Mercredi, Février 09 2011 03: 40

Page de contenu

CONTENU

Éditeur de chapitre Gunnar Nordberg

  • Profil général
  • Remerciements
  • Aluminium
  • Antimoine
  • Arsenic
  • Baryum
  • Bismuth
  • Cadmium
  • Chrome
  • Cuivre
  • Fer
  • Gallium
  • Germanium
  • Indium
  • Iridium
  • Plomb
  • Magnésium
  • Manganèse
  • Carbonyles métalliques (en particulier Nickel Carbonyle)
  • Mercury
  • Molybdène
  • Nickel
  • Niobium
  • Osmium
  • Palladium
  • Platine
  • Rhénium
  • Rhodium
  • Ruthénium
  • Sélénium
  • Argent
  • Tantale
  • Tellure
  • Thallium
  • Étain
  • Titane
  • Tungstène
  • Vanadium
  • Zinc
  • Zirconium et Hafnium

 

Retour

Mercredi, Février 09 2011 04: 02

Profil général

Ce chapitre présente une série de brèves discussions sur de nombreux métaux. Il contient un tableau des principaux effets sur la santé, des propriétés physiques et des risques physiques et chimiques associés à ces métaux et à nombre de leurs composés (voir tableau 1 et tableau 2). Tous les métaux ne sont pas couverts dans ce chapitre. Le cobalt et le béryllium, par exemple, apparaissent dans le chapitre Système respiratoire. D'autres métaux sont discutés plus en détail dans des articles qui présentent des informations sur les industries dans lesquelles ils prédominent. Les éléments radioactifs sont traités dans le chapitre Rayonnement, ionisant.

Tableau 1. Dangers physiques et chimiques

Nom chimique

Numero CAS

Formule moléculaire

Dangers physiques et chimiques

Classe/div/risques subsidiaires de l'ONU

Chlorure d'aluminium 7446-70-0

ICI3

 

8

Hydroxyde d'aluminium 21645-51-2

IA(OH)3

  • Forme des gels (Al2· 3H2O) en cas de contact prolongé avec de l'eau ; absorbe les acides et le dioxyde de carbone
 

Nitrate d'aluminium 13473-90-0

Al2(Je n'ai pas3)3

 

5.1

Phosphure d'aluminium 20859-73-8

AlP

  • Réagit avec l'air humide, l'eau, les acides produisant des fumées hautement toxiques de phosphine
  • Réagit avec l'eau, l'air humide, les acides en provoquant un incendie et des risques toxiques (vapeurs de phosphine)

4.3 / 6.1

Chlorure de diéthylaluminium 96-10-6

AlClC4H10

 

4.2

Dichlorure d'éthylaluminium 563-43-9

AlCl2C2H5

 

4.2

Sesquichlorure d'éthylaluminium 12075-68-2

Al2Cl3C6H15

 

4.2

Aluminate de sodium 1302-42-7

 
  • La substance est une base forte, elle réagit violemment avec les acides et est corrosive
  • La solution dans l'eau est une base forte, elle réagit violemment avec l'acide et est corrosive pour l'aluminium et le zinc

8

Triéthylaluminium 97-93-8

ALC6H15

 

4.2

Triisobutylaluminium 100-99-2

ALC12H27

 

4.2

Antimoine 7440-36-0

Sb

  • Lors de sa combustion, il se forme des fumées toxiques (oxydes d'antimoine) 
  • Réagit violemment avec les oxydants forts (par exemple, les halogènes, les permanganates alcalins et les nitrates), provoquant des risques d'incendie et d'explosion 
  • Réagit avec l'hydrogène naissant en milieu acide produisant un gaz très toxique 
  • Au contact d'acides concentrés chauds, dégage des gaz toxiques (stibine)

6.1

Pentachlorure d'antimoine 7647-18-9

SbCl5

 

8

Pentafluorure d'antimoine 7783-70-2

SbF5

 

3 / 6.1

Tartrate d'antimoine potassique 28300-74-5

Sb2K2C8H4O12 · 3H2O

 

6.1

Trichlorure d'antimoine 10025-91-9

SbCl3

 

8

Trioxyde d'antimoine 1309-64-4

Sb2O3

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques d'antimoine
  • Réagit dans certaines circonstances avec l'hydrogène en produisant un gaz très toxique, la stibine
 

Stibine 7803-52-3

SbH3

  • La substance se décompose lentement à température ambiante, produisant de l'antimoine métallique et de l'hydrogène.
  • Réagit violemment avec l'ozone et l'acide nitrique concentré en provoquant des risques d'incendie et d'explosion 
  • La substance se décompose en chauffant fortement , produisant des fumées toxiques d'antimoine 
  • Le gaz est plus lourd que l'air et peut se déplacer sur le sol ; allumage à distance possible

2.3 / 2.1

Arsenic 7440-38-2

As

  • Réagit avec les acides, les oxydants, les halogènes 
  • La substance produit des fumées toxiques

6.1

Acide arsenic, sel de cuivre 10103-61-4

CuAsOH4

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques d'arsenic par comparaison avec d'autres composés 
  • Réagit avec les acides libérant du gaz arsine toxique
 

Acide arsenic, sel de diammonium 7784-44-3

(NH4)2AsOH4

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques comprenant de l'arsenic, des oxydes d'azote et de l'ammoniac. 
  • Réagit avec les acides produisant des fumées toxiques d'arsenic 
  • Attaque de nombreux métaux, tels que le fer, l'aluminium et le zinc, en présence d'eau dégageant des fumées toxiques d'arsenic et d'arsine
 

Acide arsenic, sel disodique 7778-43-0

Na2AsOH4

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques d'arsenic
  • Réagit avec les acides libérant du gaz arsine toxique 
  • Attaque de nombreux métaux, tels que le fer, l'aluminium et le zinc, en présence d'eau dégageant des fumées toxiques d'arsenic et d'arsine
 

Acide arsenic, sel de magnésium 10103-50-1

MgxAsO3H4

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques d'arsenic 
  • Réagit avec les acides libérant des fumées toxiques de gaz arsine

6.1

Acide arsenic, sel monopotassique 7784-41-0

KASO2H4

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques d'arsenic 
  • Réagit avec les acides libérant du gaz arsine toxique 
  • Attaque de nombreux métaux, tels que le fer, l'aluminium et le zinc, en présence d'eau dégageant des fumées toxiques d'arsenic et d'arsine
 

Pentoxyde d'arsenic 1303-28-2

As2O5

  • La substance se décompose en chauffant fortement au-dessus de 300 °C, produisant des fumées toxiques (trioxyde d'arsenic) et de l'oxygène. 
  • La solution dans l'eau est un acide moyennement fort, qui peut réagir avec des substances réductrices produisant un gaz très toxique (arsine) 
  • Réagit violemment avec le pentafluorure de brome en provoquant des risques d'incendie et d'explosion 
  • Corrosif pour les métaux en présence d'humidité

6.1

Trioxyde d'arsenic 1327-53-3

As2O3

  • La substance est un réducteur puissant et réagit avec les oxydants 
  • La solution dans l'eau est un acide faible qui peut réagir avec des substances réductrices produisant un gaz très toxique (arsine) 
  • Dégage des fumées toxiques en cas d'incendie

6.1

Acide arsenieux, sel de cuivre(2+)(1:1) 10290-12-7

CuAsh3

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques d'arsenic 
  • Réagit avec les acides libérant des fumées toxiques de gaz arsine

6.1

Acide arsenieux, sel de plomb(II) 10031-13-7

PbA2O4

  • La substance se décompose en chauffant fortement , produisant des fumées très toxiques d'arsenic et de plomb
  • Réagit avec les oxydants · Réagit violemment avec les acides forts
 

Acide arsenieux, sel de potassium 10124-50-2

(KH3)x AsO3

  • La substance se décompose en chauffant fortement, produisant des fumées toxiques d'arsenic et d'oxyde de potassium.
  • Réagit avec les acides libérant du gaz arsine toxique 
  • Se décompose au contact de l'air (par le dioxyde de carbone atmosphérique) et à travers la peau

6.1

Trichlorure d'arsenic 7784-34-1

AsCl3

  • La substance se décompose en chauffant fortement et sous l'influence de la lumière , produisant des fumées toxiques de chlorure d'hydrogène et d'oxydes d'arsenic 
  • Réagit violemment avec les bases, les oxydants forts et l'eau, provoquant des risques d'incendie et de toxicité 
  • Au contact de l'air, dégage des fumées corrosives de chlorure d'hydrogène
  • Attaque de nombreux métaux formant un gaz combustible (hydrogène) en présence d'humidité

6.1

Arsine 7784-42-1

Cendre3

  • La substance se décompose en chauffant fortement et sous l'influence de la lumière et de l'humidité, produisant des fumées d'arsenic toxiques. 
  • Réagit violemment avec les oxydants forts, le fluor, le chlore, l'acide nitrique, le trichlorure d'azote, en provoquant des risques d'incendie et d'explosion 
  • Le gaz est plus lourd que l'air et peut se déplacer sur le sol ; allumage à distance possible 
  • En raison de l'écoulement, de l'agitation, etc., des charges électrostatiques peuvent être générées, la conductivité n'est pas contrôlée

2.3 / 2.1

Arséniate de calcium 7778-44-1

Ca3As2O8

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques d'arsenic 
  • Réagit avec les acides libérant du gaz arsine toxique

6.1

Arséniate de plomb 7784-40-9

PbAsO4H

  • La substance se décompose en chauffant fortement, produisant des fumées toxiques de plomb, d'arsenic et de ses composés, y compris l'arsine.

6.1

Acide méthylarsonique 124-58-3

AsCH503

  • La substance se décompose en chauffant fortement ou en brûlant , produisant des fumées toxiques (des oxydes d'arsenic)
  • La solution dans l'eau est un acide moyennement fort, qui peut réagir avec des substances réductrices, des métaux actifs (c'est-à-dire du fer, de l'aluminium, du zinc) produisant un gaz toxique (méthylarsine)
 

Arséniate de sodium 10048-95-0

Na2AsO4H·7H2O

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques comprenant de l'arsenic, des oxydes d'arsenic
  • Réagit violemment avec les oxydants forts, les acides forts et les métaux tels que le fer, l'aluminium et le zinc, provoquant des risques d'explosion et de toxicité

6.1

Baryum 7440-39-3

Ba

  • La substance peut s'enflammer spontanément au contact de l'air (si sous forme de poudre)
  • La substance est un réducteur puissant et réagit violemment avec les oxydants et les acides
  • Réagit avec l'eau, formant un gaz combustible (hydrogène) et de l'hydroxyde de baryum 
  • Réagit violemment avec les solvants halogénés en provoquant des risques d'incendie et d'explosion

4.3

Carbonate de baryum 513-77-9

BaCO3

 

6.1

Chlorate de baryum 13477-00-4

BaCl2O6

  • Le chauffage peut provoquer une combustion violente ou une explosion 
  • Des composés sensibles aux chocs se forment avec des composés organiques, des agents réducteurs, des agents contenant de l'ammoniac, des poudres métalliques et de l'acide sulfurique 
  • La substance se décompose violemment en chauffant, en chauffant fortement et en brûlant, produisant de l'oxygène et des fumées toxiques, en provoquant des risques d'incendie et d'explosion
  • La substance est un oxydant puissant et réagit avec les matières combustibles et réductrices
  • Explosion de poussière possible si sous forme de poudre ou de granulés mélangés à l'air

5.1 / 6.1

Chlorure de baryum 10361-37-2

BaCl2

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques

6.1

Chlorure de baryum, dihydraté 10326-27-9

BaCl2· 2H20

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques

6.1

Chromate de baryum (VI) 10294-40-3

BaCrH2O4

 

6.1

Hydroxyde de baryum 17194-00-2

Ba (OH)2

 

6.1

Nitrate de baryum 10022-31-8

BaNO3

 

5.1 / 6.1

Oxyde de baryum 1304-28-5

BaO

  • La solution dans l'eau est une base moyennement forte 
  • Réagit violemment avec l'eau, le sulfure d'hydrogène, l'hydroxylamine et le trioxyde de soufre, en provoquant des risques d'incendie et d'explosion

6.1

Perchlorate de baryum 13465-95-7

BaCl2O8

 

5.1 / 6.1

Peroxyde de baryum 1304-29-6

BaO2

  • La substance peut vraisemblablement former des peroxydes explosifs 
  • La substance est un oxydant puissant et réagit avec les matières combustibles et réductrices 
  • La substance est un réducteur puissant et réagit avec les oxydants 
  • Réagit avec l'eau et les acides en formant du peroxyde d'hydrogène et de l'oxyde de baryum 
  • Les mélanges avec des substances organiques peuvent s'enflammer ou exploser lors d'un choc, d'un frottement ou d'une commotion cérébrale

5.1 / 6.1

Sulfate de baryum 7727-43-7

BaSO4

  • La substance émet des fumées toxiques d'oxydes de soufre lorsqu'elle est chauffée jusqu'à décomposition 
  • La réduction du sulfate de baryum par l'aluminium s'accompagne de violentes explosions

6.1

Béryllium 7440-41-7

Be

 

6.1

Oxyde de béryllium 1304-56-9

BeO

 

6.1

Cadmium 7440-43-9

Cd

  • Réagit avec les acides dégageant de l'hydrogène gazeux inflammable 
  • La poussière réagit avec les oxydants, l'azide d'hydrogène, le zinc, le sélénium ou le tellure, provoquant des risques d'incendie et d'explosion
  • Explosion de poussière possible si sous forme de poudre ou de granulés mélangés à l'air
 

Acétate de cadmium 543-90-8

CDC2H4O2)2

 

6.1

Chlorure de cadmium 10108-64-2

CDCl2

  • La substance se décompose en chauffant fortement , produisant des fumées très toxiques de cadmium et de chlore
  • La solution dans l'eau est un acide faible · Réagit avec les oxydants forts
  • Réagit violemment avec le fluorure, le bromure et le potassium et les acides

6.1

Oxyde de cadmium 1306-19-0

CdO

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques de cadmium
  • Réagit violemment avec le magnésium lorsqu'il est chauffé, provoquant des risques d'incendie et d'explosion
  • Réagit avec les acides, les oxydants

6.1

Sulfate de cadmium 10124-36-4

CDSO4

 

6.1

Sulfure de cadmium 1306-23-6

CDS

  • Lors du chauffage, des fumées toxiques se forment 
  • Réagit avec les oxydants forts 
  • Réagit avec les acides en formant un gaz toxique (sulfure d'hydrogène) 
  • Dégage des fumées toxiques en cas d'incendie

6.1

Bichromate d'ammonium(VI) 7789-09-5

(NH4)2Cr2H2O7

 

5.1

Acide chromique 7738-94-5

CrH2O4

 

8

Chrome 7440-47-3

Cr

 

5.1

Trioxyde de chrome 1333-82-0

CrO3

 

5.1

Chlorure de chrome 14977-61-8

CrO2Cl2

  • La substance se décompose violemment au contact de l'eau , produisant des fumées toxiques et corrosives (acide chlorhydrique, chlore, trioxyde de chrome et trichlorure de chrome) 
  • La substance est un oxydant puissant et réagit violemment avec les matières combustibles et réductrices 
  • Réagit violemment avec l'eau, les halogénures non métalliques, les hydrures non métalliques, l'ammoniac et certains solvants courants tels que l'alcool, l'éther, l'acétone, la térébenthine, en provoquant des risques d'incendie et d'explosion 
  • Attaque de nombreux métaux en présence d'eau 
  • Incompatible avec les plastiques 
  • Peut enflammer des substances combustibles

8

Cobalt 7440-48-4

Co

  • Réagit avec les oxydants forts (par exemple, le nitrate d'ammonium fondu) en provoquant des risques d'incendie et d'explosion
  • Certaines formes de poudre de cobalt métallique peuvent s'enflammer spontanément au contact de l'oxygène ou de l'air (pyrophorique) 
  • Peut favoriser la décomposition de diverses substances organiques
 

Chlorure de cobalt 7646-79-9

CoCl2

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques de chlore et de cobalt 
  • Réagit violemment avec les métaux alcalins tels que le potassium ou le sodium en provoquant des risques d'incendie et d'explosion
 

Oxyde de cobalt (III) 1308-04-9

Co2O3

  • Réagit violemment avec le peroxyde d'hydrogène 
  • Réagit avec les agents réducteurs
 

Naphténate de cobalt 61789-51-3

CoC22H20O4

  • Lors du chauffage, des fumées toxiques se forment 
  • Sous l'effet de l'écoulement, de l'agitation, etc., des charges électrostatiques peuvent être générées 
  • Explosion de poussière possible si sous forme de poudre ou de granulés mélangés à l'air
 

Cuivre 7440-50-8

Cu

  • Des composés sensibles aux chocs se forment avec des composés acétyléniques, des oxydes d'éthylène et des azides 
  • Réagit avec les oxydants puissants tels que les chlorates, les bromates et les iodates, provoquant un risque d'explosion
 

Oxyde de cuivre (I) 1317-39-1

Cu2O

  • Réagit avec les acides pour former des sels cuivriques · Corrode l'aluminium
 

Acétate cuivrique 142-71-2

CuC4H6O4

 

6.1

Chlorure cuivrique 7447-39-4

CuCl2

 

8

Hydroxyde cuivrique 120427-59-2

Cu (OH)2

 

6.1

Acide naphténique, sel de cuivre 1338-02-9

 
  • Lors de sa combustion, il se forme des gaz toxiques
 

Chlorure ferrique 7705-08-0

FeCl3

 

8

Fer pentacarbonyle 13463-40-6

C5Feo5

 

6.1 / 3

Plomb 7439-92-1

Pb

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques comprenant des oxydes de plomb
  • La substance est un réducteur puissant
 

Acétate de plomb 301-04-2

PbC4H6O4

  • La substance se décompose en chauffant fortement et en brûlant , produisant des fumées toxiques et corrosives comprenant du plomb, de l'acide acétique 
  • Réagit violemment avec les bromates, les phosphates, les carbonates, les phénols 
  • Réagit avec les acides produisant de l'acide acétique corrosif

6.1

Chromate de plomb 7758-97-6

PbCrO4

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques comprenant des oxydes de plomb
  • Réagit avec les oxydants forts, le peroxyde d'hydrogène, le sodium et le potassium
  • Réagit avec le dinitronaphtalène d'aluminium, l'hexacyanoferrate de fer (III) (IV)
  • Réagit avec les matières organiques à température élevée, provoquant un risque d'incendie
 

Nitrate de plomb 10099-74-8

Pb (NON3)2

 

5.1 / 6.1

Dioxyde de plomb 1309-60-0

PbO2

 

5.1

Oxyde de plomb(II) 1317-36-8

PbO

  • Réagit violemment avec les oxydants forts, la poudre d'aluminium et le sodium 
  • Lors du chauffage, des fumées toxiques de composés de plomb se forment
 

Acide naphténique, sel de plomb 61790-14-5

 
  • Lors de sa combustion, il se forme des fumées toxiques comprenant de l'oxyde de plomb
 

Plomb tétraéthyle 78-00-2

PbC8H20

  • La substance se décompose en chauffant fortement au-dessus de 110 °C et sous l'influence de la lumière , produisant des fumées toxiques : monoxyde de carbone, plomb 
  • Réagit violemment avec les oxydants forts, les acides, les halogènes, les huiles et les graisses en provoquant des risques d'incendie et d'explosion 
  • Attaque le caoutchouc et certains plastiques et revêtements
  • La vapeur est plus lourde que l'air

6.1

Plomb tétraméthyle 75-74-1

PbC4H12

 

6.1

Hydrure de lithium et d'aluminium 16853-85-3

LiAlH4

 

4.3

Magnésium 7439-95-4

Mg

  • La substance peut s'enflammer spontanément au contact de l'air ou de l'humidité, produisant des gaz irritants ou toxiques, notamment de l'oxyde de magnésium. 
  • Réagit violemment avec les oxydants forts 
  • Réagit violemment avec de nombreuses substances en provoquant des risques d'incendie et d'explosion
  • Réagit avec les acides ou l'eau en formant de l'hydrogène gazeux inflammable, provoquant des risques d'incendie et d'explosion
  • Explosion de poussière possible si sous forme de poudre ou de granulés mélangés à l'air

4.1

Chlorure de magnésium 7786-30-3

MgCl2

  • La substance se décompose lorsqu'elle est chauffée lentement à 300 °C, produisant du chlore
  • La dissolution dans l'eau libère une quantité considérable de chaleur

5.1

Nitrate de magnésium 10377-60-3

Mg (NON3)2

 

5.1

Oxyde de magnésium 1309-48-4

MgO

  • Absorbe facilement l'humidité et le dioxyde de carbone lorsqu'il est exposé à l'air 
  • Réagit vigoureusement avec les halogènes et les acides forts
 

Phosphure de magnésium 12057-74-8

Mg3P2

  • Réagit avec l'eau, l'humidité de l'air, les acides produisant des fumées hautement toxiques de phosphine
  • Réagit avec l'eau, l'humidité de l'air, violemment avec les acides en provoquant des risques d'incendie et de toxicité (vapeurs de phosphine)

4.3 / 6.1

Acétate mercurique 1600-27-7

HgC4H6O4

  • La substance se décompose en chauffant fortement et sous l'influence de la lumière , produisant des fumées toxiques de mercure ou d'oxyde mercurique

6.1

Bromure mercurique 7789-47-1

HgBr2

 

6.1

Chlorure mercurique 7487-94-7

HgCl2

  • La substance se décompose en chauffant fortement , produisant des vapeurs toxiques de mercure et de chlorure
  • Réagit avec les métaux légers · Incompatible avec les formiates, sulfites, hypophosphites, phosphates, sulfures, albumine, gélatine, alcalis, sels d'alcaloïdes, ammoniaque, eau de chaux, antimoine et arsenic, bromure, borax, carbonate, fer, cuivre, plomb, sels d'argent

