Lundi, Décembre 20 2010 19: 23

Effet de l'âge, du sexe et d'autres facteurs

Évaluer cet élément
(4 votes)

Il existe souvent de grandes différences entre les humains dans l'intensité de la réponse aux produits chimiques toxiques et les variations de la sensibilité d'un individu au cours d'une vie. Ceux-ci peuvent être attribués à une variété de facteurs capables d'influencer le taux d'absorption, la distribution dans le corps, la biotransformation et/ou le taux d'excrétion d'un produit chimique particulier. Outre les facteurs héréditaires connus dont il a été clairement démontré qu'ils étaient liés à une susceptibilité accrue à la toxicité chimique chez l'homme (voir « Déterminants génétiques de la réponse toxique »), d'autres facteurs comprennent : les caractéristiques constitutionnelles liées à l'âge et au sexe ; états pathologiques préexistants ou réduction de la fonction organique (non héréditaire, c'est-à-dire acquis); les habitudes alimentaires, le tabagisme, la consommation d'alcool et l'utilisation de médicaments ; exposition concomitante à des biotoxines (divers micro-organismes) et à des facteurs physiques (radiations, humidité, températures extrêmement basses ou élevées ou pressions barométriques particulièrement pertinentes pour la pression partielle d'un gaz), ainsi qu'exercice physique concomitant ou situations de stress psychologique ; exposition professionnelle et/ou environnementale antérieure à un produit chimique particulier, et en particulier exposition concomitante à d'autres produits chimiques, ne sauraient nécessairement toxique (p. ex. métaux essentiels). Les contributions possibles des facteurs susmentionnés à l'augmentation ou à la diminution de la sensibilité aux effets nocifs sur la santé, ainsi que les mécanismes de leur action, sont spécifiques à un produit chimique particulier. Par conséquent, seuls les facteurs les plus courants, les mécanismes de base et quelques exemples caractéristiques seront présentés ici, alors que des informations spécifiques concernant chaque produit chimique particulier peuvent être trouvées ailleurs dans ce Encyclopédie.

Selon le stade auquel ces facteurs agissent (absorption, distribution, biotransformation ou excrétion d'un produit chimique particulier), les mécanismes peuvent être grossièrement classés selon deux conséquences fondamentales de l'interaction : (1) un changement de la quantité du produit chimique dans un organe cible, c'est-à-dire au(x) site(s) de son effet dans l'organisme (interactions toxicocinétiques), ou (2) une modification de l'intensité d'une réponse spécifique à la quantité de la substance chimique dans un organe cible (interactions toxicodynamiques) . Les mécanismes les plus courants de l'un ou l'autre type d'interaction sont liés à la compétition avec d'autres produits chimiques pour se lier aux mêmes composés impliqués dans leur transport dans l'organisme (par exemple, des protéines sériques spécifiques) et/ou pour la même voie de biotransformation (par exemple, enzymes spécifiques) entraînant une modification de la vitesse ou de la séquence entre la réaction initiale et l'effet néfaste final sur la santé. Cependant, les interactions toxicocinétiques et toxicodynamiques peuvent influencer la sensibilité individuelle à un produit chimique particulier. L'influence de plusieurs facteurs concomitants peut entraîner soit : (a) effets additifs—l'intensité de l'effet combiné est égale à la somme des effets produits par chaque facteur séparément, (b) effets synergiques—l'intensité de l'effet combiné est supérieure à la somme des effets produits par chaque facteur séparément, ou (c) effets antagonistes—l'intensité de l'effet combiné est inférieure à la somme des effets produits par chaque facteur séparément.

La quantité d'un produit chimique toxique particulier ou d'un métabolite caractéristique au(x) site(s) de son effet dans le corps humain peut être plus ou moins évaluée par une surveillance biologique, c'est-à-dire en choisissant le bon échantillon biologique et le moment optimal pour l'échantillonnage, en prenant en compte les demi-vies biologiques d'un produit chimique particulier à la fois dans l'organe critique et dans le compartiment biologique mesuré. Cependant, des informations fiables concernant d'autres facteurs possibles qui pourraient influencer la susceptibilité individuelle chez l'homme font généralement défaut, et par conséquent la majorité des connaissances concernant l'influence de divers facteurs est basée sur des données expérimentales sur des animaux.

Il convient de souligner que, dans certains cas, des différences relativement importantes existent entre les humains et les autres mammifères dans l'intensité de la réponse à un niveau et/ou une durée d'exposition équivalents à de nombreux produits chimiques toxiques ; par exemple, les humains semblent être considérablement plus sensibles aux effets néfastes sur la santé de plusieurs métaux toxiques que ne le sont les rats (couramment utilisés dans les études expérimentales sur des animaux). Certaines de ces différences peuvent être attribuées au fait que les voies de transport, de distribution et de biotransformation de divers produits chimiques dépendent fortement de changements subtils du pH tissulaire et de l'équilibre redox dans l'organisme (tout comme les activités de diverses enzymes), et que le système redox de l'homme diffère considérablement de celui du rat.

C'est évidemment le cas d'importants antioxydants tels que la vitamine C et le glutathion (GSH), qui sont essentiels au maintien de l'équilibre redox et qui ont un rôle protecteur contre les effets néfastes des radicaux libres dérivés de l'oxygène ou des xénobiotiques qui interviennent dans une variété de conditions pathologiques (Kehrer 1993). L'homme ne peut pas auto-synthétiser la vitamine C, contrairement au rat, et les niveaux ainsi que le taux de renouvellement du GSH érythrocytaire chez l'homme sont considérablement inférieurs à ceux du rat. Les humains manquent également de certaines des enzymes antioxydantes protectrices, par rapport au rat ou à d'autres mammifères (par exemple, la GSH-peroxydase est considérée comme peu active dans le sperme humain). Ces exemples illustrent la vulnérabilité potentiellement plus grande au stress oxydatif chez l'homme (en particulier dans les cellules sensibles, p. divers facteurs chez l'homme par rapport à d'autres mammifères (Telišman 1995).

Influence de l'âge

Comparativement aux adultes, les très jeunes enfants sont souvent plus sensibles à la toxicité chimique en raison de leurs volumes d'inhalation relativement plus élevés et de leur taux d'absorption gastro-intestinale en raison d'une plus grande perméabilité de l'épithélium intestinal, et en raison de systèmes enzymatiques de détoxification immatures et d'un taux d'excrétion relativement plus faible de produits chimiques toxiques. . Le système nerveux central semble être particulièrement sensible au stade précoce du développement en ce qui concerne la neurotoxicité de divers produits chimiques, par exemple le plomb et le méthylmercure. D'autre part, les personnes âgées peuvent être sensibles en raison d'antécédents d'exposition chimique et d'une augmentation des réserves corporelles de certains xénobiotiques, ou d'une fonction préexistante compromise des organes cibles et/ou des enzymes pertinentes entraînant une diminution du taux de détoxification et d'excrétion. Chacun de ces facteurs peut contribuer à l'affaiblissement des défenses de l'organisme - une diminution de la capacité de réserve, entraînant une susceptibilité accrue à une exposition ultérieure à d'autres dangers. Par exemple, les enzymes du cytochrome P450 (impliquées dans les voies de biotransformation de presque tous les produits chimiques toxiques) peuvent être induites ou avoir une activité réduite en raison de l'influence de divers facteurs au cours de la vie (y compris les habitudes alimentaires, le tabagisme, l'alcool, l'utilisation de médicaments et exposition aux xénobiotiques environnementaux).

