Samedi, Février 26 2011 17: 53

Industrie des plastiques

Évaluer cet élément
(33 votes)

Adapté de la 3e édition, Encyclopaedia of Occupational Health and Safety

L'industrie des plastiques est divisée en deux grands secteurs, dont l'interrelation est visible sur la figure 1. Le premier secteur comprend les fournisseurs de matières premières qui fabriquent des polymères et des composés de moulage à partir d'intermédiaires qu'ils peuvent également avoir eux-mêmes produits. En termes de capital investi, c'est généralement le plus important des deux secteurs. Le deuxième secteur est composé de transformateurs qui transforment les matières premières en articles commercialisables en utilisant divers procédés tels que l'extrusion et le moulage par injection. D'autres secteurs comprennent les fabricants de machines qui fournissent des équipements aux transformateurs et aux fournisseurs d'additifs spéciaux à utiliser dans l'industrie.

Figure 1. Séquence de production dans le traitement des plastiques

CMP060F2

Fabrication de polymères

Les matières plastiques se divisent en deux grandes catégories distinctes : les matières thermoplastiques, qui peuvent être ramollies à plusieurs reprises par l'application de chaleur et les matières thermodurcissables, qui subissent une modification chimique lorsqu'elles sont chauffées et façonnées et ne peuvent ensuite pas être remodelées par l'application de chaleur. Plusieurs centaines de polymères individuels peuvent être fabriqués avec des propriétés très différentes, mais seulement 20 types constituent environ 90 % de la production mondiale totale. Les thermoplastiques constituent le groupe le plus important et leur production augmente à un rythme supérieur à celui des thermodurcissables. En termes de quantité de production, les thermoplastiques les plus importants sont le polyéthylène et le polypropylène haute et basse densité (les polyoléfines), le chlorure de polyvinyle (PVC) et le polystyrène.

Les résines thermodurcissables importantes sont le phénol-formaldéhyde et l'urée-formaldéhyde, à la fois sous forme de résines et de poudres à mouler. Les résines époxy, les polyesters insaturés et les polyuréthanes sont également importants. Un plus petit volume de «plastiques techniques», par exemple, les polyacétals, les polyamides et les polycarbonates, ont une valeur élevée dans les applications critiques.

L'essor considérable de l'industrie plastique dans le monde de l'après-Seconde Guerre mondiale a été grandement facilité par l'élargissement de la gamme des matières premières de base qui l'alimentent ; la disponibilité et le prix des matières premières sont cruciaux pour toute industrie en développement rapide. Les matières premières traditionnelles n'auraient pas pu fournir d'intermédiaires chimiques en quantités suffisantes à un coût acceptable pour faciliter la production commerciale économique de matières plastiques de gros tonnage et c'est le développement de l'industrie pétrochimique qui a rendu la croissance possible. Le pétrole en tant que matière première est disponible en abondance, facilement transportable et manipulable et était, jusqu'à la crise pétrolière des années 1970, relativement bon marché. Ainsi, partout dans le monde, l'industrie de la plasturgie est principalement liée à l'utilisation d'intermédiaires issus du craquage du pétrole et du gaz naturel. Les matières premières non conventionnelles comme la biomasse et le charbon n'ont pas encore eu d'impact majeur sur l'approvisionnement de l'industrie des plastiques.

