Lundi, Avril 04 2011 19: 04

Chutes d'altitude

Évaluer cet élément
(1 Vote)

Les chutes de hauteur sont des accidents graves qui surviennent dans de nombreuses industries et professions. Les chutes depuis des hauteurs entraînent des blessures qui sont produites par le contact entre la personne qui tombe et la source de la blessure, dans les circonstances suivantes :

  • Le mouvement de la personne et la force d'impact sont générés par la gravité.
  • Le point de contact avec la source de blessure est plus bas que la surface supportant la personne au début de la chute.

 

À partir de cette définition, on peut supposer que les chutes sont inévitables car la gravité est toujours présente. Les chutes sont des accidents, en quelque sorte prévisibles, survenant dans tous les secteurs industriels et professions et ayant une gravité élevée. Des stratégies pour réduire le nombre de chutes, ou du moins réduire la gravité des blessures en cas de chute, sont abordées dans cet article.

La hauteur de la chute

La gravité des blessures causées par les chutes est intrinsèquement liée à la hauteur de chute. Mais ce n'est qu'en partie vrai : l'énergie de la chute libre est le produit de la masse qui tombe par la hauteur de la chute, et la gravité des blessures est directement proportionnelle à l'énergie transférée lors de l'impact. Les statistiques d'accidents de chute confirment cette forte relation, mais montrent également que les chutes d'une hauteur inférieure à 3 m peuvent être mortelles. Une étude détaillée des chutes mortelles dans la construction montre que 10 % des décès causés par des chutes sont survenus d'une hauteur inférieure à 3 m (voir figure 1). Deux questions sont à débattre : la limite légale de 3 m, et où et comment une chute donnée a été arrêtée.

Figure 1. Décès causés par des chutes et hauteur de chute dans l'industrie de la construction aux États-Unis, 1985-1993

ACC080T1

Dans de nombreux pays, la réglementation rend la protection contre les chutes obligatoire lorsque le travailleur est exposé à une chute de plus de 3 m. L'interprétation simpliste est que les chutes de moins de 3 m ne sont pas dangereuses. La limite de 3 m est en fait le résultat d'un consensus social, politique et pratique qui dit qu'il n'est pas obligatoire d'être protégé contre les chutes lorsqu'on travaille à la hauteur d'un seul étage. Même si la limite légale de 3 m pour la protection antichute obligatoire existe, la protection antichute doit toujours être envisagée. La hauteur de chute n'est pas le seul facteur expliquant la gravité des accidents de chute et les décès dus aux chutes ; où et comment la personne qui est tombée s'est immobilisée doivent également être pris en compte. Cela conduit à l'analyse des secteurs industriels où l'incidence des chutes de hauteur est plus élevée.

Où les chutes se produisent

Les chutes de hauteur sont fréquemment associées à l'industrie de la construction car elles représentent un pourcentage élevé de tous les décès. Par exemple, aux États-Unis, 33 % de tous les décès dans la construction sont causés par des chutes de hauteur ; au Royaume-Uni, le chiffre est de 52 %. Des chutes de hauteur se produisent également dans d'autres secteurs industriels. L'exploitation minière et la fabrication de matériel de transport ont un taux élevé de chutes d'altitude. Au Québec, où de nombreuses mines sont des mines souterraines à forte pente et à filons étroits, 20 % de tous les accidents sont des chutes de hauteur. La fabrication, l'utilisation et l'entretien d'équipements de transport tels que les avions, les camions et les wagons sont des activités où le taux d'accidents de chute est élevé (tableau 1). Le ratio variera d'un pays à l'autre selon le niveau d'industrialisation, le climat, etc. mais les chutes de hauteur se produisent dans tous les secteurs avec des conséquences similaires.