Influence du sexe

Des différences de sensibilité liées au sexe ont été décrites pour un grand nombre de produits chimiques toxiques (environ 200), et de telles différences se retrouvent chez de nombreuses espèces de mammifères. Il semble que les mâles soient généralement plus sensibles aux toxines rénales et les femelles aux toxines hépatiques. Les causes de la réponse différente entre les hommes et les femmes ont été liées à des différences dans une variété de processus physiologiques (par exemple, les femmes sont capables d'excréter davantage de certains produits chimiques toxiques par la perte de sang menstruel, le lait maternel et/ou le transfert au fœtus, mais elles subissent un stress supplémentaire pendant la grossesse, l'accouchement et l'allaitement), les activités enzymatiques, les mécanismes de réparation génétique, les facteurs hormonaux ou la présence de dépôts de graisse relativement plus importants chez les femelles, entraînant une plus grande accumulation de certains produits chimiques toxiques lipophiles, tels que les solvants organiques et certains médicaments .

Influence des habitudes alimentaires

Les habitudes alimentaires ont une influence importante sur la susceptibilité à la toxicité chimique, principalement parce qu'une nutrition adéquate est essentielle au fonctionnement du système de défense chimique de l'organisme pour le maintien d'une bonne santé. Un apport adéquat en métaux essentiels (y compris les métalloïdes) et en protéines, en particulier les acides aminés soufrés, est nécessaire à la biosynthèse de diverses enzymes détoxifiantes et à l'apport de glycine et de glutathion pour les réactions de conjugaison avec des composés endogènes et exogènes. Les lipides, notamment les phospholipides, et les lipotropes (donneurs de groupes méthyle) sont nécessaires à la synthèse des membranes biologiques. Les glucides fournissent l'énergie nécessaire à divers processus de détoxification et fournissent de l'acide glucuronique pour la conjugaison des produits chimiques toxiques et de leurs métabolites. Le sélénium (un métalloïde essentiel), le glutathion et des vitamines telles que la vitamine C (soluble dans l'eau), la vitamine E et la vitamine A (soluble dans les lipides) jouent un rôle important en tant qu'antioxydants (p. ex., dans le contrôle de la peroxydation des lipides et le maintien de l'intégrité des membranes cellulaires) et des piégeurs de radicaux libres pour la protection contre les produits chimiques toxiques. De plus, divers constituants alimentaires (teneur en protéines et en fibres, minéraux, phosphates, acide citrique, etc.) ainsi que la quantité de nourriture consommée peuvent grandement influencer le taux d'absorption gastro-intestinal de nombreux produits chimiques toxiques (p. sels de plomb pris avec les repas est d'environ 60 %, contre environ XNUMX % chez les sujets à jeun). Cependant, l'alimentation elle-même peut être une source supplémentaire d'exposition individuelle à divers produits chimiques toxiques (par exemple, apports quotidiens considérablement accrus et accumulation d'arsenic, de mercure, de cadmium et/ou de plomb chez les sujets qui consomment des produits de la mer contaminés).

Influence du tabagisme

L'habitude de fumer peut influencer la sensibilité individuelle à de nombreux produits chimiques toxiques en raison de la variété des interactions possibles impliquant le grand nombre de composés présents dans la fumée de cigarette (en particulier les hydrocarbures aromatiques polycycliques, le monoxyde de carbone, le benzène, la nicotine, l'acroléine, certains pesticides, le cadmium et , dans une moindre mesure, le plomb et d'autres métaux toxiques, etc.), dont certains sont capables de s'accumuler dans le corps humain au cours de la vie, y compris la vie prénatale (par exemple, le plomb et le cadmium). Les interactions se produisent principalement parce que divers produits chimiques toxiques entrent en compétition pour le(s) même(s) site(s) de liaison pour le transport et la distribution dans l'organisme et/ou pour la même voie de biotransformation impliquant des enzymes particulières. Par exemple, plusieurs constituants de la fumée de cigarette peuvent induire des enzymes du cytochrome P450, tandis que d'autres peuvent réduire leur activité, et ainsi influencer les voies de biotransformation communes de nombreux autres produits chimiques toxiques, tels que les solvants organiques et certains médicaments. Une forte consommation de cigarettes sur une longue période peut réduire considérablement les mécanismes de défense de l'organisme en diminuant la capacité de réserve pour faire face à l'influence néfaste d'autres facteurs liés au mode de vie.

Influence de l'alcool

La consommation d'alcool (éthanol) peut influencer la sensibilité à de nombreux produits chimiques toxiques de plusieurs façons. Il peut influencer le taux d'absorption et la distribution de certains produits chimiques dans le corps, par exemple, augmenter le taux d'absorption gastro-intestinal du plomb ou diminuer le taux d'absorption pulmonaire de la vapeur de mercure en inhibant l'oxydation qui est nécessaire à la rétention de la vapeur de mercure inhalée. L'éthanol peut également influencer la sensibilité à divers produits chimiques par des changements à court terme du pH des tissus et une augmentation du potentiel redox résultant du métabolisme de l'éthanol, car l'éthanol s'oxydant en acétaldéhyde et l'acétaldéhyde s'oxydant en acétate produisent un équivalent de nicotinamide adénine dinucléotide réduit (NADH) et hydrogène (H+). Étant donné que l'affinité des métaux et métalloïdes essentiels et toxiques pour la liaison à divers composés et tissus est influencée par le pH et les modifications du potentiel redox (Telišman 1995), même une consommation modérée d'éthanol peut entraîner une série de conséquences telles que : ( 1) redistribution du plomb accumulé à long terme dans l'organisme humain en faveur d'une fraction de plomb biologiquement active, (2) remplacement du zinc essentiel par le plomb dans les enzymes contenant du zinc, affectant ainsi l'activité enzymatique ou l'influence de la mobilité plomb isé sur la distribution d'autres métaux et métalloïdes essentiels dans l'organisme tels que le calcium, le fer, le cuivre et le sélénium, (3) augmentation de l'excrétion urinaire de zinc, etc. L'effet des éventuels événements susmentionnés peut être augmenté du fait que les boissons alcoolisées peuvent contenir une quantité appréciable de plomb provenant des récipients ou de la transformation (Prpic-Majic et al. 1984 ; Telišman et al. 1984 ; 1993).