L'organigramme de la figure 2 illustre la polyvalence des charges d'alimentation de pétrole brut et de gaz naturel comme points de départ pour les matériaux thermodurcissables et thermoplastiques importants. Après les premiers processus de distillation du pétrole brut, la charge de naphta est soit craquée soit reformée pour fournir des intermédiaires utiles. Ainsi, l'éthylène produit par le procédé de craquage est d'une utilité immédiate pour la fabrication de polyéthylène ou pour une utilisation dans un autre procédé qui fournit un monomère, le chlorure de vinyle, base du PVC. Le propylène, qui apparaît également lors du processus de craquage, est utilisé soit par la voie du cumène, soit par la voie de l'alcool isopropylique pour la fabrication de l'acétone nécessaire au polyméthacrylate de méthyle ; il est également utilisé dans la fabrication d'oxyde de propylène pour les résines de polyester et de polyéther et peut à nouveau être polymérisé directement en polypropylène. Les butènes trouvent une utilisation dans la fabrication de plastifiants et le 1,3-butadiène est utilisé directement pour la fabrication de caoutchouc synthétique. Les hydrocarbures aromatiques tels que le benzène, le toluène et le xylène sont désormais largement produits à partir des dérivés des opérations de distillation du pétrole, au lieu d'être obtenus à partir de procédés de cokéfaction du charbon ; comme le montre l'organigramme, il s'agit d'intermédiaires dans la fabrication de matières plastiques importantes et de produits auxiliaires tels que les plastifiants. Les hydrocarbures aromatiques sont également un point de départ pour de nombreux polymères nécessaires dans l'industrie des fibres synthétiques, dont certains sont discutés ailleurs dans ce Encyclopédie.

Figure 2. Production de matières premières en plastiques

CMP060F3

De nombreux processus très différents contribuent à la production finale d'un article fini entièrement ou partiellement en plastique. Certains processus sont purement chimiques, certains impliquent des procédures de mélange purement mécaniques tandis que d'autres, en particulier ceux vers l'extrémité inférieure du diagramme, impliquent l'utilisation intensive de machines spécialisées. Certaines de ces machines ressemblent à celles utilisées dans les industries du caoutchouc, du verre, du papier et du textile ; le reste est propre à la plasturgie.

Traitement des plastiques

L'industrie de la plasturgie convertit les matériaux polymères en vrac en articles finis.

Matières premières

La section de transformation de l'industrie des matières plastiques reçoit ses matières premières pour la production sous les formes suivantes :

  • matériau polymère entièrement composé, sous forme de pastilles, de granulés ou de poudre, qui est introduit directement dans la machinerie pour le traitement
  • polymère non composé, sous forme de granulés ou de poudre, qui doit être mélangé avec des additifs avant de pouvoir être introduit dans des machines
  • matériaux polymères en feuilles, tiges, tubes et feuilles qui sont transformés ultérieurement par l'industrie
  • matières diverses pouvant être entièrement polymérisées matières sous forme de suspensions ou d'émulsions (généralement appelées latex) ou liquides ou solides pouvant polymériser, ou substances à un état intermédiaire entre les matières premières réactives et le polymère final. Certains d'entre eux sont des liquides et d'autres de véritables solutions de matière partiellement polymérisée dans de l'eau à acidité contrôlée (pH) ou dans des solvants organiques.

 

Aggravant

La fabrication de compound à partir de polymère implique le mélange du polymère avec des additifs. Bien qu'une grande variété de machines soit utilisée à cette fin, lorsqu'il s'agit de poudres, les broyeurs à boulets ou les mélangeurs à hélice à grande vitesse sont les plus courants, et lorsque des masses plastiques sont mélangées, des malaxeurs tels que les rouleaux ouverts ou les mélangeurs de type Banbury , ou les extrudeuses elles-mêmes sont normalement utilisées.

Les additifs requis par l'industrie sont nombreux et varient largement en type chimique. Sur une vingtaine de classes, les plus importantes sont :

  • plastifiants - généralement des esters de faible volatilité
  • antioxydants - produits chimiques organiques pour protéger contre la décomposition thermique pendant le traitement
  • stabilisants - produits chimiques inorganiques et organiques pour protéger contre la décomposition thermique et contre la dégradation due à l'énergie rayonnante
  • lubrifiants
  • charges - matière peu coûteuse pour conférer des propriétés spéciales ou pour déprécier les compositions
  • colorants - matière inorganique ou organique pour colorer les composés
  • agents gonflants - gaz ou produits chimiques qui émettent des gaz pour produire des mousses plastiques.