Tableau 1. Chutes d'altitude : Québec 1982-1987

                               Chutes de hauteur Chutes de hauteur dans tous les accidents
                               pour 1,000 XNUMX travailleurs

BTP 14.9 10.1%

Industrie lourde 7.1 3.6%


Après avoir pris en considération la hauteur de chute, la prochaine question importante est de savoir comment la chute est arrêtée. Tomber dans des liquides chauds, des rails électrifiés ou dans un concasseur de pierres peut être fatal même si la hauteur de chute est inférieure à 3 m.

Causes des chutes

Jusqu'à présent, il a été démontré que les chutes se produisent dans tous les secteurs économiques, même si la hauteur est inférieure à 3 m. Mais pourquoi do les humains tombent? De nombreux facteurs humains peuvent être impliqués dans une chute. Un large regroupement de facteurs est à la fois conceptuellement simple et utile dans la pratique :

D'ACQUISITIONS tomber sont déterminés par des facteurs environnementaux et entraînent le type de chute le plus courant, à savoir les trébuchements ou les glissades qui entraînent des chutes du niveau du sol. D'autres opportunités de baisse sont liées aux activités au-dessus du niveau du sol.

Passif tomber sont une ou plusieurs des nombreuses maladies aiguës et chroniques. Les maladies spécifiques associées aux chutes affectent généralement le système nerveux, le système circulatoire, le système musculo-squelettique ou une combinaison de ces systèmes.

Tendances tomber résultent des changements universels et intrinsèques de détérioration qui caractérisent le vieillissement normal ou la sénescence. En cas de chute, la capacité à maintenir une posture droite ou une stabilité posturale est la fonction qui échoue en raison de tendances, de passifs et d'opportunités combinés.

Stabilité posturale

Les chutes sont causées par l'incapacité de la stabilité posturale à maintenir une personne en position verticale. La stabilité posturale est un système consistant en de nombreux ajustements rapides aux forces externes perturbatrices, en particulier la gravité. Ces ajustements sont en grande partie des actions réflexes, soutenues par un grand nombre d'arcs réflexes, chacun avec son entrée sensorielle, ses connexions intégratives internes et sa sortie motrice. Les entrées sensorielles sont : la vision, les mécanismes de l'oreille interne qui détectent la position dans l'espace, l'appareil somatosensoriel qui détecte les stimuli de pression sur la peau et la position des articulations portantes. Il apparaît que la perception visuelle joue un rôle particulièrement important. On sait très peu de choses sur les structures et les fonctions normales et intégratives de la moelle épinière ou du cerveau. La composante de sortie motrice de l'arc réflexe est la réaction musculaire.

Vision

L'entrée sensorielle la plus importante est la vision. Deux fonctions visuelles sont liées à la stabilité posturale et au contrôle de la marche :

  • la perception de ce qui est vertical et de ce qui est horizontal est fondamentale pour l'orientation spatiale
  • la capacité de détecter et de discriminer des objets dans des environnements encombrés.

 

Deux autres fonctions visuelles sont importantes :

  • la capacité de stabiliser la direction dans laquelle les yeux sont pointés afin de stabiliser le monde environnant pendant que nous nous déplaçons et d'immobiliser un point de référence visuel
  • la capacité de fixer et de poursuivre des objets définis dans le grand champ ("garder un œil sur"); cette fonction nécessite une attention considérable et entraîne une détérioration de l'exécution de toute autre tâche simultanée exigeant de l'attention.

 

Causes de l'instabilité posturale

Les trois entrées sensorielles sont interactives et interdépendantes. L'absence d'un input – et/ou l'existence de faux input – entraîne une instabilité posturale voire des chutes. Qu'est-ce qui pourrait causer l'instabilité?

Vision

  • l'absence de références verticales et horizontales - par exemple, le connecteur au sommet d'un bâtiment
  • l'absence de références visuelles stables - par exemple, l'eau en mouvement sous un pont et les nuages ​​en mouvement ne sont pas des références stables
  • la fixation d'un objet défini à des fins de travail, ce qui diminue d'autres fonctions visuelles, telles que la capacité de détecter et de discriminer des objets qui peuvent provoquer des trébuchements dans un environnement encombré
  • un objet en mouvement dans un arrière-plan ou une référence en mouvement, par exemple, un composant en acier de construction déplacé par une grue, avec des nuages ​​en mouvement comme arrière-plan et référence visuelle.

