Mercredi, Mars 09 2011 15: 30

Gestion de la pollution atmosphérique

Évaluer cet élément
(30 votes)

La gestion de la pollution atmosphérique vise à éliminer ou à réduire à des niveaux acceptables les polluants gazeux en suspension dans l'air, les particules en suspension et les agents physiques et, dans une certaine mesure, biologiques dont la présence dans l'atmosphère peut avoir des effets nocifs sur la santé humaine (p. augmentation de l'incidence ou de la prévalence des maladies respiratoires, de la morbidité, du cancer, de la surmortalité) ou du bien-être (par exemple, effets sensoriels, réduction de la visibilité), effets délétères sur la vie animale ou végétale, dommages aux matériaux ayant une valeur économique pour la société et dommages à l'environnement (par exemple, modifications climatiques). Les risques graves associés aux polluants radioactifs, ainsi que les procédures spéciales requises pour leur contrôle et leur élimination, méritent également une attention particulière.

On ne saurait trop insister sur l'importance d'une gestion efficace de la pollution de l'air extérieur et intérieur. Sans un contrôle adéquat, la multiplication des sources de pollution dans le monde moderne peut entraîner des dommages irréparables à l'environnement et à l'humanité.

L'objectif de cet article est de donner un aperçu général des approches possibles de la gestion de la pollution de l'air ambiant d'origine automobile et industrielle. Cependant, il convient de souligner dès le départ que la pollution de l'air intérieur (en particulier dans les pays en développement) pourrait jouer un rôle encore plus important que la pollution de l'air extérieur en raison de l'observation que les concentrations de polluants dans l'air intérieur sont souvent nettement plus élevées que les concentrations extérieures.

Au-delà des considérations d'émissions provenant de sources fixes ou mobiles, la gestion de la pollution atmosphérique implique la prise en compte de facteurs supplémentaires (tels que la topographie et la météorologie, et la participation de la communauté et du gouvernement, entre autres) qui doivent tous être intégrés dans un programme global. Par exemple, les conditions météorologiques peuvent grandement affecter les concentrations au sol résultant d'une même émission de polluants. Les sources de pollution atmosphérique peuvent être dispersées dans une communauté ou une région et leurs effets peuvent être ressentis par, ou leur contrôle peut impliquer, plus d'une administration. De plus, la pollution de l'air ne respecte aucune frontière et les émissions d'une région peuvent induire des effets dans une autre région par le transport à longue distance.

La gestion de la pollution atmosphérique nécessite donc une approche multidisciplinaire ainsi qu'un effort conjoint des entités privées et gouvernementales.

Sources de pollution atmosphérique

Les sources de pollution atmosphérique d'origine humaine (ou sources d'émission) sont essentiellement de deux types :

  • Stationnaire, qui peuvent être subdivisées en sources de surface telles que la production agricole, les mines et les carrières, les sources industrielles, ponctuelles et de surface telles que la fabrication de produits chimiques, de produits minéraux non métalliques, les industries métallurgiques de base, la production d'électricité et les sources communautaires (par exemple, le chauffage des maisons et des bâtiments, incinérateurs de déchets municipaux et de boues d'épuration, cheminées, installations de cuisine, services de blanchisserie et installations de nettoyage)
  • mobile, comprenant toute forme de véhicules à moteur à combustion (par exemple, les voitures légères à essence, les véhicules légers et lourds à moteur diesel, les motocyclettes, les aéronefs, y compris les sources linéaires émettant des gaz et des particules provenant de la circulation des véhicules).

 

A cela s'ajoutent les sources naturelles de pollution (par exemple, les zones érodées, les volcans, certaines plantes qui libèrent de grandes quantités de pollen, sources de bactéries, de spores et de virus). Les sources naturelles ne sont pas abordées dans cet article.

Types de polluants atmosphériques

Les polluants atmosphériques sont généralement classés en particules en suspension (poussières, émanations, brouillards, fumées), polluants gazeux (gaz et vapeurs) et odeurs. Quelques exemples de polluants usuels sont présentés ci-dessous :

Matières particulaires en suspension (SPM, PM-10) comprend les gaz d'échappement diesel, les cendres volantes de charbon, les poussières minérales (par exemple, charbon, amiante, calcaire, ciment), les poussières et fumées métalliques (par exemple, zinc, cuivre, fer, plomb) et les brouillards acides (par exemple , acide sulfurique), fluorures, pigments de peinture, brouillards de pesticides, noir de carbone et fumée d'huile. Les polluants particulaires en suspension, outre leurs effets de provoquer des maladies respiratoires, des cancers, de la corrosion, la destruction de la vie végétale, etc., peuvent également constituer une nuisance (par exemple, accumulation de saleté), interférer avec la lumière du soleil (par exemple, formation de smog et de brume due à diffusion de la lumière) et agissent comme des surfaces catalytiques pour la réaction des produits chimiques adsorbés.

Polluants gazeux comprennent des composés soufrés (par exemple, le dioxyde de soufre (SO2) et le trioxyde de soufre (SO3)), monoxyde de carbone, composés azotés (p. ex. monoxyde d'azote (NO), dioxyde d'azote (NO2), ammoniac), composés organiques (par exemple, hydrocarbures (HC), composés organiques volatils (COV), hydrocarbures aromatiques polycycliques (HAP), aldéhydes), composés halogénés et dérivés halogénés (par exemple, HF et HCl), sulfure d'hydrogène, disulfure de carbone et mercaptans (odeurs).