6.1

Nitrate mercurique 10045-94-0

Hg (NON3)2

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques (mercure, oxydes d'azote), ou lors d'exposition à la lumière 
  • La substance est un oxydant puissant et réagit violemment avec les matières combustibles et réductrices 
  • Réagit avec l'acétylène, l'alcool, la phosphine et le soufre pour former des composés sensibles aux chocs 
  • Attaque la plupart des métaux en solution
  • Réaction vigoureuse avec les hydrocarbures pétroliers

6.1

Oxyde mercurique 21908-53-2

HgO

  • La substance se décompose lors d'une exposition à la lumière, en chauffant au-dessus de 500 °C ou en brûlant sous l'influence de la lumière, produisant des fumées très toxiques comprenant du mercure et de l'oxygène, ce qui augmente le risque d'incendie. 
  • Lors du chauffage, des fumées toxiques se forment 
  • Réagit violemment avec le chlore, le peroxyde d'hydrogène, l'acide hypophosphoreux, l'hydrate d'hydrazine, le magnésium (lorsqu'il est chauffé), le dichlorure de disulfure et le trisulfure d'hydrogène
  • Réagit explosivement avec le nitrate d'acétyle, le butadiène, l'éthanol, l'iode (à 35 °C), le chlore, les hydrocarbures, le tétrafluorure de dibore, le peroxyde d'hydrogène, les traces d'acide nitrique, les agents réducteurs 
  • Incompatible avec les agents réducteurs

6.1

Sulfate mercurique 7783-35-9

HgSO4

  • La substance se décompose en chauffant fortement ou en étant exposée à la lumière , produisant des fumées toxiques de mercure et d'oxydes de soufre 
  • Réagit avec l'eau en produisant du sulfate mercurique basique insoluble et de l'acide sulfurique 
  • Réagit violemment avec le chlorure d'hydrogène

6.1

Thiocyanate mercurique 592-85-8

HgC2N2S2

 

6.1

Chlorure mercureux 10112-91-1

Hg2Cl2

  • La substance se décompose en chauffant fortement, produisant des fumées toxiques de chlore et de mercure, ou lors d'une exposition à la lumière du soleil, produisant du mercure métallique et du chlorure mercurique. 
  • Réagit avec les bromures, les iodures, les sulfates, les sulfites, les carbonates, les chlorures alcalins, les hydroxydes, les cyanures, les sels de plomb, les sels d'argent, le savon, les sulfures, les sels de cuivre, le peroxyde d'hydrogène, l'eau de chaux, l'iodoforme, l'ammoniac, l'iode
 

Mercure 7439-97-6

Hg

  • Réagit violemment avec l'acétylène, le chlore et l'ammoniac 
  • Attaque les matériaux en cuivre et en alliage de cuivre 
  • Incompatible avec les acétylènes et les gaz ammoniac 
  • Des vapeurs toxiques se forment lors du chauffage

6.1

Acétate phénylmercurique 62-38-4

C8H8HgO2

  • La substance se décompose en chauffant fortement , produisant des vapeurs toxiques de mercure

6.1

Nitrate phénylmercurique 55-68-5

C6H5HgNO3

  • La substance se décompose en chauffant fortement , produisant des vapeurs de mercure et d'autres fumées toxiques
  • Réagit avec les agents réducteurs

6.1

Nickel 7440-02-0

Ni

  • Réagit avec les oxydants forts 
  • Réagit violemment, sous forme de poudre, avec la poudre de titane et le perchlorate de potassium et les oxydants tels que le nitrate d'ammonium, en provoquant des risques d'incendie et d'explosion 
  • Réagit lentement avec les acides non oxydants et plus rapidement avec les acides oxydants 
  • Des gaz et vapeurs toxiques (tels que le nickel carbonyle) peuvent être libérés lors d'un incendie impliquant du nickel 
  • Explosion de poussière possible si sous forme de poudre ou de granulés mélangés à l'air
 

Oxyde de nickel (II) 1313-99-1

NiO

  • Réagit violemment avec l'iode et le sulfure d'hydrogène en provoquant des risques d'incendie et d'explosion
 

Carbonate de nickel 3333-67-3

Ni2CO3

  • La substance se décompose en chauffant fortement et au contact d'acides produisant du dioxyde de carbone 
  • Réagit violemment avec l'aniline, le sulfure d'hydrogène, les solvants inflammables, l'hydrazine et les poudres métalliques, en particulier le zinc, l'aluminium et le magnésium, en provoquant des risques d'incendie et d'explosion
 

Nickel carbonyle 13463-39-3

NiC4O4

  • Peut exploser en chauffant à 60 °C 
  • La substance peut s'enflammer spontanément au contact de l'air
  • La substance se décompose en chauffant fortement à 180 °C au contact d'acides produisant du monoxyde de carbone très toxique 
  • Réagit violemment avec les oxydants, les acides et le brome 
  • Réagit violemment avec les oxydants en provoquant des risques d'incendie et d'explosion 
  • S'oxyde dans l'air en formant des dépôts qui deviennent peroxydés, provoquant un risque d'incendie 
  • La vapeur est plus lourde que l'air et peut se déplacer sur le sol; allumage à distance possible

6.1 / 3

Sulfure de nickel 12035-72-2

Ni3S2

  • La substance se décompose en chauffant fortement à des températures élevées, produisant des oxydes de soufre
 

Sulfate de nickel 7786-81-4

NiSO4

  • La substance se décompose en chauffant fortement à 848 °C, produisant des fumées toxiques de trioxyde de soufre et de monoxyde de nickel. 
  • La solution dans l'eau est un acide faible
 

Tétroxyde d'osmium 20816-12-0

OsO4

  • La substance se décompose en chauffant fortement , produisant des fumées d'osmium 
  • La substance est un oxydant puissant et réagit avec les matières combustibles et réductrices
  • Réagit avec l'acide chlorhydrique pour former du chlore gazeux toxique 
  • Forme des composés instables avec les alcalis

6.1

Tétrachlorure de platine 13454-96-1

PtCl4

  • Lors de sa combustion, il se forme des gaz corrosifs tels que le chlore 
  • La substance se décompose en chauffant fortement ou en brûlant , produisant des fumées toxiques (chlore) 
  • Réagit avec les oxydants forts
 

Séléniure d'hydrogène 7783-07-5

SeH2

  • La substance se décompose en chauffant fortement au-dessus de 100 °C, produisant des produits toxiques et inflammables, notamment du sélénium et de l'hydrogène. 
  • La substance est un agent réducteur fort et réagit violemment avec les oxydants en provoquant des risques d'incendie et d'explosion 
  • Au contact de l'air, dégage des fumées toxiques et corrosives de dioxyde de sélénium 
  • Le gaz est plus lourd que l'air et peut se déplacer sur le sol ; allumage à distance possible

2.3 / 2.1

Acide sélénieux 7783-00-8

SeH2O3

  • La substance se décompose en chauffant fortement , produisant de l'eau et des fumées toxiques d'oxydes de sélénium
  • Réagit au contact des acides produisant du séléniure d'hydrogène gazeux toxique
 

Acide sélénieux, sel disodique 10102-18-8

Na2Référencement3

  • Au contact de surfaces chaudes ou de flammes, cette substance se décompose en formant des gaz toxiques
  • La solution dans l'eau est une base moyennement forte 
  • Réagit avec l'eau, les acides forts provoquant un danger toxique

6.1

Sélénium 7782-49-2

Se

  • Lors du chauffage, des fumées toxiques se forment 
  • Réagit violemment avec les oxydants et les acides forts 
  • Réagit avec l'eau à 50 °C en formant de l'hydrogène inflammable et des acides sélénieux 
  • Réagit avec incandescence lors d'un chauffage doux avec du phosphore et des métaux tels que le nickel, le zinc, le sodium, le potassium, le platine

6.1

Dioxyde de sélénium 7446-08-4

Référencement2

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques de sélénium
  • La solution dans l'eau est un acide moyennement fort (acide sélénieux) 
  • Réagit avec de nombreuses substances dégageant des vapeurs toxiques (sélénium) 
  • Attaque de nombreux métaux en présence d'eau
 

Hexafluorure de sélénium 7783-79-1

Sef6

  • La substance se décompose en chauffant fortement, produisant des fumées toxiques et corrosives comprenant du fluorure d'hydrogène, du fluorure et du sélénium.

2.3 / 8

Oxychlorure de sélénium 7791-23-3

SeOCl2

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques de chlorure et de sélénium
  • La solution dans l'eau est un acide fort, elle réagit violemment avec les bases et est corrosive
  • Réagit violemment avec le phosphore blanc et le potassium en provoquant des risques d'incendie et d'explosion
  • Réagit violemment avec les oxydes métalliques

3 / 6.1

Trioxyde de sélénium 13768-86-0

Référencement3

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques de sélénium
  • La substance est un oxydant puissant et réagit avec les matières combustibles et réductrices
  • La solution dans l'eau est un acide fort, elle réagit violemment avec les bases et est corrosive
  • Réagit violemment avec l'eau dégageant de l'acide sélénique 
  • Attaque de nombreux métaux en présence d'humidité
 

Argent 7440-22-4

Ag

  • Des composés sensibles aux chocs se forment avec l'acétylène 
  • L'argent finement divisé et une solution forte de peroxyde d'hydrogène peuvent exploser (décomposition violente en oxygène gazeux) 
  • Le contact avec l'ammoniac peut entraîner la formation de composés qui sont explosifs lorsqu'ils sont secs 
  • Réagit facilement avec l'acide nitrique dilué, l'acide sulfurique concentré chaud
 

Nitrate d'argent 7761-88-8

AgNO3

  • Des composés sensibles aux chocs se forment avec l'acétylène, l'alcool, la phosphine et le soufre
  • La substance se décompose en chauffant fortement , produisant des fumées toxiques (des oxydes d'azote) 
  • La substance est un oxydant puissant et réagit violemment avec les matières combustibles et réductrices
  • Réagit avec des substances incompatibles telles que l'acétylène, les alcalis, les halogénures et d'autres composés provoquant des risques d'incendie et d'explosion 
  • Attaque certaines formes de plastiques, de caoutchouc et de revêtements 
  • La substance se décompose au contact de contaminants organiques lorsqu'elle est exposée à la lumière

5.1

Chromate de strontium 7789-06-2

SrCrH2O4

  • La substance se décompose en brûlant , produisant des fumées toxiques 
  • Réagit violemment avec l'hydrazine
  • Incompatible avec les matériaux combustibles, organiques ou autres facilement oxydables tels que le papier, le bois, le soufre, l'aluminium, les plastiques
 

Tellure 13494-80-9

Te

  • Lors du chauffage, des fumées toxiques se forment
  • Réagit vigoureusement avec les halogènes ou les interhalogènes en provoquant des risques de flammes 
  • Réagit avec le zinc avec incandescence
  • Le siliciure de lithium attaque le tellure avec incandescence

6.1

Hexafluorure de tellure 7783-80-4

TeF6

 

2.3 / 8

Thallium 7440-28-0

Tl

  • Réagit violemment avec le fluor 
  • Réagit avec les halogènes à température ambiante
  • Incompatible avec les acides forts, les oxydants forts et l'oxygène 
  • La substance forme des composés toxiques au contact de l'humidité

6.1

Sulfate de thalle 7446-18-6

Tl2 (SO4)3

  • La substance se décompose en chauffant fortement, produisant des fumées très toxiques de thallium et d'oxydes de soufre.

6.1

Thorium 7440-29-1

Th

 

7

Dichlorure de di-N-butylétain 683-18-1

Sncl2C8H18

 

6.1

Oxyde de di-N-dibutylétain 818-08-6

C8H18snO

  • La substance se décompose en chauffant fortement , produisant des fumées toxiques d'étain, d'oxydes d'étain
  • Réagit avec les oxydants 
  • Explosion de poussière possible si sous forme de poudre ou de granulés mélangés à l'air
  • S'il est sec, il peut être chargé électrostatiquement par tourbillonnement, transport pneumatique, versement, etc.
 

Dilaurate de dibutylétain 77-58-7

SnC32H64O4

 

6.1

Chlorure stannique 7646-78-8

Sncl4

  • La vapeur est plus lourde que l'air 
  • La substance se décompose en chauffant fortement , produisant des fumées toxiques
  • Réagit violemment avec l'eau en formant des vapeurs corrosives d'acide chlorhydrique et d'oxyde d'étain 
  • Réagit avec la térébenthine 
  • Attaque de nombreux métaux, certaines formes de plastiques, le caoutchouc et les revêtements 
  • Le contact avec l'alcool et les amines peut entraîner des risques d'incendie et d'explosion 
  • Réagit avec l'air humide pour former de l'acide chlorhydrique

8

Oxyde stannique 18282-10-5

snO

  • Réagit violemment avec le trifluorure de chlore 
  • Le contact avec le trisulfure d'hydrogène provoque une décomposition violente et une inflammation 
  • Violemment réduit par le magnésium lors du chauffage, avec risque d'incendie et d'explosion
 

Chlorure stanneux 7772-99-8

Sncl2

  • Lors du chauffage, des fumées toxiques se forment 
  • La substance est un agent réducteur puissant et réagit violemment avec les oxydants 
  • Réagit violemment avec le trifluorure de brome, le sodium et les nitrates
 

Chlorure stanneux dihydraté 10025-69-1

Sncl2 · 2H2O

  • La substance est un agent réducteur puissant et réagit violemment avec les oxydants
  • Lors du chauffage, des fumées toxiques et corrosives se forment 
  • La substance absorbe l'oxygène de l'air et forme de l'oxychlorure insoluble
 

Fluorure stanneux 7783-47-3

SnF2

  • Réagit avec les acides; des vapeurs de fluorure d'hydrogène peuvent se former 
  • Réagit violemment avec le chlore 
  • Incompatible avec les substances alcalines et les agents oxydants
 

Oxyde d'étain 21651-19-4

snO

  • Lors d'un chauffage à 300 ° C dans l'air, l'oxydation en oxyde stannique se produit par incandescence
  • S'enflamme dans le protoxyde d'azote à 400 °C et incandescence lorsqu'il est chauffé dans du dioxyde de soufre
 

Tétrachlorure de titane 7550-45-0

TiCl4

 

8

Trichlorure de titane 7705-07-9

TiCl3

 

8

Pentoxyde de vanadium 1314-62-1

V2O5

  • Lors du chauffage, des fumées toxiques se forment 
  • Agit comme un catalyseur dans les réactions d'oxydation

6.1

Tétrachlorure de vanadium 7632-51-1

Vcl4

 

8

Trioxyde de vanadium 1314-34-7

V2O3

  • S'enflamme en chauffant dans l'air 
  • La substance se décompose en chauffant fortement ou en brûlant , produisant des fumées irritantes et toxiques (des oxydes de vanadium)

6.1

Trichlorure de vanadyle 7727-18-6

COVCl3

 

8

Zinc 7440-66-6

Zn

 

4.3 / 4.2

Chlorure de zinc 7646-85-7

ZnCl2

 

8

Nitrate de zinc 7779-88-6

Zn (NON3)2

 

1.5

Phosphure de zinc 1314-84-7

Zn3P2

  • La substance se décompose en chauffant fortement et au contact d'acides ou d'eau, produisant des fumées toxiques et inflammables d'oxydes de phosphore et de zinc, et de phosphine. 
  • Réagit violemment avec les oxydants forts en provoquant des risques d'incendie

4.3 / 6.1

Stéarate de zinc 557-05-1

ZnC36H70O4

  • La substance se décompose en chauffant fortement, produisant une fumée âcre et des vapeurs d'oxyde de zinc.
  • Explosion de poussière possible si sous forme de poudre ou de granulés mélangés à l'air 
  • S'il est sec, il peut être chargé électrostatiquement par tourbillonnement, transport pneumatique, versement, etc.
 

Les données sur les dangers physiques et chimiques sont adaptées de la série International Chemical Safety Cards (ICSC) produite par le Programme international sur la sécurité chimique (IPCS), un programme coopératif de l'Organisation mondiale de la santé (OMS), de l'Organisation internationale du travail (OIT) et le Programme des Nations Unies pour l'environnement (PNUE). Les données de classification des risques sont tirées des Recommandations sur le transport des marchandises dangereuses, 9e édition, élaborées par le Comité d'experts des Nations Unies sur le transport des marchandises dangereuses et publiées par les Nations Unies (1995). Dans la classification des risques de l'ONU, les codes suivants sont utilisés : 1.5 = substances très peu sensibles présentant un risque d'explosion en masse ; 2.1 = gaz inflammable ; 2.3 = gaz toxique ; 3 = liquide inflammable ; 4.1 = solide inflammable ; 4.2 = matière sujette à l'inflammation spontanée ; 4.3 = substance qui, au contact de l'eau, dégage des gaz inflammables ; 5.1 = substance comburante ; 6.1 = toxique ; 7 = radioactif ; 8 = substance corrosive.

Tableau 2. Dangers pour la santé

Nom chimique Numéro CAS

Exposition à court terme

Exposition à long terme

Voies d'exposition

Symptômes

Organes cibles, voies d'entrée

Symptômes

Phosphure d'aluminium 20859-73-8

Les yeux; peau; rép. tract

 

Inhalation Peau Yeux Ingestion

Douleur abdominale, sensation de brûlure, toux, étourdissements, apathie, mal de tête, respiration laborieuse, nausée, mal de gorge Rougeur, douleur Rougeur, douleur Douleur abdominale, convulsions, nausée, inconscience, vomissement

   

Antimoine 7440-36-0

Les yeux; peau; rép. tract; poumons; cœur

Peau; poumons; rép. tract

Inhalation Peau Yeux Ingestion

Toux, fièvre, essoufflement, vomissements, douleur des voies respiratoires supérieures ; Voir Ingestion Rougeur Rougeur, douleur, conjonctivite Douleur abdominale, sensation de brûlure, diarrhée, nausée, essoufflement, vomissement, arythmie cardiaque

système rép ; SVC ; peau; yeux Inh; ing; con

Irriter les yeux, la peau, le nez, la gorge, la bouche ; toux; étourdissement; tête; nau, vomi, diarrhée ; des crampes d'estomac; insom; anor; incapable de sentir correctement

Trioxyde d'antimoine 1309-64-4

Les yeux; peau; rép. tract

Peau; poumons

Inhalation Peau Yeux Ingestion

Toux, fièvre, nausées, mal de gorge, vomissements Rougeur, douleur, cloques Rougeur, douleur Douleur abdominale, diarrhée, mal de gorge, vomissement, sensation de brûlure

   

Stibine 7803-52-3

Du sang; reins; le foie; SNC

 

Inhalation

Douleurs abdominales, maux de tête, nausées, essoufflement, vomissements, faiblesse, pouls faible et irrégulier, hématurie, état de choc

Du sang; le foie; reins; rép. sys. Inh

Tête, faible ; nau, douleur abdominale ; douleur lombaire, hemog, hema, anémie hémolytique; jaun ; irritation de la pulpe

Arsenic 7440-38-2

Les yeux; peau; rép. tract; le foie; reins; Tractus gastro-intestinal

Peau; le foie; SNC ; cancérigène; peut causer une toxicité pour la reproduction

Inhalation Peau Yeux Ingestion

Douleurs thoraciques, douleurs abdominales, toux, maux de tête, faiblesse, vertiges Peut être absorbé, irritant Rougeur, irritant Diarrhée, nausées, vomissements

Le foie; reins; peau; poumons; système lymphatique (cancer du poumon et lymphatique) Inh ; abdos; con; ing

Ulcération de la cloison nasale, derme, troubles gastro-intestinaux, peri neur, irrit respiratoire, hyperpig de la peau, (carc)

Acide arsenic, sel de cuivre 10103-61-4

Les yeux; rép. tract; SNC ; tube digestif

Peau; SNP ; muqueuses; le foie

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, faiblesse ; Voir Ingestion Peut être absorbé Rougeur Douleur Douleur abdominale, diarrhée, vomissements, sensation de brûlure derrière le sternum et dans la bouche

   

Acide arsenic, sel de diammonium 7784-44-3

Les yeux; peau; rép. tract; SNC ; tube digestif; système circulatoire

SNP ; peau; muqueuses; le foie

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, faiblesse ; Voir Ingestion Peut être absorbé, soluble, rougeur, douleur Rougeur, douleur Douleur abdominale, diarrhée, vomissements, sensation de brûlure derrière le sternum et dans la bouche

   

Acide arsenic, sel disodique 7778-43-0

Yeux; peau; rép. tract; SNC ; tube digestif; système circulatoire

SNP ; peau; muqueuses; le foie

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, faiblesse ; Voir Ingestion Peut être absorbé, soluble, rougeur, douleur Rougeur, douleur Douleur abdominale, diarrhée, vomissements, sensation de brûlure derrière le sternum et dans la bouche

   

Acide arsenic, sel de magnésium 10103-50-1

Les yeux; rép. tract; SNC ; tube digestif; système circulatoire

SNP ; peau; muqueuses; le foie

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, faiblesse ; Voir Ingestion Peut être absorbé Rougeur, douleur Douleur abdominale, diarrhée, vomissement, sensation de brûlure derrière le sternum et dans la bouche

   

Acide arsenic, sel monopotassique 7784-41-0

Les yeux; peau; rép. tract; muqueuses

Peau; SNP ; muqueuses; le foie

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, faiblesse ; Voir Ingestion Peut être absorbé, rougeur, douleur Rougeur, douleur Douleur abdominale, sensation de brûlure, diarrhée, vomissement

   

Pentoxyde d'arsenic 1303-28-2

Les yeux; peau; rép. tract; reins; le foie; SVC ; SNC ; du sang

Poumons; peau; moelle; SVC ; SNC ; cancérigène; peut causer une toxicité pour la reproduction

Inhalation Peau Yeux Ingestion

Toux, maux de tête, étourdissements, faiblesse essoufflement, douleur dans la poitrine, les symptômes peuvent être retardés ; Voir Ingestion Rougeur, brûlures cutanées, douleur Rougeur, douleur, conjonctivite Constriction de la gorge, vomissements, douleur abdominale, diarrhée, soif intense, crampes musculaires, état de choc

   

Trioxyde d'arsenic 1327-53-3

Les yeux; peau; rép. tract; reins; le foie; SVC ; SNC ; hématopoïétique

Poumons; peau; moelle; SNP ; SNC ; SVC ; cœur; reins; le foie; cancérigène; peut causer des malformations congénitales