 

Oreille interne

  • avoir la tête de la personne à l'envers alors que le système d'équilibre de niveau est à sa performance optimale horizontalement
  • voyager dans un avion pressurisé
  • mouvement très rapide, comme, par exemple, dans une montagne russe
  • maladies.

 

Appareil somatosensoriel (stimuli de pression sur la peau et position des articulations portantes)

  • debout sur un pied
  • membres engourdis de rester dans une position fixe pendant une longue période de temps, par exemple, s'agenouiller
  • bottes rigides
  • membres très froids.

 

Sortie du moteur

  • membres engourdis
  • muscles fatigués
  • maladies, blessures
  • vieillissement, incapacités permanentes ou temporaires
  • vêtements volumineux.

 

La stabilité posturale et le contrôle de la marche sont des réflexes très complexes de l'être humain. Toute perturbation des entrées peut provoquer des chutes. Toutes les perturbations décrites dans cette section sont courantes sur le lieu de travail. Par conséquent, tomber est en quelque sorte naturel et la prévention doit donc primer.

Stratégie de protection contre les chutes

Comme indiqué précédemment, les risques de chutes sont identifiables. Les chutes sont donc évitables. La figure 2 montre une situation très courante où une jauge doit être lue. La première illustration montre une situation classique : un manomètre est installé au sommet d'un réservoir sans moyen d'accès. Dans la seconde, l'ouvrier improvise un moyen d'accès en grimpant sur plusieurs caissons : une situation à risque. Dans le troisième, l'ouvrier utilise une échelle ; c'est une amélioration. Cependant, l'échelle n'est pas fixée de manière permanente au réservoir ; il est donc probable que l'échelle soit utilisée ailleurs dans l'usine lorsqu'une lecture est requise. Une telle situation est possible, avec un équipement antichute ajouté à l'échelle ou au réservoir et avec le travailleur portant un harnais de sécurité complet et utilisant une longe attachée à un ancrage. Le risque de chute d'élévation existe toujours.

Figure 2. Installations pour lire une jauge

ACC080F1

Dans la quatrième illustration, un moyen d'accès amélioré est prévu à l'aide d'un escalier, d'une plate-forme et de garde-corps ; les bénéfices sont une réduction du risque de chute et une augmentation de la facilité de lecture (confort), réduisant ainsi la durée de chaque lecture et offrant une posture de travail stable permettant une lecture plus précise.

La solution correcte est illustrée dans la dernière illustration. Lors de la phase de conception des installations, les activités d'entretien et d'exploitation ont été comptabilisées. La jauge a été installée de manière à pouvoir être lue au niveau du sol. Aucune chute de hauteur n'est possible : le danger est donc éliminé.

Cette stratégie met l'accent sur la prévention des chutes en utilisant les moyens d'accès appropriés (ex. : échafaudages, échelles, escaliers) (Bouchard 1991). Si la chute ne peut être empêchée, des systèmes antichute doivent être utilisés (figure 3). Pour être efficaces, les systèmes antichute doivent être prévus. Le point d'ancrage est un facteur clé et doit être préfabriqué. Les systèmes antichute doivent être efficaces, fiables et confortables ; deux exemples sont donnés dans Arteau, Lan et Corbeil (à paraître) et Lan, Arteau et Corbeil (à paraître). Des exemples de systèmes typiques de prévention et d'arrêt des chutes sont donnés dans le tableau 2. Les systèmes et composants d'arrêt des chutes sont détaillés dans Sulowski 1991.