Les polluants secondaires peuvent être formés par des réactions thermiques, chimiques ou photochimiques. Par exemple, par action thermique, le dioxyde de soufre peut s'oxyder en trioxyde de soufre qui, dissous dans l'eau, donne lieu à la formation d'un brouillard d'acide sulfurique (catalysé par les oxydes de manganèse et de fer). Les réactions photochimiques entre les oxydes d'azote et les hydrocarbures réactifs peuvent produire de l'ozone (O3), formaldéhyde et nitrate de peroxyacétyle (PAN); les réactions entre le HCl et le formaldéhyde peuvent former de l'éther bis-chlorométhylique.

alors que certains les odeurs sont connus pour être causés par des agents chimiques spécifiques tels que le sulfure d'hydrogène (H2S), sulfure de carbone (CS2) et les mercaptans (R-SH ou R1-S-R2) d'autres sont difficiles à définir chimiquement.

Des exemples des principaux polluants associés à certaines sources industrielles de pollution atmosphérique sont présentés dans le tableau 1 (Economopoulos 1993).

Tableau 1. Polluants atmosphériques courants et leurs sources

Catégories

Identifier

Polluants émis

L’agriculture

Gravure à ciel ouvert

MPS, CO, COV

Exploitation minière et
carrière

Mine de charbon

Pétrole brut
et la production de gaz naturel

Extraction de minerais non ferreux

Extraction de pierre

SPM, AINSI2, Je n'ai pasx, COV

SO2

MPS, Pb

SPM

Fabrication

Nourriture, boissons et tabac

Industries du textile et du cuir

Produits en bois

Produits en papier, impression

SPM, CO, COV, H2S

SPM, COV

SPM, COV

SPM, AINSI2, CO, COV, H2S, R-SH

Fabrication
de produits chimiques

Anhydride phtalique

Chlore-alcali

Acide chlorhydrique

Acide hydrofluorique

acide sulfurique

Acide nitrique

Acide phosphorique

Oxyde de plomb et pigments

Ammoniac

Le carbonate de sodium

Carbure de calcium

Acide adipique

Plomb alkylique

L'anhydride maléique et
acide téréphtalique

Engrais et
fabrication de pesticides

Nitrate d'ammonium

Sulfate d'ammonium

Résines synthétiques, plastique
matériaux, fibres

Peintures, vernis, laques

Savon

Noir de carbone et encre d'imprimerie

Trinitrotoluène

SPM, AINSI2, CO, COV

Cl2

HCl

HF, SiF4

SO2, SO3

NONx

SPM, F2

MPS, Pb

SPM, AINSI2, Je n'ai pasx, CO, COV, NH3

SPM, NH3

SPM

SPM, NONx, CO, COV

Pb

CO, COV

SPM, NH3

SPM, NH3, H.N.O.3

COV

SPM, COV, H2S, CS2

SPM, COV

SPM

SPM, AINSI2, Je n'ai pasx, CO, COV, H2S

SPM, AINSI2, Je n'ai pasx, SO3, H.N.O.3

Raffineries de pétrole

produits divers
de pétrole et de charbon

SPM, AINSI2, Je n'ai pasx, CO, COV

Minéral non métallique
fabrication de produits

Produits en verre

Produits structuraux en argile

Ciment, chaux et plâtre

SPM, AINSI2, Je n'ai pasx, CO, COV, F

SPM, AINSI2, Je n'ai pasx, CO, COV, F2

SPM, AINSI2, Je n'ai pasx, CO

Industries métallurgiques de base

Fer et acier

Industries non ferreuses

SPM, AINSI2, Je n'ai pasx, CO, COV, Pb

SPM, AINSI2, F, Pb

Production d'électricité

Électricité, gaz et vapeur

SPM, AINSI2, Je n'ai pasx, CO, COV, SO3, Pb

Vente en gros et
commerce de détail

Stockage de carburant, opérations de remplissage

COV

Transport

 

SPM, AINSI2, Je n'ai pasx, CO, COV, Pb

Services communautaires

Incinérateurs municipaux

SPM, AINSI2, Je n'ai pasx, CO, COV, Pb

Source : Economopoulos 1993

Plans de mise en œuvre de la qualité de l'air

La gestion de la qualité de l'air vise à préserver la qualité de l'environnement en prescrivant le degré de pollution toléré, laissant aux collectivités locales et aux pollueurs le soin d'imaginer et de mettre en œuvre des actions pour s'assurer que ce degré de pollution ne sera pas dépassé. Un exemple de législation s'inscrivant dans cette approche est l'adoption de normes de qualité de l'air ambiant basées, très souvent, sur des recommandations de qualité de l'air (OMS 1987) pour différents polluants ; il s'agit des niveaux maximum acceptés de polluants (ou d'indicateurs) dans la zone cible (par exemple, au niveau du sol à un point spécifié dans une communauté) et il peut s'agir de normes primaires ou secondaires. Les normes primaires (OMS 1980) sont les niveaux maximum compatibles avec une marge de sécurité adéquate et avec la préservation de la santé publique, et doivent être respectées dans un délai déterminé ; les normes secondaires sont celles jugées nécessaires pour la protection contre les effets nocifs connus ou anticipés autres que les risques pour la santé (principalement sur la végétation) et doivent être respectées « dans un délai raisonnable ». Les normes de qualité de l'air sont des valeurs à court, moyen ou long terme valables 24 heures sur 7, 8 jours sur 5, et pour une exposition mensuelle, saisonnière ou annuelle de tous les sujets vivants (y compris les sous-groupes sensibles tels que les enfants, les personnes âgées et les malades) ainsi que des objets non vivants ; cela contraste avec les niveaux maximaux admissibles pour l'exposition professionnelle, qui sont pour une exposition hebdomadaire partielle (par exemple, XNUMX heures par jour, XNUMX jours par semaine) de travailleurs adultes et supposés en bonne santé.