Une autre raison courante des changements de sensibilité liés à l'éthanol est que de nombreux produits chimiques toxiques, par exemple divers solvants organiques, partagent la même voie de biotransformation impliquant les enzymes du cytochrome P450. En fonction de l'intensité de l'exposition aux solvants organiques ainsi que de la quantité et de la fréquence d'ingestion d'éthanol (c.-à-d. consommation aiguë ou chronique d'alcool), l'éthanol peut diminuer ou augmenter les taux de biotransformation de divers solvants organiques et ainsi influencer leur toxicité (Sato 1991) .

Influence des médicaments

L'utilisation courante de divers médicaments peut influer sur la sensibilité aux produits chimiques toxiques, principalement parce que de nombreux médicaments se lient aux protéines sériques et influencent ainsi le transport, la distribution ou le taux d'excrétion de divers produits chimiques toxiques, ou parce que de nombreux médicaments sont capables d'induire des enzymes détoxifiantes pertinentes ou de réduire leur activité. (par exemple, les enzymes du cytochrome P450), affectant ainsi la toxicité des produits chimiques ayant la même voie de biotransformation. La caractéristique de l'un ou l'autre des mécanismes est l'augmentation de l'excrétion urinaire d'acide trichloroacétique (le métabolite de plusieurs hydrocarbures chlorés) lors de l'utilisation de salicylate, de sulfonamide ou de phénylbutazone, et une augmentation de l'hépato-néphrotoxicité du tétrachlorure de carbone lors de l'utilisation de phénobarbital. De plus, certains médicaments contiennent une quantité considérable d'un produit chimique potentiellement toxique, par exemple les antiacides contenant de l'aluminium ou les préparations utilisées pour la prise en charge thérapeutique de l'hyperphosphatémie survenant dans l'insuffisance rénale chronique.

Influence de l'exposition concomitante à d'autres produits chimiques

Les modifications de la susceptibilité aux effets nocifs sur la santé dues à l'interaction de divers produits chimiques (c.-à-d. possibles effets additifs, synergiques ou antagonistes) ont été étudiées presque exclusivement chez des animaux de laboratoire, principalement chez le rat. Les études épidémiologiques et cliniques pertinentes font défaut. Ceci est particulièrement préoccupant compte tenu de l'intensité relativement plus grande de la réponse ou de la variété des effets néfastes sur la santé de plusieurs produits chimiques toxiques chez l'homme par rapport au rat et à d'autres mammifères. Hormis les données publiées dans le domaine de la pharmacologie, la plupart des données ne concernent que des combinaisons de deux produits chimiques différents au sein de groupes spécifiques, tels que divers pesticides, solvants organiques ou métaux et métalloïdes essentiels et/ou toxiques.

L'exposition combinée à divers solvants organiques peut entraîner divers effets additifs, synergiques ou antagonistes (selon la combinaison de certains solvants organiques, leur intensité et la durée d'exposition), principalement en raison de la capacité d'influencer la biotransformation de l'autre (Sato 1991).

Un autre exemple caractéristique sont les interactions des métaux et des métalloïdes à la fois essentiels et/ou toxiques, car ceux-ci sont impliqués dans l'influence possible de l'âge (par exemple, une accumulation corporelle de plomb et de cadmium environnementaux à vie), du sexe (par exemple, une carence en fer courante chez les femmes ), habitudes alimentaires (par exemple, apport alimentaire accru de métaux et métalloïdes toxiques et/ou apport alimentaire insuffisant en métaux et métalloïdes essentiels), tabagisme et consommation d'alcool (par exemple, exposition supplémentaire au cadmium, au plomb et à d'autres métaux toxiques), et utilisation de médicaments (p. ex., une seule dose d'antiacide peut entraîner une augmentation de 50 fois de l'apport quotidien moyen d'aluminium par l'alimentation). La possibilité de divers effets additifs, synergiques ou antagonistes de l'exposition à divers métaux et métalloïdes chez l'homme peut être illustrée par des exemples simples liés aux principaux éléments toxiques (voir tableau 1), à part lesquels d'autres interactions peuvent se produire car des éléments essentiels peuvent également influencer les uns des autres (par exemple, l'effet antagoniste bien connu du cuivre sur le taux d'absorption gastro-intestinal ainsi que sur le métabolisme du zinc, et vice versa). La principale cause de toutes ces interactions est la compétition de divers métaux et métalloïdes pour le même site de liaison (en particulier le groupe sulfhydryle, -SH) dans diverses enzymes, métalloprotéines (en particulier la métallothionéine) et tissus (par exemple, membranes cellulaires et barrières organiques). Ces interactions peuvent avoir un rôle important dans le développement de plusieurs maladies chroniques qui sont médiées par l'action des radicaux libres et le stress oxydatif (Telišman 1995).

Tableau 1. Effets de base des interactions multiples possibles concernant les principaux métaux et métalloïdes toxiques et/ou essentiels chez les mammifères

Métal ou métalloïde toxique Effets de base de l'interaction avec d'autres métaux ou métalloïdes
Aluminium (Al) Diminue le taux d'absorption du Ca et altère le métabolisme du Ca ; une alimentation déficiente en Ca augmente le taux d'absorption d'Al. Altère le métabolisme des phosphates. Les données sur les interactions avec Fe, Zn et Cu sont équivoques (c'est-à-dire le rôle possible d'un autre métal comme médiateur).
Arsenic (As) Affecte la distribution de Cu (une augmentation de Cu dans les reins et une diminution de Cu dans le foie, le sérum et l'urine). Altère le métabolisme du Fe (augmentation du Fe dans le foie avec diminution concomitante de l'hématocrite). Zn diminue le taux d'absorption de l'As inorganique et diminue la toxicité de l'As. Le Se diminue la toxicité de l'As et vice versa.
Cadmium (Cd) Diminue le taux d'absorption du Ca et altère le métabolisme du Ca ; une carence en Ca alimentaire augmente le taux d'absorption du Cd. Altère le métabolisme des phosphates, c'est-à-dire augmente l'excrétion urinaire des phosphates. Altère le métabolisme du Fe; une alimentation déficiente en Fe augmente le taux d'absorption du Cd. Affecte la distribution de Zn ; Le Zn diminue la toxicité du Cd, alors que son influence sur le taux d'absorption du Cd est équivoque. Le Se diminue la toxicité du Cd. Le Mn diminue la toxicité du Cd lors d'une faible exposition au Cd. Les données sur l'interaction avec Cu sont équivoques (c'est-à-dire le rôle possible de Zn, ou d'un autre métal, en tant que médiateur). Des niveaux alimentaires élevés de Pb, Ni, Sr, Mg ou Cr(III) peuvent diminuer le taux d'absorption du Cd.
Mercure (Hg) Affecte la distribution de Cu (une augmentation de Cu dans le foie). Zn diminue le taux d'absorption du Hg inorganique et diminue la toxicité du Hg. Le Se diminue la toxicité du Hg. Le Cd augmente la concentration de Hg dans le rein, mais diminue en même temps la toxicité du Hg dans le rein (l'influence de la synthèse de métallothionéine induite par le Cd).
Plomb (Pb) Altère le métabolisme du Ca; une alimentation déficiente en Ca augmente le taux d'absorption du Pb inorganique et augmente la toxicité du Pb. Altère le métabolisme du Fe; une alimentation déficiente en Fe augmente la toxicité du Pb, alors que son influence sur le taux d'absorption du Pb est équivoque. Altère le métabolisme du Zn et augmente l'excrétion urinaire de Zn; une alimentation déficiente en Zn augmente le taux d'absorption du Pb inorganique et augmente la toxicité du Pb. Le Se diminue la toxicité du Pb. Les données sur les interactions avec Cu et Mg sont équivoques (c'est-à-dire le rôle possible du Zn ou d'un autre métal en tant que médiateur).

