Mercredi, Mars 09 2011 16: 30

Projet de récupération des eaux usées de la région de Dan : une étude de cas

Évaluer cet élément
(0 votes)

Conception et design

Le projet de récupération des eaux usées municipales de la région de Dan est le plus grand projet de ce type au monde. Il se compose d'installations de traitement et de recharge des eaux souterraines des eaux usées municipales de la zone métropolitaine de la région de Dan - un conglomérat de huit villes centré autour de Tel Aviv, en Israël, avec une population combinée d'environ 1.5 million d'habitants. Le projet a été créé dans le but de collecter, traiter et éliminer les eaux usées municipales. L'effluent récupéré, après une période de détention relativement longue dans l'aquifère souterrain, est pompé pour une utilisation agricole sans restriction, irriguant le Néguev aride (la partie sud d'Israël). Un schéma général du projet est donné à la figure 1. Le projet a été créé dans les années 1960 et n'a cessé de croître. Actuellement, le système collecte et traite environ 110 x 106 m3 par an. D'ici quelques années, à son stade final, le système traitera de 150 à 170 x 106 m3 par an.

Figure 1. Usine de récupération des eaux usées de la région de Dan : disposition

EPC065F1

Les stations d'épuration sont connues pour créer une multitude de problèmes de santé environnementaux et professionnels. Le projet de la région de Dan est un système unique d'importance nationale qui combine un avantage national avec une économie considérable des ressources en eau, une efficacité de traitement élevée et une production d'eau peu coûteuse, sans créer de risques professionnels excessifs.

Tout au long de la conception, de l'installation et de l'exploitation courante du système, une attention particulière a été accordée aux problèmes d'assainissement de l'eau et d'hygiène au travail. Toutes les précautions nécessaires ont été prises pour s'assurer que les eaux usées récupérées seront pratiquement aussi sûres que l'eau potable ordinaire, au cas où des personnes la boiraient ou l'avaleraient accidentellement. De même, une attention appropriée a été accordée à la question de la réduction au minimum de toute exposition potentielle à des accidents ou à d'autres risques biologiques, chimiques ou physiques susceptibles d'affecter soit les travailleurs de la station d'épuration proprement dite, soit d'autres travailleurs engagés dans l'élimination et l'utilisation agricole. de l'eau récupérée.

Lors de la première phase du projet, les eaux usées ont été traitées biologiquement par un système de bassins d'oxydation facultative avec recirculation et traitement chimique supplémentaire par un procédé chaux-magnésium, suivi d'une rétention des effluents à pH élevé dans des « bassins de polissage ». L'effluent partiellement traité a été rechargé dans l'aquifère souterrain régional au moyen des bassins d'épandage du Soreq.

Au stade 1, les eaux usées acheminées vers la station d'épuration subissent un traitement mécano-biologique par un procédé à boues activées avec nitrification-dénitrification. L'effluent secondaire est rechargé dans la nappe phréatique au moyen des bassins d'épandage Yavneh 2 et Yavneh XNUMX.

Le système complet se compose d'un certain nombre d'éléments différents qui se complètent :

  • un système de station d'épuration, composé d'une station de boues activées (la station biomécanique), qui traite la plupart des déchets, et d'un système de bassins d'oxydation et de polissage utilisé principalement pour le traitement des excédents d'eaux usées
  • un système de recharge des eaux souterraines des effluents traités, qui consiste en des bassins d'épandage, sur deux sites différents (Yavneh et Soreq), inondés par intermittence ; l'effluent absorbé traverse la zone non saturée du sol et une partie de l'aquifère, et crée une zone spéciale dédiée au traitement complémentaire des effluents et au stockage saisonnier, appelée SAT (sol-aquifère-traitement)
  • des réseaux de puits d'observation (53 puits au total) qui entourent les bassins de recharge et permettent le suivi de l'efficacité du processus de traitement
  • réseaux de puits de récupération (au total 74 puits actifs en 1993) qui entourent les sites de recharge
  • une conduite d'adduction d'eau récupérée spéciale et séparée pour l'irrigation sans restriction des zones agricoles du Néguev ; cette conduite s'appelle "la troisième ligne du Néguev", et elle complète le système d'approvisionnement en eau du Néguev, qui comprend deux autres grandes conduites principales d'approvisionnement en eau douce
  • une installation de chloration des effluents, constituée à ce jour de trois sites de chloration (deux autres à rajouter ultérieurement)
  • six réservoirs opérationnels le long du système de transport, qui régulent les quantités d'eau pompées et consommées le long du système
  • un système de distribution des effluents, composé de 13 grandes zones de pression, le long du collecteur principal, qui fournissent l'eau traitée aux consommateurs
  • un système de suivi complet qui supervise et contrôle l'ensemble du fonctionnement du projet.