Les mesures typiques de gestion de la qualité de l'air sont des mesures de contrôle à la source, par exemple, l'application de l'utilisation de convertisseurs catalytiques dans les véhicules ou de normes d'émission dans les incinérateurs, l'aménagement du territoire et la fermeture d'usines ou la réduction du trafic en cas de conditions météorologiques défavorables. . La meilleure gestion de la qualité de l'air insiste sur le fait que les émissions de polluants atmosphériques doivent être réduites au minimum ; ceci est essentiellement défini par des normes d'émission pour les sources uniques de pollution de l'air et pourrait être réalisé pour les sources industrielles, par exemple, par des systèmes fermés et des collecteurs à haut rendement. Une norme d'émission est une limite sur la quantité ou la concentration d'un polluant émis par une source. Ce type de législation nécessite une décision, pour chaque industrie, sur le meilleur moyen de contrôler ses émissions (c'est-à-dire la fixation de normes d'émission).

L'objectif fondamental de la gestion de la pollution atmosphérique est d'élaborer un plan de mise en œuvre de la qualité de l'air (ou plan de réduction de la pollution atmosphérique) (Schwela et Köth-Jahr 1994) qui se compose des éléments suivants :

  • description de la zone en ce qui concerne la topographie, la météorologie et la socioéconomie
  • inventaire des émissions
  • comparaison avec les normes d'émission
  • inventaire des concentrations de polluants atmosphériques
  • concentrations simulées de polluants atmosphériques
  • comparaison avec les normes de qualité de l'air
  • inventaire des effets sur la santé publique et l'environnement
  • analyse causale
  • des mesures de contrôle
  • coût des mesures de contrôle
  • coût de la santé publique et des effets sur l'environnement
  • analyse coûts-avantages (coûts du contrôle vs. coûts des efforts)
  • transports et aménagement du territoire
  • plan d'exécution; engagement de ressources
  • projections pour l'avenir sur la population, le trafic, les industries et la consommation de carburant
  • stratégies de suivi.

 

Certains de ces problèmes seront décrits ci-dessous.

Inventaire des émissions ; Comparaison avec les normes d'émission

L'inventaire des émissions est une liste la plus complète des sources dans une zone donnée et de leurs émissions individuelles, estimées aussi précisément que possible à partir de toutes les sources ponctuelles, linéaires et étendues (diffuses). Lorsque ces émissions sont comparées aux normes d'émission fixées pour une source particulière, des premières indications sur les mesures de contrôle possibles sont données si les normes d'émission ne sont pas respectées. L'inventaire des émissions sert également à évaluer une liste prioritaire de sources importantes en fonction de la quantité de polluants émis et indique l'influence relative des différentes sources, par exemple, le trafic par rapport aux sources industrielles ou résidentielles. L'inventaire des émissions permet également une estimation des concentrations de polluants atmosphériques pour les polluants pour lesquels les mesures de concentration ambiante sont difficiles ou trop coûteuses à effectuer.

Inventaire des concentrations de polluants atmosphériques ; Comparaison avec les normes de qualité de l'air

L'inventaire des concentrations de polluants atmosphériques résume les résultats de la surveillance des polluants de l'air ambiant en termes de moyennes annuelles, de centiles et de tendances de ces quantités. Les composés mesurés pour un tel inventaire comprennent les éléments suivants :

  • le dioxyde de soufre
  • Oxydes d'azote
  • particules en suspension
  • le monoxyde de carbone
  • ozone
  • métaux lourds (Pb, Cd, Ni, Cu, Fe, As, Be)
  • hydrocarbures aromatiques polycycliques : benzo(a)pyrène, benzo(e)pyrène, benzo(a)anthracène, dibenzo(un, h)anthracène, benzoprendre note)pérylène, coronan
  • les composés organiques volatils: n-hexane, benzène, 3-méthyl-hexane, n-heptane, toluène, octane, éthyl-benzène xylène (o-,m-,p-), n-nonane, isopropylbenzène, propylbenzène, n-2-/3-/4-éthyltoluène, 1,2,4-/1,3,5-triméthylbenzène, trichlorométhane, 1,1,1 trichloroéthane, tétrachlorométhane, tri-/tétrachloroéthène.

 

La comparaison des concentrations de polluants atmosphériques avec les normes ou lignes directrices sur la qualité de l'air, si elles existent, indique les domaines problématiques pour lesquels une analyse causale doit être effectuée afin de déterminer les sources responsables de la non-conformité. La modélisation de la dispersion doit être utilisée pour effectuer cette analyse causale (voir « Pollution de l'air : Modélisation de la dispersion des polluants atmosphériques »). Les dispositifs et procédures utilisés aujourd'hui dans la surveillance de la pollution de l'air ambiant sont décrits dans la section « Surveillance de la qualité de l'air ».

Concentrations simulées de polluants atmosphériques ; Comparaison avec les normes de qualité de l'air

A partir de l'inventaire des émissions, avec ses milliers de composés qui ne peuvent pas tous être suivis dans l'air ambiant pour des raisons d'économie, l'utilisation de la modélisation de la dispersion peut aider à estimer les concentrations de composés plus « exotiques ». En utilisant des paramètres météorologiques appropriés dans un modèle de dispersion approprié, les moyennes annuelles et les centiles peuvent être estimés et comparés aux normes ou lignes directrices sur la qualité de l'air, si elles existent.

