Méthodes d'Enzymologie. Cytochrome P450, édité par MR Waterman et EF Johnson. Orlando, Floride : Presse académique.

Nebert, DW et RA McKinnon. 1994. Cytochrome P450 : Évolution et diversité fonctionnelle. Prog Liv Dis 12: 63-97.

Nebert, DW, M Adesnik, MJ Coon, RW Estabrook, FJ Gonzalez, FP Guengerich, IC Gunsalus, EF Johnson, B Kemper, W Levin, IR Phillips, R Sato et MR Waterman. 1987. La superfamille des gènes P450 : nomenclature recommandée. ADN Cell Biol 6: 1-11.

Nebert, DW, DR Nelson, MJ Coon, RW Estabrook, R Feyereisen, Y Fujii-Kuriyama, FJ Gonzalez, FP Guengerich, IC Gunsalas, EF Johnson, JC Loper, R Sato, MR Waterman et DJ Waxman. 1991. La superfamille P450 : Mise à jour sur les nouvelles séquences, la cartographie des gènes et la nomenclature recommandée. ADN Cell Biol 10: 1-14.

Nebert, DW, DD Petersen et A Puga. 1991. Polymorphisme et cancer du locus AH humain : inductibilité du CYP1A1 et d'autres gènes par les produits de combustion et la dioxine. Pharmacogénétique 1: 68-78.

Nebert, DW, A Puga et V Vasiliou. 1993. Rôle du récepteur Ah et de la batterie de gènes inductibles par la dioxine [Ah] dans la toxicité, le cancer et la transduction du signal. Ann NY Acad Sci 685: 624-640.

Nelson, DR, T Kamataki, DJ Waxman, FP Guengerich, RW Estabrook, R Feyereisen, FJ Gonzalez, MJ Coon, IC Gunsalus, O Gotoh, DW Nebert et K Okuda. 1993. La superfamille P450 : Mise à jour sur les nouvelles séquences, la cartographie des gènes, les numéros d'accession, les premiers noms triviaux des enzymes et la nomenclature. ADN Cell Biol 12: 1-51.

Nicholson, DW, A All, NA Thornberry, JP Vaillancourt, CK Ding, M Gallant, Y Gareau, PR Griffin, M Labelle, YA Lazebnik, NA Munday, SM Raju, ME Smulson, TT Yamin, VL Yu et DK Miller. 1995. Identification et inhibition de la protéase ICE/CED-3 nécessaire à l'apoptose des mammifères. Nature 376: 37-43.

Nolan, RJ, WT Stott et PG Watanabe. 1995. Données toxicologiques dans l'évaluation de la sécurité chimique. Type. 2 po Patty's Industrial Hygiene and Toxicology, édité par LJ Cralley, LV Cralley et JS Bus. New York : John Wiley & Fils.

Nordberg, GF. 1976. Effet et relations dose-réponse des métaux toxiques. Amsterdam : Elsevier.

Bureau d'évaluation de la technologie (OTA). 1985. Risques reproductifs en milieu de travail. Document n° OTA-BA-266. Washington, DC : Bureau d'impression du gouvernement.

—. 1990. Neurotoxicité : identification et contrôle des poisons du système nerveux. Document n° OTA-BA-436. Washington, DC : Bureau d'impression du gouvernement.

Organisation de coopération et de développement économiques (OCDE). 1993. Projet conjoint US EPA/CE sur l'évaluation des relations structure-activité (quantitatives). Paris : OCDE.

Parc, CN et NC Hawkins. 1993. Examen de la technologie ; un aperçu de l'évaluation du risque de cancer. Méthodes toxicol 3: 63-86.

Pease, W, J Vandenberg et WK Hooper. 1991. Comparaison d'approches alternatives pour établir des niveaux réglementaires pour les substances toxiques pour la reproduction : DBCP comme étude de cas. Perspicacité d'Environ Health 91: 141-155.

Prpi ƒ -Maji ƒ , D, S Telišman et S Kezi ƒ . 6.5. Étude in vitro sur l'interaction entre le plomb et l'alcool et l'inhibition de la déshydratase de l'acide delta-aminolévulinique érythrocytaire chez l'homme. Scand J Work Environ Santé 10: 235-238.