Figure 3. Stratégie de prévention des chutes

ACC080F6

 

Tableau 2. Systèmes typiques de prévention et d'arrêt des chutes

 

Systèmes de prévention des chutes

Systèmes d'arrêt d'automne

Protection collective

Garde-corps

Filet de sécurité

Protection individuelle

Système de restriction de voyage (TRS)

Harnais, longe, ancrage absorbeur d'énergie, etc.

 

L'accent mis sur la prévention n'est pas un choix idéologique, mais plutôt un choix pratique. Le tableau 3 montre les différences entre la prévention des chutes et l'arrêt des chutes, la solution EPI traditionnelle.

Tableau 3. Différences entre la prévention des chutes et l'arrêt des chutes

 

Prévention

Arrestation

Chute

Non

Oui

Équipement typique

Filières

Harnais, longe, absorbeur d'énergie et ancrage (système antichute)

Charge de conception (force)

1 à 1.5 kN appliqué horizontalement et 0.45 kN appliqué verticalement, tous deux en tout point du rail supérieur

Résistance minimale à la rupture du point d'ancrage

18 à 22 kN

chargement

Statique

Dynamique

 

Pour l'employeur et le concepteur, il est plus facile de construire des systèmes antichute car leurs exigences minimales de résistance à la rupture sont 10 à 20 fois inférieures à celles des systèmes antichute. Par exemple, l'exigence minimale de résistance à la rupture d'un garde-corps est d'environ 1 kN, le poids d'un homme de grande taille, et l'exigence minimale de résistance à la rupture du point d'ancrage d'un système antichute individuel pourrait être de 20 kN, le poids de deux petits voitures ou 1 mètre cube de béton. Avec la prévention, la chute ne se produit pas, donc le risque de blessure n'existe pas. Avec l'arrêt de chute, la chute se produit et même si elle est arrêtée, un risque résiduel de blessure existe.

 

Retour

Lire 7697 fois Dernière modification le Samedi, 20 Août 2011 19:40
Plus dans cette catégorie: " Rouler Espaces confinés "

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références des applications de sécurité

Arteau, J, A Lan et JF Corveil. 1994. Utilisation des lignes de vie horizontales dans l'érection de structures en acier. Actes du symposium international sur la protection contre les chutes, San Diego, Californie (27-28 octobre 1994). Toronto : Société internationale de protection contre les chutes.

Backström, T. 1996. Risque d'accident et protection de la sécurité dans la production automatisée. Thèse de doctorat. Arbete och Hälsa 1996:7. Solna : Institut national de la vie active.

Backström, T et L Harms-Ringdahl. 1984. Une étude statistique des systèmes de contrôle et des accidents du travail. J Occup Acc. 6:201–210.

Backström, T et M Döös. 1994. Défauts techniques à l'origine des accidents dans la production automatisée. Dans Advances in Agile Manufacturing, édité par PT Kidd et W Karwowski. Amsterdam : Presse IOS.

—. 1995. Une comparaison des accidents du travail dans les industries à technologie manufacturière de pointe. Int J Hum Factors Manufac. 5(3). 267–282.

—. Dans la presse. La genèse technique des pannes de machines conduisant à des accidents du travail. Int J Ind Ergonomie.

—. Accepté pour publication. Fréquences absolues et relatives des accidents d'automatisation sur différents types d'équipements et pour différents groupes professionnels. J Saf Rés.

Bainbridge, L. 1983. Ironies de l'automatisation. Automatica 19: 775–779.

Bell, R et D Reinert. 1992. Concepts de risque et d'intégrité du système pour les systèmes de contrôle liés à la sécurité. Saf Sei 15:283–308.

Bouchard, P. 1991. Échafaudages. Guide série 4. Montréal : CSST.

Bureau des affaires nationales. 1975. Normes de sécurité et de santé au travail. Structures de protection en cas de retournement pour matériel de manutention et tracteurs, sections 1926, 1928. Washington, DC : Bureau des affaires nationales.

Corbett, JM. 1988. L'ergonomie dans le développement de l'AMT centré sur l'humain. Ergonomie appliquée 19: 35–39.