Inventaire des effets sur la santé publique et l'environnement ; Analyse causale

Une autre source importante d'informations est l'inventaire des effets (Ministerium für Umwelt 1993), qui se compose des résultats d'études épidémiologiques dans la zone donnée et des effets de la pollution de l'air observés sur les récepteurs biologiques et matériels tels que, par exemple, les plantes, les animaux et la construction. métaux et pierres de construction. Les effets observés attribués à la pollution de l'air doivent faire l'objet d'une analyse causale par rapport à la composante responsable d'un effet particulier, par exemple, une prévalence accrue de bronchite chronique dans une zone polluée. Si le ou les composés ont été fixés dans une analyse causale (analyse composé-causal), une deuxième analyse doit être effectuée pour découvrir les sources responsables (analyse source-causale).

Des mesures de contrôle; Coût des mesures de contrôle

Les mesures de contrôle pour les installations industrielles comprennent des dispositifs d'épuration de l'air adéquats, bien conçus, bien installés, exploités et entretenus efficacement, également appelés séparateurs ou collecteurs. Un séparateur ou un collecteur peut être défini comme un « appareil pour séparer un ou plusieurs des éléments suivants d'un milieu gazeux dans lequel ils sont en suspension ou mélangés : particules solides (filtre et séparateurs de poussière), particules liquides (filtre et séparateur de gouttelettes) et gaz (épurateur de gaz) ». Les types de base d'équipements de contrôle de la pollution de l'air (discutés plus en détail dans la section "Contrôle de la pollution de l'air") sont les suivants :

  • pour les particules : séparateurs inertiels (ex. cyclones) ; filtres en tissu (filtres à manches); précipitateurs électrostatiques; collecteurs humides (épurateurs)
  • pour les polluants gazeux : collecteurs humides (épurateurs) ; unités d'adsorption (par exemple, lits d'adsorption); postcombustion, qui peut être à combustion directe (incinération thermique) ou catalytique (combustion catalytique).

 

Les collecteurs humides (épurateurs) peuvent être utilisés pour collecter, en même temps, les polluants gazeux et les particules. De plus, certains types d'appareils à combustion peuvent brûler des gaz et des vapeurs combustibles ainsi que certains aérosols combustibles. Selon le type d'effluent, un collecteur ou une combinaison de plusieurs collecteurs peut être utilisé.

Le contrôle des odeurs chimiquement identifiables repose sur le contrôle du ou des agents chimiques dont elles émanent (par exemple, par absorption, par incinération). Cependant, lorsqu'une odeur n'est pas définie chimiquement ou que l'agent producteur se trouve à des niveaux extrêmement bas, d'autres techniques peuvent être utilisées, telles que le masquage (par un agent plus fort, plus agréable et inoffensif) ou la neutralisation (par un additif qui neutralise ou partiellement neutralise l'odeur désagréable).

Il faut garder à l'esprit qu'une exploitation et une maintenance adéquates sont indispensables pour assurer l'efficacité attendue d'un collecteur. Cela devrait être assuré au stade de la planification, tant du point de vue du savoir-faire que du point de vue financier. Les besoins énergétiques ne doivent pas être négligés. Lors de la sélection d'un appareil de purification de l'air, non seulement le coût initial, mais également les coûts de fonctionnement et d'entretien doivent être pris en compte. Chaque fois qu'il s'agit de polluants à haute toxicité, une efficacité élevée doit être assurée, ainsi que des procédures spéciales pour l'entretien et l'élimination des déchets.

Les mesures de contrôle fondamentales dans les installations industrielles sont les suivantes :

Substitution de matériaux. Exemples : substitution de solvants moins toxiques à des solvants hautement toxiques utilisés dans certains procédés industriels ; l'utilisation de combustibles à faible teneur en soufre (par exemple, le charbon lavé), produisant ainsi moins de composés soufrés, etc.

Modification ou changement du procédé ou de l'équipement industriel. Exemples : dans la sidérurgie, passage du minerai brut au minerai fritté bouleté (pour réduire les poussières dégagées lors de la manutention du minerai) ; utilisation de systèmes fermés au lieu de systèmes ouverts ; remplacement des systèmes de chauffage au combustible par des systèmes à vapeur, à eau chaude ou électriques ; utilisation de catalyseurs aux sorties d'air d'échappement (procédés de combustion) etc.

Des modifications des procédés, ainsi que de l'agencement de l'usine, peuvent également faciliter et/ou améliorer les conditions de dispersion et de collecte des polluants. Par exemple, une disposition différente de l'usine peut faciliter l'installation d'un système d'évacuation local ; la performance d'un processus à un débit inférieur peut permettre l'utilisation d'un certain collecteur (avec des limitations de volume mais autrement adéquat). Les modifications de procédés qui concentrent différentes sources d'effluents sont étroitement liées au volume d'effluents traité, et l'efficacité de certains équipements d'épuration de l'air augmente avec la concentration de polluants dans les effluents. La substitution de matériaux et la modification de processus peuvent avoir des limitations techniques et/ou économiques, et celles-ci doivent être prises en compte.

Entretien ménager et stockage adéquats. Exemples : assainissement strict dans la transformation des aliments et des produits animaux ; éviter le stockage à l'air libre de produits chimiques (par exemple, des tas de soufre) ou de matériaux poussiéreux (par exemple, du sable), ou, à défaut, la pulvérisation d'eau sur les tas de particules en vrac (si possible) ou l'application de revêtements de surface (par exemple, des agents mouillants, plastique) aux amas de matériaux susceptibles de dégager des polluants.

Élimination adéquate des déchets. Exemples : éviter de simplement entasser les déchets chimiques (tels que les déchets des réacteurs de polymérisation), ainsi que de déverser des matières polluantes (solides ou liquides) dans les cours d'eau. Cette dernière pratique entraîne non seulement une pollution de l'eau, mais peut également créer une source secondaire de pollution de l'air, comme dans le cas des déchets liquides des usines de pâte à papier au bisulfite, qui libèrent des polluants gazeux odorants nauséabonds.