Inhalation Peau Yeux Ingestion

Toux, étourdissements, maux de tête, essoufflement, faiblesse, douleur dans la poitrine, les symptômes peuvent être retardés ; Voir Ingestion Rougeur, douleur Rougeur, douleur, conjonctivite Constriction de la gorge, douleur abdominale, diarrhée, vomissements, soif intense, crampes musculaires, état de choc

   

Acide arsénieux, sel de cuivre (2+) (1:1) 10290-12-7

Les yeux; peau; rép. voie.; SNC ; tube digestif; système circulatoire

Peau; SNP ; muqueuses; le foie

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, faiblesse ; Voir Ingestion Peut être absorbé Rougeur, douleur Douleur abdominale, diarrhée, vomissement, sensation de brûlure derrière le sternum et dans la bouche

   

Acide arsenieux, sel de plomb (II) 10031-13-7

Les yeux; peau; rép. tract; SNC ; Tractus gastro-intestinal; système circulatoire

Peau; SNP ; muqueuses; le foie

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, faiblesse ; Voir Ingestion Rougeur, douleur Rougeur, douleur Douleur abdominale, diarrhée, vomissements, sensation de brûlure derrière le sternum et dans la bouche

   

Acide arsenieux, sel de potassium 10124-50-2

Les yeux; peau; rép. tract; SNC ; tube digestif; système circulatoire

 

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, faiblesse ; Voir Ingestion Peut être absorbé, soluble, rougeur, douleur Rougeur, douleur Douleur abdominale, diarrhée, vomissements, sensation de brûlure derrière le sternum et dans la bouche

   

Trichlorure d'arsenic 7784-34-1

Les yeux; peau; rép. tract; poumons; SVC ; SNC ; Tractus gastro-intestinal

Muqueuses; peau; le foie; reins; SNP

Inhalation Peau Yeux Ingestion

Corrosif, toux, respiration laborieuse ; Voir Ingestion Corrosif, peut être absorbé, rougeur, douleur Corrosif, douleur, brûlures profondes graves Corrosif, douleur abdominale, sensation de brûlure, diarrhée, vomissement, collapsus

   

Arsine 7784-42-1

Poumons; du sang; reins

 

Inhalation Peau Yeux

Douleurs abdominales, confusion, étourdissements, maux de tête, nausées, essoufflement, vomissements, faiblesse Au contact du liquide : gelures Au contact du liquide : gelures, rougeurs

Du sang; reins; foie (cancer du poumon et lymphatique) Inh ; con (liquide)

Tête, mal, faible, vertige ; dyspe; abdomen, maux de dos; nau, vomi, peau de bronze; hema; jaun ; peri neur, liq : engelure ; (carc)

Arséniate de calcium 7778-44-1

Les yeux; peau; rép. tract; SNC ; tube digestif; système circulatoire

SNP ; peau; muqueuses; le foie

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, faiblesse : Voir Ingestion Peut être absorbé, rougeur, douleur Rougeur, douleur Douleur abdominale, diarrhée, vomissements, sensation de brûlure derrière le sternum et dans la bouche

Les yeux; système rép ; le foie; peau; système lymphatique; SNC ; (cancer lymphatique et pulmonaire) Inh ; abdos; ing; con

Faible; distribution GI ; les hyperkératoses péri neurales, cutanées hyperpig, plantaires palmaires ; derme; (carc); chez les animaux : atteinte du foie

Arséniate de plomb 7784-40-9

Intestins; SVC

Peau; SNC ; Tractus gastro-intestinal; le foie; reins; du sang; cancérigène; peut causer une toxicité pour la reproduction

Inhalation Peau Yeux

Crampes abdominales, diarrhée, maux de tête, nausées, vomissements, oppression thoracique, constipation, excitation, désorientation Rougeur Rougeur

   

Acide méthylarsonique 124-58-3

Les yeux; peau; rép. tract; poumons

Moelle; SNP ; reins; le foie

Inhalation Peau Yeux Ingestion

Toux Rougeur Rougeur Douleurs abdominales, diarrhée, vomissements, sensation de brûlure dans la gorge

Composés organiques d'arsenic : peau, système respiratoire, reins, système nerveux central, foie, tractus gastro-intestinal, système reproducteur

Chez les animaux : peau irritée, dermatose possible ; rép. détresse; diarr; dommages aux reins; tremblement musculaire, sez ; effets possibles sur le tractus gastro-intestinal, térato, reproduction ; lésions hépatiques possibles

Arséniate de sodium 10048-95-0

Les yeux; peau; rép. tract; tube digestif; cœur; le foie; reins; SNC

Peau; SNC ; SVC ; du sang; le foie; cancérigène

Inhalation Peau Yeux Ingestion

Toux, maux de tête, mal de gorge; Voir Ingestion Rougeur, douleur Rougeur, douleur Douleur abdominale, sensation de brûlure, diarrhée, vomissement

   

Baryum 7440-39-3

Les yeux; peau; rép. tract

 

Inhalation Peau Yeux

Toux, mal de gorge Rougeur Rougeur, douleur

   

Chlorate de baryum 13477-00-4

Les yeux; peau; rép. tract; divers tissus et organes

Tissus et organes

Inhalation Yeux Ingestion

Douleurs abdominales, crampes abdominales, sensation de brûlure, nausées, vomissements, faiblesse, paralysie Rougeur, douleur Crampes abdominales, douleurs abdominales, lèvres ou ongles bleus, peau bleue, sensation de brûlure, diarrhée, étourdissements, nausées, mal de gorge, vomissements, faiblesse, troubles cardiaques dysrythmie

   

Chlorure de baryum 10361-37-2

Les yeux; peau; rép. tract; SNC ; muscles

 

Inhalation Yeux Ingestion

Crampes abdominales, inconscience Rougeur Crampes abdominales, matité, inconscience

Cœur; SNC ; peau; système rép ; yeux Inh; ing; con

Irriter les yeux, la peau, le système respiratoire supérieur ; brûlures cutanées, gastro-entérite; spasme musculaire; pouls lent, extrasystoles; hypokaliémie

Chlorure de baryum, dihydraté 10362-27-9

Les yeux; peau; rép. tract; SNC ; muscles

 

Inhalation Yeux Ingestion

Crampes abdominales, inconscience Rougeur Crampes abdominales, matité, inconscience

   

Oxyde de baryum 1304-28-5

Les yeux; peau; rép. tract; muscles

Poumons

Inhalation Peau Yeux Ingestion

Toux, essoufflement, mal de gorge Rougeur Rougeur, douleur Douleur abdominale, diarrhée, étourdissements, nausées, vomissements, paralysie musculaire, arythmie cardiaque, hypertension, mort

   

Peroxyde de baryum 1304-29-6

 

Peau

Inhalation Peau Yeux Ingestion

Toux, nausées, essoufflement, mal de gorge Rougeur, brûlures cutanées, douleur, décoloration Rougeur, douleur, brûlures profondes graves Douleur abdominale, sensation de brûlure, mal de gorge

   

Sulfate de baryum 7727-43-7

 

Poumons

Inhalation

Toux & irritations de la gorge

Les yeux; resp sys Inh ; con

Irritation des yeux, du nez, du système respiratoire supérieur ; pneumoconiose bénigne (baritose)

Cadmium 7440-43-9

Les yeux; rép. tract; poumons

Poumons; reins

Inhalation Yeux Ingestion

Toux, maux de tête, les symptômes peuvent être retardés Rougeur, douleur Douleur abdominale, diarrhée, maux de tête, nausées, vomissements

système rép ; reins; prostate; sang (cancer de la prostate et du poumon) Inh ; ing

Œdème pulmonaire, dysp, toux, oppression thoracique, sous-douleur ; tête; frissons, douleurs musculaires ; nau, vomi, diarrhée ; anos, emphy, prot, anémie légère ; (carc)

Chlorure de cadmium 10108-64-2

Rép. tract; tube digestif; poumons

Poumons; reins; os; probablement cancérigène

Inhalation Peau Yeux Ingestion

Toux, respiration laborieuse, les symptômes peuvent être retardés Rougeur Rougeur, douleur Douleur abdominale, sensation de brûlure, diarrhée, nausée, vomissement

   

Oxyde de cadmium 1306-19-0

Rép. tract; tube digestif; poumons

Poumons; reins; cancérigène

Inhalation Peau Yeux Ingestion

Toux, respiration laborieuse, essoufflement, les symptômes peuvent être retardés Rougeur Rougeur, douleur Crampes abdominales, diarrhée, nausées, vomissements

système rép ; reins; du sang; (cancer de la prostate et du poumon) Inh

Œdème pulmonaire, dysp, toux, oppression thoracique, sous-douleur ; tête; frissons, douleurs musculaires ; nau, vomi, diarrhée ; anos, emphy, prot, anémie légère ; (carc)

Sulfure de cadmium 1306-23-6

 

Poumons; reins; cancérigène

       

Chrome 7440-47-3

Les yeux; peau; rép. tract; poumons; reins

Peau; asthme; larynx; poumons

Yeux Ingestion

Irritation Diarrhée, nausées, inconscience, vomissements

système rép ; peau; yeux Inh; ing; con

Irriter les yeux, la peau ; fib pulmonaire (histologique)

Chlorure de chrome 14977-61-8

Les yeux; peau; rép. tract; poumons; corrosif par ingestion

Peau; asthme; probablement cancérigène

Inhalation Peau Yeux Ingestion

Toux, respiration laborieuse, essoufflement, mal de gorge Rougeur, brûlures cutanées, douleur, cloques Rougeur, douleur, brûlures profondes graves Douleur abdominale

Les yeux; peau; resp sys (cancer du poumon) Inh ; abdos; ing; con

Irriter les yeux, la peau, le système respiratoire supérieur ; brûlures des yeux, de la peau

Chromate de plomb 7758-97-6

Rép. tract; peut provoquer une perforation de la cloison nasale

Peau; l'inhalation peut provoquer de l'asthme; poumons

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, nausées, goût métallique Brûlures cutanées, ulcères, ampoules Rougeurs Douleurs abdominales, constipation, convulsions, toux, diarrhée, vomissements, faiblesse, anorexie

   

Cobalt 7440-48-4

 

Peau; rép. tract; poumons; cœur

Inhalation Peau Yeux Ingestion

Toux, respiration laborieuse, essoufflement Rougeur Rougeur Douleur abdominale, vomissements

système rép ; peau Inh; ing; con

Toux, dysp, respiration sifflante, décr pulm func ; faible poids ; derme; fib nodulaire diffus ; resp hypersensibilité, asthme

Chlorure de cobalt 7646-79-9

Les yeux; peau; rép. tract

Peau; rép. voie ; cœur

Inhalation Peau Yeux Ingestion

Toux, respiration laborieuse, essoufflement Rougeur Rougeur Douleur abdominale, diarrhée, nausées, vomissements

   

Oxyde de cobalt (III) 1308-04-9

Les yeux; peau; rép. tract

Peau; peut provoquer de l'asthme; poumons; peut-être cancérigène

Inhalation Yeux

Toux, respiration laborieuse, essoufflement Rougeur

   

Naphténate de cobalt 61789-51-3

Les yeux; rép. tract

Peau

Inhalation Peau Yeux

Toux, mal de gorge Rougeur, douleur Rougeur, douleur

   

Cuivre 7440-50-8

Yeux

Peau; poumons

Inhalation Peau Yeux Ingestion

Toux, maux de tête, essoufflement, mal de gorge Rougeur Rougeur, douleur Douleur abdominale, nausée, vomissement

Les yeux; système rép ; peau; le foie; reins (risque accru avec la maladie de Wilson) Inh ; ing; con

Irritation des yeux, du nez, du pharynx ; perforation nasale ; Goût métallique; derme; chez les animaux : lésions pulmonaires, hépatiques, rénales ; anémie

Oxyde de cuivre (I) 1317-39-1

Les yeux; rép. tract

 

Inhalation Yeux Ingestion

Toux, goût métallique, fièvre des fondeurs Rougeur Crampes abdominales, diarrhée, nausées, vomissements

   

Plomb 7439-92-1

 

Système nerveux; reins; peut altérer la fertilité; peut entraîner un retard de développement du nouveau-né

Inhalation Ingestion

Maux de tête, nausées, spasmes abdominaux Maux de tête, nausées, mal de gorge, spasmes abdominaux

Les yeux; Tractus gastro-intestinal; SNC ; reins; du sang; tissu gingival Inh; ing; con

Faible, jeune fille, insom ; pâleur faciale; pal eye, anor, low-wgt, malnut; constipation, douleurs abdominales, coliques; anémie; ligne de plomb gingival ; tremblement; para poignet, chevilles; encéphalopathie; maladie rénale; yeux irrités; hypotension

Acétate de plomb 301-04-2

Les yeux; peau; rép. tract; du sang; SNC ; reins

Du sang; moelle; SVC ; reins; SNC

Inhalation Yeux Ingestion

Céphalée, chronique mais non décrite comme aiguë ; Voir Ingestion Rougeur, douleur Crampes abdominales, constipation, convulsions, maux de tête, nausées, vomissements

   

Plomb tétraéthyle 78-00-2

Les yeux; peau; rép. tract; SNC

Peau; SNC ; peut causer des dommages génétiques ; peut causer une toxicité pour la reproduction

Inhalation Peau Yeux Ingestion

Convulsions, étourdissements, maux de tête, inconscience, vomissements, faiblesse Peut être absorbé, rougeur Douleur, vision trouble Convulsions, diarrhée, étourdissements, maux de tête, inconscience, vomissements, faiblesse

SNC ; SVC ; reins; yeux Inh; abdos; ing; con

Insom, jeune fille, anxiété; tremblement, hyperréflexie, spasticité; bradycardie, hypotension, hypothermie, pâleur, nau, anor, faible poids ; conf, désorientation, halu, psychose, manie, convulsions, coma ; irritation des yeux

Oxyde de plomb (II) 1317-36-8

 

SNC ; reins; du sang

       

Magnésium 7439-95-4

   

Inhalation Yeux Ingestion

Toux, respiration laborieuse Rougeur, douleur Douleur abdominale, diarrhée

   

Chlorure de magnésium 7786-30-3

Les yeux; rép. tract

 

Inhalation Yeux Ingestion

Toux Rougeur Diarrhée

   

Oxyde de magnésium 1309-48-4

Les yeux; nez

 

Inhalation Yeux Ingestion

Toux Rougeur Diarrhée

Les yeux; resp sys Inh ; con

Irritation des yeux, du nez ; fièvre des fondeurs, toux, douleurs thoraciques, fièvre pseudo-grippale

Phosphure de magnésium 12057-74-8

Les yeux; peau; rép. tract

 

Inhalation Peau Yeux Ingestion

Douleur abdominale, sensation de brûlure, toux, étourdissements, apathie, mal de tête, respiration laborieuse, nausée, mal de gorge Rougeur, douleur Rougeur, douleur Douleur abdominale, convulsions, nausée, inconscience, vomissement

   

Sulfate de manganèse 10034-96-5

Les yeux; peau; rép. tract

Poumons; SNC ; le foie; reins; testicules

Inhalation Peau Yeux Ingestion

Sensation de brûlure, toux, respiration laborieuse Peut être absorbé, rougeur, sensation de brûlure Rougeur, douleur, vision floue Crampes abdominales, nausées, mal de gorge

   

Mercure 7439-97-6

Les yeux; peau; poumons; SNC

SNC ; système nerveux; reins

Inhalation Peau Yeux

Irritation pulmonaire, toux Peut être absorbé Irritant

Peau; système rép ; SNC ; reins; yeux Inh; abdos; ing; con

Irriter les yeux, la peau ; toux, douleurs thoraciques, dysp, pneuitis bronchique ; tremblement, insom, irrity, indécision, tête, ftg, faible ; stomatite, salv; GI dist, anore, faible poids ; protéger

Acétate mercurique 1600-27-7

Les yeux; peau; rép. tract; poumons; reins

Peau; reins

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, essoufflement, mal de gorge, les symptômes peuvent être retardés ; Voir Ingestion Peut être absorbé, brûlures cutanées, douleur Douleur, vision floue, brûlures profondes graves Douleur abdominale, sensation de brûlure, diarrhée, vomissements, goût métallique

   

Chlorure mercurique 7487-94-7

Les yeux; peau; rép. tract; poumons; reins

Peau; reins

Inhalation Peau Yeux Ingestion

Sensation de brûlure, toux, respiration laborieuse, essoufflement, mal de gorge, les symptômes peuvent être retardés ; Voir Ingestion Peut être absorbé, douleur, cloques Douleur, vision floue, brûlures profondes graves Crampes abdominales, douleur abdominale, sensation de brûlure, diarrhée, nausée, mal de gorge, vomissement, goût métallique

   

Nitrate mercurique 10045-94-0

Peau; rép. tract; yeux; reins

Reins

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration laborieuse, essoufflement, mal de gorge Peut être absorbé, rougeur, douleur Douleur, vision floue, brûlures profondes graves Douleur abdominale, diarrhée, vomissements, goût métallique

   

Oxyde mercurique 21908-53-2

Les yeux; peau; rép. tract

Peau; reins; SNC

Inhalation Peau Yeux Ingestion

Toux Peut être absorbée, rougeur Rougeur Douleur abdominale, diarrhée

   

Sulfate mercurique 7783-35-9

Les yeux; peau; rép. tract; poumons; Tractus gastro-intestinal; corrosif par ingestion

Reins

Inhalation Peau Yeux Ingestion

Sensation de brûlure, toux, respiration laborieuse, essoufflement, faiblesse, les symptômes peuvent être retardés ; Voir Ingestion Peut être absorbé, rougeur, sensation de brûlure, douleur Douleur, vision floue, brûlures profondes graves Douleur abdominale, diarrhée, nausée, vomissement, goût métallique

   

Chlorure mercureux 10112-91-1

Yeux

Reins

Yeux Ingestion

Rougeur Faiblesse

   

Composé organoalkylique du mercure

       

Les yeux; peau; SNC ; SNP ; reins Inh; abdos; ing; con

Parès ; ataxie, dysarthrie; vision, audience dist; spasticité, secousses des membres ; étourdissement; salv; lac; nausée, vomissement, diarrhée, constipation ; brûlures cutanées; distribution émotionnelle ; injection de rein ; effets térato possibles

Acétate phénylmercurique 62-38-4

Les yeux; peau; rép. tract; reins

Peau; SNC ; provoque éventuellement des effets toxiques sur la reproduction humaine

Inhalation Peau Yeux Ingestion

Toux, respiration laborieuse, mal de gorge, les symptômes peuvent être retardés Peut être absorbé, rougeur, douleur Rougeur, douleur, vision trouble Douleur abdominale, diarrhée, nausées, vomissements, faiblesse, symptômes d'effets différés

   

Nitrate phénylmercurique 55-68-5

Les yeux; peau; rép. tract; reins

Peau; SNC ; provoque éventuellement des effets toxiques sur la reproduction humaine

Inhalation Peau Yeux Ingestion

Toux, respiration laborieuse, mal de gorge, les symptômes peuvent être retardés Peut être absorbé, rougeur, douleur Rougeur, douleur, vision trouble Douleur abdominale, diarrhée, nausées, vomissements, symptômes d'effets différés

   

Nickel 7440-02-0

Les yeux; rép. tract

Peau; l'inhalation peut provoquer de l'asthme; peut affecter la conjonctive; peut-être cancérigène

   

Cavités nasales; poumons; peau (cancer du poumon et du nez) Inh ; ing; con

Sens derm, asthme allergique, pneuitis; (carc)

Oxyde de nickel (II) 1313-99-1

Les yeux; rép. tract

Peau; l'inhalation peut provoquer de l'asthme; cancérigène

Inhalation Peau Yeux

Toux Rougeur Rougeur

   

Carbonate de nickel 3333-67-3

Les yeux; rép. tract

Peau; cancérigène; asthme

Inhalation Peau Yeux

Toux Rougeur Rougeur

   

Nickel carbonyle 13463-39-3

Les yeux; peau; rép. tract; poumons; SNC

Peut-être cancérigène; peut causer des malformations à l'enfant à naître

Inhalation Peau Yeux Ingestion

Douleurs abdominales, bleuissement de la peau, toux, étourdissements, maux de tête, nausées, essoufflement, vomissements, les symptômes peuvent être retardés Peut être absorbé, rougeur, douleur Rougeur, douleur Douleurs abdominales, maux de tête, nausées, vomissements

Poumons; sinus paranasal; SNC ; repro sys (cancer du poumon et du nez) Inh ; abdos; ing; con

Tête, verti ; nausées, vomissements, douleurs épigastriques ; sous-douleur ; toux, hyperpnée; cyan; faible; leucyte ; pneumonie; délire; convulsions ; (carc); chez l'animal : effets repro, térato

Sulfure de nickel 12035-72-2

Les yeux; peau; rép. tract

Peau; peut-être cancérigène

Inhalation

Toux, maux de gorge

   

Sulfate de nickel 7786-81-4

Les yeux; peau; rép. tract; Tractus gastro-intestinal; SNC

Peau; asthme; peut-être cancérigène

Inhalation Peau Yeux Ingestion

Toux, mal de gorge Peut être absorbé, rougeur Rougeur Douleur abdominale, étourdissements, maux de tête, nausées, vomissements

   

Tétroxyde d'osmium 20816-12-0

Les yeux; peau; rép. tract; poumons

Peau; reins

Inhalation Peau Yeux Ingestion

Toux, maux de tête, respiration sifflante, essoufflement, troubles visuels, les symptômes peuvent être retardés Rougeur, brûlures cutanées, décoloration de la peau Vision floue, perte de vision Sensation de brûlure

Les yeux; système rép ; peau Inh; ing; con

Yeux irrités, système resp ; lac, vis dist; conj ; tête; toux, dysp; derme

Tétrachlorure de platine 13454-96-1

Les yeux; peau; rép. tract

 

Inhalation Peau Yeux

Sensation de brûlure, toux Rougeur Rougeur

Les yeux; peau; resp sys Inh ; ing; con

Irritation des yeux, du nez ; toux; dysp, respiration sifflante, cyan ; derme, sens peau; lymphocytose