Reitz, RH, RJ Nolan et AM Schumann. 1987. Développement de modèles pharmacocinétiques multiespèces et multivoies pour le chlorure de méthylène et le 1,1,1-trichloroéthane. Dans Pharmacocinétique et évaluation des risques, Eau potable et santé. Washington, DC : Presse de l'Académie nationale.

Roitt, I, J Brostoff et D Male. 1989. Immunologie. Londres : Gower Medical Publishing.

Sato, A. 1991. L'effet des facteurs environnementaux sur le comportement pharmacocinétique des vapeurs de solvants organiques. Ann occupe Hyg 35: 525-541.

Silbergeld, EK. 1990. Élaboration de méthodes formelles d'évaluation des risques pour les neurotoxiques : une évaluation de l'état de l'art. Dans Avancées en toxicologie neurocomportementale, édité par BL Johnson, WK Anger, A Durao et C Xintaras. Chelsea, Michigan : Lewis.

Spencer, PS et HH Schaumberg. 1980. Neurotoxicologie expérimentale et clinique. Baltimore : Williams & Wilkins.

Sweeney, AM, MR Meyer, JH Aarons, JL Mills et RE LePorte. 1988. Évaluation des méthodes d'identification prospective des pertes fœtales précoces dans les études d'épidémiologie environnementale. Am J Epidemiol 127: 843-850.

Taylor, BA, HJ Heiniger et H Meier. 1973. Analyse génétique de la résistance aux lésions testiculaires induites par le cadmium chez la souris. Proc Soc Exp Biol Med 143: 629-633.

Telišman, S. 1995. Interactions des métaux et métalloïdes essentiels et/ou toxiques concernant les différences interindividuelles de sensibilité à diverses substances toxiques et maladies chroniques chez l'homme. Arh rig rada toksikol 46: 459-476.

Telišman, S, A Pinent et D Prpi ƒ -Maji ƒ . 6.5. Interférence du plomb dans le métabolisme du zinc et l'interaction du plomb et du zinc chez l'homme comme explication possible de la susceptibilité individuelle apparente au plomb. Dans Métaux lourds dans l'environnement, édité par RJ Allan et JO Nriagu. Édimbourg : CEP Consultants.

Telišman, S, D Prpi ƒ -Maji ƒ , et S Kezi ƒ . 6.5. Étude in vivo sur l'interaction entre le plomb et l'alcool et l'inhibition de la déshydratase de l'acide delta-aminolévulinique érythrocytaire chez l'homme. Scand J Work Environ Santé 10: 239-244.

Tilson, HA et PA Cabe. 1978. Stratégies pour l'évaluation des conséquences neurocomportementales des facteurs environnementaux. Perspicacité d'Environ Health 26: 287-299.

Trump, BF et AU Arstila. 1971. Lésion cellulaire et mort cellulaire. Dans Principes de pathobiologie, édité par MF LaVia et RB Hill Jr. New York : Oxford Univ. Presse.

Trump, BF et IK Berezesky. 1992. Le rôle du Ca2 cytosolique + dans les lésions cellulaires, la nécrose et l'apoptose. Curr Opin Cell Biol 4: 227-232.

—. 1995. Lésion cellulaire induite par le calcium et mort cellulaire. FASEB J 9: 219-228.

Trump, BF, IK Berezesky et A Osornio-Vargas. 1981. La mort cellulaire et le processus de la maladie. Le rôle du calcium cellulaire. Dans Mort cellulaire en biologie et pathologie, édité par ID Bowen et RA Lockshin. Londres : Chapman & Hall.

Vos, JG, M Younes et E Smith. 1995. Hypersensibilités allergiques induites par des produits chimiques : recommandations pour la prévention publiées au nom du Bureau régional de l'Europe de l'Organisation mondiale de la Santé. Boca Raton, Floride : CRC Press.

Weber, WW. 1987. Les gènes acétylateurs et la réponse aux médicaments. New York : Université d'Oxford. Presse.