Remarque : Les données sont principalement liées à des études expérimentales chez le rat, alors que les données cliniques et épidémiologiques pertinentes (en particulier concernant les relations dose-réponse quantitatives) font généralement défaut (Elsenhans et al. 1991 ; Fergusson 1990 ; Telišman et al. 1993).

 

Retour

Lire 11683 fois Dernière modification le Mardi, Juillet 26 2022 19: 29

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références toxicologiques

Andersen, KE et HI Maibach. 1985. Tests prédictifs d'allergies de contact sur des cobayes. Type. 14 po Problèmes actuels en dermatologie. Bâle : Karger.

Ashby, J et RW Tennant. 1991. Relations définitives entre la structure chimique, la cancérogénicité et la mutagénicité pour 301 produits chimiques testés par le US NTP. Mutat Res 257: 229-306.

Barlow, S et F Sullivan. 1982. Dangers pour la reproduction des produits chimiques industriels. Londres : Academic Press.

Barrette, JC. 1993a. Mécanismes d'action des agents cancérigènes humains connus. Dans Mécanismes de cancérogenèse dans l'identification des risques, édité par H Vainio, PN Magee, DB McGregor et AJ McMichael. Lyon : Centre international de recherche sur le cancer (CIRC).

—. 1993b. Mécanismes de cancérogenèse en plusieurs étapes et évaluation du risque cancérogène. Perspicacité d'Environ Health 100: 9-20.

Bernstein, ME. 1984. Agents affectant le système reproducteur masculin : effets de la structure sur l'activité. Drug Metab Rev 15: 941-996.

Beutler, E. 1992. La biologie moléculaire des variantes de la G6PD et d'autres défauts des globules rouges. Annu Rev Med 43: 47-59.

Bloom, AD. 1981. Lignes directrices pour les études sur la reproduction dans les populations humaines exposées. White Plains, New York : March of Dimes Foundation.

Borghoff, S, B Short et J Swenberg. 1990. Mécanismes biochimiques et pathobiologie de la néphropathie a-2-globuline. Annu Rev Pharmacol Toxicol 30: 349.

Burchell, B, DW Nebert, DR Nelson, KW Bock, T Iyanagi, PLM Jansen, D Lancet, GJ Mulder, JR Chowdhury, G Siest, TR Tephly et PI Mackenzie. 1991. La superfamille des gènes UPD-glucuronosyltransférase : nomenclature suggérée basée sur la divergence évolutive. ADN Cell Biol 10: 487-494.

Burleson, G, A Munson et J Dean. 1995. Méthodes modernes en immunotoxicologie. New York : Wiley.

Capecchi, M. 1994. Remplacement de gène ciblé. Sci Am 270: 52-59.

Carney, EW. 1994. Une perspective intégrée sur la toxicité pour le développement de l'éthylène glycol. Représentant Toxicol 8: 99-113.

Dean, JH, MI Lustre, AE Munson et moi Kimber. 1994. Immunotoxicologie et immunopharmacologie. New York : Raven Press.

Descotes, J. 1986. Immunotoxicologie des médicaments et des produits chimiques. Amsterdam : Elsevier.

Devary, Y, C Rosette, JA DiDonato et M Karin. 1993. Activation de NFkB par la lumière ultraviolette non dépendante d'un signal nucléaire. Science 261: 1442-1445.

Dixon, RL. 1985. Toxicologie de la reproduction. New York : Raven Press.

Duffus, JH. 1993. Glossaire pour les chimistes des termes utilisés en toxicologie. Chimie pure Appl 65: 2003-2122.

Elsenhans, B, K Schuemann et W Forth. 1991. Métaux toxiques : Interactions avec les métaux essentiels. Dans Nutrition, toxicité et cancer, édité par IR Rowland. Boca-Raton : CRC Press.

Agence de protection de l'environnement (EPA). 1992. Lignes directrices pour l'évaluation de l'exposition. Règl. fédéral 57: 22888-22938.

—. 1993. Principes d'évaluation des risques de neurotoxicité. Règl. fédéral 58: 41556-41598.

—. 1994. Lignes directrices pour l'évaluation de la toxicité pour la reproduction. Washington, DC : US EPA : Bureau de la recherche et du développement.

Fergusson, JE. 1990. Les éléments lourds. Type. 15 po Chimie, impact environnemental et effets sur la santé. Oxford : Pergame.

Gehring, PJ, PG Watanabe et GE Blau. 1976. Études pharmacocinétiques dans l'évaluation des risques toxicologiques et environnementaux des produits chimiques. Nouveaux concepts Saf Eval 1(Partie 1, Chapitre 8):195-270.

Goldstein, JA et SMF de Morais. 1994. Biochimie et biologie moléculaire de l'humain CYP2C sous-famille. Pharmacogénétique 4: 285-299.

Gonzalez, FJ. 1992. Cytochromes humains P450 : Problèmes et perspectives. Trends Pharmacol Sci 13: 346-352.

Gonzalez, FJ, CL Crespi et HV Gelboin. 1991. Cytochrome humain P450 exprimé par l'ADNc : une nouvelle ère en toxicologie moléculaire et évaluation des risques pour l'homme. Mutat Res 247: 113-127.

Gonzalez, FJ et DW Nebert. 1990. Évolution de la superfamille des gènes P450 : « guerre » animal-plante, entraînement moléculaire et différences génétiques humaines dans l'oxydation des médicaments. Tendances Genet 6: 182-186.

Grant, DM. 1993. Génétique moléculaire des N-acétyltransférases. Pharmacogénétique 3: 45-50.

Gray, LE, J Ostby, R Sigmon, J Ferrel, R Linder, R Cooper, J Goldman et J Laskey. 1988. L'élaboration d'un protocole pour évaluer les effets sur la reproduction des substances toxiques chez le rat. Représentant Toxicol 2: 281-287.

Guengerich, FP. 1989. Polymorphisme du cytochrome P450 chez l'homme. Trends Pharmacol Sci 10: 107-109.

—. 1993. Enzymes du cytochrome P450. Suis Sci 81: 440-447.