Séléniure d'hydrogène 7783-07-5

Les yeux; rép. tract; poumons

Peau; le foie; rate; reins

Inhalation Peau Yeux

Sensation de brûlure, toux, respiration laborieuse, nausées, mal de gorge, faiblesse Au contact d'un liquide : gelure Rougeur, douleur ;

système rép ; yeux; Inh du foie ; con

Irritation des yeux, du nez, de la gorge ; nau, vomi, diarrhée ; goût métallique, souffle d'ail; dizz, jeune fille, ftg; liq : gelure ; chez les animaux : pneumonie ; dommages au foie

Acide sélénieux 7783-00-8

Les yeux; peau; rép. tract

Peau

Inhalation Peau Yeux Ingestion

Sensation de brûlure, toux, respiration laborieuse, mal de gorge Peut être absorbé, rougeur, douleur, cloques Rougeur, douleur, vision floue, brûlures profondes graves, paupières gonflées Douleur abdominale, sensation de brûlure, confusion, nausée, mal de gorge, faiblesse, hypotension artérielle

   

Acide sélénieux, sel disodique 10102-18-8

Les yeux; peau; rép. tract; poumons; le foie; reins; cœur; SNC ; Tractus gastro-intestinal

les dents; os; du sang

Inhalation Peau Yeux

Crampes abdominales, diarrhée, étourdissements, maux de tête, perte de cheveux, respiration laborieuse, nausées, vomissements, les symptômes peuvent être retardés Rougeur Rougeur

   

Sélénium 7782-49-2

Poumons

Peau; rép. tract; Tractus gastro-intestinal; téguments

Inhalation Peau Yeux Ingestion

Irritation du nez, toux, étourdissements, maux de tête, respiration laborieuse, nausées, mal de gorge, vomissements, faiblesse, les symptômes peuvent être retardés Rougeur, brûlures cutanées, douleur, décoloration Rougeur, douleur, vision floue Goût métallique, diarrhée, frissons, fièvre

système rép ; yeux; peau; le foie; reins; du sang; rate Inh; ing; con

Irrite les yeux, la peau, le nez, la gorge; vis dist; tête; frissons, fièvre, dysp, bron ; goût métallique, haleine d'ail, IG dist; brûlures du derme, des yeux et de la peau ; chez les animaux : anémie ; foie nca, cirr ; dommages aux reins, à la rate

Dioxyde de sélénium 7446-08-4

Les yeux; peau; rép. tract; poumons

Peau

Inhalation Peau Yeux Ingestion

Sensation de brûlure, toux, respiration laborieuse, mal de gorge Peut être absorbé, rougeur, douleur, cloques Rougeur, douleur, vision floue, brûlures profondes graves, paupières gonflées Douleur abdominale, sensation de brûlure, confusion, nausée, mal de gorge, faiblesse, hypotension artérielle

   

Hexafluorure de sélénium 7783-79-1

Rép. tract; poumons

Peau; SNC ; le foie; reins

Inhalation Peau Yeux

Corrosif, toux, maux de tête, nausées, essoufflement, mal de gorge Rougeur, douleur, au contact du liquide : engelures ; corrosif Rougeur, douleur, vision floue;

Resp sys Inh

Chez les animaux : prune irrite, œdème

Oxychlorure de sélénium 7791-23-3

Les yeux; peau; rép. tract; poumons

Peau

Inhalation Peau Yeux Ingestion

Sensation de brûlure, toux, respiration laborieuse, mal de gorge Corrosif, peut être absorbé, rougeur, douleur, cloques Rougeur, douleur, vision trouble, brûlures profondes graves Crampes abdominales, confusion, nausées, mal de gorge, hypotension

   

Trioxyde de sélénium 13768-86-0

Les yeux; peau; rép. tract

Peau; poumons

Inhalation Peau Yeux Ingestion

Sensation de brûlure, toux, respiration laborieuse, mal de gorge Peut être absorbé, rougeur, douleur Rougeur, douleur, vision floue, paupières gonflées Crampes abdominales, confusion, nausée, mal de gorge, faiblesse, pression artérielle basse

   

Argent 7740-22-4

 

Les yeux; nez; gorge; peau

   

Cloison nasale; peau; yeux Inh; ing; con

Yeux bleu-gris, cloison nasale, gorge, peau ; irritation, ulcération de la peau; Dist GI

Nitrate d'argent 7761-88-8

Les yeux; peau; rép. tract

Du sang; peau

Inhalation Peau Yeux Ingestion

Sensation de brûlure, toux, respiration laborieuse Rougeur, brûlures cutanées, douleur Rougeur, douleur, perte de vision, brûlures profondes graves Douleur abdominale, sensation de brûlure, faiblesse

   

Chromate de strontium 7789-06-2

Les yeux; peau; rép. tract; reins; le foie

Peau; poumons; du sang; le foie; reins; cerveau; globules rouges et blancs; le foie; reins; cancérigène

Inhalation Peau Ingestion

Toux, enrouement Rougeurs, ulcérations Mal de gorge

   

Tellure 13494-80-9

Rép. tract; SNC

Peut causer des malformations chez les bébés humains

Inhalation Peau Yeux Ingestion

Somnolence, maux de tête, odeur d'ail, nausées Peut être absorbé Rougeur Douleur abdominale, constipation, nausées, vomissements, odeur d'ail dans l'haleine

Peau; SNC ; sang Inh; ing; con

Haleine d'ail, sueur; bouche sèche, goût métallique; somme; anor, nau, pas de sueur ; derme; chez les animaux : SNC, effets sur les globules rouges

Thallium métal 7440-28-0

Système nerveux

Les yeux; le foie; poumons; peut causer des malformations congénitales

Inhalation Peau Yeux Ingestion

Nausées, vomissements, perte de cheveux, coliques abdominales, douleurs dans les jambes et la poitrine, nervosité, irritabilité Peut être absorbé Peut être absorbé Douleurs abdominales, constipation, diarrhée, maux de tête, nausées, vomissements, perte de vision

Les yeux; SNC ; poumons; le foie; reins; tractus gastro-intestinal, poils corporels ; resp sys Inh ; abdos; ing; con

Nausée, diarrhée, douleurs abdominales, vomissements ; ptosis, strabisme; péri névrite, tremblements; resserré, douleur thoracique, œdème pulmonaire ; sez, chorée, psychose ; foie, dommages aux reins; alopécie; pare les jambes

Sulfate de thalle 7446-18-6

Les yeux; peau; SNC ; SVC ; reins; Tractus gastro-intestinal

 

Inhalation Peau Yeux Ingestion

Voir Ingestion Peut être absorbé, rougeur; Voir Ingestion Rougeur, douleur Douleur abdominale, convulsions, diarrhée, céphalée, vomissement, faiblesse, délire, tachycardie

   

Oxyde de di-N-dibutylétain 818-08-6

Les yeux; peau; rép. tract; poumons

Peau; SNP ; le foie; voie biliaire ; système lymphatique;

Inhalation Peau Yeux

Maux de tête, bourdonnements d'oreilles, perte de mémoire, désorientation Peut être absorbé, brûlures cutanées, douleur Rougeur, douleur

   

Chlorure stannique 7646-78-8

Les yeux; peau; rép. tract; poumons

Peau

Inhalation Peau Yeux Ingestion

Sensation de brûlure, toux, respiration laborieuse, essoufflement, mal de gorge Rougeur, brûlures cutanées, cloques Brûlures profondes graves Crampes abdominales, vomissements

   

Oxyde stannique 18282-10-5

Rép. tract

Poumons

Inhalation

Toux & irritations de la gorge

Resp sys Inh ; con

Stannose (pneumoconiose bénigne) : dysp, decr pulm func

Chlorure stanneux 7772-99-8

Les yeux; peau; rép. tract; SNC ; du sang

Foie

Inhalation Peau Yeux Ingestion

Toux, essoufflement Rougeur Rougeur, douleur Douleur abdominale, diarrhée, nausée, vomissement

   

Chlorure stanneux dihydraté 10025-69-1

Les yeux; peau; rép. tract; SNC ; du sang

Foie

Inhalation Peau Yeux Ingestion

Toux, essoufflement Rougeur Rougeur douleur Douleur abdominale, diarrhée, nausée, vomissement

   

Fluorure stanneux 7783-47-3

Peau; rép. tract; yeux

Les dents; os

Inhalation Peau Yeux Ingestion

Toux Rougeur Rougeur, douleur, brûlures profondes graves Douleur abdominale, nausée

   

Oxyde d'étain 21651-19-4

Rép. tract

Poumons

Inhalation

Toux & irritations de la gorge

Resp sys Inh ; con

Stannose (pneumoconiose bénigne) : dysp, decr pulm func

Dioxyde de titane 13463-67-7

Les yeux; poumons

Poumons

Inhalation Yeux

Toux Rougeur

Resp sys (chez les animaux : tumeurs pulmonaires) Inh

Fib pulmonaire ; (carc)

Pentoxyde de vanadium 1314-62-1

Les yeux; rép. tract; poumons

Peau; poumons; langue

Inhalation Peau Yeux Ingestion

Sensation de brûlure, toux, essoufflement Rougeur, sensation de brûlure Rougeur, douleur, conjonctivite Douleur abdominale, diarrhée, somnolence, inconscience, vomissements, symptômes d'intoxication systémique grave et décès

système rép ; peau; yeux Inh; con

Irrite les yeux, la peau, la gorge; langue verte, goût métallique, eczéma ; toux; râles fins, wheez, bron, dysp

Trioxyde de vanadium 1314-34-7

Les yeux; peau; rép. tract

Rép. tract; peut affecter la fonction hépatique et cardiaque

Inhalation Peau Yeux Ingestion

Nez qui coule, éternuements, toux, diarrhée, respiration laborieuse, mal de gorge, faiblesse, douleur dans la poitrine, langue verte à noire Peau sèche, rougeur Rougeur Maux de tête, vomissements, faiblesse

   

Chromate de zinc 13530-65-9

 

Peau; rép. tract

Inhalation Yeux Ingestion

Toux Rougeurs Douleurs abdominales, diarrhée, vomissements

   

Phosphure de zinc 1314-84-7

Rép. tract; poumons; le foie; reins; cœur; SNC

 

Inhalation Ingestion

Toux, diarrhée, maux de tête, fatigue, nausées, vomissements Douleurs abdominales, toux, diarrhée, étourdissements, maux de tête, respiration difficile, nausées, inconscience, vomissements, ataxie, fatigue

   

La zone de données sur l'exposition à court terme et à long terme adaptée de la série International Chemical Safety Cards (ICSC) produite par le Programme international sur la sécurité chimique (voir les notes du tableau 1). Les abréviations utilisées sont CNS = système nerveux central ; CVS = système cardiovasculaire ; SNP = système nerveux périphérique ; rép. voies = voies respiratoires.

Les autres données sont adaptées du NIOSH Pocket Guide to Chemical Hazards (NIOSH 1994).

Le lecteur est renvoyé au Guide des produits chimiques dans le tome IV de ce Encyclopédie pour plus d'informations sur la toxicité des substances et composés chimiques apparentés. On y trouve notamment des composés de calcium et des composés de bore. Des informations spécifiques sur la surveillance biologique sont données dans le chapitre Surveillance biologique.

 

Retour

Mercredi, Février 09 2011 04: 19

Remerciements

Le matériel présenté ici est basé sur un examen exhaustif, une révision et une expansion des données sur les métaux trouvées dans la 3e édition du Encyclopédie de la santé et de la sécurité au travail. Les membres du Comité scientifique sur la toxicologie des métaux de la Commission internationale de la santé au travail ont effectué une grande partie de l'examen. Ils sont énumérés ci-dessous, ainsi que d'autres critiques et auteurs.

Les examinateurs sont :

L.Alessio

Antéro Aitio

P.Aspostoli

M.Berlin

Tom W.Clarkson

CG. Elinder

Lars Friberg

Byung Kook Lee

N. Karle Mottet

DJ Nager

Kogi Nogawa

Tor Norseth

CN Ong

Kensaborv Tsuchiva

Nies Tsukuab.

Les contributeurs de la 4e édition sont :

Gunnar Nordberg

Sverre Langård.

F.William Sunderman, Jr.

Jeanne Mager Stellman

Debra Osinski

Pia Markkanen

Bertram D. Dinman

Agence pour les substances toxiques et le registre des maladies (ATSDR).

Les révisions sont basées sur les contributions des auteurs suivants de la 3e édition :
A. Berlin, M. Berlin, PL Bidstrup, HL Boiteau, AG Cumpston, BD Dinman, AT Doig,
JL Egorov, CG. Elinder, HB Elkins, ID Gadaskina, J. Glrmme, JR Glover,
GA Gudzovskij, S. Horiguchi, D. Hunter, Lars Järup, T. Karimuddin, R. Kehoe, RK Kye,
Robert R. Lauwerys, S. Lee, C. Marti-Feced, Ernest Mastromatteo, O. Ja Mogilevskaja,
L. Parmeggiani, N. Perales y Herrero, L. Pilat, TA Roscina, M. Saric, Herbert E. Stokinger,
HI Scheinberg, P. Schuler, HJ Symanski, RG Thomas, DC Trainor, Floyd A. van Atta,
R. Wagg, Mitchell R. Zavon et RL Zielhuis.

 

Retour

Mercredi, Février 09 2011 04: 23

Aluminium

Artilleur Nordberg

Occurrence et utilisations

L'aluminium est le métal le plus abondant dans la croûte terrestre, où il se trouve en combinaison avec l'oxygène, le fluor, la silice, etc., mais jamais à l'état métallique. La bauxite est la principale source d'aluminium. Il est constitué d'un mélange de minéraux formés par l'altération des roches aluminifères. Les bauxites sont la forme la plus riche de ces minerais altérés, contenant jusqu'à 55% d'alumine. Certains minerais latéritiques (contenant des pourcentages plus élevés de fer) contiennent jusqu'à 35% Al2O3· Les gisements commerciaux de bauxite sont principalement de la gibbsite (Al2O3· 3H2O) et la boehmite (Al2O3· H2O) et se trouvent en Australie, en Guyane, en France, au Brésil, au Ghana, en Guinée, en Hongrie, en Jamaïque et au Suriname. La production mondiale de bauxite en 1995 était de 111,064 XNUMX millions de tonnes. La gibbsite est plus facilement soluble dans les solutions d'hydroxyde de sodium que la boehmite et est donc préférée pour la production d'oxyde d'aluminium.

L'aluminium est largement utilisé dans l'industrie et en plus grande quantité que tout autre métal non ferreux. la production mondiale de métaux de première fusion en 1995 était estimée à 20,402 XNUMX millions de tonnes. Il est allié à une variété d'autres matériaux, notamment le cuivre, le zinc, le silicium, le magnésium, le manganèse et le nickel et peut contenir de petites quantités de chrome, de plomb, de bismuth, de titane, de zirconium et de vanadium à des fins spéciales. Les lingots d'aluminium et d'alliages d'aluminium peuvent être extrudés ou transformés dans des laminoirs, des tréfileries, des forges ou des fonderies. Les produits finis sont utilisés dans la construction navale pour les aménagements intérieurs et les superstructures ; l'industrie électrique pour fils et câbles; l'industrie du bâtiment pour les cadres de maisons et de fenêtres, les toits et les revêtements; l'industrie aéronautique pour les cellules et revêtements d'avions et autres composants ; l'industrie automobile pour la carrosserie, les blocs moteurs et les pistons ; l'ingénierie légère pour l'électroménager et l'équipement de bureau et dans l'industrie de la bijouterie. Une application majeure de la feuille est dans les récipients pour boissons ou aliments, tandis que la feuille d'aluminium est utilisée pour l'emballage; une forme particulaire fine d'aluminium est utilisée comme pigment dans les peintures et dans l'industrie pyrotechnique. Les articles fabriqués à partir d'aluminium reçoivent fréquemment une finition de surface protectrice et décorative par anodisation.

Le chlorure d'aluminium est utilisé dans le craquage du pétrole et dans l'industrie du caoutchouc. Il fume dans l'air pour former de l'acide chlorhydrique et se combine de manière explosive avec l'eau ; par conséquent, les récipients doivent être maintenus hermétiquement fermés et protégés de l'humidité.

Composés d'alkylaluminium. Ceux-ci gagnent en importance en tant que catalyseurs pour la production de polyéthylène basse pression. Ils présentent un risque toxique, de brûlure et d'incendie. Ils sont extrêmement réactifs avec l'air, l'humidité et les composés contenant de l'hydrogène actif et doivent donc être conservés sous une couverture de gaz inerte.

Dangers

Pour la production d'alliages d'aluminium, l'aluminium raffiné est fondu dans des fours à pétrole ou à gaz. Une quantité réglée de durcisseur contenant des blocs d'aluminium avec un pourcentage de manganèse, de silicium, de zinc, de magnésium, etc. est ajoutée. La masse fondue est ensuite mélangée et est passée dans un four de maintien pour dégazage en faisant passer soit de l'argon-chlore, soit de l'azote-chlore à travers le métal. L'émission de gaz qui en résulte (acide chlorhydrique, hydrogène et chlore) a été associée à des maladies professionnelles et il convient de veiller à ce que des contrôles techniques appropriés capturent les émissions et les empêchent également d'atteindre l'environnement extérieur, où elles peuvent également causer des dommages. Les scories sont écumées de la surface de la masse fondue et placées dans des conteneurs pour minimiser l'exposition à l'air pendant le refroidissement. Un fondant contenant des sels de fluorure et/ou de chlorure est ajouté au four pour faciliter la séparation de l'aluminium pur des scories. Des fumées d'oxyde d'aluminium et de fluorure peuvent être dégagées, de sorte que cet aspect de la production doit également être soigneusement contrôlé. Un équipement de protection individuelle (EPI) peut être nécessaire. Le procédé de fusion de l'aluminium est décrit dans le chapitre Industrie de la transformation et du travail des métaux. Dans les ateliers de fonderie, une exposition au dioxyde de soufre peut également se produire.

Une large gamme de différentes formes cristallines d'oxyde d'aluminium est utilisée comme matière première de fonderie, abrasifs, réfractaires et catalyseurs. Une série de rapports publiés de 1947 à 1949 décrivait une fibrose interstitielle progressive et non nodulaire dans l'industrie des abrasifs d'aluminium dans laquelle l'oxyde d'aluminium et le silicium étaient traités. Cette condition, connue sous le nom de maladie de Shaver, était rapidement progressive et souvent mortelle. L'exposition des victimes (travailleurs produisant de l'alundum) était à une fumée dense composée d'oxyde d'aluminium, de silice libre cristalline et de fer. Les particules étaient d'une taille qui les rendait hautement respirables. Il est probable que la prépondérance de la maladie soit attribuable aux effets pulmonaires très nocifs de la silice libre cristalline finement divisée, plutôt qu'à l'oxyde d'aluminium inhalé, bien que l'étiologie exacte de la maladie ne soit pas comprise. La maladie de Shaver est principalement d'intérêt historique maintenant, car aucun rapport n'a été fait dans la seconde moitié du 20e siècle.

Des études récentes sur les effets sur la santé d'expositions à des niveaux élevés (100 mg/m3) aux oxydes d'aluminium chez les ouvriers engagés dans le procédé Bayer (décrit au chapitre Industrie de la transformation et du travail des métaux) ont démontré que des travailleurs ayant plus de vingt ans d'exposition peuvent développer des altérations pulmonaires. Ces changements sont cliniquement caractérisés par des degrés mineurs, principalement asymptomatiques, de modifications restrictives de la fonction pulmonaire. Les examens radiographiques pulmonaires ont révélé de petites opacités rares et irrégulières, en particulier à la base des poumons. Ces réponses cliniques ont été attribuées au dépôt de poussière dans le paraenchyme pulmonaire, qui était le résultat d'expositions professionnelles très élevées. Ces signes et symptômes ne peuvent être comparés à la réponse extrême de la maladie de Shaver. Il convient de noter que d'autres études épidémiologiques au Royaume-Uni concernant des expositions généralisées à l'alumine dans l'industrie de la poterie n'ont produit aucune preuve que l'inhalation de poussière d'alumine produise des signes chimiques ou radiographiques de maladie ou de dysfonctionnement pulmonaire.

Les effets toxicologiques des oxydes d'aluminium restent intéressants en raison de leur importance commerciale. Les résultats des expérimentations animales sont controversés. Un oxyde d'aluminium particulièrement fin (0.02 μm à 0.04 μm), catalytiquement actif, peu utilisé dans le commerce, peut provoquer des modifications pulmonaires chez les animaux dosés par injection directement dans les voies respiratoires pulmonaires. Des effets à plus faible dose n'ont pas été observés.

Il convient également de noter que ce que l'on appelle «l'asthme de la salle des cuves», fréquemment observé chez les travailleurs des opérations de transformation de l'aluminium, est probablement attribuable aux expositions aux flux de fluorure plutôt qu'à la poussière d'aluminium elle-même.

La production d'aluminium a été classée dans le groupe 1, situation d'exposition cancérigène connue pour l'homme, par le Centre international de recherche sur le cancer (CIRC). Comme pour les autres maladies décrites ci-dessus, la cancérogénicité est très probablement attribuable aux autres substances présentes (par exemple, les hydrocarbures aromatiques polycycliques (HAP) et la poussière de silice), bien que le rôle exact des poussières d'alumine ne soit tout simplement pas compris.

Certaines données sur l'absorption de niveaux élevés d'aluminium et de dommages aux tissus nerveux sont trouvées chez les personnes nécessitant une dialyse rénale. Ces niveaux élevés d'aluminium ont entraîné des lésions cérébrales graves, voire mortelles. Cette réponse, cependant, a également été observée chez d'autres patients sous dialyse mais qui n'avaient pas un taux d'aluminium cérébral élevé similaire. Les expérimentations animales n'ont pas réussi à reproduire cette réponse cérébrale, ou maladie d'Alzheimer, qui a également été postulée dans la littérature. Les études épidémiologiques et cliniques de suivi sur ces questions n'ont pas été définitives et aucune preuve de tels effets n'a été observée dans les nombreuses études épidémiologiques à grande échelle sur les travailleurs de l'aluminium.

