Les rayonnements ionisants sont partout. Il arrive de l'espace extra-atmosphérique sous forme de rayons cosmiques. Il se trouve dans l'air sous forme d'émissions de radon radioactif et de ses descendants. Les isotopes radioactifs naturels pénètrent et restent dans tous les êtres vivants. C'est incontournable. En effet, toutes les espèces de cette planète ont évolué en présence de rayonnements ionisants. Bien que les êtres humains exposés à de petites doses de rayonnement puissent ne présenter immédiatement aucun effet biologique apparent, il ne fait aucun doute que les rayonnements ionisants, lorsqu'ils sont administrés en quantités suffisantes, peuvent être nocifs. Ces effets sont bien connus tant en nature qu'en degré.
Bien que les rayonnements ionisants puissent être nocifs, ils ont également de nombreuses utilisations bénéfiques. L'uranium radioactif produit de l'électricité dans les centrales nucléaires de nombreux pays. En médecine, les rayons X produisent des radiographies pour le diagnostic des blessures et des maladies internes. Les médecins de médecine nucléaire utilisent des matières radioactives comme traceurs pour former des images détaillées des structures internes et pour étudier le métabolisme. Des radiopharmaceutiques thérapeutiques sont disponibles pour traiter des troubles tels que l'hyperthyroïdie et le cancer. Les médecins en radiothérapie utilisent des rayons gamma, des faisceaux de pions, des faisceaux d'électrons, des neutrons et d'autres types de rayonnement pour traiter le cancer. Les ingénieurs utilisent des matières radioactives dans les opérations de diagraphie des puits de pétrole et dans les jauges de densité d'humidité du sol. Les radiographes industriels utilisent les rayons X dans le contrôle de la qualité pour examiner les structures internes des appareils fabriqués. Les panneaux de sortie dans les bâtiments et les avions contiennent du tritium radioactif pour les faire briller dans l'obscurité en cas de panne de courant. De nombreux détecteurs de fumée dans les maisons et les bâtiments commerciaux contiennent de l'américium radioactif.
Ces nombreuses utilisations des rayonnements ionisants et des matières radioactives améliorent la qualité de vie et aident la société de plusieurs façons. Les avantages de chaque utilisation doivent toujours être comparés aux risques. Les risques peuvent concerner les travailleurs directement impliqués dans l'application des rayonnements ou des matières radioactives, le public, les générations futures et l'environnement ou toute combinaison de ceux-ci. Au-delà des considérations politiques et économiques, les avantages doivent toujours l'emporter sur les risques lorsqu'il s'agit de rayonnements ionisants.
Rayonnement ionisant
Le rayonnement ionisant est constitué de particules, dont les photons, qui provoquent la séparation des électrons des atomes et des molécules. Cependant, certains types de rayonnement d'énergie relativement faible, tels que la lumière ultraviolette, peuvent également provoquer une ionisation dans certaines circonstances. Pour distinguer ces types de rayonnement des rayonnements qui provoquent toujours une ionisation, une limite d'énergie inférieure arbitraire pour les rayonnements ionisants est généralement fixée à environ 10 kiloélectron volts (keV).
Les rayonnements directement ionisants sont constitués de particules chargées. Ces particules comprennent des électrons énergétiques (parfois appelés négatrons), des positrons, des protons, des particules alpha, des mésons chargés, des muons et des ions lourds (atomes ionisés). Ce type de rayonnement ionisant interagit avec la matière principalement par la force de Coulomb, repoussant ou attirant les électrons des atomes et des molécules en raison de leurs charges.
Les rayonnements ionisants indirects sont constitués de particules non chargées. Les types les plus courants de rayonnements indirectement ionisants sont les photons supérieurs à 10 keV (rayons X et rayons gamma) et tous les neutrons.