Organisation mondiale de la santé (OMS). 1980. Limites sanitaires recommandées pour l'exposition professionnelle aux métaux lourds. Série de rapports techniques, n° 647. Genève : OMS.

—. 1986. Principes et méthodes d'évaluation de la neurotoxicité associée à l'exposition aux produits chimiques. Critères d'hygiène de l'environnement, n°60. Genève : OMS.

—. 1987. Lignes directrices sur la qualité de l'air pour l'Europe. Série européenne, n° 23. Copenhague : Publications régionales de l'OMS.

—. 1989. Glossaire des termes sur la sécurité chimique à utiliser dans les publications de l'IPCS. Genève : OMS.

—. 1993. Dérivation de valeurs indicatives pour les limites d'exposition fondées sur la santé. Critères d'hygiène du milieu, ébauche non éditée. Genève : OMS.

Wyllie, AH, JFR Kerr et AR Currie. 1980. Mort cellulaire : L'importance de l'apoptose. Int Rév Cytol 68: 251-306.

@REFS LABEL = Autres lectures pertinentes

Albert, RE. 1994. Évaluation des risques cancérigènes par l'Environmental Protection Agency des États-Unis. Crit. Rév. Toxicol 24: 75-85.

Alberts, B, D Bray, J Lewis, M Raff, K Roberts et JD Watson. 1988. Biologie moléculaire de la cellule. New York : Garland Publishing.

Ariens, EJ. 1964. Pharmacologie Moléculaire. Vol.1. New York : Presse académique.

Ariens, EJ, E Mutschler et AM Simonis. 1978. Allgemeine Toxicologie [Toxicologie générale]. Stuttgart : Georg Thieme Verlag.

Ashby, J et RW Tennant. 1994. Prédiction de la cancérogénicité des rongeurs pour 44 produits chimiques : Résultats. Mutagenèse 9: 7-15.

Ashford, NA, CJ Spadafor, DB Hattis et CC Caldart. 1990. Surveillance du travailleur pour l'exposition et la maladie. Baltimore : Université Johns Hopkins. Presse.

Balabuha, N.-É. et GE Fradkin. 1958. Nakoplenie radioaktivnih elementov v organizme I ih vivedenie [Accumulation des éléments radioactifs dans l'organisme et leur excrétion]. Moscou : Medgiz.

Balls, M, J Bridges et J Southee. 1991. Animaux et alternatives en toxicologie Statut actuel et perspectives d'avenir. Nottingham, Royaume-Uni : Le Fonds pour le remplacement des animaux dans les expériences médicales.

Berlin, A, J Dean, MH Draper, EMB Smith et F Spreafico. 1987. Immunotoxicologie. Dordrecht : Martinus Nijhoff.

Boyhous, A. 1974. Respiration. New York : Grune & Stratton.

Brandau, R et BH Lippold. 1982. Absorption cutanée et transdermique. Stuttgart : Wissenschaftliche Verlagsgesellschaft.

Brusick, DJ. 1994. Méthodes d'évaluation des risques génétiques. Boca Raton : Éditeurs de Lewis.

Burrell, R. 1993. Toxicité immunitaire humaine. Mol Aspects Med 14: 1-81.

Castell, JV et MJ Gómez-Lechón. 1992. Alternatives in vitro à la pharmaco-toxicologie animale. Madrid, Espagne : Farmaindustria.

Chapman, G. 1967. Fluides corporels et leurs fonctions. Londres : Edward Arnold.

Comité sur les marqueurs biologiques du Conseil national de recherches. 1987. Marqueurs biologiques dans la recherche en santé environnementale. Perspicacité d'Environ Health 74: 3-9.

Cralley, LJ, LV Cralley et JS Bus (éd.). 1978. Patty's Industrial Hygiene and Toxicology. New York : Wiley.

Dayan, AD, RF Hertel, E Heseltine, G Kazantis, EM Smith et MT Van der Venne. 1990. Immunotoxicité des métaux et immunotoxicologie. New York : presse plénière.