Hansch, C et A Leo. 1979. Constantes de substituant pour l'analyse de corrélation en chimie et biologie. New York : Wiley.

Hansch, C et L Zhang. 1993. Relations quantitatives structure-activité du cytochrome P450. Drug Metab Rev 25: 1-48.

Hayes AW. 1988. Principes et méthodes de toxicologie. 2e éd. New York : Raven Press.

Heindell, JJ et RE Chapin. 1993. Méthodes en toxicologie : toxicologie de la reproduction masculine et féminine. Vol. 1 et 2. San Diego, Californie : Academic Press.

Centre international de recherche sur le cancer (CIRC). 1992. Rayonnement solaire et ultraviolet. Lyon : CIRC.

—. 1993. Expositions professionnelles des coiffeurs et des barbiers et utilisation personnelle de colorants capillaires : certains colorants capillaires, colorants cosmétiques, colorants industriels et amines aromatiques. Lyon : CIRC.

—. 1994a. Préambule. Lyon : CIRC.

—. 1994b. Certains produits chimiques industriels. Lyon : CIRC.

Commission internationale de protection radiologique (CIPR). 1965. Principes de surveillance environnementale liés à la manipulation de matières radioactives. Rapport du Comité IV de la Commission internationale de protection radiologique. Oxford : Pergame.

Programme international sur la sécurité chimique (IPCS). 1991. Principes et méthodes d'évaluation de la néphrotoxicité associée à l'exposition aux produits chimiques, EHC 119. Genève : OMS.

—. 1996. Principes et méthodes d'évaluation Immunotoxicité directe associée à l'exposition aux produits chimiques, EHC180. Genève : OMS.

Johanson, G et PH Naslund. 1988. Programmation de feuille de calcul - une nouvelle approche dans la modélisation physiologique de la toxicocinétique des solvants. Lettres toxicol 41: 115-127.

Johnson, BL. 1978. Prévention des maladies neurotoxiques dans les populations actives. New York : Wiley.

Jones, JC, JM Ward, U Mohr et RD Hunt. 1990. Système hématopoïétique, monographie ILSI, Berlin : Springer Verlag.

Kalow, W. 1962. Pharmacogénétique : hérédité et réponse aux médicaments. Philadelphie : WB Saunders.

—. 1992. Pharmacogénétique du métabolisme des médicaments. New York : Pergame.

Kammüller, ME, N Bloksma et W Seinen. 1989. Auto-immunité et toxicologie. Dérégulation immunitaire induite par les médicaments et les produits chimiques. Amsterdam : Elsevier Sciences.

Kawajiri, K, J Watanabe et SI Hayashi. 1994. Polymorphisme génétique de P450 et cancer humain. Dans Cytochrome P450 : Biochimie, Biophysique et Biologie Moléculaire, édité par MC Lechner. Paris : John Libbey Eurotext.

Kehrer, JP. 1993. Radicaux libres en tant que médiateurs de lésions tissulaires et de maladies. Crit Rév Toxicol 23: 21-48.

Kellerman, G, CR Shaw et M Luyten-Kellerman. 1973. Inductibilité de l'arylhydrocarbure hydroxylase et carcinome bronchogénique. New Engl J Med 289: 934-937.

Khera, KS. 1991. Altérations induites chimiquement de l'homéostasie maternelle et de l'histologie du conceptus : leur signification étiologique dans les anomalies fœtales du rat. Tératologie 44: 259-297.

Kimmel, CA, GL Kimmel et V Frankos. 1986. Atelier du Groupe de liaison réglementaire interagences sur l'évaluation des risques de toxicité pour la reproduction. Perspicacité d'Environ Health 66: 193-221.

Klaassen, CD, MO Amdur et J Doull (eds.). 1991. Toxicologie de Casarett et Doull. New York : Presse de Pergamon.

Kramer, HJ, EJHM Jansen, MJ Zeilmaker, HJ van Kranen et ED Kroese. 1995. Méthodes quantitatives en toxicologie pour l'évaluation de la dose-réponse humaine. Rapport RIVM nr. 659101004.

Kress, S, C Sutter, PT Strickland, H Mukhtar, J Schweizer et M Schwarz. 1992. Modèle de mutation carcinogène spécifique dans le gène p53 dans les carcinomes épidermoïdes induits par le rayonnement ultraviolet B de la peau de souris. Cancer Res 52: 6400-6403.

Krewski, D, D Gaylor, M Szyazkowicz. 1991. Une approche sans modèle d'extrapolation à faible dose. Env H Pers 90: 270-285.

Lawton, MP, T Cresteil, AA Elfarra, E Hodgson, J Ozols, RM Philpot, AE Rettie, DE Williams, JR Cashman, CT Dolphin, RN Hines, T Kimura, IR Phillips, LL Poulsen, EA Shephare et DM Ziegler. 1994. Une nomenclature pour la famille de gènes de monooxygénase contenant de la flavine de mammifère basée sur les identités de séquence d'acides aminés. Arch Bichem Biophys 308: 254-257.

Lewalter, J et U Korallus. 1985. Conjugués de protéines sanguines et acétylation d'amines aromatiques. Nouvelles découvertes sur la surveillance biologique. Int Arch Occup Environ Santé 56: 179-196.

Majno, G et moi Joris. 1995. Apoptose, oncose et nécrose : Un aperçu de la mort cellulaire. Suis J Pathol 146: 3-15.

Mattison, DR et PJ Thomford. 1989. Le mécanisme d'action des toxiques pour la reproduction. Toxicol pathol 17: 364-376.

Meyer, UA. 1994. Polymorphismes du cytochrome P450 CYP2D6 comme facteur de risque dans la cancérogenèse. Dans Cytochrome P450 : Biochimie, Biophysique et Biologie Moléculaire, édité par MC Lechner. Paris : John Libbey Eurotext.

Moller, H, H Vainio et E Heseltine. 1994. Estimation quantitative et prédiction du risque au Centre international de recherche sur le cancer. Cancer Rés. 54 : 3625-3627.

Moolenaar, RJ. 1994. Hypothèses par défaut dans l'évaluation des risques cancérigènes utilisées par les organismes de réglementation. Régul Toxicol Pharmacol 20: 135-141.

Moser, VC. 1990. Approches de dépistage de la neurotoxicité : une batterie d'observations fonctionnelles. J Am Coll Toxicol 1: 85-93.

Conseil national de recherches (CNRC). 1983. Évaluation des risques au gouvernement fédéral : gestion du processus. Washington, D.C. : NAS Press.

—. 1989. Marqueurs biologiques de la toxicité reproductive. Washington, D.C. : NAS Press.

—. 1992. Marqueurs biologiques en immunotoxicologie. Sous-comité de toxicologie. Washington, D.C. : NAS Press.

Nebert, DW. 1988. Gènes codant pour les enzymes métabolisant les médicaments : rôle possible dans les maladies humaines. Dans Variation phénotypique dans les populations, édité par AD Woodhead, MA Bender et RC Leonard. New York : édition du plénum.