Entretien. Exemple : des moteurs à combustion interne bien entretenus et bien réglés produisent moins de monoxyde de carbone et d'hydrocarbures.

Pratiques de travail. Exemple : prise en compte des conditions météorologiques, notamment des vents, lors de la pulvérisation de pesticides.

Par analogie avec les pratiques adéquates sur le lieu de travail, les bonnes pratiques au niveau communautaire peuvent contribuer à la lutte contre la pollution de l'air - par exemple, les changements dans l'utilisation des véhicules à moteur (plus de transports collectifs, de petites voitures, etc.) et le contrôle des installations de chauffage (meilleur isolation des bâtiments pour nécessiter moins de chauffage, de meilleurs combustibles, etc.).

Les mesures de contrôle des émissions des véhicules sont des programmes d'inspection et d'entretien obligatoires adéquats et efficaces qui sont appliqués pour le parc automobile existant, des programmes d'application de l'utilisation de convertisseurs catalytiques dans les voitures neuves, le remplacement agressif des voitures solaires/à piles par des voitures à carburant , régulation de la circulation routière et concepts de transport et d'aménagement du territoire.

Les émissions des véhicules à moteur sont contrôlées en contrôlant les émissions par véhicule mille parcouru (VMT) et en contrôlant le VMT lui-même (Walsh 1992). Les émissions par VMT peuvent être réduites en contrôlant les performances des véhicules - matériel, maintenance - pour les voitures neuves et en cours d'utilisation. La composition du carburant de l'essence au plomb peut être contrôlée en réduisant la teneur en plomb ou en soufre, ce qui a également un effet bénéfique sur la diminution des émissions de HC des véhicules. L'abaissement des niveaux de soufre dans le carburant diesel comme moyen de réduire les émissions de particules diesel a l'effet bénéfique supplémentaire d'augmenter le potentiel de contrôle catalytique des émissions de particules diesel et de HC organiques.

Un autre outil de gestion important pour réduire les émissions d'évaporation et de ravitaillement des véhicules est le contrôle de la volatilité de l'essence. Le contrôle de la volatilité du carburant peut réduire considérablement les émissions de HC par évaporation des véhicules. L'utilisation d'additifs oxygénés dans l'essence réduit les émissions de HC et de CO tant que la volatilité du carburant n'augmente pas.

La réduction du VMT est un moyen supplémentaire de contrôler les émissions des véhicules par des stratégies de contrôle telles que

  • utilisation de modes de transport plus efficaces
  • augmenter le nombre moyen de passagers par voiture
  • répartir les pics de trafic congestionnés
  • réduire la demande de déplacements.

 

Bien que de telles approches favorisent la conservation du carburant, elles ne sont pas encore acceptées par la population générale et les gouvernements n'ont pas sérieusement essayé de les mettre en œuvre.

Toutes ces solutions technologiques et politiques au problème des véhicules à moteur, à l'exception de la substitution des voitures électriques, sont de plus en plus compensées par la croissance du parc automobile. Le problème du véhicule ne peut être résolu que si le problème de la croissance est traité de manière appropriée.

coût de la santé publique et effets environnementaux ; L'analyse coûts-avantages

L'estimation des coûts des effets sur la santé publique et l'environnement est la partie la plus difficile d'un plan de mise en œuvre d'un air pur, car il est très difficile d'estimer la valeur de la réduction à vie des maladies invalidantes, des taux d'hospitalisation et des heures de travail perdues. Cependant, cette estimation et une comparaison avec le coût des mesures de contrôle sont absolument nécessaires pour équilibrer les coûts des mesures de contrôle par rapport aux coûts de l'absence de mesures de ce type, en termes de santé publique et d'effets environnementaux.

Transport et aménagement du territoire

Le problème de la pollution est intimement lié à l'utilisation des terres et au transport, y compris des questions telles que la planification communautaire, la conception des routes, le contrôle de la circulation et les transports en commun ; aux préoccupations de démographie, de topographie et d'économie ; et aux préoccupations sociales (Venzia 1977). En général, les agglomérations urbaines à croissance rapide ont de graves problèmes de pollution dus à de mauvaises pratiques d'utilisation des terres et de transport. La planification des transports pour le contrôle de la pollution atmosphérique comprend les contrôles des transports, les politiques de transport, les transports en commun et les coûts de congestion routière. Les contrôles des transports ont un impact important sur le grand public en termes d'équité, de répression et de perturbation sociale et économique - en particulier, les contrôles directs des transports tels que les contraintes des véhicules à moteur, les limitations d'essence et les réductions des émissions des véhicules à moteur. Les réductions d'émissions dues aux contrôles directs peuvent être estimées et vérifiées de manière fiable. Les contrôles indirects des transports, tels que la réduction des véhicules-kilomètres parcourus par l'amélioration des systèmes de transport en commun, les réglementations sur l'amélioration de la circulation, les réglementations sur les parkings, les taxes routières et sur l'essence, les autorisations d'utilisation de la voiture et les incitations aux approches volontaires sont principalement basés sur des expériences antérieures. l'expérience d'erreurs et comprennent de nombreuses incertitudes lors de la tentative d'élaboration d'un plan de transport viable.