 

Retour

Mercredi, Février 09 2011 04: 31

Antimoine

Gunnar Nordberg

L'antimoine est stable à température ambiante mais, lorsqu'il est chauffé, brûle brillamment, dégageant des fumées blanches denses d'oxyde d'antimoine (Sb2O3) avec une odeur d'ail. Il est étroitement lié, chimiquement, à l'arsenic. Il forme facilement des alliages avec l'arsenic, le plomb, l'étain, le zinc, le fer et le bismuth.

Occurrence et utilisations

Dans la nature, l'antimoine se trouve en combinaison avec de nombreux éléments, et les minerais les plus courants sont la stibine (SbS3), la valentinite (Sb2O3), kermésite (Sb2S2O) et sénarmontite (Sb2O3).

L'antimoine de haute pureté est utilisé dans la fabrication de semi-conducteurs. L'antimoine de pureté normale est largement utilisé dans la production d'alliages, auxquels il confère une dureté, une résistance mécanique, une résistance à la corrosion et un faible coefficient de frottement accrus; les alliages associant étain, plomb et antimoine sont utilisés dans l'industrie électrique. Parmi les alliages d'antimoine les plus importants figurent le régule, l'étain, le métal blanc, le métal Britannia et le métal porteur. Ceux-ci sont utilisés pour les coquilles de roulement, les plaques de batterie de stockage, le gainage de câbles, la soudure, les pièces moulées ornementales et les munitions. La résistance de l'antimoine métallique aux acides et aux bases est mise à profit dans la fabrication d'usines chimiques.

Dangers

Le principal danger de l'antimoine est celui de l'intoxication par ingestion, inhalation ou absorption cutanée. Les voies respiratoires sont la voie d'entrée la plus importante car l'antimoine est si fréquemment rencontré sous forme de fine poussière en suspension dans l'air. L'ingestion peut se produire par ingestion de poussière ou par contamination de boissons, d'aliments ou de tabac. L'absorption cutanée est moins fréquente, mais peut se produire lorsque l'antimoine est en contact prolongé avec la peau.

La poussière rencontrée dans l'extraction de l'antimoine peut contenir de la silice libre et des cas de pneumoconiose (appelée silico-antimoniose) ont été signalés chez les mineurs d'antimoine. Au cours du traitement, le minerai d'antimoine, qui est extrêmement cassant, se transforme en fines poussières plus rapidement que la roche qui l'accompagne, ce qui entraîne des concentrations atmosphériques élevées de fines poussières lors d'opérations telles que la réduction et le tamisage. La poussière produite lors du concassage est relativement grossière et les opérations restantes - classification, flottation, filtration, etc. - sont des procédés humides et, par conséquent, sans poussière. Les ouvriers des fours qui raffinent l'antimoine métallique et produisent des alliages d'antimoine, et les ouvriers qui impriment des caractères dans l'industrie de l'imprimerie, sont tous exposés à la poussière et aux vapeurs d'antimoine métallique et peuvent présenter des opacités miliaires diffuses dans les poumons, sans signes cliniques ou fonctionnels d'altération de la fonction. absence de poussière de silice.

L'inhalation d'aérosols d'antimoine peut produire des réactions localisées des muqueuses, des voies respiratoires et des poumons. L'examen des mineurs et des travailleurs des concentrateurs et des fonderies exposés aux poussières et fumées d'antimoine a révélé des dermatites, des rhinites, des inflammations des voies respiratoires supérieures et inférieures, y compris des pneumonies et même des gastrites, des conjonctivites et des perforations de la cloison nasale.

Une pneumoconiose, parfois associée à des modifications pulmonaires obstructives, a été signalée à la suite d'une exposition à long terme chez l'homme. Bien que la pneumoconiose à l'antimoine soit considérée comme bénigne, les effets respiratoires chroniques associés à une forte exposition à l'antimoine ne sont pas considérés comme inoffensifs. De plus, des effets cardiaques, voire mortels, ont été liés à une exposition professionnelle à long terme au trioxyde de diantimoine.

Des infections cutanées pustuleuses sont parfois observées chez les personnes travaillant avec de l'antimoine et des sels d'antimoine. Ces éruptions sont transitoires et affectent principalement les zones cutanées exposées à la chaleur ou à la transpiration.

Toxicologie

Dans ses propriétés chimiques et son action métabolique, l'antimoine ressemble beaucoup à l'arsenic et, comme les deux éléments sont parfois associés, l'action de l'antimoine peut être imputée à l'arsenic, en particulier chez les fondeurs. Cependant, des expériences avec de l'antimoine métallique de haute pureté ont montré que ce métal a une toxicologie complètement indépendante ; différents auteurs ont trouvé que la dose létale moyenne se situait entre 10 et 11.2 mg/100 g.

L'antimoine peut pénétrer dans l'organisme par la peau, mais la principale voie passe par les poumons. Des poumons, l'antimoine, et en particulier l'antimoine libre, est absorbé et repris par le sang et les tissus. Des études sur des travailleurs et des expériences avec de l'antimoine radioactif ont montré que la majeure partie de la dose absorbée entre dans le métabolisme dans les 48 heures et est éliminée dans les fèces et, dans une moindre mesure, dans les urines. Le reste reste dans le sang pendant un temps considérable, les érythrocytes contenant plusieurs fois plus d'antimoine que le sérum. Chez les travailleurs exposés à l'antimoine pentavalent, l'excrétion urinaire d'antimoine est liée à l'intensité de l'exposition. Il a été estimé qu'après 8 heures d'exposition à 500 µg Sb/m3, l'augmentation de la concentration d'antimoine excrété dans les urines en fin de poste s'élève en moyenne à 35 µg/g de créatinine.

L'antimoine inhibe l'activité de certaines enzymes, lie les groupes sulfhydryles dans le sérum et perturbe le métabolisme des protéines et des glucides ainsi que la production de glycogène par le foie. Des expérimentations animales prolongées avec des aérosols d'antimoine ont conduit au développement d'une pneumonie lipoïde endogène distinctive. Des lésions cardiaques et des cas de mort subite ont également été signalés chez des travailleurs exposés à l'antimoine. Une fibrose focale des poumons et des effets cardiovasculaires ont également été observés lors d'essais sur des animaux.

L'utilisation thérapeutique des antimoniés a permis de détecter notamment la toxicité myocardique cumulée des dérivés trivalents de l'antimoine (qui sont excrétés plus lentement que les dérivés pentavalents). Une réduction de l'amplitude de l'onde T, une augmentation de l'intervalle QT et des arythmies ont été observées sur l'électrocardiogramme.

Symptômes

Les symptômes d'empoisonnement aigu comprennent une violente irritation de la bouche, du nez, de l'estomac et des intestins; vomissements et selles sanglantes ; respiration lente et superficielle; coma parfois suivi de décès par épuisement et complications hépatiques et rénales. Les intoxications chroniques sont : sécheresse de la gorge, nausées, maux de tête, insomnie, perte d'appétit et étourdissements. Des différences entre les sexes dans les effets de l'antimoine ont été notées par certains auteurs, mais les différences ne sont pas bien établies.

Compositions (sans alcool)

Stibine (SbH3), ou hydrure d'antimoine (antimoniure d'hydrogène), est produit en dissolvant un alliage zinc-antimoine ou magnésium-antimoine dans de l'acide chlorhydrique dilué. Cependant, il se produit fréquemment comme sous-produit dans le traitement des métaux contenant de l'antimoine avec des acides réducteurs ou dans la surcharge des batteries de stockage. La stibine a été utilisée comme agent de fumigation. La stibine de haute pureté est utilisée comme dopant en phase gazeuse de type n pour le silicium dans les semi-conducteurs. La stibine est un gaz extrêmement dangereux. Comme l'arsine, il peut détruire les cellules sanguines et provoquer une hémoglobinurie, une jaunisse, une anurie et la mort. Les symptômes comprennent des maux de tête, des nausées, des douleurs épigastriques et le passage d'urine rouge foncé après l'exposition.

Trioxyde d'antimoine (Sb2O3) est le plus important des oxydes d'antimoine. Lorsqu'il est en vol, il a tendance à rester en suspension pendant une durée exceptionnellement longue. Il est obtenu à partir de minerai d'antimoine par un procédé de torréfaction ou par oxydation de l'antimoine métallique et sublimation ultérieure, et est utilisé pour la fabrication de tartre émétique, comme pigment de peinture, dans les émaux et les émaux, et comme composé ignifuge.

Le trioxyde d'antimoine est à la fois un poison systémique et un danger pour les maladies de la peau, bien que sa toxicité soit trois fois inférieure à celle du métal. Dans des expérimentations animales à long terme, des rats exposés au trioxyde de diantimoine par inhalation ont montré une fréquence élevée de tumeurs pulmonaires. Un excès de décès dus au cancer du poumon chez les travailleurs occupés dans la fonderie d'antimoine depuis plus de 4 ans, à une concentration moyenne dans l'air de 8 mg/m3, a été signalé à Newcastle. En plus des poussières et fumées d'antimoine, les travailleurs ont été exposés aux effluents de l'usine de zircon et à la soude caustique. Aucune autre expérience n'a fourni d'informations sur le potentiel carcinogène du trioxyde de diantimoine. Celui-ci a été classé par l'American Conference of Governmental Industrial Hygienists (ACGIH) comme une substance chimique associée à des processus industriels soupçonnés d'induire le cancer.

Pentoxyde d'antimoine (Sb2O5) est produit par l'oxydation du trioxyde ou du métal pur, dans l'acide nitrique à chaud. Il est utilisé dans la fabrication de peintures et de laques, de verre, de poterie et de produits pharmaceutiques. Le pentoxyde d'antimoine est connu pour son faible degré de danger toxique.

Trisulfure d'antimoine (Sb2S3) se trouve sous forme de minéral naturel, l'antimonite, mais peut aussi être synthétisé. Il est utilisé dans les industries de la pyrotechnie, des allumettes et des explosifs, dans la fabrication du verre rubis et comme pigment et plastifiant dans l'industrie du caoutchouc. Une augmentation apparente des anomalies cardiaques a été constatée chez les personnes exposées au trisulfure. Pentasulfure d'antimoine (Sb2S5) a à peu près les mêmes utilisations que le trisulfure et a un faible niveau de toxicité.

Trichlorure d'antimoine (SbCl3), ou chlorure d'antimoine (beurre d'antimoine), est produit par l'interaction du chlore et de l'antimoine ou par dissolution de trisulfure d'antimoine dans de l'acide chlorhydrique. Pentachlorure d'antimoine (SbCl5) est produit par l'action du chlore sur le trichlorure d'antimoine fondu. Les chlorures d'antimoine sont utilisés pour bleuir l'acier et colorer l'aluminium, l'étain et le zinc, et comme catalyseurs dans la synthèse organique, en particulier dans les industries du caoutchouc et pharmaceutiques. De plus, le trichlorure d'antimoine est utilisé dans les industries des allumettes et du pétrole. Ce sont des substances hautement toxiques, irritantes et corrosives pour la peau. Le trichlorure a une LD50 de 2.5 mg/100 g.

Trifluorure d'antimoine (SbF3) est préparé en dissolvant du trioxyde d'antimoine dans de l'acide fluorhydrique et est utilisé en synthèse organique. Il est également utilisé dans la teinture et la fabrication de poteries. Le trifluorure d'antimoine est hautement toxique et irritant pour la peau. Il a un LD50 de 2.3 mg/100 g.

Mesures de sécurité et de santé

L'essence de tout programme de sécurité pour la prévention de l'empoisonnement à l'antimoine devrait être le contrôle de la formation de poussières et de fumées à toutes les étapes de la transformation.

Dans les mines, les mesures de prévention de la poussière sont similaires à celles des mines de métaux en général. Pendant le concassage, le minerai doit être pulvérisé ou le processus complètement clos et équipé d'une ventilation par aspiration locale combinée à une ventilation générale adéquate. Dans la fusion de l'antimoine, les risques liés à la préparation de la charge, au fonctionnement du four, à l'ébavurage et au fonctionnement de la cellule électrolytique doivent être éliminés, dans la mesure du possible, par l'isolement et l'automatisation du procédé. Les travailleurs des fours doivent disposer de jets d'eau et d'une ventilation efficace.

Lorsqu'une élimination complète de l'exposition n'est pas possible, les mains, les bras et le visage des travailleurs devraient être protégés par des gants, des vêtements antipoussière et des lunettes de protection et, lorsque l'exposition atmosphérique est élevée, des respirateurs devraient être fournis. Des crèmes barrières doivent également être appliquées, en particulier lors de la manipulation de composés d'antimoine solubles, auquel cas elles doivent être associées à l'utilisation de vêtements imperméables et de gants en caoutchouc. Les mesures d'hygiène personnelle doivent être strictement observées; aucune nourriture ou boisson ne doit être consommée dans les ateliers et des installations sanitaires appropriées doivent être prévues pour que les travailleurs puissent se laver avant les repas et avant de quitter le travail.

 

Retour

Mercredi, Février 09 2011 04: 36

Arsenic

Gunnar Nordberg

Il existe trois grands groupes de composés d'arsenic (As):

  1. composés inorganiques d'arsenic
  2. composés organiques d'arsenic
  3. gaz arsine et arsines substituées.

     

    Occurrence et utilisations

    L'arsenic se trouve largement dans la nature et le plus abondamment dans les minerais sulfurés. L'arsénopyrite (FeAsS) est la plus abondante.

    Arsenic élémentaire

    L'arsenic élémentaire est utilisé dans les alliages afin d'augmenter leur dureté et leur résistance à la chaleur (par exemple, les alliages avec du plomb dans la grenaille et les grilles de batterie). Il est également utilisé dans la fabrication de certains types de verre, comme composant d'appareils électriques et comme agent dopant dans les produits à l'état solide de germanium et de silicium.

    Composés inorganiques trivalents

    Trichlorure d'arsenic (AsCl3) est utilisé dans l'industrie de la céramique et dans la fabrication d'arsenic contenant du chlore. Trioxyde d'arsenic (Comme2O3), ou arsenic blanc, est utile dans la purification du gaz de synthèse et comme matière première pour tous les composés d'arsenic. C'est aussi un conservateur pour les peaux et le bois, un mordant textile, un réactif dans la flottation minérale, et un agent décolorant et affinant dans la fabrication du verre. Arsénite de calcium (Ca(Comme2H2O4)) et acétoarsénite cuivrique (habituellement considéré comme Cu(COOCH3)2 3Cu(AsO2)2) sont des insecticides. L'acétoarsénite cuivrique est également utilisée pour peindre les navires et les sous-marins. Arsénite de sodium (NaAsO2) est utilisé comme herbicide, inhibiteur de corrosion et agent de séchage dans l'industrie textile. Trisulfure d'arsenic est un composant du verre transmettant les infrarouges et un agent dépilant dans l'industrie du tannage. Il est également utilisé dans la fabrication de pièces pyrotechniques et de semi-conducteurs.

    Composés inorganiques pentavalents

    Acide arsénique (H3AsO4·½H2O) se retrouve dans la fabrication des arséniates, les procédés de fabrication du verre et de traitement du bois. Pentoxyde d'arsenic (Comme2O5), un herbicide et un agent de préservation du bois, est également utilisé dans la fabrication de verre coloré.

    Arséniate de calcium (Californie3(AsO4)2) est utilisé comme insecticide.

    Composés organiques d'arsenic

    Acide cacodylique ((CH3)2AsOOH) est utilisé comme herbicide et défoliant. Acide arsanilique (NH2C6H4AsO(OH)2) trouve une utilisation comme appât contre les sauterelles et comme additif dans l'alimentation animale. Les composés organiques de l'arsenic dans les organismes marins sont présents à des concentrations correspondant à une concentration d'arsenic comprise entre 1 et 100 mg/kg dans les organismes marins tels que les crevettes et les poissons. Cet arsenic est principalement constitué de arsénobétaïne et arsénocholine, composés organiques d'arsenic de faible toxicité.

    Gaz arsine et les arsines substituées. Le gaz arsine est utilisé dans les synthèses organiques et dans le traitement des composants électroniques à l'état solide. Le gaz arsine peut également être généré par inadvertance dans les processus industriels lorsque de l'hydrogène naissant est formé et que de l'arsenic est présent.

    Les arsines substituées sont des composés arsenicaux organiques trivalents qui, selon le nombre de groupements alkyle ou phényle qu'ils ont fixés sur le noyau arsenic, sont appelés arsines mono-, di- ou tri-substituées. Dichloroéthylarsine (C2H5AsCl2), ou éthyldichloroarsine, est un liquide incolore à odeur irritante. Ce composé, comme le suivant, a été développé comme agent potentiel de guerre chimique.

    Dichloro(2-chlorovinyl-)arsine (ClCH : CHAsCl2), ou chlorovinyldichloroarsine (lewisite), est un liquide vert olive avec une odeur de germanium. Il a été développé comme agent de guerre potentiel mais n'a jamais été utilisé. L'agent dimercaprol ou anti-lewisite britannique (BAL) a été développé comme antidote.

    Diméthyl-arsine (CH3)2cendre, ou hydrure de cacodyle et triméthylarsine (CH3)3Comme), ou triméthylarsenic, sont tous deux des liquides incolores. Ces deux composés peuvent être produits après transformation métabolique des composés de l'arsenic par les bactéries et les champignons.

    Dangers

    Composés inorganiques d'arsenic

    Aspects généraux de la toxicité. Bien qu'il soit possible que de très petites quantités de certains composés de l'arsenic puissent avoir des effets bénéfiques, comme l'indiquent certaines études animales, les composés de l'arsenic, en particulier les composés inorganiques, sont par ailleurs considérés comme des poisons très puissants. La toxicité aiguë varie considérablement d'un composé à l'autre, en fonction de son état de valence et de sa solubilité dans les milieux biologiques. Les composés trivalents solubles sont les plus toxiques. L'absorption des composés d'arsenic inorganiques à partir du tractus gastro-intestinal est presque complète, mais l'absorption peut être retardée pour les formes moins solubles telles que le trioxyde d'arsenic sous forme de particules. L'absorption après inhalation est également presque complète, car même les matières moins solubles déposées sur la muqueuse respiratoire seront transférées dans le tractus gastro-intestinal et ensuite absorbées.

    L'exposition professionnelle aux composés inorganiques de l'arsenic par inhalation, ingestion ou contact cutané avec absorption ultérieure peut se produire dans l'industrie. Des effets aigus au point d'entrée peuvent survenir si l'exposition est excessive. La dermatite peut survenir en tant que symptôme aigu mais est le plus souvent le résultat d'une toxicité due à une exposition à long terme, parfois consécutive à une sensibilisation (voir la rubrique « Exposition à long terme (intoxication chronique) »).

    Intoxication aiguë

    L'exposition à de fortes doses de composés d'arsenic inorganiques par une combinaison d'inhalation et d'ingestion peut survenir à la suite d'accidents dans les industries où de grandes quantités d'arsenic (par exemple, le trioxyde d'arsenic) sont manipulées. Selon la dose, divers symptômes peuvent se développer et, lorsque les doses sont excessives, des cas mortels peuvent survenir. Des symptômes de conjonctivite, de bronchite et de dyspnée, suivis d'une gêne gastro-intestinale avec vomissements, puis d'une atteinte cardiaque avec choc irréversible, peuvent survenir en quelques heures. L'arsenic dans le sang a été signalé comme étant supérieur à 3 mg/l dans un cas ayant eu une issue fatale.

    En cas d'exposition à des doses sublétales de composés d'arsenic irritants dans l'air (par exemple, le trioxyde de diarsenic), il peut y avoir des symptômes liés à des lésions aiguës des muqueuses du système respiratoire et des symptômes aigus de la peau exposée. Une irritation sévère des muqueuses nasales, du larynx et des bronches, ainsi qu'une conjonctivite et une dermatite, surviennent dans de tels cas. La perforation de la cloison nasale ne peut être observée chez certains individus qu'après quelques semaines après l'exposition. On pense qu'une certaine tolérance à l'empoisonnement aigu se développe lors d'expositions répétées. Ce phénomène est cependant peu documenté dans la littérature scientifique.

    Des effets dus à l'ingestion accidentelle d'arsenic inorganique, principalement le trioxyde d'arsenic, ont été décrits dans la littérature. Cependant, de tels incidents sont rares dans l'industrie aujourd'hui. Les cas d'empoisonnement se caractérisent par des lésions gastro-intestinales profondes, entraînant des vomissements et des diarrhées sévères, pouvant entraîner un état de choc et ensuite une oligurie et une albuminurie. Les autres symptômes aigus sont l'œdème facial, les crampes musculaires et les anomalies cardiaques. Les symptômes peuvent apparaître quelques minutes après l'exposition au poison en solution, mais peuvent être retardés de plusieurs heures si le composé d'arsenic est sous forme solide ou s'il est pris avec un repas. Lorsqu'il est ingéré sous forme de particules, la toxicité dépend également de la solubilité et de la taille des particules du composé ingéré. La dose mortelle de trioxyde de diarsenic ingéré a été signalée comme allant de 70 à 180 mg. La mort peut survenir dans les 24 heures, mais l'évolution habituelle dure de 3 à 7 jours. L'intoxication aiguë aux composés de l'arsenic s'accompagne généralement d'anémie et de leucopénie, en particulier de granulocytopénie. Chez les survivants, ces effets sont généralement réversibles en 2 à 3 semaines. Une hypertrophie hépatique réversible est également observée dans les intoxications aiguës, mais les tests de la fonction hépatique et les enzymes hépatiques sont généralement normaux.

    Chez les personnes survivant à une intoxication aiguë, des troubles nerveux périphériques se développent fréquemment quelques semaines après l'ingestion.

    Exposition à long terme (intoxication chronique)

    Aspects généraux. Une intoxication chronique à l'arsenic peut survenir chez les travailleurs exposés pendant une longue période à des concentrations excessives de composés d'arsenic en suspension dans l'air. Les effets locaux au niveau des muqueuses des voies respiratoires et de la peau sont des caractéristiques importantes. Une atteinte du système nerveux et circulatoire et du foie peut également survenir, ainsi qu'un cancer des voies respiratoires.