—. 1994. Enzymes métabolisant les médicaments dans la transcription modulée par un ligand. Biochem Pharmacol 47: 25-37.

Nebert, DW et WW Weber. 1990. Pharmacogénétique. Dans Principes d'action des médicaments. La base de la pharmacologie, édité par WB Pratt et PW Taylor. New York : Churchill-Livingstone.

Nebert, DW et DR Nelson. 1991. Nomenclature du gène P450 basée sur l'évolution. Dans Méthodes d'Enzymologie. Cytochrome P450, édité par MR Waterman et EF Johnson. Orlando, Floride : Presse académique.

Nebert, DW et RA McKinnon. 1994. Cytochrome P450 : Évolution et diversité fonctionnelle. Prog Liv Dis 12: 63-97.

Nebert, DW, M Adesnik, MJ Coon, RW Estabrook, FJ Gonzalez, FP Guengerich, IC Gunsalus, EF Johnson, B Kemper, W Levin, IR Phillips, R Sato et MR Waterman. 1987. La superfamille des gènes P450 : nomenclature recommandée. ADN Cell Biol 6: 1-11.

Nebert, DW, DR Nelson, MJ Coon, RW Estabrook, R Feyereisen, Y Fujii-Kuriyama, FJ Gonzalez, FP Guengerich, IC Gunsalas, EF Johnson, JC Loper, R Sato, MR Waterman et DJ Waxman. 1991. La superfamille P450 : Mise à jour sur les nouvelles séquences, la cartographie des gènes et la nomenclature recommandée. ADN Cell Biol 10: 1-14.

Nebert, DW, DD Petersen et A Puga. 1991. Polymorphisme et cancer du locus AH humain : inductibilité du CYP1A1 et d'autres gènes par les produits de combustion et la dioxine. Pharmacogénétique 1: 68-78.

Nebert, DW, A Puga et V Vasiliou. 1993. Rôle du récepteur Ah et de la batterie de gènes inductibles par la dioxine [Ah] dans la toxicité, le cancer et la transduction du signal. Ann NY Acad Sci 685: 624-640.

Nelson, DR, T Kamataki, DJ Waxman, FP Guengerich, RW Estabrook, R Feyereisen, FJ Gonzalez, MJ Coon, IC Gunsalus, O Gotoh, DW Nebert et K Okuda. 1993. La superfamille P450 : Mise à jour sur les nouvelles séquences, la cartographie des gènes, les numéros d'accession, les premiers noms triviaux des enzymes et la nomenclature. ADN Cell Biol 12: 1-51.

Nicholson, DW, A All, NA Thornberry, JP Vaillancourt, CK Ding, M Gallant, Y Gareau, PR Griffin, M Labelle, YA Lazebnik, NA Munday, SM Raju, ME Smulson, TT Yamin, VL Yu et DK Miller. 1995. Identification et inhibition de la protéase ICE/CED-3 nécessaire à l'apoptose des mammifères. Nature 376: 37-43.

Nolan, RJ, WT Stott et PG Watanabe. 1995. Données toxicologiques dans l'évaluation de la sécurité chimique. Type. 2 po Patty's Industrial Hygiene and Toxicology, édité par LJ Cralley, LV Cralley et JS Bus. New York : John Wiley & Fils.

Nordberg, GF. 1976. Effet et relations dose-réponse des métaux toxiques. Amsterdam : Elsevier.

Bureau d'évaluation de la technologie (OTA). 1985. Risques reproductifs en milieu de travail. Document n° OTA-BA-266. Washington, DC : Bureau d'impression du gouvernement.

—. 1990. Neurotoxicité : identification et contrôle des poisons du système nerveux. Document n° OTA-BA-436. Washington, DC : Bureau d'impression du gouvernement.

Organisation de coopération et de développement économiques (OCDE). 1993. Projet conjoint US EPA/CE sur l'évaluation des relations structure-activité (quantitatives). Paris : OCDE.

Parc, CN et NC Hawkins. 1993. Examen de la technologie ; un aperçu de l'évaluation du risque de cancer. Méthodes toxicol 3: 63-86.

Pease, W, J Vandenberg et WK Hooper. 1991. Comparaison d'approches alternatives pour établir des niveaux réglementaires pour les substances toxiques pour la reproduction : DBCP comme étude de cas. Perspicacité d'Environ Health 91: 141-155.

Prpi ƒ -Maji ƒ , D, S Telišman et S Kezi ƒ . 6.5. Étude in vitro sur l'interaction entre le plomb et l'alcool et l'inhibition de la déshydratase de l'acide delta-aminolévulinique érythrocytaire chez l'homme. Scand J Work Environ Santé 10: 235-238.

Reitz, RH, RJ Nolan et AM Schumann. 1987. Développement de modèles pharmacocinétiques multiespèces et multivoies pour le chlorure de méthylène et le 1,1,1-trichloroéthane. Dans Pharmacocinétique et évaluation des risques, Eau potable et santé. Washington, DC : Presse de l'Académie nationale.

Roitt, I, J Brostoff et D Male. 1989. Immunologie. Londres : Gower Medical Publishing.

Sato, A. 1991. L'effet des facteurs environnementaux sur le comportement pharmacocinétique des vapeurs de solvants organiques. Ann occupe Hyg 35: 525-541.

Silbergeld, EK. 1990. Élaboration de méthodes formelles d'évaluation des risques pour les neurotoxiques : une évaluation de l'état de l'art. Dans Avancées en toxicologie neurocomportementale, édité par BL Johnson, WK Anger, A Durao et C Xintaras. Chelsea, Michigan : Lewis.

Spencer, PS et HH Schaumberg. 1980. Neurotoxicologie expérimentale et clinique. Baltimore : Williams & Wilkins.

Sweeney, AM, MR Meyer, JH Aarons, JL Mills et RE LePorte. 1988. Évaluation des méthodes d'identification prospective des pertes fœtales précoces dans les études d'épidémiologie environnementale. Am J Epidemiol 127: 843-850.

Taylor, BA, HJ Heiniger et H Meier. 1973. Analyse génétique de la résistance aux lésions testiculaires induites par le cadmium chez la souris. Proc Soc Exp Biol Med 143: 629-633.

Telišman, S. 1995. Interactions des métaux et métalloïdes essentiels et/ou toxiques concernant les différences interindividuelles de sensibilité à diverses substances toxiques et maladies chroniques chez l'homme. Arh rig rada toksikol 46: 459-476.

Telišman, S, A Pinent et D Prpi ƒ -Maji ƒ . 6.5. Interférence du plomb dans le métabolisme du zinc et l'interaction du plomb et du zinc chez l'homme comme explication possible de la susceptibilité individuelle apparente au plomb. Dans Métaux lourds dans l'environnement, édité par RJ Allan et JO Nriagu. Édimbourg : CEP Consultants.