Les plans d'action nationaux impliquant des contrôles indirects des transports peuvent affecter les transports et l'aménagement du territoire en ce qui concerne les autoroutes, les parkings et les centres commerciaux. La planification à long terme du système de transport et de la zone influencée par celui-ci empêchera une détérioration importante de la qualité de l'air et assurera le respect des normes de qualité de l'air. Le transport en commun est constamment considéré comme une solution potentielle aux problèmes de pollution de l'air en milieu urbain. Le choix d'un système de transport en commun pour desservir une zone et les différentes répartitions modales entre l'utilisation de l'autoroute et le service d'autobus ou de train modifieront en fin de compte les schémas d'utilisation du sol. Il existe une répartition optimale qui minimisera la pollution de l'air; cependant, cela peut ne pas être acceptable lorsque des facteurs non environnementaux sont pris en compte.

L'automobile a été qualifiée de plus grand générateur d'externalités économiques jamais connu. Certains d'entre eux, tels que les emplois et la mobilité, sont positifs, mais les négatifs, tels que la pollution de l'air, les accidents entraînant des décès et des blessures, les dommages matériels, le bruit, la perte de temps et l'aggravation, conduisent à la conclusion que le transport n'est pas une industrie à coûts décroissants dans les zones urbanisées. Les coûts de congestion des autoroutes sont une autre externalité ; Le temps perdu et les coûts de congestion sont cependant difficiles à déterminer. Une véritable évaluation des modes de transport concurrents, tels que les transports en commun, ne peut être obtenue si les coûts de déplacement pour les déplacements professionnels n'incluent pas les coûts de congestion.

La planification de l'utilisation des terres pour le contrôle de la pollution atmosphérique comprend les codes de zonage et les normes de performance, les contrôles de l'utilisation des terres, le logement et l'aménagement du territoire, et les politiques d'aménagement du territoire. Le zonage de l'utilisation des terres a été la première tentative de protection des personnes, de leurs biens et de leurs opportunités économiques. Cependant, la nature omniprésente des polluants atmosphériques nécessitait plus qu'une séparation physique des industries et des zones résidentielles pour protéger l'individu. Pour cette raison, des normes de performance basées initialement sur des décisions esthétiques ou qualitatives ont été introduites dans certains codes de zonage dans le but de quantifier les critères d'identification des problèmes potentiels.

Les limites de la capacité d'assimilation de l'environnement doivent être identifiées pour l'aménagement du territoire à long terme. Ensuite, des contrôles de l'utilisation des terres peuvent être développés pour répartir équitablement la capacité entre les activités locales souhaitées. Les contrôles de l'utilisation des terres comprennent des systèmes de permis pour l'examen de nouvelles sources fixes, la réglementation de zonage entre les zones industrielles et résidentielles, la restriction par servitude ou achat de terrain, le contrôle de l'emplacement des récepteurs, le zonage de la densité d'émission et les réglementations sur l'allocation des émissions.

Les politiques de logement visant à rendre l'accession à la propriété accessible à de nombreuses personnes qui ne pourraient pas se le permettre autrement (telles que les incitations fiscales et les politiques hypothécaires) stimulent l'étalement urbain et découragent indirectement le développement résidentiel à plus forte densité. Ces politiques se sont maintenant avérées désastreuses pour l'environnement, car aucune considération n'a été accordée au développement simultané de systèmes de transport efficaces pour répondre aux besoins de la multitude de nouvelles communautés en cours de développement. La leçon tirée de cette évolution est que les programmes ayant un impact sur l'environnement doivent être coordonnés et une planification globale entreprise au niveau où le problème survient et à une échelle suffisamment grande pour inclure l'ensemble du système.

La planification de l'utilisation des terres doit être examinée aux niveaux national, provincial ou étatique, régional et local pour assurer de manière adéquate la protection à long terme de l'environnement. Les programmes gouvernementaux commencent généralement par l'implantation de centrales électriques, les sites d'extraction minière, le zonage côtier et le désert, la montagne ou d'autres aménagements récréatifs. Étant donné que la multiplicité des gouvernements locaux dans une région donnée ne peut pas traiter de manière adéquate les problèmes environnementaux régionaux, les gouvernements ou agences régionaux devraient coordonner l'aménagement du territoire et les schémas de densité en supervisant l'aménagement spatial et l'emplacement des nouvelles constructions et utilisations, ainsi que les installations de transport. L'aménagement du territoire et la planification des transports doivent être liés à l'application des règlements pour maintenir la qualité de l'air souhaitée. Idéalement, la lutte contre la pollution de l'air devrait être planifiée par la même agence régionale qui s'occupe de l'aménagement du territoire en raison des externalités qui se chevauchent associées aux deux problèmes.

Plan d'application, engagement de ressources

Le plan de mise en œuvre de la qualité de l'air doit toujours contenir un plan d'application qui indique comment les mesures de contrôle peuvent être appliquées. Cela implique également un engagement de ressources qui, selon un principe de pollueur-payeur, indiquera ce que le pollueur doit mettre en œuvre et comment le gouvernement aidera le pollueur à remplir l'engagement.

Projections pour l'avenir

Dans le sens d'un plan de précaution, le plan de mise en œuvre de l'air pur devrait également inclure des estimations des tendances de la population, du trafic, des industries et de la consommation de carburant afin d'évaluer les réponses aux problèmes futurs. Cela évitera les tensions futures en appliquant des mesures bien avant les problèmes imaginaires.

Stratégies de suivi

Une stratégie de suivi de la gestion de la qualité de l'air consiste en des plans et des politiques sur la façon de mettre en œuvre les futurs plans de mise en œuvre de la qualité de l'air.