Djuric, D. 1987. Aspects moléculaires et cellulaires de l'exposition professionnelle aux produits chimiques toxiques. Dans Partie 1 Toxicocinétique. Genève : OMS.

Duffus, JH. 1980. Toxicologie environnementale. Londres : Edward Arnold.

ECOTOC. 1986. Relation structure-activité en toxicologie et écotoxicologie, monographie n° 8. Bruxelles : ECOTOC.

Forth, W, D Henschler et W Rummel. 1983. Pharmacologie et Toxicologie. Mannheim : Bibliographische Institut.

Frazier, JM. 1990. Critères scientifiques pour la validation des tests de toxicité in vitro. Monographie environnementale de l'OCDE, no. 36. Paris : OCDE.

—. 1992. Toxicité in vitro - Applications à l'évaluation de la sécurité. New York : Marcel Dekker.

Gad, Caroline du Sud. 1994. Toxicologie in vitro. New York : Raven Press.

Gadaskina, ID. 1970. Zhiroraya tkan I yadi [Tissus gras et toxiques]. Dans Aktualnie Vaprosi promishlenoi toksikolgii [Problèmes réels en toxicologie professionnelle], édité par NV Lazarev. Leningrad : ministère de la Santé RSFSR.

Gaylor, DW. 1983. L'utilisation des facteurs de sécurité pour contrôler le risque. J Toxicol Environ Santé 11: 329-336.

Gibson, GG, R Hubbard et DV Parke. 1983. Immunotoxicologie. Londres : Academic Press.

Goldberg, AM. 1983-1995. Alternatives en toxicologie. Vol. 1-12. New York : Mary Ann Liebert.

Grandjean, P. 1992. Sensibilité individuelle à la toxicité. Lettres toxicol 64 / 65: 43-51.

Hanke, J et JK Piotrowski. 1984. Biochimie sous-jacente à la toksikologie [Base biochimique de la toxicologie]. Varsovie : PZWL.

Hatch, T et P Gross. 1954. Dépôt pulmonaire et rétention des aérosols inhalés. New York: Presse académique.

Conseil de la santé des Pays-Bas : Comité d'évaluation de la cancérogénicité des substances chimiques. 1994. Évaluation des risques des produits chimiques cancérigènes aux Pays-Bas. Régul Toxicol Pharmacol 19: 14-30.

Hollande, WC, RL Klein et AH Briggs. 1967. Molekulaere Pharmacologie.

Huff, JE. 1993. Produits chimiques et cancer chez l'homme : premières preuves chez des animaux de laboratoire. Perspicacité d'Environ Health 100: 201-210.

Klaassen, CD et DL Eaton. 1991. Principes de toxicologie. Type. 2 po Toxicologie de Casarett et Doull, édité par CD Klaassen, MO Amdur et J Doull. New York : Presse de Pergamon.

Kosover, EM. 1962. Biochimie moléculaire. New York : McGraw-Hill.

Kundiev, YI. 1975.Vssavanie pesticidov cherez kozsu I profilaktika otravlenii [Absorption des pesticides par la peau et prévention de l'intoxication]. Kiev : Zdorovia.

Kustov, VV, LA Tiunov et JA Vasiljev. 1975. Komvinovanie deistvie promishlenih yadov [Effets combinés des toxiques industriels]. Moskva : Médecine.

Lauwerys, R. 1982. Toxicologie industrielle et intoxications professionnelles. Paris : Masson.

Li, AP et RH Heflich. 1991. Toxicologie génétique. Boca Raton : CRC Press.

Loewey, AG et P Siekewitz. 1969. Structure et fonctions cellulaires. New York : Holt, Reinhart et Winston.

Loomis, TA. 1976. L'essentiel de la toxicologie. Philadelphie : Lea & Febiger.

Mendelsohn, ML et RJ Albertini. 1990. Mutation et environnement, Parties AE. New York : Wiley Liss.

Mettzler, DE. 1977. Biochimie. New York : Presse académique.

Miller, K, JL Turk et S Nicklin. 1992. Principes et pratique de l'immunotoxicologie. Oxford : Blackwells Scientific.