Les photons X et gamma interagissent avec la matière et provoquent une ionisation d'au moins trois manières différentes :
- Les photons de faible énergie interagissent principalement via l'effet photoélectrique, dans lequel le photon cède toute son énergie à un électron, qui quitte ensuite l'atome ou la molécule. Le photon disparaît.
- Les photons d'énergie intermédiaire interagissent principalement par l'effet Compton, dans lequel le photon et un électron entrent essentiellement en collision sous forme de particules. Le photon continue dans une nouvelle direction avec une énergie réduite tandis que l'électron libéré s'en va avec le reste de l'énergie entrante (moins l'énergie de liaison de l'électron à l'atome ou à la molécule).
- La production de paires n'est possible que pour les photons d'énergie supérieure à 1.02 MeV. (Cependant, vers 1.02 MeV, l'effet Compton domine toujours. La production de paires domine aux énergies plus élevées.) Le photon disparaît et une paire électron-positon apparaît à sa place (cela ne se produit qu'au voisinage d'un noyau en raison de la conservation de l'impulsion et considérations énergétiques). L'énergie cinétique totale de la paire électron-positon est égale à l'énergie du photon moins la somme des énergies de masse au repos de l'électron et du positon (1.02 MeV). Ces électrons et positrons énergétiques procèdent alors comme un rayonnement directement ionisant. En perdant de l'énergie cinétique, un positron finira par rencontrer un électron et les particules s'annihileront. Deux (généralement) photons de 0.511 MeV sont ensuite émis depuis le site d'annihilation à 180 degrés l'un de l'autre.
un photon donné, n'importe lequel de ceux-ci peut se produire, sauf que la production de paires n'est possible que pour les photons d'énergie supérieure à 1.022 MeV. L'énergie du photon et le matériau avec lequel il interagit déterminent quelle interaction est la plus susceptible de se produire.
La figure 1 montre les régions dans lesquelles chaque type d'interaction de photons domine en fonction de l'énergie des photons et du numéro atomique de l'absorbeur.
Figure 1. Importance relative des trois principales interactions des photons dans la matière
Les interactions les plus courantes des neutrons avec la matière sont les collisions inélastiques, la capture (ou activation) de neutrons et la fission. Ce sont toutes des interactions avec des noyaux. Un noyau entrant en collision inélastique avec un neutron est laissé à un niveau d'énergie plus élevé. Il peut libérer cette énergie sous la forme d'un rayon gamma ou en émettant une particule bêta, ou les deux. Dans la capture de neutrons, un noyau affecté peut absorber le neutron et éjecter de l'énergie sous forme de rayons gamma ou X ou de particules bêta, ou les deux. Les particules secondaires provoquent alors une ionisation comme discuté ci-dessus. Lors de la fission, un noyau lourd absorbe le neutron et se scinde en deux noyaux plus légers presque toujours radioactifs.
Quantités, unités et définitions connexes
La Commission internationale des unités et mesures de rayonnement (ICRU) élabore des définitions formelles internationalement acceptées des quantités et des unités de rayonnement et de radioactivité. La Commission internationale de protection radiologique (CIPR) établit également des normes pour la définition et l'utilisation de diverses grandeurs et unités utilisées en radioprotection. Une description de certaines grandeurs, unités et définitions couramment utilisées en radioprotection suit.
Dose absorbée. C'est la grandeur dosimétrique fondamentale des rayonnements ionisants. Fondamentalement, c'est l'énergie que le rayonnement ionisant confère à la matière par unité de masse. Officiellement,
où D est la dose absorbée, de est l'énergie moyenne conférée à la matière de masse dm. La dose absorbée a des unités de joules par kilogramme (J kg-1). Le nom spécial de l'unité de dose absorbée est le gray (Gy).