 

Description du système de récupération

Le schéma général du système de récupération est présenté à la figure 1 et l'organigramme à la figure 2. Le système se compose des segments suivants : station d'épuration, champs de recharge d'eau, puits de récupération, système de transport et de distribution, installation de chloration et un système de surveillance complet. système.

Figure 2. Organigramme du projet de la région de Dan

EPC065F2

La station d'épuration

La station d'épuration de la zone métropolitaine de la région de Dan reçoit les déchets domestiques des huit villes de la région et traite également une partie de leurs déchets industriels. L'usine est située dans les dunes de sable de Rishon-Lézion et repose principalement sur le traitement secondaire des déchets par la méthode des boues activées. Certains des déchets, principalement lors des décharges de pointe, sont traités dans un autre système plus ancien de bassins d'oxydation occupant une superficie de 300 acres. Les deux systèmes peuvent gérer ensemble, à l'heure actuelle, environ 110 x 106 m3 par an.

Les champs de recharge

Les effluents de la station d'épuration sont pompés dans trois sites différents situés dans les dunes de sable régionales, où ils sont épandus sur le sable et s'infiltrent dans l'aquifère souterrain pour un stockage temporaire et un traitement supplémentaire dépendant du temps. Deux des bassins d'épandage servent à la recharge des effluents de la station d'épuration mécano-biologique. Il s'agit de Yavneh 1 (60 acres, situé à 7 km au sud de l'usine) et Yavneh 2 (45 acres, à 10 km au sud de l'usine) ; le troisième bassin est utilisé pour la recharge d'un mélange de l'effluent des bassins d'oxydation et d'une certaine fraction de la station d'épuration biomécanique nécessaire pour améliorer la qualité de l'effluent au niveau nécessaire. Il s'agit du site Soreq, qui a une superficie d'environ 60 acres et est situé à l'est des étangs.

Les puits de récupération

Autour des sites de recharge, il existe des réseaux de puits d'observation à travers lesquels l'eau rechargée est pompée à nouveau. Les 74 puits en exploitation en 1993 n'ont pas tous été actifs pendant toute la durée du projet. En 1993, un total d'environ 95 millions de mètres cubes d'eau ont été récupérés des puits du système et pompés dans la troisième ligne du Néguev.

Les systèmes de transport et de distribution

L'eau pompée des différents puits de récupération est collectée dans le système d'adduction et de distribution de la troisième ligne. Le système de transport est composé de trois sections, ayant une longueur combinée de 87 km et un diamètre allant de 48 à 70 pouces. Le long du système de transport, six réservoirs opérationnels différents, "flottants" sur la ligne principale, ont été construits, afin de réguler le débit d'eau du système. Le volume opérationnel de ces réservoirs varie de 10,000 XNUMX m3 à 100,000 m3.

L'eau circulant dans le système de troisième ligne a été fournie aux clients en 1993 par un système de 13 zones de pression principales. De nombreux consommateurs d'eau, principalement des exploitations agricoles, sont connectés à ces zones de pression.