Culver, C et C Connolly. 1994. Empêcher les chutes mortelles dans la construction. Saf Health septembre 1994 : 72–75.

Deutsche Industrie Normen (DIN). 1990. Grundsätze für Rechner in Systemen mit Sicherheitsauffgaben. DIN V VDE 0801. Berlin : Beuth Verlag.

—. 1994. Grundsätze für Rechner in Systemen mit Sicherheitsauffgaben Änderung A 1. DIN V VDE 0801/A1. Berlin : Beth Verlag.

—. 1995a. Sicherheit von Maschinen—Druckempfindliche Schutzeinrichtungen [Sécurité des machines — Équipement de protection sensible à la pression]. DIN prEN 1760. Berlin : Beuth Verlag.

—. 1995b. Rangier-Warneinrichtungen—Anforderungen und Prüfung [Véhicules utilitaires — détection d'obstacles en marche arrière — exigences et essais]. Norme DIN 75031. Février 1995.

Döös, M et T Backström. 1993. Description des accidents dans la manutention automatisée des matériaux. Dans Ergonomics of Materials Handling and Information Processing at Work, édité par WS Marras, W Karwowski, JL Smith et L Pacholski. Varsovie : Taylor et Francis.

—. 1994. Les perturbations de la production comme risque d'accident. Dans Advances in Agile Manufacturing, édité par PT Kidd et W Karwowski. Amsterdam : Presse IOS.

Communauté économique européenne (CEE). 1974, 1977, 1979, 1982, 1987. Directives du Conseil sur les structures de protection contre le renversement des tracteurs agricoles et forestiers à roues. Bruxelles : CEE.

—. 1991. Directive du Conseil sur le rapprochement des législations des États membres relatives aux machines. (91/368/CEE) Luxembourg : CEE.

Etherton, JR et ML Myers. 1990. Recherche sur la sécurité des machines au NIOSH et orientations futures. Int J Ind Erg 6: 163–174.

Freund, E, F Dierks et J Roßmann. 1993. Unterschungen zum Arbeitsschutz bei Mobilen Rototern und Mehrrobotersystemen [Tests de sécurité au travail des robots mobiles et des systèmes de robots multiples]. Dortmund : Schriftenreihe der Bundesanstalt für Arbeitsschutz.

Goble, W. 1992. Évaluation de la fiabilité du système de contrôle. New York : Société d'instruments d'Amérique.

Goodstein, LP, HB Anderson et SE Olsen (eds.). 1988. Tâches, erreurs et modèles mentaux. Londres : Taylor et Francis.

Gryfe, CI. 1988. Causes et prévention des chutes. Dans Symposium international sur la protection contre les chutes. Orlando : Société internationale de protection contre les chutes.

Directeur de la santé et de la sécurité. 1989. Statistiques sur la santé et la sécurité 1986–87. Employez Gaz 97(2).

Heinrich, HW, D Peterson et N Roos. 1980. Prévention des accidents industriels. 5e éd. New York : McGraw Hill.

Hollnagel, E, et D Woods. 1983. Ingénierie des systèmes cognitifs : Nouveau vin dans de nouvelles bouteilles. Int J Man Machine Stud 18: 583–600.

Hölscher, H et J Rader. 1984. Microcomputer in der Sicherheitstechnik. Rheinland : Verlag TgV-Reinland.

Hörte, S-Å et P Lindberg. 1989. Diffusion et mise en œuvre des technologies de fabrication avancées en Suède. Document de travail n° 198:16. Institut d'innovation et de technologie.

Commission électrotechnique internationale (CEI). 1992. 122 Projet de norme : Logiciels pour ordinateurs dans l'application de systèmes liés à la sécurité industrielle. CEI 65 (Sec). Genève : CEI.

—. 1993. 123 Projet de norme : Sécurité fonctionnelle des systèmes électriques/électroniques/électroniques programmables ; Aspects génériques. Partie 1, Exigences générales Genève : CEI.