 

Processus de conversion

Tous les procédés de transformation font appel au phénomène « plastique » des matériaux polymères et se divisent en deux types. Premièrement, ceux où le polymère est amené par la chaleur à un état plastique dans lequel on lui confère une constriction mécanique conduisant à une forme qu'il conserve lors de la consolidation et du refroidissement. D'autre part, ceux dans lesquels un matériau polymérisable - éventuellement partiellement polymérisé - est totalement polymérisé sous l'action de la chaleur, ou d'un catalyseur ou en agissant ensemble sous une contrainte mécanique conduisant à une forme qu'il conserve lorsqu'il est totalement polymérisé et à froid. . La technologie des plastiques s'est développée pour exploiter ces propriétés afin de produire des biens avec un minimum d'effort humain et la plus grande cohérence dans les propriétés physiques. Les processus suivants sont couramment utilisés.

Moulage par compression

Celle-ci consiste à chauffer une matière plastique, qui peut se présenter sous forme de granulés ou de poudre, dans un moule maintenu dans une presse. Lorsque le matériau devient « plastique », la pression l'oblige à épouser la forme du moule. Si le plastique est du type qui durcit au chauffage, l'article formé est retiré après une courte période de chauffage en ouvrant la presse. Si le plastique ne durcit pas au chauffage, un refroidissement doit être effectué avant de pouvoir ouvrir la presse. Les articles fabriqués par moulage par compression comprennent les bouchons de bouteilles, les fermetures de bocaux, les fiches et prises électriques, les sièges de toilette, les plateaux et les articles de fantaisie. Le moulage par compression est également utilisé pour fabriquer une feuille pour un formage ultérieur dans le processus de formage sous vide ou pour être intégrée dans des réservoirs et de grands conteneurs par soudage ou en doublant des réservoirs métalliques existants.

Moulage par transfert

Il s'agit d'une modification du moulage par compression. Le matériau thermodurcissable est chauffé dans une cavité puis forcé par un piston dans le moule, qui est physiquement séparé et chauffé indépendamment de la cavité chauffante. Il est préféré au moulage par compression normal lorsque l'article final doit porter des inserts métalliques délicats comme dans les petits appareillages électriques, ou lorsque, comme dans les objets très épais, l'achèvement de la réaction chimique ne peut pas être obtenu par un moulage par compression normal.

Moulage par injection

Dans ce processus, les granulés ou poudres de plastique sont chauffés dans un cylindre (appelé baril) qui est séparé du moule. Le matériau est chauffé jusqu'à ce qu'il devienne fluide, tandis qu'il est transporté à travers le canon par une vis hélicoïdale, puis forcé dans le moule où il refroidit et durcit. Le moule est ensuite ouvert mécaniquement et les articles formés sont retirés (voir figure 3). Ce procédé est l'un des plus importants de l'industrie des matières plastiques. Il a été largement développé et est devenu capable de fabriquer des articles d'une grande complexité à très faible coût.

Figure 3. Opérateur retirant un bol en polypropylène d'une machine de moulage par injection.

CMP060F1

Bien que le transfert et le moulage par injection soient identiques en principe, les machines utilisées sont très différentes. Le moulage par transfert est normalement limité aux matériaux thermodurcissables et le moulage par injection aux thermoplastiques.

Extrusion

C'est le processus par lequel une machine ramollit un plastique et le force à travers une filière qui lui donne la forme qu'il conserve en refroidissant. Les produits d'extrusion sont des tubes ou des tiges qui peuvent avoir des sections transversales de presque toutes les configurations (voir figure 4). Des tubes à usage industriel ou domestique sont ainsi produits, mais d'autres articles peuvent être fabriqués par des procédés subsidiaires. Par exemple, des sachets peuvent être fabriqués en coupant des tubes et en scellant les deux extrémités, et des sacs à partir de tubes flexibles à paroi mince en coupant et en scellant une extrémité.

Le processus d'extrusion a deux types principaux. Dans l'un, une feuille plate est produite. Cette feuille peut être transformée en produits utiles par d'autres procédés, tels que le formage sous vide.

Figure 4. Extrusion plastique : Le ruban est coupé pour fabriquer des granulés pour les machines de moulage par injection.