Rôle de l'évaluation de l'impact environnemental

L'évaluation de l'impact environnemental (EIE) est le processus consistant à fournir une déclaration détaillée par l'agence responsable sur l'impact environnemental d'une action proposée affectant de manière significative la qualité de l'environnement humain (Lee 1993). L'EIE est un instrument de prévention visant à prendre en compte l'environnement humain à un stade précoce du développement d'un programme ou d'un projet.

L'EIE est particulièrement importante pour les pays qui développent des projets dans le cadre de la réorientation et de la restructuration économiques. L'EIE est devenue une législation dans de nombreux pays développés et est maintenant de plus en plus appliquée dans les pays en développement et les économies en transition.

L'EIE est intégrative dans le sens d'une planification et d'une gestion globales de l'environnement prenant en compte les interactions entre les différents milieux environnementaux. D'autre part, l'EIE intègre l'estimation des conséquences environnementales dans le processus de planification et devient ainsi un instrument de développement durable. L'EIA combine également des propriétés techniques et participatives car elle collecte, analyse et applique des données scientifiques et techniques en tenant compte du contrôle de la qualité et de l'assurance qualité, et souligne l'importance des consultations préalables aux procédures d'autorisation entre les agences environnementales et le public qui pourrait être affecté par des projets particuliers. . Un plan de mise en œuvre de l'air pur peut être considéré comme faisant partie de la procédure d'EIE en référence à l'air.

 

Retour

Lire 21598 fois Dernière modification le samedi, 30 Juillet 2011 15: 38

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références de contrôle de la pollution de l'environnement

Association américaine de santé publique (APHA). 1995. Méthodes standard pour l'examen de l'eau et des eaux usées. Alexandria, Virginie : Fédération de l'environnement aquatique.

Secrétariat de l'ARET. 1995. Leaders environnementaux 1, Engagements volontaires à l'action contre les toxiques par le biais d'ARET. Hull, Québec : Bureau d'enquête publique d'Environnement Canada.

Évêque, PL. 1983. Pollution marine et son contrôle. New York : McGraw Hill.

Brown, LC et TO Barnwell. 1987. Modèles améliorés de qualité de l'eau des cours d'eau QUAL2E et QUAL2E-UNCAS : documentation et manuel d'utilisation. Athens, Géorgie : US EPA, Environmental Research Lab.

Brun, RH. 1993. Pure Appl Chem 65(8):1859-1874.

Calabrese, EJ et EM Kenyon. 1991. Toxicités atmosphériques et évaluation des risques. Chelsea, Mich:Lewis.

Canada et Ontario. 1994. L'Accord Canada-Ontario concernant l'écosystème des Grands Lacs. Hull, Québec : Bureau d'enquête publique d'Environnement Canada.

Dillon, PJ. 1974. Un examen critique du modèle de budget des éléments nutritifs de Vollenweider et d'autres modèles connexes. Ressources en eau Bull 10(5):969-989.

Eckenfelder, WW. 1989. Lutte contre la pollution de l'eau industrielle. New York : McGraw Hill.

Economopoulos, AP. 1993. Évaluation des sources de pollution de l'air, de l'eau et des sols. Guide des techniques d'inventaire rapide des sources et de leur utilisation dans la formulation de stratégies de contrôle de l'environnement. Première partie : Techniques d'inventaire rapide de la pollution de l'environnement. Deuxième partie : Approches à prendre en compte dans la formulation de stratégies de contrôle de l'environnement. (Document non publié WHO/YEP/93.1.) Genève : OMS.

Agence de protection de l'environnement (EPA). 1987. Lignes directrices pour la délimitation des zones de protection des têtes de puits. Falaises d'Englewood, New Jersey : EPA.

Environnement Canada. 1995a. Prévention de la pollution - Une stratégie fédérale d'action. Ottawa : Environnement Canada.

—. 1995b. Prévention de la pollution - Une stratégie fédérale d'action. Ottawa : Environnement Canada.

Freeze, RA et JA Cherry. 1987. Eaux souterraines. Falaises d'Englewood, New Jersey : Prentice Hall.

Système mondial de surveillance de l'environnement (GEMS/Air). 1993. Programme mondial de surveillance et d'évaluation de la qualité de l'air en milieu urbain. Genève : PNUE.

Hosker, RP. 1985. Flux autour des structures isolées et des grappes de bâtiments, une revue. ASHRAE Trans 91.

Commission mixte internationale (CMI). 1993. Une stratégie pour l'élimination virtuelle des substances toxiques persistantes. Vol. 1, 2, Windsor, Ont. : CMI.

Kanarek, A. 1994. Recharge des eaux souterraines avec les effluents municipaux, bassins de recharge Soreq, Yavneh 1 et Yavneh 2. Israël : Mekoroth Water Co.

Lee, N. 1993. Vue d'ensemble de l'EIE en Europe et son application dans les nouveaux Länder. En UVP

Leitfaden, édité par V Kleinschmidt. Dortmund.

Metcalf et Eddy, I. 1991. Traitement, élimination et réutilisation des eaux usées. New York : McGraw Hill.

Miller, JM et A Soudine. 1994. Le système mondial de veille atmosphérique de l'OMM. Hvratski meteorolski casopsis 29:81-84.

Ministère de l'Umwelt. 1993. Raumordnung Und Landwirtschaft Des Landes Nordrhein-Westfalen, Luftreinhalteplan
Ruhrgebiet West [Plan de mise en œuvre de la qualité de l'air dans la région Ouest-Ruhr].

Parkhurst, B. 1995. Méthodes de gestion des risques, environnement et technologie de l'eau. Washington, DC : Fédération de l'environnement de l'eau.

Pecor, CH. 1973. Bilans annuels d'azote et de phosphore de Houghton Lake. Lansing, Michigan : Département des ressources naturelles.