Organisation internationale du travail (OIT). 1965. Sécurité et santé dans le travail agricole. Genève : OIT.

—. 1969. Sécurité et santé dans les travaux forestiers. Genève : OIT.

—. 1976. Construction et utilisation sécuritaires des tracteurs. Un recueil de directives pratiques du BIT. Genève : OIT.

Organisation internationale de normalisation (ISO). 1981. Tracteurs agricoles et forestiers à roues. Ouvrages de protection. Méthode d'essai statique et conditions d'acceptation. ISO 5700. Genève : ISO.

—. 1990. Normes de gestion de la qualité et d'assurance qualité : Lignes directrices pour l'application de la norme ISO 9001 au développement, à la fourniture et à la maintenance de logiciels. ISO 9000-3. Genève : ISO.

—. 1991. Systèmes d'automatisation industrielle—Sécurité des systèmes de fabrication intégrés—Exigences de base (CD 11161). TC 184/WG 4. Genève : ISO.

—. 1994. Véhicules utilitaires—Dispositif de détection d'obstacles en marche arrière—Exigences et essais. Rapport technique TR 12155. Genève : ISO.

Johnson, B. 1989. Conception et analyse de systèmes numériques tolérants aux pannes. New York : Addison Wesley.

Kidd, P. 1994. Fabrication automatisée basée sur les compétences. Dans Organisation and Management of Advanced Manufacturing Systems, édité par W Karwowski et G Salvendy. New York : Wiley.

Knowlton, RE. 1986. Une introduction aux études sur les risques et l'exploitabilité : l'approche du mot guide. Vancouver, C.-B. : Chimie.

Kuivanen, R. 1990. L'impact sur la sécurité des perturbations dans les systèmes de fabrication flexibles. Dans Ergonomics of Hybrid Automated Systems II, édité par W Karwowski et M Rahimi. Amsterdam : Elsevier.

Laeser, RP, WI McLaughlin et DM Wolff. 1987. Fernsteurerung und Fehlerkontrolle von Voyager 2. Spektrum der Wissenshaft (1):S. 60–70.

Lan, A, J Arteau et JF Corbeil. 1994. Protection contre les chutes des panneaux d'affichage hors sol. International Fall Protection Symposium, San Diego, Californie, 27-28 octobre 1994. Actes International Society for Fall Protection.

Langer, HJ et W Kurfürst. 1985. Einsatz von Sensoren zur Absicherung des Rückraumes von Großfahrzeugen [Utilisation de capteurs pour sécuriser la zone derrière les gros véhicules]. FB 605. Dortmund : Schriftenreihe der bundesanstalt für Arbeitsschutz.

Levenson, NG. 1986. Sécurité des logiciels : pourquoi, quoi et comment. Enquêtes informatiques ACM (2):S. 129–163.

McManus, TN. Sd Espaces confinés. Manuscrit.

Microsonic GmbH. 1996. Communication d'entreprise. Dortmund, Allemagne : Microsonic.

Mester, U, T Herwig, G Dönges, B Brodbeck, HD Bredow, M Behrens et U Ahrens. 1980. Gefahrenschutz durch passive Infrarot-Sensoren (II) [Protection contre les dangers par les capteurs infrarouges]. FB 243. Dortmund : Schriftenreihe der bundesanstalt für Arbeitsschutz.

Mohan, D et R Patel. 1992. Conception d'équipements agricoles plus sûrs : Application de l'ergonomie et de l'épidémiologie. Int J Ind Erg 10:301–310.

Association nationale de protection contre les incendies (NFPA). 1993. NFPA 306 : Contrôle des risques de gaz sur les navires. Quincy, MA : NFPA.

Institut national pour la sécurité et la santé au travail (NIOSH). 1994. Décès de travailleurs dans des espaces confinés. Cincinnati, OH, États-Unis : DHHS/PHS/CDCP/NIOSH Pub. N° 94-103. NIOSH.