CMP060F4

Ray Bécasse

Le second est un processus dans lequel le tube extrudé est formé et, lorsqu'il est encore chaud, il est fortement dilaté par une pression d'air maintenue à l'intérieur du tube. Il en résulte un tube qui peut avoir plusieurs pieds de diamètre avec une paroi très mince. Lors de la découpe, ce tube donne un film largement utilisé dans l'industrie de l'emballage pour l'emballage. En variante, le tube peut être plié à plat pour donner une feuille à deux couches qui peut être utilisée pour fabriquer des sacs simples par découpe et scellage. La figure 5 donne un exemple de ventilation locale appropriée sur un procédé d'extrusion.

Figure 5. Extrusion de plastique avec hotte d'extraction locale et bain d'eau à la tête de l'extrudeuse

CMP060F5

Ray Bécasse

Calandre

Dans ce procédé, un plastique est acheminé vers deux ou plusieurs rouleaux chauffés et forcé dans une feuille en passant à travers un pincement entre deux de ces rouleaux et en refroidissant ensuite. Une feuille plus épaisse que le film est fabriquée de cette manière. Les feuilles ainsi fabriquées sont utilisées dans des applications industrielles et domestiques et comme matière première dans la fabrication de vêtements et d'articles gonflés tels que les jouets (voir figure 6).

Figure 6. Hottes à auvent pour capter les émissions chaudes des broyeurs de préchauffage sur un processus de calandre

CMP060F6

Ray Bécasse

Moulage par soufflage

Ce procédé peut être considéré comme une combinaison du procédé d'extrusion et de thermoformage. Un tube est extrudé vers le bas dans un moule ouvert ; lorsqu'il atteint le fond, le moule est fermé autour de lui et le tube dilaté par la pression de l'air. Ainsi, le plastique est forcé sur les côtés du moule et le haut et le bas scellés. Lors du refroidissement, l'article est sorti du moule. Ce procédé permet de fabriquer des articles creux dont les bouteilles sont les plus importantes.

La résistance à la compression et aux chocs de certains produits plastiques fabriqués par soufflage peut être considérablement améliorée en utilisant des techniques d'étirage-soufflage. Ceci est réalisé en produisant une préforme qui est ensuite expansée par pression d'air et étirée biaxialement. Cela a conduit à une telle amélioration de la résistance à la pression d'éclatement des bouteilles en PVC qu'elles sont utilisées pour les boissons gazeuses.

Rotomoulage

Ce procédé est utilisé pour la production d'articles moulés en chauffant et en refroidissant une forme creuse qui est mise en rotation pour permettre à la gravité de distribuer une poudre ou un liquide finement divisé sur la surface intérieure de cette forme. Les articles produits par cette méthode comprennent des ballons de football, des poupées et d'autres articles similaires.

Casting de film

Outre le processus d'extrusion, des films peuvent être formés en extrudant un polymère chaud sur un tambour métallique hautement poli, ou une solution de polymère peut être pulvérisée sur une bande mobile.

Une application importante de certains plastiques est le revêtement du papier. Dans celui-ci, un film de plastique fondu est extrudé sur du papier dans des conditions dans lesquelles le plastique adhère au papier. Le carton peut être revêtu de la même manière. Le papier et le carton ainsi enduits sont largement utilisés dans l'emballage, et le carton de ce type est utilisé dans la fabrication de boîtes.

Thermoformage

Sous cette rubrique sont regroupés un certain nombre de procédés dans lesquels une feuille d'un matériau plastique, le plus souvent thermoplastique, est chauffée, généralement dans un four, et après serrage sur le pourtour est contrainte à une forme prédéfinie par une pression qui peut être de vérins actionnés mécaniquement ou par air comprimé ou vapeur. Pour les articles très volumineux, la feuille chaude "caoutchouteuse" est malmenée avec des pinces sur les formeurs. Les produits ainsi fabriqués comprennent les luminaires extérieurs, les panneaux publicitaires et directionnels, les baignoires et autres articles de toilette et les lentilles de contact.