Le système de chloration

Le but de la chloration qui est effectuée dans la Troisième Ligne est la « rupture de la connexion humaine », ce qui signifie l'élimination de toute possibilité d'existence de micro-organismes d'origine humaine dans l'eau de Troisième Ligne. Tout au long du suivi, il a été constaté qu'il y a une augmentation considérable des micro-organismes fécaux pendant le séjour de l'eau récupérée dans les réservoirs d'eau. Par conséquent, il a été décidé d'ajouter plus de points de chloration le long de la ligne et, en 1993, trois points de chloration distincts fonctionnaient régulièrement. Deux autres points de chloration doivent être ajoutés au système dans un futur proche. Le chlore résiduel est compris entre 0.4 et 1.0 mg/l de chlore libre. Cette méthode, par laquelle de faibles concentrations de chlore libre sont maintenues en divers points du système plutôt qu'une seule dose massive au début de la ligne, sécurise la rupture de la connexion humaine, et en même temps permet aux poissons de vivre dans les réservoirs . De plus, cette méthode de chloration désinfectera l'eau des sections aval du système d'adduction et de distribution, dans le cas où des polluants seraient entrés dans le système en un point situé en aval du point de chloration initial.

Le système de surveillance

Le fonctionnement du système de récupération de la troisième ligne du Néguev dépend du fonctionnement de routine d'une installation de surveillance qui est supervisée et contrôlée par une entité scientifique professionnelle et indépendante. Cet organisme est l'Institut de recherche et de développement du Technion - Institut israélien de technologie, à Haïfa, en Israël.

La mise en place d'un système de surveillance indépendant est une exigence obligatoire du ministère israélien de la Santé, l'autorité légale locale conformément à l'ordonnance israélienne sur la santé publique. La nécessité d'établir cette configuration de surveillance découle des faits suivants :

  1. Ce projet de récupération des eaux usées est le plus grand au monde.
  2. Il comprend certains éléments non routiniers qui n'ont pas encore été expérimentés.
  3. L'eau récupérée doit être utilisée pour l'irrigation illimitée des cultures agricoles.

 

Le rôle majeur du système de surveillance est donc de sécuriser la qualité chimique et sanitaire de l'eau fournie par le système et d'alerter sur toute modification de la qualité de l'eau. De plus, le dispositif de surveillance effectue un suivi du projet complet de remise en état de la région de Dan, en étudiant également certains aspects, tels que le fonctionnement courant de l'usine et la qualité chimico-biologique de son eau. Ceci est nécessaire pour déterminer l'adaptabilité de l'eau de la troisième ligne pour une irrigation illimitée, non seulement du point de vue sanitaire mais aussi du point de vue agricole.

Le schéma de surveillance préliminaire a été conçu et préparé par Mekoroth Water Co., le principal fournisseur d'eau israélien et l'opérateur du projet de la région de Dan. Un comité directeur spécialement nommé a examiné périodiquement le programme de surveillance et l'a modifié en fonction de l'expérience accumulée grâce à l'opération de routine. Le programme de surveillance portait sur les différents points d'échantillonnage le long du système de la troisième ligne, les différents paramètres étudiés et la fréquence d'échantillonnage. Le programme préliminaire faisait référence à différents segments du réseau, soit les puits de récupération, la conduite d'adduction, les réservoirs, un nombre limité de branchements consommateurs ainsi que la présence de puits d'eau potable à proximité de l'usine. La liste des paramètres inclus dans le programme de surveillance de la troisième ligne est donnée dans le tableau 1.

Tableau 1. Liste des paramètres étudiés

Ag

Argent

μg / l

Al

Aluminium

μg / l

ALG

Algues

Nbre/100 ml

ALKM

Alcalinité en CaCO3

mg / l

As

Arsenic

μg / l

B

Bore

mg / l

Ba

Baryum

μg / l

DBO

Demande biochimique d'oxygène

mg / l

Br

Bromure

mg / l

Ca

Calcium

mg / l

Cd

Cadmium

μg / l

Cl

Chlorure

mg / l

CLDE

Demande de chlore

mg / l

CLRL

Chlorophile

μg / l

CN

Cyanures

μg / l

Co

Cobalt

μg / l

COULEUR

Couleur (cobalt platine)

 