    Avec une exposition à long terme à l'arsenic par ingestion dans les aliments, l'eau potable ou les médicaments, les symptômes sont en partie différents de ceux après une exposition par inhalation. De vagues symptômes abdominaux – diarrhée ou constipation, bouffées vasomotrices, pigmentation et hyperkératose – dominent le tableau clinique. De plus, il peut y avoir une atteinte vasculaire, signalée dans une région comme ayant donné lieu à une gangrène périphérique.

    L'anémie et la leucocytopénie surviennent souvent dans les intoxications chroniques à l'arsenic. L'atteinte hépatique a été plus fréquemment observée chez les personnes exposées de façon prolongée par ingestion orale que chez celles exposées par inhalation, en particulier chez les viticulteurs considérés comme ayant été exposés principalement par la consommation de vin contaminé. Le cancer de la peau survient avec une fréquence excessive dans ce type d'empoisonnement.

    Troubles vasculaires. L'exposition orale à long terme à l'arsenic inorganique via l'eau potable peut entraîner des troubles vasculaires périphériques avec le phénomène de Raynaud. Dans une région de Taïwan, en Chine, une gangrène périphérique (appelée maladie des pieds noirs) s'est produite. Des manifestations aussi graves d'atteinte vasculaire périphérique n'ont pas été observées chez les personnes exposées professionnellement, mais de légers changements avec le phénomène de Raynaud et une prévalence accrue d'hypotension artérielle périphérique au refroidissement ont été observés chez des travailleurs exposés pendant une longue période à l'arsenic inorganique en suspension dans l'air (doses de l'arsenic absorbé sont donnés ci-dessous.

    Troubles dermatologiques. Les lésions cutanées à l'arsenic diffèrent quelque peu selon le type d'exposition. Des symptômes eczématoïdes de divers degrés de gravité se produisent. En cas d'exposition professionnelle à l'arsenic principalement en suspension dans l'air, des lésions cutanées peuvent résulter d'une irritation locale. Deux types de troubles dermatologiques peuvent survenir :

    1. un type eczémateux avec érythème (rougeur), gonflement et papules ou vésicules
    2. un type folliculaire avec érythème et gonflement folliculaire ou pustules folliculaires.

       

      La dermatite est principalement localisée sur les zones les plus exposées, telles que le visage, la nuque, les avant-bras, les poignets et les mains. Cependant, il peut également se produire sur le scrotum, les surfaces internes des cuisses, le haut de la poitrine et du dos, le bas des jambes et autour des chevilles. L'hyperpigmentation et les kératoses ne sont pas des caractéristiques importantes de ce type de lésions arsenicales. Des tests épicutanés ont démontré que la dermatite est due à l'arsenic et non aux impuretés présentes dans le trioxyde d'arsenic brut. Des lésions cutanées chroniques peuvent suivre ce type de réaction initiale, selon la concentration et la durée de l'exposition. Ces lésions chroniques peuvent survenir après de nombreuses années d'exposition professionnelle ou environnementale. L'hyperkératose, les verrues et la mélanose de la peau en sont les signes évidents.

      La mélanose est le plus souvent observée sur les paupières supérieures et inférieures, autour des tempes, sur le cou, sur les aréoles des mamelons et dans les plis des aisselles. Dans les cas graves, une arsénomélanose est observée sur l'abdomen, la poitrine, le dos et le scrotum, ainsi qu'une hyperkératose et des verrues. Dans l'intoxication chronique à l'arsenic, une dépigmentation (c'est-à-dire une leucodermie), en particulier sur les zones pigmentées, communément appelée pigmentation en «goutte de pluie», se produit également. Ces lésions cutanées chroniques, notamment les hyperkératoses, peuvent évoluer vers des lésions précancéreuses et cancéreuses. Une strie transversale des ongles (appelée lignes de Mees) se produit également dans l'intoxication chronique à l'arsenic. Il convient de noter que les lésions cutanées chroniques peuvent se développer longtemps après l'arrêt de l'exposition, lorsque les concentrations d'arsenic dans la peau sont revenues à la normale.

      Les lésions des muqueuses lors d'une exposition chronique à l'arsenic sont le plus souvent signalées comme une perforation de la cloison nasale après une exposition par inhalation. Cette lésion résulte d'une irritation des muqueuses du nez. Cette irritation s'étend également au larynx, à la trachée et aux bronches. Tant en cas d'exposition par inhalation qu'en cas d'intoxication par ingestion répétée, la dermatite de la face et des paupières s'étend parfois à la kératoconjonctivite.

      Neuropathie périphérique. Des troubles nerveux périphériques sont fréquemment rencontrés chez les survivants d'une intoxication aiguë. Ils commencent généralement quelques semaines après l'intoxication aiguë et la récupération est lente. La neuropathie est caractérisée à la fois par un dysfonctionnement moteur et une paresthésie, mais dans les cas moins graves, seule une neuropathie sensorielle unilatérale peut survenir. Souvent, les membres inférieurs sont plus touchés que les supérieurs. Chez les sujets qui se remettent d'un empoisonnement à l'arsenic, des lignes de Mees sur les ongles peuvent se développer. L'examen histologique a révélé une dégénérescence wallérienne, en particulier dans les axones les plus longs. Une neuropathie périphérique peut également survenir lors d'une exposition à l'arsenic industriel, dans la plupart des cas sous une forme subclinique qui ne peut être détectée que par des méthodes neurophysiologiques. Dans un groupe de travailleurs de fonderie avec une exposition à long terme correspondant à une absorption totale cumulée moyenne d'environ 5 g (absorption maximale de 20 g), il y avait une corrélation négative entre l'absorption cumulée d'arsenic et la vitesse de conduction nerveuse. Il y avait aussi quelques manifestations cliniques légères d'atteinte vasculaire périphérique chez ces travailleurs (voir ci-dessus). Chez les enfants exposés à l'arsenic, une perte auditive a été rapportée.

      Effets cancérigènes. Les composés d'arsenic inorganique sont classés par le Centre international de recherche sur le cancer (CIRC) comme cancérogènes pulmonaires et cutanés. Il existe également des preuves suggérant que les personnes exposées à des composés d'arsenic inorganiques souffrent d'une incidence plus élevée d'angiosarcome du foie et peut-être de cancer de l'estomac. Le cancer des voies respiratoires a été signalé en surfréquence chez les travailleurs affectés à la production d'insecticides contenant de l'arséniate de plomb et de l'arséniate de calcium, chez les viticulteurs pulvérisant des insecticides contenant des composés inorganiques de cuivre et d'arsenic, et chez les travailleurs de fonderie exposés à des composés inorganiques d'arsenic et d'arsenic. un certain nombre d'autres métaux. Le temps de latence entre le début de l'exposition et l'apparition du cancer est long, généralement entre 15 et 30 ans. Une action synergique du tabagisme a été démontrée pour le cancer du poumon.

      L'exposition à long terme à l'arsenic inorganique via l'eau potable a été associée à une incidence accrue de cancer de la peau à Taïwan et au Chili. Il a été démontré que cette augmentation était liée à la concentration dans l'eau potable.

      Effets tératogènes. Des doses élevées de composés d'arsenic inorganiques trivalents peuvent provoquer des malformations chez les hamsters lorsqu'elles sont injectées par voie intraveineuse. En ce qui concerne les êtres humains, il n'existe aucune preuve solide que les composés d'arsenic provoquent des malformations dans des conditions industrielles. Certaines preuves, cependant, suggèrent un tel effet chez les travailleurs dans un environnement de fonderie qui ont été exposés simultanément à un certain nombre d'autres métaux ainsi qu'à d'autres composés.

      Composés organiques d'arsenic

      Les arsenicaux organiques utilisés comme pesticides ou comme médicaments peuvent également donner lieu à une toxicité, bien que de tels effets indésirables ne soient pas complètement documentés chez l'homme.

      Des effets toxiques sur le système nerveux ont été signalés chez des animaux de laboratoire après une alimentation avec de fortes doses d'acide arsanilique, qui est couramment utilisé comme additif alimentaire chez la volaille et les porcs.

      Les composés organiques de l'arsenic présents dans les denrées alimentaires d'origine marine, comme les crevettes, le crabe et le poisson, sont constitués d'arsinocholine et d'arsinobétaïne. Il est bien connu que les quantités d'arsenic organique présentes dans les poissons et crustacés peuvent être consommées sans effets nocifs. Ces composés sont rapidement excrétés, principalement via l'urine.

      Gaz arsine et les arsines substituées. De nombreux cas d'intoxication aiguë à l'arsine ont été enregistrés et le taux de mortalité est élevé. L'arsine est l'un des agents hémolytiques les plus puissants trouvés dans l'industrie. Son activité hémolytique est due à sa capacité à provoquer une chute de la teneur en glutathion réduit par les érythrocytes.

      Les signes et symptômes de l'intoxication à l'arsine comprennent l'hémolyse, qui se développe après une période de latence qui dépend de l'intensité de l'exposition. L'inhalation de 250 ppm de gaz arsine est instantanément mortelle. L'exposition à 25 à 50 ppm pendant 30 minutes est mortelle, et 10 ppm peut être mortelle après des expositions plus longues. Les signes et symptômes d'intoxication sont ceux caractéristiques d'une hémolyse aiguë et massive. Au début, il y a une hémoglobinurie indolore, des troubles gastro-intestinaux tels que des nausées et éventuellement des vomissements. Il peut également y avoir des crampes abdominales et une sensibilité. Un ictère accompagné d'anurie et d'oligurie survient ensuite. Des signes de dépression médullaire peuvent être présents. Après une exposition aiguë et sévère, une neuropathie périphérique peut se développer et peut encore être présente plusieurs mois après l'intoxication. On sait peu de choses sur l'exposition répétée ou chronique à l'arsine, mais comme l'arsine gazeuse est métabolisée en arsenic inorganique dans le corps, on peut supposer qu'il existe un risque de symptômes similaires à ceux d'une exposition à long terme aux composés d'arsenic inorganique.

      Le diagnostic différentiel doit prendre en compte les anémies hémolytiques aiguës pouvant être dues à d'autres agents chimiques comme la stibine ou des médicaments, et les anémies immunohémolytiques secondaires.

      Les arsines substituées ne provoquent pas d'hémolyse comme effet principal, mais elles agissent comme de puissants irritants locaux et pulmonaires et des poisons systémiques. L'effet local sur la peau donne lieu à des vésicules bien circonscrites dans le cas de la dichloro(2-chlorovinyl-)arsine (lewisite). La vapeur induit une toux spasmodique marquée avec des expectorations frisées ou tachées de sang, évoluant vers un œdème pulmonaire aigu. Le dimercaprol (BAL) est un antidote efficace s'il est administré aux premiers stades de l'empoisonnement.

      Mesures de sécurité et de santé

      Le type d'exposition professionnelle à l'arsenic le plus courant est celui des composés inorganiques de l'arsenic, et ces mesures de sécurité et de santé sont principalement liées à ces expositions. Lorsqu'il existe un risque d'exposition au gaz arsine, une attention particulière doit être accordée aux fuites accidentelles, car les pics d'exposition pendant de courts intervalles peuvent être particulièrement préoccupants.

      Le meilleur moyen de prévention consiste à maintenir l'exposition bien en deçà des limites d'exposition acceptées. Un programme de mesure des concentrations d'arsenic dans l'air est donc important. En plus de l'exposition par inhalation, l'exposition orale via des vêtements, des mains, du tabac, etc. contaminés doit être surveillée, et la surveillance biologique de l'arsenic inorganique dans l'urine peut être utile pour l'évaluation des doses absorbées. Les travailleurs doivent être équipés de vêtements de protection appropriés, de bottes de protection et, lorsqu'il existe un risque de dépassement de la limite d'exposition à l'arsenic en suspension dans l'air, d'un équipement de protection respiratoire. Des casiers devraient être pourvus de compartiments séparés pour les vêtements de travail et les vêtements personnels, et des installations sanitaires adjacentes de haut niveau devraient être mises à disposition. Il est interdit de fumer, de manger et de boire sur le lieu de travail. Des examens médicaux préalables à l'embauche doivent être effectués. Il n'est pas recommandé d'employer des personnes atteintes de diabète préexistant, de maladies cardiovasculaires, d'anémie, de maladies cutanées allergiques ou autres, de lésions neurologiques, hépatiques ou rénales, dans les travaux d'arsenic. Des examens médicaux périodiques de tous les employés exposés à l'arsenic doivent être effectués avec une attention particulière aux éventuels symptômes liés à l'arsenic.

      La détermination du niveau d'arsenic inorganique et de ses métabolites dans l'urine permet d'estimer la dose totale d'arsenic inorganique absorbée par différentes voies d'exposition. Ce n'est que lorsque l'arsenic inorganique et ses métabolites peuvent être spécifiquement mesurés que cette méthode est utile. L'arsenic total dans l'urine peut souvent donner des informations erronées sur l'exposition industrielle, car même un seul repas de poisson ou d'autres organismes marins (contenant des quantités considérables de composés d'arsenic organique non toxique) peut provoquer des concentrations d'arsenic urinaire très élevées pendant plusieurs jours.

      Traitement

      Intoxication au gaz arsine. Lorsqu'il y a des raisons de croire qu'il y a eu une exposition considérable au gaz arsine, ou dès l'observation des premiers symptômes (par exemple, hémoglobinurie et douleurs abdominales), le retrait immédiat de l'individu de l'environnement contaminé et des soins médicaux rapides sont nécessaires. Le traitement recommandé, s'il existe des signes d'insuffisance rénale, consiste en une transfusion sanguine de remplacement total associée à une dialyse artificielle prolongée. La diurèse forcée s'est avérée utile dans certains cas, alors que, de l'avis de la plupart des auteurs, le traitement par BAL ou d'autres agents chélateurs semble n'avoir qu'un effet limité.

      L'exposition aux arsines substituées doit être traitée de la même manière qu'un empoisonnement à l'arsenic inorganique (voir ci-dessous).

      Intoxication par l'arsenic inorganique. S'il y a eu exposition à des doses dont on peut estimer qu'elles provoquent une intoxication aiguë, ou si des symptômes graves de l'appareil respiratoire, de la peau ou du tractus gastro-intestinal surviennent au cours d'expositions à long terme, le travailleur doit immédiatement être retiré de exposition et traité avec un agent complexant.

      L'agent classique le plus largement utilisé dans de telles situations est le 2,3-dimercapto-1-propanol ou British anti-lewisite (BAL, dimercaprol). Une administration rapide dans de tels cas est essentielle : pour obtenir un bénéfice maximal, un tel traitement doit être administré dans les 4 heures suivant l'empoisonnement. D'autres produits pharmaceutiques qui peuvent être utilisés sont le 2,3-dimercaptopropanesulfonate de sodium (DMPS ou unithiol) ou l'acide méso-2,3-dimercaptosuccinique (DMSA). Ces médicaments sont moins susceptibles de provoquer des effets secondaires et sont considérés comme plus efficaces que le BAL. L'administration intraveineuse de N-acétylcystéine a été rapportée dans un cas comme étant utile; en outre, un traitement général, tel que la prévention d'une absorption supplémentaire par retrait de l'exposition et la minimisation de l'absorption du tractus gastro-intestinal par lavage gastrique et administration par sonde gastrique d'agents chélateurs ou de charbon, est obligatoire. Une thérapie générale de soutien, telle que le maintien de la respiration et de la circulation, le maintien de l'équilibre hydrique et électrolytique et le contrôle des effets sur le système nerveux, ainsi que l'élimination du poison absorbé par hémodialyse et exsanguinotransfusion, peut être utilisée si possible.

      Les lésions cutanées aiguës telles que la dermatite de contact et les manifestations légères d'atteinte vasculaire périphérique, telles que le syndrome de Raynaud, ne nécessitent généralement pas de traitement autre que le retrait de l'exposition.

       

      Retour

      Jeudi, Février 10 2011 03: 00

      Baryum

      Gunnar Nordberg

      Occurrence et utilisations

      Le baryum (Ba) est abondant dans la nature et représente environ 0.04 % de la croûte terrestre. Les principales sources sont les minéraux barytine (sulfate de baryum, BaSO4) et de la withérite (carbonate de baryum, BaCO3). Le baryum métallique n'est produit qu'en quantités limitées, par réduction d'aluminium de l'oxyde de baryum dans une cornue.

      Baryum est largement utilisé dans la fabrication d'alliages pour les pièces de nickel-baryum que l'on trouve dans les équipements d'allumage des automobiles et dans la fabrication de verre, de céramique et de tubes cathodiques de télévision. Barite (BaSO4), ou sulfate de baryum, sert principalement à la fabrication de lithopone, une poudre blanche contenant 20 % de sulfate de baryum, 30 % de sulfure de zinc et moins de 8 % d'oxyde de zinc. Le lithopone est largement utilisé comme pigment dans les peintures blanches. Sulfate de baryum précipité chimiquement—blanc fixe—est utilisé dans les peintures de haute qualité, dans les travaux de diagnostic par rayons X et dans les industries du verre et du papier. Il est également utilisé dans la fabrication de papiers photographiques, d'ivoire artificiel et de cellophane. La barytine brute est utilisée comme boue thixotrope dans le forage de puits de pétrole.

      Hydroxyde de baryum (Ba(OH)2) se trouve dans les lubrifiants, les pesticides, l'industrie sucrière, les inhibiteurs de corrosion, les fluides de forage et les adoucisseurs d'eau. Il est également utilisé dans la fabrication du verre, la vulcanisation du caoutchouc synthétique, le raffinage des huiles animales et végétales et la peinture à fresque. Carbonate de baryum (BaCO3) est obtenu sous forme de précipité de barytine et est utilisé dans les industries de la brique, de la céramique, de la peinture, du caoutchouc, du forage de puits de pétrole et du papier. Il trouve également une utilisation dans les émaux, les substituts de marbre, le verre optique et les électrodes.

      Oxyde de baryum (BaO) est une poudre alcaline blanche utilisée pour sécher les gaz et les solvants. A 450°C, il se combine avec l'oxygène pour produire peroxyde de baryum (BaO2), un agent oxydant en synthèse organique et un agent de blanchiment pour les substances animales et les fibres végétales. Peroxyde de baryum est utilisé dans l'industrie textile pour la teinture et l'impression, dans l'aluminium en poudre pour le soudage et dans la pyrotechnie.

      Chlorure de baryum (BaCl2) est obtenu par torréfaction de la barytine avec du charbon et du chlorure de calcium, et est utilisé dans la fabrication de pigments, de laques de couleur et de verre, et comme mordant pour les colorants acides. Il est également utile pour alourdir et teindre les tissus textiles et dans le raffinage de l'aluminium. Le chlorure de baryum est un pesticide, un composé ajouté aux chaudières pour adoucir l'eau et un agent de tannage et de finition pour le cuir. Nitrate de baryum (Ba(NON3)2) est utilisé dans les industries pyrotechniques et électroniques.

      Dangers

      Le baryum métal n'a qu'un usage limité et présente un risque d'explosion. Les composés solubles du baryum (chlorure, nitrate, hydroxyde) sont très toxiques ; l'inhalation des composés insolubles (sulfate) peut provoquer une pneumoconiose. De nombreux composés, y compris le sulfure, l'oxyde et le carbonate, peuvent provoquer une irritation locale des yeux, du nez, de la gorge et de la peau. Certains composés, notamment le peroxyde, le nitrate et le chlorate, présentent des risques d'incendie lors de leur utilisation et de leur stockage.

      Phytotoxicité

      Lorsque les composés solubles pénètrent par voie orale, ils sont hautement toxiques, la dose mortelle de chlorure étant estimée à 0.8 à 0.9 g. Cependant, bien que des intoxications dues à l'ingestion de ces composés surviennent occasionnellement, très peu de cas d'intoxications industrielles ont été signalés. L'empoisonnement peut se produire lorsque les travailleurs sont exposés à des concentrations atmosphériques de poussière de composés solubles telles qu'elles peuvent se produire lors du meulage. Ces composés exercent une action stimulante forte et prolongée sur toutes les formes musculaires, en augmentant sensiblement la contractilité. Dans le cœur, des contractions irrégulières peuvent être suivies d'une fibrillation, et il existe des preuves d'une action de constriction coronarienne. D'autres effets comprennent le péristaltisme intestinal, la constriction vasculaire, la contraction de la vessie et une augmentation de la tension musculaire volontaire. Les composés du baryum ont également des effets irritants sur les muqueuses et l'œil.

      Le carbonate de baryum, composé insoluble, ne semble pas avoir d'effets pathologiques par inhalation ; cependant, il peut provoquer une intoxication grave par voie orale et, chez le rat, il altère la fonction des gonades mâles et femelles; le fœtus est sensible au carbonate de baryum pendant la première moitié de la grossesse.

      Pneumoconiose / Maladies pulmonaires par inhalation de particules

      Le sulfate de baryum se caractérise par son extrême insolubilité, propriété qui le rend non toxique pour l'homme. Pour cette raison et en raison de sa radio-opacité élevée, le sulfate de baryum est utilisé comme milieu opaque dans l'examen aux rayons X des systèmes gastro-intestinal, respiratoire et urinaire. Il est également inerte dans le poumon humain, comme cela a été démontré par son absence d'effets indésirables suite à une introduction volontaire dans les voies bronchiques comme produit de contraste en bronchographie et par une exposition industrielle à de fortes concentrations de poussières fines.

      L'inhalation, cependant, peut entraîner un dépôt dans les poumons en quantités suffisantes pour produire une barytose (une pneumoconiose bénigne, qui survient principalement dans l'extraction, le broyage et l'ensachage de barytine, mais qui a été signalée dans la fabrication de lithopone). Le premier cas signalé de barytose était accompagné de symptômes et d'invalidité, mais ceux-ci ont été associés plus tard à d'autres maladies pulmonaires. Des études ultérieures ont mis en contraste la nature peu impressionnante du tableau clinique et l'absence totale de symptômes et de signes physiques anormaux avec les modifications radiographiques bien marquées, qui montrent des opacités nodulaires disséminées dans les deux poumons. Les opacités sont discrètes mais parfois si nombreuses qu'elles se chevauchent et paraissent confluentes. Aucune ombre massive n'a été signalée. La caractéristique remarquable des radiographies est la radio-opacité marquée des nodules, ce qui est compréhensible compte tenu de l'utilisation de la substance comme milieu radio-opaque. La taille des éléments individuels peut varier entre 1 et 5 mm de diamètre, bien que la moyenne soit d'environ 3 mm ou moins, et la forme a été décrite de diverses manières comme « arrondie » et « dendritique ». Dans certains cas, un certain nombre de points très denses se sont avérés se trouver dans une matrice de densité inférieure.