Telišman, S, D Prpi ƒ -Maji ƒ , et S Kezi ƒ . 6.5. Étude in vivo sur l'interaction entre le plomb et l'alcool et l'inhibition de la déshydratase de l'acide delta-aminolévulinique érythrocytaire chez l'homme. Scand J Work Environ Santé 10: 239-244.

Tilson, HA et PA Cabe. 1978. Stratégies pour l'évaluation des conséquences neurocomportementales des facteurs environnementaux. Perspicacité d'Environ Health 26: 287-299.

Trump, BF et AU Arstila. 1971. Lésion cellulaire et mort cellulaire. Dans Principes de pathobiologie, édité par MF LaVia et RB Hill Jr. New York : Oxford Univ. Presse.

Trump, BF et IK Berezesky. 1992. Le rôle du Ca2 cytosolique + dans les lésions cellulaires, la nécrose et l'apoptose. Curr Opin Cell Biol 4: 227-232.

—. 1995. Lésion cellulaire induite par le calcium et mort cellulaire. FASEB J 9: 219-228.

Trump, BF, IK Berezesky et A Osornio-Vargas. 1981. La mort cellulaire et le processus de la maladie. Le rôle du calcium cellulaire. Dans Mort cellulaire en biologie et pathologie, édité par ID Bowen et RA Lockshin. Londres : Chapman & Hall.

Vos, JG, M Younes et E Smith. 1995. Hypersensibilités allergiques induites par des produits chimiques : recommandations pour la prévention publiées au nom du Bureau régional de l'Europe de l'Organisation mondiale de la Santé. Boca Raton, Floride : CRC Press.

Weber, WW. 1987. Les gènes acétylateurs et la réponse aux médicaments. New York : Université d'Oxford. Presse.

Organisation mondiale de la santé (OMS). 1980. Limites sanitaires recommandées pour l'exposition professionnelle aux métaux lourds. Série de rapports techniques, n° 647. Genève : OMS.

—. 1986. Principes et méthodes d'évaluation de la neurotoxicité associée à l'exposition aux produits chimiques. Critères d'hygiène de l'environnement, n°60. Genève : OMS.

—. 1987. Lignes directrices sur la qualité de l'air pour l'Europe. Série européenne, n° 23. Copenhague : Publications régionales de l'OMS.

—. 1989. Glossaire des termes sur la sécurité chimique à utiliser dans les publications de l'IPCS. Genève : OMS.

—. 1993. Dérivation de valeurs indicatives pour les limites d'exposition fondées sur la santé. Critères d'hygiène du milieu, ébauche non éditée. Genève : OMS.

Wyllie, AH, JFR Kerr et AR Currie. 1980. Mort cellulaire : L'importance de l'apoptose. Int Rév Cytol 68: 251-306.

@REFS LABEL = Autres lectures pertinentes

Albert, RE. 1994. Évaluation des risques cancérigènes par l'Environmental Protection Agency des États-Unis. Crit. Rév. Toxicol 24: 75-85.

Alberts, B, D Bray, J Lewis, M Raff, K Roberts et JD Watson. 1988. Biologie moléculaire de la cellule. New York : Garland Publishing.

Ariens, EJ. 1964. Pharmacologie Moléculaire. Vol.1. New York : Presse académique.

Ariens, EJ, E Mutschler et AM Simonis. 1978. Allgemeine Toxicologie [Toxicologie générale]. Stuttgart : Georg Thieme Verlag.

Ashby, J et RW Tennant. 1994. Prédiction de la cancérogénicité des rongeurs pour 44 produits chimiques : Résultats. Mutagenèse 9: 7-15.

Ashford, NA, CJ Spadafor, DB Hattis et CC Caldart. 1990. Surveillance du travailleur pour l'exposition et la maladie. Baltimore : Université Johns Hopkins. Presse.

Balabuha, N.-É. et GE Fradkin. 1958. Nakoplenie radioaktivnih elementov v organizme I ih vivedenie [Accumulation des éléments radioactifs dans l'organisme et leur excrétion]. Moscou : Medgiz.

Balls, M, J Bridges et J Southee. 1991. Animaux et alternatives en toxicologie Statut actuel et perspectives d'avenir. Nottingham, Royaume-Uni : Le Fonds pour le remplacement des animaux dans les expériences médicales.

Berlin, A, J Dean, MH Draper, EMB Smith et F Spreafico. 1987. Immunotoxicologie. Dordrecht : Martinus Nijhoff.

Boyhous, A. 1974. Respiration. New York : Grune & Stratton.

Brandau, R et BH Lippold. 1982. Absorption cutanée et transdermique. Stuttgart : Wissenschaftliche Verlagsgesellschaft.

Brusick, DJ. 1994. Méthodes d'évaluation des risques génétiques. Boca Raton : Éditeurs de Lewis.

Burrell, R. 1993. Toxicité immunitaire humaine. Mol Aspects Med 14: 1-81.

Castell, JV et MJ Gómez-Lechón. 1992. Alternatives in vitro à la pharmaco-toxicologie animale. Madrid, Espagne : Farmaindustria.

Chapman, G. 1967. Fluides corporels et leurs fonctions. Londres : Edward Arnold.

Comité sur les marqueurs biologiques du Conseil national de recherches. 1987. Marqueurs biologiques dans la recherche en santé environnementale. Perspicacité d'Environ Health 74: 3-9.

Cralley, LJ, LV Cralley et JS Bus (éd.). 1978. Patty's Industrial Hygiene and Toxicology. New York : Wiley.

Dayan, AD, RF Hertel, E Heseltine, G Kazantis, EM Smith et MT Van der Venne. 1990. Immunotoxicité des métaux et immunotoxicologie. New York : presse plénière.

Djuric, D. 1987. Aspects moléculaires et cellulaires de l'exposition professionnelle aux produits chimiques toxiques. Dans Partie 1 Toxicocinétique. Genève : OMS.

Duffus, JH. 1980. Toxicologie environnementale. Londres : Edward Arnold.

ECOTOC. 1986. Relation structure-activité en toxicologie et écotoxicologie, monographie n° 8. Bruxelles : ECOTOC.

Forth, W, D Henschler et W Rummel. 1983. Pharmacologie et Toxicologie. Mannheim : Bibliographische Institut.

Frazier, JM. 1990. Critères scientifiques pour la validation des tests de toxicité in vitro. Monographie environnementale de l'OCDE, no. 36. Paris : OCDE.

—. 1992. Toxicité in vitro - Applications à l'évaluation de la sécurité. New York : Marcel Dekker.

Gad, Caroline du Sud. 1994. Toxicologie in vitro. New York : Raven Press.

Gadaskina, ID. 1970. Zhiroraya tkan I yadi [Tissus gras et toxiques]. Dans Aktualnie Vaprosi promishlenoi toksikolgii [Problèmes réels en toxicologie professionnelle], édité par NV Lazarev. Leningrad : ministère de la Santé RSFSR.