Attractions. Cette quantité représente le nombre de transformations nucléaires à partir d'un état d'énergie nucléaire donné par unité de temps. Officiellement,
où A est l'activité, dN est la valeur attendue du nombre de transitions nucléaires spontanées à partir de l'état d'énergie donné dans l'intervalle de temps dt. Il est lié au nombre de noyaux radioactifs N par:
où l est la constante de décroissance. L'activité a des unités de secondes inverses (s-1). Le nom particulier de l'unité d'activité est le becquerel (Bq).
Constante de désintégration (l). Cette quantité représente la probabilité par unité de temps qu'une transformation nucléaire se produise pour un radionucléide donné. La constante de décroissance a des unités de secondes inverses (s-1). Elle est liée à la demi-vie t½ d'un radionucléide par :
La constante de décroissance l est liée à la durée de vie moyenne, t, d'un radionucléide par :
La dépendance temporelle de l'activité A(t) et du nombre de noyaux radioactifs N(t) peut être exprimé par et
respectivement.
Effet biologique déterministe. Il s'agit d'un effet biologique causé par les rayonnements ionisants et dont la probabilité d'occurrence est nulle aux faibles doses absorbées mais augmentera fortement jusqu'à l'unité (100 %) au-dessus d'un certain niveau de dose absorbée (le seuil). L'induction de la cataracte est un exemple d'effet biologique stochastique.
Dose efficace. La dose efficace E est la somme des doses équivalentes pondérées dans tous les tissus et organes du corps. Il s'agit d'une quantité de sécurité radiologique, son utilisation n'est donc pas appropriée pour des doses absorbées importantes délivrées dans un laps de temps relativement court. Il est donné par :
où w T est le facteur de pondération des tissus et HT est la dose équivalente pour le tissu T. La dose efficace a des unités de J kg-1. Le nom spécial de l'unité de dose efficace est le sievert (Sv).
Dose équivalente. La dose équivalente HT est la dose absorbée moyenne sur un tissu ou un organe (plutôt qu'en un point) et pondérée en fonction de la qualité du rayonnement qui est d'intérêt. Il s'agit d'une quantité de sécurité radiologique, son utilisation n'est donc pas appropriée pour des doses absorbées importantes délivrées dans un laps de temps relativement court. La dose équivalente est donnée par :
où DT, R est la dose absorbée moyenne sur le tissu ou l'organe T due au rayonnement R et w R
est le facteur de pondération du rayonnement. La dose équivalente a des unités de J kg-1. Le nom spécial de l'unité de dose équivalente est le sievert (Sv).
Demi-vie. Cette quantité est le temps nécessaire pour que l'activité d'un échantillon de radionucléide diminue d'un facteur de moitié. De manière équivalente, c'est le temps nécessaire pour qu'un nombre donné de noyaux dans un état radioactif donné soit réduit d'un facteur de moitié. Il a des unités fondamentales de seconde (s), mais est également couramment exprimé en heures, jours et années. Pour un radionucléide donné, la demi-vie t½ est liée à la constante de décroissance l par :
Transfert d'énergie linéaire. Cette quantité est l'énergie qu'une particule chargée transmet à la matière par unité de longueur lorsqu'elle traverse la matière. Officiellement,
où L est le transfert d'énergie linéaire (également appelé puissance d'arrêt de collision linéaire) et de est l'énergie moyenne perdue par la particule en parcourant une distance dl. Le transfert d'énergie linéaire (LET) a des unités de J m-1.
Durée de vie moyenne. Cette quantité est la durée moyenne de survie d'un état nucléaire avant de subir une transformation vers un état d'énergie inférieure en émettant des rayonnements ionisants. Il a pour unités fondamentales la seconde (s), mais peut également être exprimé en heures, jours ou années. Elle est liée à la constante de décroissance par :
où t est la durée de vie moyenne et l est la constante de désintégration pour un nucléide donné dans un état d'énergie donné.