Formage sous vide

Il existe de nombreux procédés qui relèvent de cette rubrique générale, qui sont tous des aspects du formage thermique, mais ils ont tous en commun qu'une feuille de plastique est chauffée dans une machine au-dessus d'une cavité, autour du bord de laquelle elle est serrée, et lorsqu'il est pliable, il est forcé par aspiration dans la cavité, où il prend une forme spécifique et se refroidit. Dans une opération ultérieure, l'article est découpé de la feuille. Ces procédés produisent des récipients à parois minces de tous types à très bon marché, ainsi que des articles de présentation et de publicité, des plateaux et des articles similaires, et des matériaux absorbant les chocs pour emballer des produits tels que des gâteaux de fantaisie, des fruits rouges et de la viande découpée.

Laminage

Dans tous les différents procédés de stratification, deux ou plusieurs matériaux sous forme de feuilles sont comprimés pour donner une feuille ou un panneau consolidé aux propriétés spéciales. A un extrême se trouvent des stratifiés décoratifs fabriqués à partir de résines phénoliques et aminées, à l'autre des films complexes utilisés dans les emballages ayant, par exemple, de la cellulose, du polyéthylène et une feuille métallique dans leur constitution.

Processus de la technologie des résines

Celles-ci comprennent la fabrication de contreplaqué, la fabrication de meubles et la construction d'articles volumineux et élaborés tels que des carrosseries de voitures et des coques de bateaux à partir de fibres de verre imprégnées de résines polyester ou époxy. Dans tous ces procédés, une résine liquide est amenée à se consolider sous l'action de la chaleur ou d'un catalyseur et ainsi lier ensemble des particules ou fibres discrètes ou des films ou feuilles mécaniquement faibles, résultant en un panneau robuste de construction rigide. Ces résines peuvent être appliquées par des techniques de pose manuelles telles que le brossage et le trempage ou par pulvérisation.

De petits objets tels que des souvenirs et des bijoux en plastique peuvent également être fabriqués par moulage, où la résine liquide et le catalyseur sont mélangés et versés dans un moule.

Processus de finition

Sous cette rubrique sont inclus un certain nombre de processus communs à de nombreuses industries, par exemple l'utilisation de peintures et d'adhésifs. Il existe cependant un certain nombre de techniques spécifiques utilisées pour le soudage des plastiques. Celles-ci incluent l'utilisation de solvants tels que les hydrocarbures chlorés, la méthyléthylcétone (MEK) et le toluène, qui sont utilisés pour lier ensemble des feuilles de plastique rigides pour la fabrication générale, les présentoirs publicitaires et les travaux similaires. Le rayonnement radiofréquence (RF) utilise une combinaison de pression mécanique et de rayonnement électromagnétique avec des fréquences généralement comprises entre 10 et 100 mHz. Cette méthode est couramment utilisée pour souder des matières plastiques souples dans la fabrication de portefeuilles, porte-documents et poussettes pour enfants (voir l'encadré ci-joint). Les énergies ultrasonores sont également utilisées en combinaison avec la pression mécanique pour une gamme de travail similaire.

 


Éléments chauffants et scellants diélectriques RF

Les appareils de chauffage et les scellants à radiofréquence (RF) sont utilisés dans de nombreuses industries pour chauffer, fondre ou durcir des matériaux diélectriques, tels que les plastiques, le caoutchouc et la colle, qui sont des isolants électriques et thermiques et difficiles à chauffer à l'aide de méthodes normales. Les radiateurs RF sont couramment utilisés pour sceller le chlorure de polyvinyle (par exemple, la fabrication de produits en plastique tels que les imperméables, les housses de siège et les matériaux d'emballage) ; durcissement des colles utilisées dans le travail du bois; gaufrage et séchage de textiles, papier, cuir et matières plastiques; et le durcissement de nombreux matériaux contenant des résines plastiques.

Les radiateurs RF utilisent un rayonnement RF dans la gamme de fréquences de 10 à 100 MHz avec une puissance de sortie de moins de 1 kW à environ 100 kW pour produire de la chaleur. Le matériau à chauffer est placé entre deux électrodes sous pression, et la puissance RF est appliquée pendant des durées allant de quelques secondes à environ une minute, selon l'utilisation. Les radiateurs RF peuvent produire des champs électriques et magnétiques RF parasites élevés dans l'environnement environnant, en particulier si les électrodes ne sont pas blindées.