Gaylor, DW. 1983. L'utilisation des facteurs de sécurité pour contrôler le risque. J Toxicol Environ Santé 11: 329-336.

Gibson, GG, R Hubbard et DV Parke. 1983. Immunotoxicologie. Londres : Academic Press.

Goldberg, AM. 1983-1995. Alternatives en toxicologie. Vol. 1-12. New York : Mary Ann Liebert.

Grandjean, P. 1992. Sensibilité individuelle à la toxicité. Lettres toxicol 64 / 65: 43-51.

Hanke, J et JK Piotrowski. 1984. Biochimie sous-jacente à la toksikologie [Base biochimique de la toxicologie]. Varsovie : PZWL.

Hatch, T et P Gross. 1954. Dépôt pulmonaire et rétention des aérosols inhalés. New York: Presse académique.

Conseil de la santé des Pays-Bas : Comité d'évaluation de la cancérogénicité des substances chimiques. 1994. Évaluation des risques des produits chimiques cancérigènes aux Pays-Bas. Régul Toxicol Pharmacol 19: 14-30.

Hollande, WC, RL Klein et AH Briggs. 1967. Molekulaere Pharmacologie.

Huff, JE. 1993. Produits chimiques et cancer chez l'homme : premières preuves chez des animaux de laboratoire. Perspicacité d'Environ Health 100: 201-210.

Klaassen, CD et DL Eaton. 1991. Principes de toxicologie. Type. 2 po Toxicologie de Casarett et Doull, édité par CD Klaassen, MO Amdur et J Doull. New York : Presse de Pergamon.

Kosover, EM. 1962. Biochimie moléculaire. New York : McGraw-Hill.

Kundiev, YI. 1975.Vssavanie pesticidov cherez kozsu I profilaktika otravlenii [Absorption des pesticides par la peau et prévention de l'intoxication]. Kiev : Zdorovia.

Kustov, VV, LA Tiunov et JA Vasiljev. 1975. Komvinovanie deistvie promishlenih yadov [Effets combinés des toxiques industriels]. Moskva : Médecine.

Lauwerys, R. 1982. Toxicologie industrielle et intoxications professionnelles. Paris : Masson.

Li, AP et RH Heflich. 1991. Toxicologie génétique. Boca Raton : CRC Press.

Loewey, AG et P Siekewitz. 1969. Structure et fonctions cellulaires. New York : Holt, Reinhart et Winston.

Loomis, TA. 1976. L'essentiel de la toxicologie. Philadelphie : Lea & Febiger.

Mendelsohn, ML et RJ Albertini. 1990. Mutation et environnement, Parties AE. New York : Wiley Liss.

Mettzler, DE. 1977. Biochimie. New York : Presse académique.

Miller, K, JL Turk et S Nicklin. 1992. Principes et pratique de l'immunotoxicologie. Oxford : Blackwells Scientific.

Ministère du commerce international et de l'industrie. 1981. Manuel des substances chimiques existantes. Tokyo : presse quotidienne chimique.

—. 1987. Demande d'approbation de produits chimiques par la loi sur le contrôle des substances chimiques. (En japonais et en anglais). Tokyo : Kagaku Kogyo Nippo Press.

Montagna, W. 1956. La structure et la fonction de la peau. New York: Presse académique.

Moolenaar, RJ. 1994. Évaluation du risque cancérogène : comparaison internationale. Regul Toxicol Pharmacol 20: 302-336.

Conseil National de Recherche. 1989. Marqueurs biologiques de la toxicité reproductive. Washington, D.C. : NAS Press.

Neuman, WG et M Neuman. 1958. La dynamique chimique des minéraux osseux. Chicago : L'Univ. de Chicago Press.

Newcombe, DS, NR Rose et JC Bloom. 1992. Immunotoxicologie clinique. New York : Raven Press.

Pacheco, H. 1973. La pharmacologie moléculaire. Paris : Presse Universitaire.

Piotrowski, JK. 1971. L'application de la cinétique métabolique et excrétoire aux problèmes de toxicologie industrielle. Washington, DC : Département américain de la santé, de l'éducation et du bien-être.

—. 1983. Interactions biochimiques des métaux lourds : Méthalothionéine. Dans Effets sur la santé de l'exposition combinée à des produits chimiques. Copenhague : Bureau régional de l'OMS pour l'Europe.

Actes de la conférence Arnold O. Beckman/IFCC sur les biomarqueurs de toxicologie environnementale de l'exposition chimique. 1994. Clin Chem 40(7B).

Russell, WMS et RL Burch. 1959. Les principes de la technique expérimentale humaine. Londres : Methuen & Co. Réimprimé par la Fédération des universités pour le bien-être animal, 1993.

Rycroft, RJG, T Menné, PJ Frosch et C Benezra. 1992. Manuel de dermatite de contact. Berlin: Springer-Verlag.

Schubert, J. 1951. Estimation des radioéléments chez les individus exposés. Nucléonique 8: 13-28.

Shelby, MD et E Zeiger. 1990. Activité des carcinogènes humains dans les tests cytogénétiques de Salmonella et de moelle osseuse de rongeurs. Mutat Res 234: 257-261.

Stone, R. 1995. Une approche moléculaire du risque de cancer. Science 268: 356-357.

Teisinger, J. 1984. Expositiontest in der Industrietoxicologie [Tests d'exposition en toxicologie industrielle]. Berlin : VEB Verlag Volk und Gesundheit.

Congrès américain. 1990. Surveillance et dépistage génétiques en milieu de travail, OTA-BA-455. Washington, DC : Bureau d'impression du gouvernement des États-Unis.

VEB. 1981. Kleine Enzyklopaedie: Leben [Vie]. Leipzig : VEB Bibliographische Institut.

Weil, E. 1975. Éléments de toxicologie industrielle [Éléments de toxicologie industrielle]. Paris : Masson et Cie.

Organisation mondiale de la santé (OMS). 1975. Méthodes utilisées en URSS pour établir des niveaux sûrs de substances toxiques. Genève : OMS.

1978. Principes et méthodes d'évaluation de la toxicité des produits chimiques, partie 1. Critères de santé environnementale, n°6. Genève : OMS.

—. 1981. Exposition combinée aux produits chimiques, Document provisoire n°11. Copenhague : Bureau régional de l'OMS pour l'Europe.

—. 1986. Principes des études toxicocinétiques. Critères de santé environnementale, no. 57. Genève : OMS.

Yoftrey, JM et FC Courtice. 1956. Tissus lymphatiques, lymphatiques et lymphoïdes. Cambridge : Université de Harvard. Presse.

Zakutinskiy, DI. 1959. Voprosi toksikologii radioaktivnih veshchestv [Problèmes de toxicologie des matières radioactives]. Moscou : Medgiz.

Zurlo, J, D Rudacille et AM Goldberg. 1993. Animaux et alternatives dans les tests : histoire, science et éthique. New York : Mary Ann Liebert.