Neumann, PG. 1987. Les N meilleurs (ou pires) cas de risques liés à l'informatique. IEEE T Syst Man Cyb. New York : S.11–13.

—. 1994. Risques illustratifs pour le public dans l'utilisation des systèmes informatiques et des technologies connexes. Notes du moteur logiciel SIGSOFT 19, No. 1:16–29.

Administration de la sécurité et de la santé au travail (OSHA). 1988. Décès professionnels sélectionnés liés au soudage et au coupage, tels que trouvés dans les rapports d'enquêtes sur les décès/catastrophes de l'OSHA. Washington, DC : OSHA.

Organisation de coopération et de développement économiques (OCDE). 1987. Codes standard pour les essais officiels des tracteurs agricoles. Paris : OCDE.

Organisme professionnel de prévention du bâtiment et des travaux publics (OPPBTP). 1984. Les équipements individuels de protection contre les chutes de hauteur. Boulogne-Bilancourt, France : OPPBTP.

Rasmussen, J. 1983. Compétences, règles et connaissances : ordre du jour, signes et symboles, et autres distinctions dans les modèles de performance humaine. Transactions IEEE sur les systèmes, l'homme et la cybernétique. SMC13(3) : 257–266.

Reason, J. 1990. Erreur humaine. New York : Cambridge University Press.

Reese, CD et GR Mills. 1986. L'épidémiologie traumatique des décès en espace confiné et son application à l'intervention/prévention maintenant. Dans L'évolution de la nature du travail et de la main-d'œuvre. Cincinnati, Ohio : NIOSH.

Reinert, D et G Reuss. 1991. Sicherheitstechnische Beurteilung und Prüfung mikroprozessorgesteuerter
Sicherheitseinrichtungen. Dans BIA-Handbuch. Sicherheitstechnisches Informations-und Arbeitsblatt 310222. Bielefeld : Erich Schmidt Verlag.

Société des ingénieurs automobiles (SAE). 1974. Protection des opérateurs pour les équipements industriels. Norme SAE j1042. Warrendale, États-Unis : SAE.

—. 1975. Critères de performance pour la protection contre le retournement. Pratique recommandée par la SAE. Norme SAE j1040a. Warrendale, États-Unis : SAE.

Schreiber, P. 1990. Entwicklungsstand bei Rückraumwarneinrichtungen [État de l'évolution des dispositifs d'avertissement de zone arrière]. Technische Überwachung, Nr. 4, avril, S. 161.

Schreiber, P et K Kuhn. 1995. Informationstechnologie in der Fertigungstechnik [Technologie de l'information dans la technique de production, série de l'Institut fédéral pour la sécurité et la santé au travail]. FB 717. Dortmund : Schriftenreihe der bundesanstalt für Arbeitsschutz.

Sheridan, T. 1987. Contrôle de surveillance. In Handbook of Human Factors, édité par G. Salvendy. New York : Wiley.

Springfeldt, B. 1993. Effets des règles et mesures de sécurité au travail avec une attention particulière aux blessures. Avantages des solutions fonctionnant automatiquement. Stockholm : Institut royal de technologie, Département des sciences du travail.

Sugimoto, N. 1987. Sujets et problèmes de la technologie de sécurité des robots. Dans Occupational Safety and Health in Automation and Robotics, édité par K Noto. Londres : Taylor & Francis. 175.

Sulowski, AC (éd.). 1991. Principes fondamentaux de la protection contre les chutes. Toronto, Canada : Société internationale de protection contre les chutes.

Wehner, T. 1992. Sicherheit als Fehlerfreundlichkeit. Opladen : Westdeutscher Verlag.

Zimolong, B et L Duda. 1992. Stratégies de réduction des erreurs humaines dans les systèmes de fabrication avancés. Dans Human-robot Interaction, édité par M Rahimi et W Karwowski. Londres : Taylor & Francis.