LA MORUE

La demande chimique en oxygène

mg / l

Cr

Chrome

μg / l

Cu

Cuivre

μg / l

DO

Oxygène dissous sous forme d'O2

mg / l

DOC

Carbone organique dissous

mg / l

DS10

Solides dissous à 105 ºC

mg / l

DS55

Solides dissous à 550 ºC

mg / l

EC

Conductivité électrique

µmhos/cm

ENTR

Entérocoque

Nbre/100 ml

F-

Fluorure

mg / l

FCOL

Coliformes fécaux

Nbre/100 ml

Fe

Fer

μg / l

DIFFICILE

Dureté en CaCO3

mg / l

HCO3 -

Bicarbonate sous forme de HCO3 -

mg / l

Hg

Mercury

μg / l

K

Potassium

mg / l

Li

Lithium

μg / l

MBAS

Détergents

μg / l

Mg

Magnésium

mg / l

Mn

Manganèse

μg / l

Mo

Molybdène

μg / l

Na

Sodium

mg / l

NH4 +

Ammoniac sous forme de NH4 +

mg / l

Ni

Nickel

μg / l

NKJT

Azote total Kjeldahl

mg / l

NON2

Nitrite comme NON2 -

mg / l

NON3

Nitrate comme NO3 -

mg / l

ODEUR

Numéro d'odeur du seuil olfactif

 

OG

Huile et graisse

μg / l

Pb

Plomb

μg / l

PHÉN

Phénols

μg / l

PHFD

pH mesuré sur le terrain

 

PO4

Phosphate comme PO4 -2

mg / l

PTOT

Phosphore total en P

mg / l

RSCL

Chlore libre résiduel

mg / l

SAR

Taux d'adsorption de sodium

 

Se

Sélénium

μg / l

Si

Silice sous forme de H2SiO3

mg / l

Sn

Étain

μg / l

SO4

Sulfate

mg / l

Sr

Strontium

μg / l

SS10

Matières en suspension à 100 ºC

mg / l

SS55

Matières en suspension à 550 ºC

mg / l

GEST

Streptocoque

Nbre/100 ml

T

Température

° C

TCOL

Coliformes totaux

Nbre/100 ml

TOTB

Bactéries totales

Nbre/100 ml

TS10

Solides totaux à 105 ºC

mg / l

TS55

Solides totaux à 550 ºC

mg / l

TURB

Turbidité

NTU

UV

UV (absorb. à 254 nm)(/cm x 10)

 

Zn

Zinc

μg / l

 

Surveillance des puits de récupération

Le programme d'échantillonnage des puits de récupération repose sur une mesure bimensuelle ou trimestrielle de quelques « paramètres-indicateurs » (tableau 2). Lorsque la concentration en chlorures au puits échantillonné dépasse de plus de 15 % la teneur initiale en chlorures du puits, cela est interprété comme une augmentation « significative » de la part de l'effluent récupéré dans l'eau de l'aquifère souterrain, et le puits est transféré dans la prochaine catégorie d'échantillonnage. Ici, 23 « paramètres-caractéristiques » sont déterminés, une fois tous les trois mois. Dans certains des puits, une fois par an, une analyse complète de l'eau, comprenant 54 paramètres divers, est effectuée.

Tableau 2. Les différents paramètres investigués aux puits de récupération

Groupe A

Groupe B

Groupe C

Paramètres de l'indicateur

Paramètres caractéristiques

Paramètres de test complet

1. Chlorures
2. Conductivité électrique
3. Détergents
4. Absorption des UV
5. Oxygène dissous

Groupe A et :
6. Températures
7.pH
8. Turbidité
9. Solides dissous
10. Carbone organique dissous
11. Alcalinité
Dureté
13. Calcium
14. Magnésium
15. Sodium
16. Potassium
17. Nitrates
18. Nitrites
19. Ammoniac
20. Azote total Kjeldahl
21. Phosphore total
22. Sulfate
23. Bore