Ministère du commerce international et de l'industrie. 1981. Manuel des substances chimiques existantes. Tokyo : presse quotidienne chimique.

—. 1987. Demande d'approbation de produits chimiques par la loi sur le contrôle des substances chimiques. (En japonais et en anglais). Tokyo : Kagaku Kogyo Nippo Press.

Montagna, W. 1956. La structure et la fonction de la peau. New York: Presse académique.

Moolenaar, RJ. 1994. Évaluation du risque cancérogène : comparaison internationale. Regul Toxicol Pharmacol 20: 302-336.

Conseil National de Recherche. 1989. Marqueurs biologiques de la toxicité reproductive. Washington, D.C. : NAS Press.

Neuman, WG et M Neuman. 1958. La dynamique chimique des minéraux osseux. Chicago : L'Univ. de Chicago Press.

Newcombe, DS, NR Rose et JC Bloom. 1992. Immunotoxicologie clinique. New York : Raven Press.

Pacheco, H. 1973. La pharmacologie moléculaire. Paris : Presse Universitaire.

Piotrowski, JK. 1971. L'application de la cinétique métabolique et excrétoire aux problèmes de toxicologie industrielle. Washington, DC : Département américain de la santé, de l'éducation et du bien-être.

—. 1983. Interactions biochimiques des métaux lourds : Méthalothionéine. Dans Effets sur la santé de l'exposition combinée à des produits chimiques. Copenhague : Bureau régional de l'OMS pour l'Europe.

Actes de la conférence Arnold O. Beckman/IFCC sur les biomarqueurs de toxicologie environnementale de l'exposition chimique. 1994. Clin Chem 40(7B).

Russell, WMS et RL Burch. 1959. Les principes de la technique expérimentale humaine. Londres : Methuen & Co. Réimprimé par la Fédération des universités pour le bien-être animal, 1993.

Rycroft, RJG, T Menné, PJ Frosch et C Benezra. 1992. Manuel de dermatite de contact. Berlin: Springer-Verlag.

Schubert, J. 1951. Estimation des radioéléments chez les individus exposés. Nucléonique 8: 13-28.

Shelby, MD et E Zeiger. 1990. Activité des carcinogènes humains dans les tests cytogénétiques de Salmonella et de moelle osseuse de rongeurs. Mutat Res 234: 257-261.

Stone, R. 1995. Une approche moléculaire du risque de cancer. Sciences 268: 356-357.

Teisinger, J. 1984. Expositiontest in der Industrietoxicologie [Tests d'exposition en toxicologie industrielle]. Berlin : VEB Verlag Volk und Gesundheit.

Congrès américain. 1990. Surveillance et dépistage génétiques en milieu de travail, OTA-BA-455. Washington, DC : Bureau d'impression du gouvernement des États-Unis.

VEB. 1981. Kleine Enzyklopaedie: Leben [Vie]. Leipzig : VEB Bibliographische Institut.

Weil, E. 1975. Éléments de toxicologie industrielle [Éléments de toxicologie industrielle]. Paris : Masson et Cie.

Organisation mondiale de la santé (OMS). 1975. Méthodes utilisées en URSS pour établir des niveaux sûrs de substances toxiques. Genève : OMS.

1978. Principes et méthodes d'évaluation de la toxicité des produits chimiques, partie 1. Critères de santé environnementale, n°6. Genève : OMS.

—. 1981. Exposition combinée aux produits chimiques, Document provisoire n°11. Copenhague : Bureau régional de l'OMS pour l'Europe.

—. 1986. Principes des études toxicocinétiques. Critères de santé environnementale, no. 57. Genève : OMS.

Yoftrey, JM et FC Courtice. 1956. Tissus lymphatiques, lymphatiques et lymphoïdes. Cambridge : Université de Harvard. Presse.

Zakutinskiy, DI. 1959. Voprosi toksikologii radioaktivnih veshchestv [Problèmes de toxicologie des matières radioactives]. Moscou : Medgiz.

Zurlo, J, D Rudacille et AM Goldberg. 1993. Animaux et alternatives dans les tests : histoire, science et éthique. New York : Mary Ann Liebert.