      Dans une série de cas, des concentrations de poussière allant jusqu'à 11,000 XNUMX particules/cm3 ont été mesurés sur le lieu de travail et l'analyse chimique a montré que la teneur en silice totale était comprise entre 0.07 et 1.96 %, le quartz n'étant pas détectable par diffraction des rayons X. Les hommes exposés jusqu'à 20 ans et présentant des modifications aux rayons X étaient asymptomatiques, avaient une excellente fonction pulmonaire et étaient capables d'effectuer un travail ardu. Des années après la fin de l'exposition, les examens de suivi montrent une nette disparition des anomalies radiographiques.

      Les rapports de découvertes post-mortem dans la barytose pure sont pratiquement inexistants. Cependant, la barytose peut être associée à la silicose dans les mines en raison de la contamination du minerai de barytine par la roche siliceuse et, dans le broyage, si des meules siliceuses sont utilisées.

      Mesures de sécurité et de santé

      Des installations de lavage et d'autres installations sanitaires adéquates devraient être fournies aux travailleurs exposés à des composés de baryum solubles toxiques, et des mesures d'hygiène personnelle rigoureuses devraient être encouragées. Il devrait être interdit de fumer et de consommer de la nourriture et des boissons dans les ateliers. Les sols des ateliers doivent être faits de matériaux imperméables et fréquemment lavés. Les employés travaillant sur des processus tels que la lixiviation de la barytine avec de l'acide sulfurique doivent être équipés de vêtements résistants à l'acide et d'une protection appropriée des mains et du visage. Bien que la barytose soit bénigne, des efforts doivent tout de même être faits pour réduire au minimum les concentrations atmosphériques de poussière de barytine. De plus, une attention particulière doit être portée à la présence de silice libre dans les poussières en suspension dans l'air.

       

      Retour

      Vendredi, Février 11 2011 03: 48

      Bismuth

      Gunnar Nordberg

      Occurrence et utilisations

      Dans la nature, le bismuth (Bi) se présente à la fois sous forme de métal libre et dans des minerais tels que la bismutite (carbonate) et la bismuthinite (sulfure double de bismuth et de tellure), où il est accompagné d'autres éléments, principalement du plomb et de l'antimoine.

      Le bismuth est utilisé en métallurgie pour la fabrication de nombreux alliages, notamment des alliages à bas point de fusion. Certains de ces alliages sont utilisés pour le soudage. Le bismuth trouve également une utilisation dans les dispositifs de sécurité des systèmes de détection et d'extinction d'incendie et dans la production de fonte malléable. Il agit comme un catalyseur pour la fabrication de fibres acryliques.

      Tellurure de bismuth est utilisé comme semi-conducteur. Oxyde de bismuth, hydroxyde, oxychlorure, trichlorure et nitrate sont employés dans l'industrie cosmétique. D'autres sels (par exemple, succinate, orthooxyquinoléate, sous-nitrate, carbonate, phosphate etc.) sont utilisés en médecine.

      Dangers

      Aucune exposition professionnelle n'a été signalée lors de la production de bismuth métallique et de la fabrication de produits pharmaceutiques, cosmétiques et chimiques industriels. Parce que le bismuth et ses composés ne semblent pas avoir été responsables d'intoxications liées au travail, ils sont considérés comme les moins toxiques des métaux lourds actuellement utilisés dans l'industrie.

      Les composés du bismuth sont absorbés par les voies respiratoires et gastro-intestinales. Les principaux effets systémiques chez l'homme et l'animal s'exercent au niveau des reins et du foie. Les dérivés organiques provoquent des altérations des tubules contournés et peuvent entraîner des néphroses graves, parfois mortelles.

      Une décoloration des gencives a été signalée lors d'une exposition à des poussières de bismuth. Les sels minéraux insolubles, pris par voie orale sur des périodes prolongées à des doses généralement supérieures à 1 par jour, peuvent provoquer des maladies cérébrales caractérisées par des troubles mentaux (état confus), des troubles musculaires (myoclonie), des troubles de la coordination motrice (perte d'équilibre, instabilité) et une dysarthrie. Ces troubles proviennent d'une accumulation de bismuth dans les centres nerveux qui se manifeste lorsque la bismuthémie dépasse un certain seuil, estimé à environ 50 mg/l. Dans la plupart des cas, l'encéphalopathie liée au bismuth disparaît progressivement sans médicament dans un délai de 10 jours à 2 mois, période pendant laquelle le bismuth est éliminé dans les urines. Des cas mortels d'encéphalopathie ont cependant été enregistrés.

      De tels effets sont observés en France et en Australie depuis 1973. Ils sont dus à un facteur encore mal exploré qui favorise l'absorption du bismuth à travers la muqueuse intestinale et conduit à une augmentation de la bismuthémie jusqu'à plusieurs centaines de mg/ l. Le danger d'encéphalopathie causée par l'inhalation de poussières métalliques ou de fumées d'oxydes sur le lieu de travail est très faible. La faible solubilité du bismuth et de l'oxyde de bismuth dans le plasma sanguin et son élimination assez rapide dans les urines (sa demi-vie est d'environ 6 jours) plaident contre la probabilité d'une imprégnation suffisamment aiguë des centres nerveux pour atteindre des niveaux pathologiques.

      Chez l'animal, l'inhalation de composés insolubles comme le tellurure de bismuth provoque la réponse pulmonaire habituelle d'une poussière inerte. Cependant, une exposition à long terme au tellurure de bismuth « dopé » au sulfure de sélénium peut produire chez diverses espèces une légère réaction granulomateuse réversible du poumon.

      Certains composés de bismuth se décomposent en produits chimiques dangereux. Le pentafluorure de bismuth se décompose en chauffant et émet des fumées hautement toxiques.

       

      Retour

      Vendredi, Février 11 2011 03: 51

      Cadmium

      Gunnar Nordberg

      Occurrence et utilisations

      Le cadmium (Cd) présente de nombreuses similitudes chimiques et physiques avec le zinc et se produit avec le zinc dans la nature. Dans les minéraux et minerais, le cadmium et le zinc ont généralement un rapport de 1:100 à 1:1,000.

      Le cadmium est très résistant à la corrosion et a été largement utilisé pour la galvanoplastie d'autres métaux, principalement l'acier et le fer. Les vis, écrous, serrures et pièces diverses pour avions et véhicules automobiles sont fréquemment traités au cadmium pour résister à la corrosion. De nos jours, cependant, seulement 8 % de tout le cadmium raffiné est utilisé pour les placages et les revêtements. Les composés de cadmium (30 % de l'utilisation dans les pays développés) sont utilisés comme pigments et stabilisants dans les plastiques, et le cadmium est également utilisé dans certains alliages (3 %). Les petites piles portables rechargeables contenant du cadmium, utilisées par exemple dans les téléphones portables, comprennent une utilisation en augmentation rapide du cadmium (55 % de tout le cadmium dans les pays industrialisés en 1994 était utilisé dans les piles).

      Le cadmium est présent dans divers sels inorganiques. Le plus important est stéarate de cadmium, qui est utilisé comme stabilisant thermique dans les plastiques en chlorure de polyvinyle (PVC). Sulfure de cadmium et sulfoséléniure de cadmium sont utilisés comme pigments jaunes et rouges dans les plastiques et les couleurs. Le sulfure de cadmium est également utilisé dans les cellules photoélectriques et solaires. Chlorure de cadmium agit comme un fongicide, un ingrédient dans les bains de galvanoplastie, un colorant pour la pyrotechnie, un additif à la solution d'étamage et un mordant dans la teinture et l'impression des textiles. Il est également utilisé dans la production de certains films photographiques et dans la fabrication de miroirs et de revêtements spéciaux pour les tubes à vide électroniques. Oxyde de cadmium est un agent de galvanoplastie, un matériau de départ pour les stabilisants thermiques du PVC et un composant des alliages d'argent, des luminophores, des semi-conducteurs et des émaux de verre et de céramique.

      Le cadmium peut représenter un danger pour l'environnement, et de nombreux pays ont introduit des mesures législatives visant à réduire l'utilisation et la propagation subséquente du cadmium dans l'environnement.

      Métabolisme et accumulation

      L'absorption gastro-intestinale du cadmium ingéré est d'environ 2 à 6 % dans des conditions normales. Les personnes dont les réserves corporelles en fer sont faibles, reflétées par de faibles concentrations de ferritine sérique, peuvent avoir une absorption de cadmium considérablement plus élevée, jusqu'à 20 % d'une dose donnée de cadmium. Des quantités importantes de cadmium peuvent également être absorbées par les poumons à la suite de l'inhalation de fumée de tabac ou de l'exposition professionnelle à la poussière de cadmium atmosphérique. L'absorption pulmonaire des poussières de cadmium respirables inhalées est estimée entre 20 et 50 %. Après absorption via le tractus gastro-intestinal ou les poumons, le cadmium est transporté vers le foie, où la production d'une protéine de faible poids moléculaire se liant au cadmium, la métallothionéine, est initiée.

      Environ 80 à 90% de la quantité totale de cadmium dans le corps est considérée comme étant liée à la métallothionéine. Cela empêche les ions cadmium libres d'exercer leurs effets toxiques. Il est probable que de petites quantités de cadmium lié à la métallothionéine quittent constamment le foie et sont transportées vers les reins par le sang. La métallothionéine avec le cadmium qui lui est lié est filtrée à travers les glomérules dans l'urine primaire. Comme d'autres protéines et acides aminés de faible poids moléculaire, le complexe métallothionéine-cadmium est ensuite réabsorbé de l'urine primaire dans les cellules tubulaires proximales, où les enzymes digestives dégradent les protéines englouties en peptides et acides aminés plus petits. Les ions cadmium libres dans les cellules résultent de la dégradation de la métallothionéine et initient une nouvelle synthèse de métallothionéine, liant le cadmium, et protégeant ainsi la cellule des ions cadmium libres hautement toxiques. On considère que le dysfonctionnement rénal se produit lorsque la capacité de production de métallothionéine des cellules tubulaires est dépassée.

      Les reins et le foie ont les plus fortes concentrations de cadmium, contenant ensemble environ 50 % de la charge corporelle en cadmium. La concentration de cadmium dans le cortex rénal, avant l'apparition de lésions rénales induites par le cadmium, est généralement d'environ 15 fois la concentration dans le foie. L'élimination du cadmium est très lente. De ce fait, le cadmium s'accumule dans l'organisme, les concentrations augmentant avec l'âge et la durée d'exposition. Sur la base de la concentration dans les organes à différents âges, la demi-vie biologique du cadmium chez l'homme a été estimée entre 7 et 30 ans.

      Toxicité aiguë

      Inhalation de composés de cadmium à des concentrations supérieures à 1 mg Cd/m3 dans l'air pendant 8 heures, ou à des concentrations plus élevées pendant des périodes plus courtes, peut entraîner une pneumonite chimique et, dans les cas graves, un œdème pulmonaire. Les symptômes apparaissent généralement dans les 1 à 8 heures suivant l'exposition. Ils ressemblent à la grippe et ressemblent à ceux de la fièvre des fondeurs. Les symptômes les plus graves de pneumonie chimique et d'œdème pulmonaire peuvent avoir une période de latence allant jusqu'à 24 heures. La mort peut survenir après 4 à 7 jours. Exposition au cadmium dans l'air à des concentrations supérieures à 5 mg Cd/m3 est plus susceptible de se produire là où les alliages de cadmium sont fondus, soudés ou brasés. L'ingestion de boissons contaminées par du cadmium à des concentrations supérieures à 15 mg Cd/l provoque des symptômes d'intoxication alimentaire. Les symptômes sont des nausées, des vomissements, des douleurs abdominales et parfois des diarrhées. Les sources de contamination des aliments peuvent être des casseroles et des poêles avec un vitrage contenant du cadmium et des soudures au cadmium utilisées dans les distributeurs automatiques de boissons chaudes et froides. Chez les animaux, l'administration parentérale de cadmium à des doses supérieures à 2 mg de Cd/kg de poids corporel provoque une nécrose des testicules. Aucun effet de ce type n'a été rapporté chez l'homme.

      Toxicité chronique

      Une intoxication chronique au cadmium a été signalée après une exposition professionnelle prolongée aux vapeurs d'oxyde de cadmium, à la poussière d'oxyde de cadmium et aux stéarates de cadmium. Les changements associés à l'intoxication chronique au cadmium peuvent être locaux, auquel cas ils impliquent les voies respiratoires, ou ils peuvent être systémiques, résultant de l'absorption du cadmium. Les modifications systémiques comprennent des lésions rénales accompagnées de protéinurie et d'anémie. La maladie pulmonaire sous forme d'emphysème est le principal symptôme lors d'une forte exposition au cadmium dans l'air, tandis que le dysfonctionnement et les lésions rénales sont les résultats les plus importants après une exposition à long terme à des niveaux inférieurs de cadmium dans l'air de la salle de travail ou via des aliments contaminés au cadmium. Une anémie hypochrome légère est fréquente chez les travailleurs exposés à des niveaux élevés de cadmium. Cela peut être dû à la fois à une destruction accrue des globules rouges et à une carence en fer. Une décoloration jaune du collet des dents et une perte de l'odorat (anosmie) peuvent également être observées en cas d'exposition à des concentrations très élevées de cadmium.

      L'emphysème pulmonaire est considéré comme un effet possible d'une exposition prolongée au cadmium dans l'air à des concentrations supérieures à 0.1 mg Cd/m3. Il a été rapporté que l'exposition à des concentrations d'environ 0.02 mg Cd/m3 pendant plus de 20 ans peut provoquer certains effets pulmonaires. L'emphysème pulmonaire induit par le cadmium peut réduire la capacité de travail et peut être la cause d'invalidité et d'abréviation de la vie. En cas d'exposition à long terme à de faibles niveaux de cadmium, le rein est l'organe critique (c'est-à-dire le premier organe affecté). Le cadmium s'accumule dans le cortex rénal. On a déjà estimé que des concentrations supérieures à 200 µg de Cd/g de poids humide provoquent un dysfonctionnement tubulaire avec une diminution de la réabsorption des protéines de l'urine. Cela provoque une protéinurie tubulaire avec une excrétion accrue de protéines de faible poids moléculaire telles que
      α,α-1-microglobuline (protéine HC), β-2-microglobuline et protéine de liaison au rétinol (RTB). Des recherches récentes suggèrent cependant que des lésions tubulaires peuvent survenir à des niveaux inférieurs de cadmium dans le cortex rénal. Au fur et à mesure que le dysfonctionnement rénal progresse, les acides aminés, le glucose et les minéraux, tels que le calcium et le phosphore, sont également perdus dans l'urine. L'augmentation de l'excrétion de calcium et de phosphore peut perturber le métabolisme osseux, et des calculs rénaux sont fréquemment signalés par les travailleurs du cadmium. Après des niveaux moyens à élevés d'exposition à long terme au cadmium, les glomérules rénaux peuvent également être affectés, entraînant une diminution du taux de filtration glomérulaire. Dans les cas graves, une urémie peut se développer. Des études récentes ont montré que le dysfonctionnement glomérulaire était irréversible et dose-dépendant. Une ostéomalacie a été rapportée dans des cas d'intoxication chronique grave au cadmium.

      Afin de prévenir un dysfonctionnement rénal, se manifestant par la β-2-microglobulinurie, en particulier si l'exposition professionnelle aux fumées et poussières de cadmium est susceptible de durer 25 ans (à 8 heures de travail par jour et 225 jours de travail/an), il est recommandé que le la concentration moyenne de cadmium respirable dans la salle de travail doit être maintenue en dessous de 0.01 mg/m3.

      Une exposition excessive au cadmium s'est produite dans la population générale par l'ingestion de riz et d'autres aliments contaminés, et peut-être d'eau potable. La maladie itai-itai, un type douloureux d'ostéomalacie, avec de multiples fractures apparaissant avec un dysfonctionnement rénal, s'est produite au Japon dans des zones à forte exposition au cadmium. Bien que la pathogenèse de la maladie itai-itai soit encore contestée, il est généralement admis que le cadmium est un facteur étiologique nécessaire. Il convient de souligner que les lésions rénales induites par le cadmium sont irréversibles et peuvent s'aggraver même après l'arrêt de l'exposition.

      Cadmium et cancer

      Il existe des preuves solides de relations dose-réponse et d'une mortalité accrue par cancer du poumon dans plusieurs études épidémiologiques sur des travailleurs exposés au cadmium. L'interprétation est compliquée par des expositions simultanées à d'autres métaux qui sont des cancérogènes connus ou suspectés. Les observations continues de travailleurs exposés au cadmium n'ont cependant pas fourni de preuves d'une augmentation de la mortalité due au cancer de la prostate, comme on le soupçonnait initialement. En 1993, le CIRC a évalué le risque de cancer lié à l'exposition au cadmium et a conclu qu'il devait être considéré comme cancérogène pour l'homme. Depuis lors, des preuves épidémiologiques supplémentaires sont apparues avec des résultats quelque peu contradictoires, et la cancérogénicité possible du cadmium reste donc incertaine. Il est néanmoins clair que le cadmium possède de fortes propriétés cancérigènes en expérimentation animale.

      Mesures de sécurité et de santé

      Le cortex rénal est l'organe critique en cas d'exposition à long terme au cadmium via l'air ou les aliments. La concentration critique est estimée à environ 200 µg de Cd/g de poids humide, mais peut être inférieure, comme indiqué ci-dessus. Afin de maintenir la concentration dans le cortex rénal en dessous de ce niveau même après une exposition à vie, la concentration moyenne de cadmium dans l'air de la salle de travail (8 heures par jour) ne doit pas dépasser 0.01 mg Cd/m3.

      Les processus de travail et les opérations susceptibles de dégager des fumées ou des poussières de cadmium dans l'atmosphère devraient être conçus de manière à maintenir les niveaux de concentration au minimum et, si possible, être clos et équipés d'une ventilation par aspiration. Lorsqu'une ventilation adéquate est impossible à maintenir (par exemple, pendant le soudage et le découpage), des respirateurs doivent être transportés et l'air doit être échantillonné pour déterminer la concentration de cadmium. Dans les zones présentant des risques de particules volantes, d'éclaboussures de produits chimiques, de chaleur rayonnante, etc. (par exemple, à proximité de réservoirs et de fours de galvanoplastie), les travailleurs doivent porter un équipement de sécurité approprié, tel qu'une protection des yeux, du visage, des mains et des bras et des vêtements imperméables. Des installations sanitaires adéquates devraient être fournies et les travailleurs devraient être encouragés à se laver avant les repas et à se laver soigneusement et à changer de vêtements avant de quitter le travail. Il doit être interdit de fumer, de manger et de boire dans les zones de travail. Le tabac contaminé par la poussière de cadmium provenant des ateliers peut être une importante voie d'exposition. Les cigarettes et le tabac à pipe ne doivent pas être transportés dans la salle de travail. L'air d'échappement contaminé doit être filtré et les personnes en charge des dépoussiéreurs et des filtres doivent porter des respirateurs lorsqu'elles travaillent sur l'équipement.

      Pour s'assurer qu'une accumulation excessive de cadmium dans les reins ne se produit pas, les niveaux de cadmium dans le sang et dans l'urine doivent être contrôlés régulièrement. Les niveaux de cadmium dans le sang sont principalement une indication de l'exposition des derniers mois, mais peuvent être utilisés pour évaluer la charge corporelle quelques années après la fin de l'exposition. Une valeur de 100 nmol Cd/l de sang total est un niveau critique approximatif si l'exposition est régulière pendant de longues périodes. Les valeurs de cadmium dans l'urine peuvent être utilisées pour estimer la charge corporelle en cadmium, à condition qu'il n'y ait pas eu de lésions rénales. L'OMS a estimé que 10 nmol/mmol de créatinine est la concentration en dessous de laquelle un dysfonctionnement rénal ne devrait pas se produire. Des recherches récentes ont cependant montré qu'un dysfonctionnement rénal peut déjà survenir à environ 5 nmol/mmol de créatinine.

      Étant donné que les niveaux sanguins et urinaires mentionnés sont des niveaux auxquels une action du cadmium sur les reins a été observée, il est recommandé d'appliquer des mesures de contrôle chaque fois que les concentrations individuelles de cadmium dans l'urine et/ou dans le sang dépassent 50 nmol/l de sang total ou
      3 nmol/mmol de créatinine respectivement. Des examens médicaux préalables à l'embauche devraient être administrés aux travailleurs qui seront exposés à des poussières ou à des fumées de cadmium. Les personnes souffrant de troubles respiratoires ou rénaux doivent éviter de tels travaux. Un examen médical des travailleurs exposés au cadmium devrait être effectué au moins une fois par an. Chez les travailleurs exposés au cadmium pendant de longues périodes, des mesures quantitatives de la ß-2-microglobuline ou d'autres protéines pertinentes de faible poids moléculaire dans l'urine doivent être effectuées régulièrement. Les concentrations de ß-2-microglobuline dans l'urine ne doivent normalement pas dépasser 34 µg/mmol de créatinine.

      Traitement de l'empoisonnement au cadmium

      Les personnes qui ont ingéré des sels de cadmium doivent être obligées de vomir ou de subir un lavage gastrique; les personnes exposées à une inhalation aiguë doivent être retirées de l'exposition et recevoir une oxygénothérapie si nécessaire. Aucun traitement spécifique de l'intoxication chronique au cadmium n'est disponible et il faut compter sur un traitement symptomatique. En règle générale, l'administration d'agents chélateurs tels que BAL et EDTA est contre-indiquée car ils sont néphrotoxiques en association avec le cadmium.