Groupes A+B et :
24. Matières en suspension
25. Virus entériques
26. Numération bactérienne totale
27. Coliformes
28. Coli fécal
29. Streptocoque fécal
30. Zinc
31. Aluminium
32. L'arsenic
33. Fer à repasser
34. Baryum
35. Argent
36. Mercure
37. Chrome
38. Lithium
39. Molybdène
40. Manganèse
41. Cuivre
42. Nickel
43. Sélénium
44. Strontium
45. Diriger
46. Fluorure
47. Cyanures
48. Le cadmium
49. Cobalt
50. Phénols
51. Huile minérale
52. COT
53. Odeur
54. Couleur

 

Surveillance du système de convoyage

Le système d'adduction, d'une longueur de 87 km, est surveillé en sept points centraux le long de la conduite d'eaux usées. À ces points, 16 paramètres différents sont échantillonnés une fois par mois. Ce sont : PHFD, DO, T, EC, SS10, SS55, UV, TURB, NON3 +, PTOT, ALKM, DOC, TOTB, TCOL, FCOL et ENTR. Les paramètres qui ne devraient pas changer le long du système sont mesurés à deux points d'échantillonnage seulement - au début et à la fin de la ligne de transport. Ce sont : Cl, K, Na, Ca, Mg, HARD, B, DS, SO4 -2, NH4 +, Je n'ai pas2 - et MBAS. A ces deux points de prélèvement, une fois par an, différents métaux lourds sont prélevés (Zn, Sr, Sn, Se, Pb, Ni, Mo, Mn, Li, Hg, Fe, Cu, Cr, Co, Cd, Ba, As, Al, Ag).

Surveillance des réservoirs

Le dispositif de surveillance des réservoirs de la troisième ligne repose principalement sur l'examen d'un nombre limité de paramètres qui servent d'indicateurs du développement biologique dans les réservoirs et de localisation de l'entrée de polluants externes. Cinq réservoirs sont échantillonnés, une fois par mois, pour : PHFD, T, DO, Total SS, Volatile SS, DOC, CLRL, RSCL, TCOL, FCOL, STRP et ALG. Au niveau de ces cinq réservoirs, Si est également échantillonné, une fois tous les deux mois. Tous ces paramètres sont également échantillonnés sur un autre réservoir, Zohar B, à une fréquence de six fois par an.

Résumé

Le projet de récupération de la région de Dan fournit de l'eau récupérée de haute qualité pour l'irrigation sans restriction du Néguev israélien.

La première étape de ce projet est partiellement opérationnelle depuis 1970 et pleinement opérationnelle depuis 1977. De 1970 à 1993, une quantité totale d'eaux usées brutes de 373 millions de mètres cubes (MCM) a été acheminée vers les bassins d'oxydation facultative, et une quantité totale d'eau de 243 MCM ont été pompés de l'aquifère entre 1974 et 1993 et ​​fournis au sud du pays. Une partie de l'eau a été perdue, principalement en raison de l'évaporation et de l'infiltration des étangs. En 1993, ces pertes s'élevaient à environ 6.9 % des eaux usées brutes acheminées vers l'usine Stage One (Kanarek, 1994).

L'usine de traitement mécano-biologique, phase deux du projet, est en service depuis 1987. Au cours de la période d'exploitation 1987-1993, une quantité totale d'eaux usées brutes de 478 MCM a été acheminée vers l'usine de traitement mécano-biologique. En 1993, environ 103 MCM d'eau (95 MCM d'eau récupérée plus 8 MCM d'eau potable) ont été transportés à travers le système et utilisés pour l'irrigation illimitée du Néguev.

L'eau des puits de récupération représente la qualité de l'eau de l'aquifère souterrain. La qualité de l'eau de l'aquifère change constamment en raison de la percolation des effluents dans celle-ci. La qualité de l'eau de l'aquifère se rapproche de celle de l'effluent pour les paramètres qui ne sont pas influencés par les processus de traitement sol-aquifère (SAT), tandis que les paramètres qui sont affectés par le passage à travers les couches de sol (par exemple, la turbidité, les solides en suspension, l'ammoniac, les carbone organique, etc.) affichent des valeurs nettement inférieures. Il convient de noter la teneur en chlorure de l'eau de l'aquifère, qui a augmenté au cours d'une période récente de quatre ans de 15 à 26 %, comme en témoigne l'évolution de la qualité de l'eau dans les puits de récupération. Ce changement indique le remplacement continu de l'eau de l'aquifère par des effluents ayant une teneur en chlorure considérablement plus élevée.