Pielke, RA. 1984. Modélisation météorologique à mésoéchelle. Orlando : Presse académique.

Preul, HC. 1964. Voyage des composés azotés dans les sols. doctorat Thèse, Université du Minnesota, Minneapolis, Minn.

—. 1967. Mouvement souterrain de l'azote. Vol. 1. Londres : Association internationale sur la qualité de l'eau.

—. 1972. Analyse et contrôle de la pollution souterraine. Recherche sur l'eau. J Int Assoc Qualité de l'eau (octobre):1141-1154.

—. 1974. Effets souterrains d'élimination des déchets dans le bassin versant du lac Sunapee. Étude et rapport pour la Lake Sunapee Protective Association, État du New Hampshire, non publié.

—. 1981. Plan de recyclage des effluents des eaux usées de la tannerie du cuir. Association internationale des ressources en eau.

—. 1991. Nitrates dans les ressources en eau aux États-Unis. : Association des ressources en eau.

Preul, HC et GJ Schroepfer. 1968. Voyage des composés azotés dans les sols. J Water Polut Control Fed (avril).

Reid, G et R Wood. 1976. Écologie des eaux intérieures et des estuaires. New York : Van Nostrand.

Reish, D. 1979. Pollution marine et estuarienne. J Water Pollut Control Fed 51(6):1477-1517.

Sawyer, CN. 1947. Fertilisation des lacs par drainage agricole et urbain. J New Engl Waterworks Assoc 51:109-127.

Schwela, DH et I Köth-Jahr. 1994. Leitfaden für die Aufstellung von Luftreinhalteplänen [Lignes directrices pour la mise en œuvre de plans de mise en œuvre d'un air pur]. Landesumweltamt des Landes Nordrhein Westfalen.

État de l'Ohio. 1995. Normes de qualité de l'eau. Au Chap. 3745-1 du Code administratif. Columbus, Ohio : EPA de l'Ohio.

Taylor, ST. 1995. Simulation de l'impact de la végétation enracinée sur la dynamique des éléments nutritifs et de l'oxygène dissous dans le cours d'eau à l'aide du modèle diurne OMNI. Dans Actes de la conférence annuelle du WEF. Alexandria, Virginie : Fédération de l'environnement aquatique.

États-Unis et Canada. 1987. Accord révisé relatif à la qualité de l'eau dans les Grands Lacs de 1978 tel que modifié par le protocole signé le 18 novembre 1987. Hull, Québec : Bureau d'enquête publique d'Environnement Canada.

Venkatram, A et J Wyngaard. 1988. Conférences sur la modélisation de la pollution atmosphérique. Boston, Masse : Société météorologique américaine.

Venezia, RA. 1977. Aménagement du territoire et planification des transports. Dans Air Pollution, édité par AC Stern. New York : Presse académique.

Verein Deutscher Ingenieure (VDI) 1981. Ligne directrice 3783, partie 6 : Dispersion régionale des polluants sur un train complexe.
Simulation du champ de vent. Düsseldorf : VDI.

—. 1985. Ligne directrice 3781, partie 3 : Détermination de l'élévation du panache. Düsseldorf : VDI.

—. 1992. Ligne directrice 3782, partie 1 : modèle de dispersion gaussien pour la gestion de la qualité de l'air. Düsseldorf : VDI.

—. 1994. Ligne directrice 3945, partie 1 (ébauche) : Modèle de bouffée gaussien. Düsseldorf : VDI.

—. nd Guideline 3945, Part 3 (en préparation) : Modèles particulaires. Düsseldorf : VDI.

Viessman, W, GL Lewis et JW Knapp. 1989. Introduction à l'hydrologie. New York : Harper & Row.

Vollenweider, RA. 1968. Fondamentaux scientifiques de l'eutrophisation des lacs et des eaux courantes, avec en particulier
Référence aux facteurs d'azote et de phosphore dans l'eutrophisation. Paris : OCDE.

—. 1969. Möglichkeiten et Grenzen elementarer Modelle der Stoffbilanz von Seen. Arch Hydrobiol 66:1-36.

Walch, député. 1992. Examen des mesures de contrôle des émissions des véhicules automobiles et de leur efficacité. In Motor Vehicle Air Pollution, Public Health Impact and Control Measures, édité par D Mage et O Zali. République et Canton de Genève : OMS-Service d'écotoxicologie, Direction de la santé publique.

Fédération de l'environnement de l'eau. 1995. Recueil sur la prévention de la pollution et la minimisation des déchets. Alexandria, Virginie : Fédération de l'environnement aquatique.

Organisation mondiale de la santé (OMS). 1980. Glossaire sur la pollution atmosphérique. Série européenne, n° 9. Copenhague : Publications régionales de l'OMS.

—. 1987. Lignes directrices sur la qualité de l'air pour l'Europe. Série européenne, n° 23. Copenhague : Publications régionales de l'OMS.

Organisation mondiale de la santé (OMS) et Programme des Nations Unies pour l'environnement (PNUE). 1994. GEMS/AIR Methodology Reviews Handbook Series. Vol. 1-4. Quality Insurance in Urban Air Quality Monitoring, Genève : OMS.

—. 1995a. Tendances de la qualité de l'air de la ville. Vol. 1-3. Genève : OMS.

—. 1995b. GEMS/AIR Methodology Reviews Handbook Series. Vol. 5. Lignes directrices pour les examens collaboratifs GEMS/AIR. Genève : OMS.

Yamartino, RJ et G Wiegand. 1986. Développement et évaluation de modèles simples pour les champs d'écoulement, de turbulence et de concentration de polluants dans un canyon urbain. Atmos Environ 20(11):S2137-S2156.