       

      Retour

      Vendredi, Février 11 2011 03: 52

      Chrome

      Gunnar Nordberg

      Occurrence et utilisations

      Le chrome élémentaire (Cr) ne se trouve pas à l'état libre dans la nature, et le seul minerai d'importance est le minerai de spinelle, la chromite ou la pierre de fer chromée, qui est la chromite ferreuse (FeOCr2O3), largement réparti sur la surface terrestre. En plus de l'acide chromique, ce minerai contient des quantités variables d'autres substances. Seuls les minerais ou concentrés contenant plus de 40 % d'oxyde chromique (Cr2O3) sont utilisés commercialement, et les pays disposant des gisements les plus appropriés sont la Fédération de Russie, l'Afrique du Sud, le Zimbabwe, la Turquie, les Philippines et l'Inde. Les principaux consommateurs de chromites sont les États-Unis, la Fédération de Russie, l'Allemagne, le Japon, la France et le Royaume-Uni.

      La chromite peut être obtenue à la fois dans des mines souterraines et à ciel ouvert. Le minerai est encroûté et, si nécessaire, concentré.

      L'utilisation la plus importante du chrome pur est la galvanoplastie d'une large gamme d'équipements, tels que les pièces automobiles et les équipements électriques. Le chrome est largement utilisé pour s'allier avec du fer et du nickel pour former de l'acier inoxydable, et avec du nickel, du titane, du niobium, du cobalt, du cuivre et d'autres métaux pour former des alliages spéciaux.

      Composés de chrome

      Le chrome forme un certain nombre de composés dans divers états d'oxydation. Ceux des états II (chrome), III (chrome) et VI (chromate) sont les plus importants ; l'état II est basique, l'état III est amphotère et l'état VI est acide. Les applications commerciales concernent principalement les composés à l'état VI, avec un certain intérêt pour les composés du chrome à l'état III.

      L'état chromeux (CrII) est instable et s'oxyde facilement à l'état chromique (CrIII). Cette instabilité limite l'utilisation de composés chromeux. Les composés chromiques sont très stables et forment de nombreux composés à usage commercial dont les principaux sont l'oxyde chromique et le sulfate basique de chrome.

      Chrome à l'état d'oxydation +6 (CrVI) a sa plus grande application industrielle en raison de ses propriétés acides et oxydantes, ainsi que de sa capacité à former des sels fortement colorés et insolubles. Les composés les plus importants contenant du chrome dans le CrVI état sont bichromate de sodium, bichromate de potassium et trioxyde de chrome. La plupart des autres composés de chromate sont produits industriellement en utilisant du dichromate comme source de CrVI.

      Production

      Le monochromate et le dichromate de sodium sont les matières premières à partir desquelles la plupart des composés de chrome sont fabriqués. Le chromate et le bichromate de sodium sont préparés directement à partir du minerai de chrome. Le minerai de chrome est concassé, séché et broyé ; du carbonate de soude est ajouté et de la chaux ou de la calcine lixiviée peut également être ajoutée. Après un mélange minutieux, le mélange est torréfié dans un four rotatif à une température optimale d'environ 1,100 XNUMX°C ; une atmosphère oxydante est indispensable pour transformer le chrome en CrVI Etat. La masse fondue du four est refroidie et lessivée et le chromate ou dichromate de sodium est isolé par des procédés conventionnels de la solution.

      ChromeIII composés

      Techniquement, oxyde de chrome (Cr2O3ou oxyde de chrome), est fabriqué en réduisant le bichromate de sodium soit avec du charbon de bois, soit avec du soufre. La réduction au soufre est habituellement employée lorsque l'oxyde chromique doit être utilisé comme pigment. A des fins métallurgiques, la réduction du carbone est normalement utilisée.

      Le matériau commercial est normalement le sulfate chromique basique [Cr(OH)(H2O)5]ALORS4, qui est préparé à partir de bichromate de sodium par réduction avec un hydrate de carbone en présence d'acide sulfurique ; la réaction est vigoureusement exothermique. En variante, la réduction au dioxyde de soufre d'une solution de bichromate de sodium donnera du sulfure chromique basique. Il est utilisé dans le tannage du cuir, et le matériau est vendu sur la base de Cr2O3 contenu, qui varie de 20.5 à 25 %.

      ChromeVI composés

      Dichromate de sodium peut être transformé en sel anhydre. C'est le point de départ pour la préparation des composés de chrome.

      Trioxyde de chrome or anhydride de chrome (parfois appelé "acide chromique", bien que le véritable acide chromique ne puisse pas être isolé de la solution) est formé en traitant une solution concentrée d'un dichromate avec un fort excès d'acide sulfurique. C'est un agent oxydant violent, et la solution est le principal constituant du chromage.

      Chromates insolubles

      Les chromates de bases faibles sont de solubilité limitée et plus profondément colorés que les oxydes ; d'où leur utilisation comme pigments. Ce ne sont pas toujours des composés distincts et peuvent contenir des mélanges d'autres matériaux pour fournir la bonne couleur de pigment. Ils sont préparés par addition de bichromate de sodium ou de potassium à une solution du sel approprié.

      Plomb chromate est trimorphe; la forme monoclinique stable est jaune orangé, « jaune de chrome », et la forme orthombique instable est jaune, isomorphe au sulfate de plomb et stabilisée par lui. Une forme tétragonale orange-rouge est similaire et isomorphe avec le molybdate de plomb (VI) PbMoO4 et stabilisé par lui. De ces propriétés dépend la polyvalence du chromate de plomb en tant que pigment dans la production d'une variété de pigments jaune-orange.

      Utilisations

      Composés contenant CrVI sont utilisés dans de nombreuses opérations industrielles. La fabrication d'importants pigments inorganiques tels que les chromes de plomb (qui sont eux-mêmes utilisés pour préparer les verts de chrome), les oranges de molybdate, le chromate de zinc et le vert d'oxyde de chrome ; préservation du bois; inhibition de la corrosion ; et verres et émaux colorés. Les sulfates chromiques basiques sont largement utilisés pour le tannage.

      La teinture des textiles, la préparation de nombreux catalyseurs importants contenant de l'oxyde chromique et la production de colloïdes bichromatés sensibles à la lumière pour une utilisation en lithographie sont également des utilisations industrielles bien connues des produits chimiques contenant du chrome.

      L'acide chromique est utilisé non seulement pour le chromage "décoratif", mais aussi pour le chromage "dur", où il est déposé en couches beaucoup plus épaisses pour donner une surface extrêmement dure avec un faible coefficient de frottement.

      En raison de la forte action oxydante des chromates en solution acide, il existe de nombreuses applications industrielles impliquant notamment des matériaux organiques, telles que l'oxydation du trinitrotoluène (TNT) en phloroglucinol et l'oxydation de la picoline en acide nicotinique.

      L'oxyde de chrome est également utilisé pour la production de chrome métallique pur qui peut être incorporé dans des alliages résistants au fluage et à haute température, et comme oxyde réfractaire. Il peut avantageusement être inclus dans un certain nombre de compositions réfractaires, par exemple dans des mélanges de magnétite et de magnétite-chromate.

      Dangers

      Composés avec CrIII les états d'oxydation sont considérablement moins dangereux que le CrVI composés. Composés de CrIII sont mal absorbés par le système digestif. Ces CrIII les composés peuvent également se combiner avec des protéines dans les couches superficielles de la peau pour former des complexes stables. Composés de CrIII ne provoquent pas d'ulcérations au chrome et n'initient généralement pas de dermatite allergique sans sensibilisation préalable par CrVI .

      Dans le CrVI à l'état d'oxydation, les composés du chrome sont facilement absorbés après ingestion ainsi que pendant l'inhalation. L'absorption à travers la peau intacte est moins bien élucidée. Les effets irritants et corrosifs causés par CrVI se produisent facilement après avoir été absorbés par les muqueuses, où ils sont facilement absorbés. Exposition professionnelle au CrVI les composés peuvent induire une irritation ou une corrosion de la peau et des muqueuses, des réactions cutanées allergiques ou des ulcérations cutanées.

      Les effets indésirables des composés de chrome surviennent généralement chez les travailleurs dans les lieux de travail où CrVI est rencontrée, notamment lors de la fabrication ou de l'utilisation. Les effets impliquent fréquemment la peau ou le système respiratoire. Les risques industriels typiques sont l'inhalation de poussières ou de fumées provenant de la fabrication de dichromate à partir de minerai de chromite et de la fabrication de chromates de plomb et de zinc, l'inhalation de brouillards d'acide chromique pendant la galvanoplastie ou le traitement de surface des métaux, et le contact cutané avec CrVI composés en cours de fabrication ou d'utilisation. Exposition au CrVI-contenant des fumées peuvent également se produire lors du soudage des aciers inoxydables.

      Ulcérations chromées. De telles lésions étaient courantes après une exposition professionnelle au CrVI composés. Les ulcères résultent de l'action corrosive de CrVI, qui pénètre dans la peau par des coupures ou des écorchures. La lésion commence généralement par une papule indolore, généralement sur les mains, les avant-bras ou les pieds, entraînant des ulcérations. L'ulcère peut pénétrer profondément dans les tissus mous et atteindre l'os sous-jacent. La cicatrisation est lente à moins que l'ulcère ne soit traité à un stade précoce, et des cicatrices atrophiques subsistent. Il n'y a pas de rapports sur le cancer de la peau suite à de tels ulcères.

      La dermatite Le CrVI composés peuvent provoquer à la fois une irritation et une sensibilisation cutanées primaires. Dans les industries productrices de chromates, certains travailleurs peuvent développer une irritation de la peau, en particulier au niveau du cou ou du poignet, peu de temps après avoir commencé à travailler avec des chromates. Dans la majorité des cas, cela disparaît rapidement et ne se reproduit pas. Cependant, il peut parfois être nécessaire de recommander un changement de travail.

      De nombreuses sources d'exposition au CrVI ont été répertoriés (par exemple, contact avec le ciment, le plâtre, le cuir, le travail graphique, le travail dans les fabriques d'allumettes, le travail dans les tanneries et diverses sources de travail du métal). Les travailleurs employés au ponçage humide des carrosseries de voitures ont également été allergiques. Les sujets affectés réagissent positivement aux tests épicutanés avec 0.5% de dichromate. Certains sujets affectés n'avaient qu'un érythème ou des papules éparses, et chez d'autres les lésions ressemblaient à un pompholyx dyshidriotique ; l'eczéma nummulaire peut conduire à un diagnostic erroné de véritables cas de dermatite professionnelle.

      Il a été démontré que CrVI pénètre dans la peau par les glandes sudoripares et est réduite en CrIII dans le corium. Il est démontré que le CrIII réagit ensuite avec la protéine pour former le complexe antigène-anticorps. Cela explique la localisation des lésions autour des glandes sudoripares et pourquoi de très petites quantités de bichromate peuvent provoquer une sensibilisation. Le caractère chronique de la dermatite peut être dû au fait que le complexe antigène-anticorps est éliminé plus lentement que ce ne serait le cas si la réaction se produisait dans l'épiderme.

      Effets respiratoires aigus. Inhalation de poussière ou de brouillard contenant du CrVI est irritant pour les muqueuses. A des concentrations élevées de ces poussières, des éternuements, des rhinorrhées, des lésions de la cloison nasale et des rougeurs de la gorge sont des effets documentés. Une sensibilisation a également été signalée, entraînant des crises d'asthme typiques, qui peuvent se reproduire lors d'une exposition ultérieure. Lors d'une exposition de plusieurs jours à un brouillard d'acide chromique à des concentrations d'environ 20 à 30 mg/m3, toux, céphalées, dyspnée et douleurs rétrosternales ont également été rapportées après exposition. La survenue d'un bronchospasme chez une personne travaillant avec des chromates devrait suggérer une irritation chimique des poumons. Le traitement est uniquement symptomatique.

      Ulcérations de la cloison nasale. Au cours des années précédentes, lorsque les niveaux d'exposition au CrVI peuvent être élevés, des ulcérations de la cloison nasale ont été fréquemment observées chez les travailleurs exposés. Cet effet indésirable résulte du dépôt de CrVI-contenant des particules ou des gouttelettes de brouillard sur la cloison nasale, entraînant une ulcération de la partie cartilagineuse suivie, dans de nombreux cas, d'une perforation au site de l'ulcération. Le pincement fréquent du nez peut favoriser la formation de perforations. La muqueuse recouvrant la partie antérieure inférieure du septum, connue sous le nom de zone de Kiesselbach et de Little, est relativement avasculaire et étroitement adhérente au cartilage sous-jacent. Des croûtes contenant des débris nécrotiques provenant du cartilage du septum continuent à se former et, en une semaine ou deux, le septum est perforé. La périphérie de l'ulcération reste active jusqu'à plusieurs mois, période pendant laquelle la perforation peut grossir. Il guérit par la formation de tissu cicatriciel vasculaire. L'odorat n'est presque jamais altéré. Pendant la phase active, la rhinorrhée et les saignements de nez peuvent être des symptômes gênants. Lorsqu'ils sont bien guéris, les symptômes sont rares et de nombreuses personnes ignorent que le septum est perforé.

      Effets dans d'autres organes. Une nécrose des reins a été rapportée, commençant par une nécrose tubulaire, laissant les glomérules intacts. Une nécrose diffuse du foie et une perte subséquente de l'architecture ont également été rapportées. Peu après le tournant du siècle, il y avait un certain nombre de rapports sur l'ingestion humaine de CrVI composés entraînant des hémorragies gastro-intestinales majeures dues à des ulcérations de la muqueuse intestinale. Parfois, de tels saignements entraînaient un choc cardiovasculaire comme complication possible. Si le patient survivait, une nécrose tubulaire des reins ou une nécrose du foie pourrait survenir.

      Effets cancérigènes. Augmentation de l'incidence du cancer du poumon chez les travailleurs de la fabrication et de l'utilisation de CrVI a été rapporté dans un grand nombre d'études en France, en Allemagne, en Italie, au Japon, en Norvège, aux États-Unis et au Royaume-Uni. Les chromates de zinc et de calcium semblent être parmi les chromates cancérigènes les plus puissants, ainsi que parmi les cancérogènes humains les plus puissants. Une incidence élevée de cancer du poumon a également été signalée chez des sujets exposés à des chromates de plomb et à des vapeurs de trioxydes de chrome. Fortes expositions au CrVI composés ont entraîné une incidence très élevée de cancer du poumon chez les travailleurs exposés 15 ans ou plus après la première exposition, comme indiqué dans les études de cohorte et les rapports de cas.

      Ainsi, il est bien établi qu'une augmentation de l'incidence du cancer du poumon chez les travailleurs employés dans la fabrication de chromate de zinc et la fabrication de monochromates et de dichromates à partir de minerai de chromite est un effet à long terme d'une forte exposition professionnelle au CrVI composés. Certaines des études de cohorte ont rapporté des mesures des niveaux d'exposition parmi les cohortes exposées. En outre, un petit nombre d'études ont indiqué que l'exposition aux fumées générées par le soudage sur de l'acier allié au chrome peut entraîner une incidence élevée de cancer du poumon chez ces soudeurs.

      Il n'y a pas de niveau d'exposition "sûr" fermement établi. Cependant, la plupart des rapports sur l'association entre CrVI l'exposition et le cancer des organes respiratoires et les niveaux d'exposition rapportent des niveaux d'air supérieurs à 50 mg CrVI/m3 air.

      Les symptômes, les signes, l'évolution, l'aspect radiologique, le mode de diagnostic et le pronostic des cancers du poumon résultant d'une exposition aux chromates ne diffèrent en rien de ceux du cancer du poumon dû à d'autres causes. Il a été constaté que les tumeurs prennent souvent naissance à la périphérie de l'arbre bronchique. Les tumeurs peuvent appartenir à tous les types histologiques, mais la majorité des tumeurs semblent être des tumeurs anaplasiques à cellules d'avoine. Le chrome soluble dans l'eau, soluble dans l'acide et insoluble dans l'eau se trouve dans les tissus pulmonaires des travailleurs du chromate en quantités variables.

      Bien que cela n'ait pas été fermement établi, certaines études ont indiqué que l'exposition aux chromates peut entraîner un risque accru de cancer des sinus nasaux et du tube digestif. Les études qui indiquent un excès de cancer du tube digestif sont des rapports de cas des années 1930 ou des études de cohorte qui témoignent d'une exposition à des niveaux élevés que ceux généralement rencontrés aujourd'hui.

      Mesures de sécurité et de santé

      Sur le plan technique, la prévention de l'exposition au chrome dépend de la conception appropriée des procédés, y compris une ventilation par aspiration adéquate et la suppression de la poussière ou du brouillard contenant du chrome à l'état hexavalent. Des mesures de contrôle intégrées sont également nécessaires, nécessitant le moins d'interventions possibles de la part des opérateurs de processus ou du personnel de maintenance.

      Des méthodes humides de nettoyage doivent être utilisées dans la mesure du possible; sur d'autres sites, la seule alternative acceptable est le nettoyage à l'aspirateur. Les déversements de liquides ou de solides doivent être éliminés pour éviter leur dispersion sous forme de poussière en suspension dans l'air. La concentration dans l'environnement de travail des poussières et fumées contenant du chrome doit de préférence être mesurée à intervalles réguliers par échantillonnage individuel et par zone. Lorsque des niveaux de concentration inacceptables sont trouvés par l'une ou l'autre méthode, les sources de poussières ou de fumées doivent être identifiées et contrôlées. Des masques anti-poussières, de préférence avec une efficacité de plus de 99 % pour retenir les particules de 0.5 µm, doivent être portés dans les situations au-dessus des niveaux non dangereux, et il peut être nécessaire de fournir un équipement de protection respiratoire à adduction d'air pour les travaux considérés comme dangereux. . La direction doit veiller à ce que les dépôts de poussière et autres contaminants de surface soient éliminés par lavage ou aspiration avant le début des travaux de ce type. Fournir quotidiennement des combinaisons de lavage peut aider à éviter la contamination de la peau. La protection des mains et des yeux est généralement recommandée, de même que la réparation et le remplacement de tous les équipements de protection individuelle (EPI).

      La surveillance médicale des travailleurs sur les processus dans lesquels CrVI les composés susceptibles d'être rencontrés doivent inclure une formation sur les propriétés toxiques et cancérigènes des deux CrVI et CrIII composés, ainsi que sur les différences entre les deux groupes de composés. La nature des risques d'exposition et les risques subséquents de diverses maladies (par exemple, le cancer du poumon) doivent être indiqués lors de l'entrée en fonction ainsi qu'à intervalles réguliers pendant l'emploi. La nécessité d'observer un niveau élevé d'hygiène personnelle doit être soulignée.

      Tous les effets indésirables de l'exposition au chrome peuvent être évités. Les ulcères cutanés au chrome peuvent être prévenus en éliminant les sources de contact et en prévenant les lésions cutanées. Les coupures et abrasions cutanées, même légères, doivent être nettoyées immédiatement et traitées avec une pommade EDTA sodique à 10 %. Associé à l'utilisation d'un pansement imperméable fréquemment renouvelé, cela améliorera la guérison rapide de tout ulcère susceptible de se développer. Bien que l'EDTA ne chélate pas la CrVI composés à température ambiante, il réduit le CrVI à CrIII rapidement, et l'excès d'EDTA chélate CrIII. L'action directe irritante et corrosive du CrVI composés et la formation de protéine/CrIII les complexes sont ainsi évités. Après ingestion accidentelle de CrVI composés, l'ingestion immédiate d'acide ascorbique peut également réduire rapidement le CrVI.

      Un lavage soigneux de la peau après contact et des soins pour éviter les frottements et la transpiration sont importants dans la prévention et le contrôle de l'irritation primaire due aux chromates. Au cours des années précédentes, une pommade contenant 10 % d'EDTA de sodium était appliquée régulièrement sur la cloison nasale avant l'exposition. Ce traitement préventif pourrait aider à garder le septum intact. La douleur du nez et l'ulcération précoce ont également été traitées par l'application régulière de cette pommade, et la guérison a pu être obtenue sans perforation.

      Les résultats de la recherche indiquent que les travailleurs exposés à des concentrations atmosphériques élevées de CrVI pourrait être contrôlé avec succès en surveillant l'excrétion du chrome dans l'urine. De tels résultats, cependant, n'ont aucun rapport avec le risque d'allergie cutanée. A ce jour, avec la très longue période de latence de CrVI- cancer du poumon lié, on ne peut pratiquement rien dire concernant le risque de cancer sur la base des taux urinaires de Cr.

       

      Retour

      Page 1 de 3

      " AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

      Table des matières

      Métaux : propriétés chimiques et références de toxicité

      Agence pour les substances toxiques et le registre des maladies (ATSDR). 1995. Études de cas en médecine environnementale : Toxicité du plomb. Atlanta : ATSDR.

      Brief, RS, JW Blanchard, RA Scala et JH Blacker. 1971. Carbonyles métalliques dans l'industrie pétrolière. Arch Environ Health 23:373–384.

      Centre international de recherche sur le cancer (CIRC). 1990. Chrome, nickel et soudage. Lyon : CIRC.

      Institut national pour la sécurité et la santé au travail (NIOSH). 1994. Guide de poche NIOSH sur les risques chimiques. Publication n° 94-116 du DHHS (NIOSH). Cincinnati, Ohio : NIOSH.

      Rendall, REG, JI Phillips et KA Renton. 1994. Décès suite à une exposition à des particules fines de nickel provenant d'un procédé à l'arc métallique. Ann Occup Hyg 38:921–930.

      Sunderman, FW, Jr., et A Oskarsson,. 1991. Nickel. In Metals and their compounds in the environment, édité par E Merian, Weinheim, Allemagne : VCH Verlag.

      Sunderman, FW, Jr., A Aitio, LO Morgan et T Norseth. 1986. Surveillance biologique du nickel. Tox Ind Health 2:17–78.

      Comité d'experts des Nations Unies sur le transport des marchandises dangereuses. 1995. Recommandations sur le transport des marchandises dangereuses, 9e édition. New York : Nations Unies.