La qualité de l'eau dans les six réservoirs du système Third Line est influencée par les changements biologiques et chimiques qui se produisent dans les réservoirs ouverts. La teneur en oxygène est augmentée, en raison de la photosynthèse des algues et en raison de la dissolution de l'oxygène atmosphérique. Les concentrations de divers types de bactéries sont également augmentées en raison de la pollution aléatoire par diverses faunes aquatiques résidant à proximité des réservoirs.

La qualité de l'eau fournie aux clients le long du système dépend de la qualité de l'eau des puits de récupération et des réservoirs. La chloration obligatoire de l'eau du système constitue une protection supplémentaire contre l'utilisation erronée de l'eau comme eau potable. La comparaison des données sur l'eau de troisième ligne avec les exigences du ministère israélien de la Santé concernant la qualité des eaux usées à utiliser pour un usage agricole illimité montre que la plupart du temps, la qualité de l'eau satisfait pleinement aux exigences.

En conclusion, on peut dire que le système de récupération et d'utilisation des eaux usées de la troisième ligne a été un projet environnemental et national réussi en Israël. Il a résolu le problème de l'évacuation sanitaire des eaux usées de la région de Dan et, en même temps, il a augmenté le bilan hydrique national d'un facteur d'environ 5 %. Dans un pays aride comme Israël, où l'approvisionnement en eau, notamment à usage agricole, est assez limité, c'est un réel apport.

Les coûts de l'opération de recharge et de l'entretien de l'eau récupérée, en 1993, étaient d'environ 3 cents US par m3 (0.093 NIS/m3).

Le système fonctionne depuis la fin des années 1960 sous la stricte surveillance du ministère israélien de la Santé et du département de la sécurité et de l'hygiène au travail de Mekoroth. Aucune maladie professionnelle résultant du fonctionnement de ce système complexe et complet n'a été signalée.

 

Retour

Lire 9567 fois Dernière modification le vendredi 19 août 2011 19:26

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références de contrôle de la pollution de l'environnement

Association américaine de santé publique (APHA). 1995. Méthodes standard pour l'examen de l'eau et des eaux usées. Alexandria, Virginie : Fédération de l'environnement aquatique.

Secrétariat de l'ARET. 1995. Leaders environnementaux 1, Engagements volontaires à l'action contre les toxiques par le biais d'ARET. Hull, Québec : Bureau d'enquête publique d'Environnement Canada.

Évêque, PL. 1983. Pollution marine et son contrôle. New York : McGraw Hill.

Brown, LC et TO Barnwell. 1987. Modèles améliorés de qualité de l'eau des cours d'eau QUAL2E et QUAL2E-UNCAS : documentation et manuel d'utilisation. Athens, Géorgie : US EPA, Environmental Research Lab.

Brun, RH. 1993. Pure Appl Chem 65(8):1859-1874.

Calabrese, EJ et EM Kenyon. 1991. Toxicités atmosphériques et évaluation des risques. Chelsea, Mich:Lewis.

Canada et Ontario. 1994. L'Accord Canada-Ontario concernant l'écosystème des Grands Lacs. Hull, Québec : Bureau d'enquête publique d'Environnement Canada.

Dillon, PJ. 1974. Un examen critique du modèle de budget des éléments nutritifs de Vollenweider et d'autres modèles connexes. Ressources en eau Bull 10(5):969-989.

Eckenfelder, WW. 1989. Lutte contre la pollution de l'eau industrielle. New York : McGraw Hill.

Economopoulos, AP. 1993. Évaluation des sources de pollution de l'air, de l'eau et des sols. Guide des techniques d'inventaire rapide des sources et de leur utilisation dans la formulation de stratégies de contrôle de l'environnement. Première partie : Techniques d'inventaire rapide de la pollution de l'environnement. Deuxième partie : Approches à prendre en compte dans la formulation de stratégies de contrôle de l'environnement. (Document non publié WHO/YEP/93.1.) Genève : OMS.