Facteur de pondération du rayonnement. Ceci est un nombre w R qui, pour un type et une énergie de rayonnement R donnés, est représentative des valeurs de l'efficacité biologique relative de ce rayonnement à induire des effets stochastiques à faibles doses. Les valeurs de w R sont liés au transfert d'énergie linéaire (LET) et sont donnés dans le tableau 1. La figure 2 (au verso) montre la relation entre w R et LET pour les neutrons.
Tableau 1. Facteurs de pondération du rayonnement wR
Type et gamme d'énergie |
wR 1 |
Photons, toutes énergies |
1 |
Électrons et muons, toutes énergies2 |
1 |
Neutrons, énergie 10 keV |
5 |
10 keV à 100 XNUMX keV |
10 |
>100 keV à 2 MeV |
20 |
>2 MeV à 20 MeV |
10 |
>20 MeV |
5 |
Protons, autres que les protons de recul, énergie > 2 MeV |
5 |
Particules alpha, fragments de fission, noyaux lourds |
20 |
1 Toutes les valeurs se rapportent au rayonnement incident sur le corps ou, pour les sources internes, émis par la source.
2 À l'exclusion des électrons Auger émis par les noyaux liés à l'ADN.
Efficacité biologique relative (RBE). L'EBR d'un type de rayonnement par rapport à un autre est le rapport inverse des doses absorbées produisant le même degré d'un point final biologique défini.
Figure 2. Facteurs de pondération du rayonnement pour les neutrons (la courbe lisse doit être traitée comme une approximation)
Effet biologique stochastique. Il s'agit d'un effet biologique causé par les rayonnements ionisants dont la probabilité d'occurrence augmente avec l'augmentation de la dose absorbée, probablement sans seuil, mais dont la sévérité est indépendante de la dose absorbée. Le cancer est un exemple d'effet biologique stochastique.
Facteur de pondération tissulaire w T. Il représente la contribution du tissu ou de l'organe T au détriment total dû à l'ensemble des effets stochastiques résultant d'une irradiation uniforme de l'ensemble du corps. Elle est utilisée car la probabilité d'effets stochastiques dus à une dose équivalente dépend du tissu ou de l'organe irradié. Une dose équivalente uniforme sur tout le corps devrait donner une dose efficace numériquement égale à la somme des doses efficaces pour tous les tissus et organes du corps. Par conséquent, la somme de tous les facteurs de pondération des tissus est normalisée à l'unité. Le tableau 2 donne les valeurs des facteurs de pondération des tissus.
Tableau 2. Facteurs de pondération tissulaire wT
Tissu ou organe |
wT 1 |
Gonades |
0.20 |
Moelle osseuse (rouge) |
0.12 |
Côlon |
0.12 |
Poumon |
0.12 |
Estomac |
0.12 |
Vessie |
0.05 |
Poitrine |
0.05 |
Foie |
0.05 |
Œsophage |
0.05 |
Thyroïde |
0.05 |
Peau |
0.01 |
Surface osseuse |
0.01 |
Reste |
0.052, 3 |
1 Les valeurs ont été élaborées à partir d'une population de référence composée d'un nombre égal de personnes des deux sexes et d'un large éventail d'âges. Dans la définition de la dose efficace, ils s'appliquent aux travailleurs, à l'ensemble de la population et aux deux sexes.
2 Aux fins de calcul, le reste est composé des tissus et organes supplémentaires suivants : surrénales, cerveau, gros intestin supérieur, intestin grêle, reins, muscle, pancréas, rate, thymus et utérus. La liste comprend les organes susceptibles d'être irradiés sélectivement. Certains organes de la liste sont connus pour être sensibles à l'induction du cancer.
3 Dans les cas exceptionnels où un seul des tissus ou organes restants reçoit une dose équivalente supérieure à la dose la plus élevée dans l'un des douze organes pour lesquels un facteur de pondération est spécifié, un facteur de pondération de 0.025 doit être appliqué à ce tissu ou organe et un facteur de pondération de 0.025 à la dose moyenne dans le reste du reste tel que défini ci-dessus.