Agence de protection de l'environnement (EPA). 1987. Lignes directrices pour la délimitation des zones de protection des têtes de puits. Falaises d'Englewood, New Jersey : EPA.

Environnement Canada. 1995a. Prévention de la pollution - Une stratégie fédérale d'action. Ottawa : Environnement Canada.

—. 1995b. Prévention de la pollution - Une stratégie fédérale d'action. Ottawa : Environnement Canada.

Freeze, RA et JA Cherry. 1987. Eaux souterraines. Falaises d'Englewood, New Jersey : Prentice Hall.

Système mondial de surveillance de l'environnement (GEMS/Air). 1993. Programme mondial de surveillance et d'évaluation de la qualité de l'air en milieu urbain. Genève : PNUE.

Hosker, RP. 1985. Flux autour des structures isolées et des grappes de bâtiments, une revue. ASHRAE Trans 91.

Commission mixte internationale (CMI). 1993. Une stratégie pour l'élimination virtuelle des substances toxiques persistantes. Vol. 1, 2, Windsor, Ont. : CMI.

Kanarek, A. 1994. Recharge des eaux souterraines avec les effluents municipaux, bassins de recharge Soreq, Yavneh 1 et Yavneh 2. Israël : Mekoroth Water Co.

Lee, N. 1993. Vue d'ensemble de l'EIE en Europe et son application dans les nouveaux Länder. En UVP

Leitfaden, édité par V Kleinschmidt. Dortmund.

Metcalf et Eddy, I. 1991. Traitement, élimination et réutilisation des eaux usées. New York : McGraw Hill.

Miller, JM et A Soudine. 1994. Le système mondial de veille atmosphérique de l'OMM. Hvratski meteorolski casopsis 29:81-84.

Ministère de l'Umwelt. 1993. Raumordnung Und Landwirtschaft Des Landes Nordrhein-Westfalen, Luftreinhalteplan
Ruhrgebiet West [Plan de mise en œuvre de la qualité de l'air dans la région Ouest-Ruhr].

Parkhurst, B. 1995. Méthodes de gestion des risques, environnement et technologie de l'eau. Washington, DC : Fédération de l'environnement de l'eau.

Pecor, CH. 1973. Bilans annuels d'azote et de phosphore de Houghton Lake. Lansing, Michigan : Département des ressources naturelles.

Pielke, RA. 1984. Modélisation météorologique à mésoéchelle. Orlando : Presse académique.

Preul, HC. 1964. Voyage des composés azotés dans les sols. doctorat Thèse, Université du Minnesota, Minneapolis, Minn.

—. 1967. Mouvement souterrain de l'azote. Vol. 1. Londres : Association internationale sur la qualité de l'eau.

—. 1972. Analyse et contrôle de la pollution souterraine. Recherche sur l'eau. J Int Assoc Qualité de l'eau (octobre):1141-1154.

—. 1974. Effets souterrains d'élimination des déchets dans le bassin versant du lac Sunapee. Étude et rapport pour la Lake Sunapee Protective Association, État du New Hampshire, non publié.

—. 1981. Plan de recyclage des effluents des eaux usées de la tannerie du cuir. Association internationale des ressources en eau.

—. 1991. Nitrates dans les ressources en eau aux États-Unis. : Association des ressources en eau.

Preul, HC et GJ Schroepfer. 1968. Voyage des composés azotés dans les sols. J Water Polut Control Fed (avril).

Reid, G et R Wood. 1976. Écologie des eaux intérieures et des estuaires. New York : Van Nostrand.

Reish, D. 1979. Pollution marine et estuarienne. J Water Pollut Control Fed 51(6):1477-1517.

Sawyer, CN. 1947. Fertilisation des lacs par drainage agricole et urbain. J New Engl Waterworks Assoc 51:109-127.

Schwela, DH et I Köth-Jahr. 1994. Leitfaden für die Aufstellung von Luftreinhalteplänen [Lignes directrices pour la mise en œuvre de plans de mise en œuvre d'un air pur]. Landesumweltamt des Landes Nordrhein Westfalen.

État de l'Ohio. 1995. Normes de qualité de l'eau. Au Chap. 3745-1 du Code administratif. Columbus, Ohio : EPA de l'Ohio.

Taylor, ST. 1995. Simulation de l'impact de la végétation enracinée sur la dynamique des éléments nutritifs et de l'oxygène dissous dans le cours d'eau à l'aide du modèle diurne OMNI. Dans Actes de la conférence annuelle du WEF. Alexandria, Virginie : Fédération de l'environnement aquatique.

États-Unis et Canada. 1987. Accord révisé relatif à la qualité de l'eau dans les Grands Lacs de 1978 tel que modifié par le protocole signé le 18 novembre 1987. Hull, Québec : Bureau d'enquête publique d'Environnement Canada.

Venkatram, A et J Wyngaard. 1988. Conférences sur la modélisation de la pollution atmosphérique. Boston, Masse : Société météorologique américaine.

Venezia, RA. 1977. Aménagement du territoire et planification des transports. Dans Air Pollution, édité par AC Stern. New York : Presse académique.

Verein Deutscher Ingenieure (VDI) 1981. Ligne directrice 3783, partie 6 : Dispersion régionale des polluants sur un train complexe.
Simulation du champ de vent. Düsseldorf : VDI.

—. 1985. Ligne directrice 3781, partie 3 : Détermination de l'élévation du panache. Düsseldorf : VDI.

—. 1992. Ligne directrice 3782, partie 1 : modèle de dispersion gaussien pour la gestion de la qualité de l'air. Düsseldorf : VDI.

—. 1994. Ligne directrice 3945, partie 1 (ébauche) : Modèle de bouffée gaussien. Düsseldorf : VDI.

—. nd Guideline 3945, Part 3 (en préparation) : Modèles particulaires. Düsseldorf : VDI.

Viessman, W, GL Lewis et JW Knapp. 1989. Introduction à l'hydrologie. New York : Harper & Row.

Vollenweider, RA. 1968. Fondamentaux scientifiques de l'eutrophisation des lacs et des eaux courantes, avec en particulier
Référence aux facteurs d'azote et de phosphore dans l'eutrophisation. Paris : OCDE.

—. 1969. Möglichkeiten et Grenzen elementarer Modelle der Stoffbilanz von Seen. Arch Hydrobiol 66:1-36.

Walch, député. 1992. Examen des mesures de contrôle des émissions des véhicules automobiles et de leur efficacité. In Motor Vehicle Air Pollution, Public Health Impact and Control Measures, édité par D Mage et O Zali. République et Canton de Genève : OMS-Service d'écotoxicologie, Direction de la santé publique.

Fédération de l'environnement de l'eau. 1995. Recueil sur la prévention de la pollution et la minimisation des déchets. Alexandria, Virginie : Fédération de l'environnement aquatique.

Organisation mondiale de la santé (OMS). 1980. Glossaire sur la pollution atmosphérique. Série européenne, n° 9. Copenhague : Publications régionales de l'OMS.

—. 1987. Lignes directrices sur la qualité de l'air pour l'Europe. Série européenne, n° 23. Copenhague : Publications régionales de l'OMS.

Organisation mondiale de la santé (OMS) et Programme des Nations Unies pour l'environnement (PNUE). 1994. GEMS/AIR Methodology Reviews Handbook Series. Vol. 1-4. Quality Insurance in Urban Air Quality Monitoring, Genève : OMS.

—. 1995a. Tendances de la qualité de l'air de la ville. Vol. 1-3. Genève : OMS.

—. 1995b. GEMS/AIR Methodology Reviews Handbook Series. Vol. 5. Lignes directrices pour les examens collaboratifs GEMS/AIR. Genève : OMS.

Yamartino, RJ et G Wiegand. 1986. Développement et évaluation de modèles simples pour les champs d'écoulement, de turbulence et de concentration de polluants dans un canyon urbain. Atmos Environ 20(11):S2137-S2156.