L'absorption d'énergie RF par le corps humain peut provoquer un échauffement localisé et global du corps, ce qui peut avoir des effets néfastes sur la santé. La température corporelle peut augmenter de 1 °C ou plus, ce qui peut entraîner des effets cardiovasculaires tels qu'une augmentation de la fréquence cardiaque et du débit cardiaque. Les effets localisés comprennent des cataractes oculaires, une diminution du nombre de spermatozoïdes dans le système reproducteur masculin et des effets tératogènes chez le fœtus en développement.

Les dangers indirects comprennent les brûlures RF dues au contact direct avec les parties métalliques de l'appareil de chauffage qui sont douloureuses, profondes et lentes à guérir ; engourdissement des mains; et les effets neurologiques, y compris le syndrome du canal carpien et les effets sur le système nerveux périphérique.

Contrôles

Les deux types de commandes de base qui peuvent être utilisés pour réduire les risques liés aux appareils de chauffage RF sont les pratiques de travail et le blindage. Le blindage, bien sûr, est préférable, mais des procédures d'entretien appropriées et d'autres pratiques de travail peuvent également réduire l'exposition. La limitation de la durée d'exposition de l'opérateur, un contrôle administratif, a également été utilisée.

Des procédures d'entretien ou de réparation appropriées sont importantes car le fait de ne pas réinstaller correctement le blindage, les verrouillages, les panneaux de l'armoire et les fixations peut entraîner des fuites RF excessives. De plus, l'alimentation électrique de l'appareil de chauffage doit être déconnectée et verrouillée ou étiquetée pour protéger le personnel d'entretien.

Les niveaux d'exposition de l'opérateur peuvent être réduits en gardant les mains et le haut du corps de l'opérateur aussi loin que possible du radiateur RF. Les panneaux de commande de l'opérateur pour certains appareils de chauffage automatisés sont positionnés à distance des électrodes de chauffage en utilisant des plateaux de navette, des tables tournantes ou des bandes transporteuses pour alimenter l'appareil de chauffage.

L'exposition du personnel opérationnel et non opérationnel peut être réduite en mesurant les niveaux RF. Étant donné que les niveaux RF diminuent avec l'augmentation de la distance par rapport à l'appareil de chauffage, une « zone de risque RF » peut être identifiée autour de chaque appareil de chauffage. Les travailleurs peuvent être avertis de ne pas occuper ces zones dangereuses lorsque le radiateur RF est en marche. Dans la mesure du possible, des barrières physiques non conductrices doivent être utilisées pour maintenir les personnes à une distance de sécurité.

Idéalement, les radiateurs RF devraient avoir un boîtier blindé autour de l'applicateur RF pour contenir le rayonnement RF. Le blindage et tous les joints doivent avoir une conductivité élevée pour les courants électriques intérieurs qui circuleront dans les murs. Il doit y avoir aussi peu d'ouvertures que possible dans le blindage et elles doivent être aussi petites que possible pour le fonctionnement. Les ouvertures doivent être orientées à l'opposé de l'opérateur. Les courants dans le blindage peuvent être minimisés en ayant des conducteurs séparés à l'intérieur de l'armoire pour conduire les courants élevés. Le radiateur doit être correctement mis à la terre, avec le fil de terre dans le même tuyau que la ligne électrique. L'appareil de chauffage doit avoir des verrouillages appropriés pour éviter l'exposition à des tensions élevées et à des émissions RF élevées.

Il est beaucoup plus facile d'intégrer ce blindage dans les nouvelles conceptions de radiateurs RF du fabricant. La rénovation est plus difficile. Les boîtiers peuvent être efficaces. Une mise à la terre appropriée peut également souvent être efficace pour réduire les émissions RF. Les mesures RF doivent être prises avec soin par la suite pour s'assurer que les émissions RF ont effectivement été réduites. La pratique consistant à enfermer l'appareil de chauffage dans une pièce à écran métallique peut en fait augmenter l'exposition si l'opérateur se trouve également dans cette pièce, bien qu'elle réduise les expositions à l'extérieur de la pièce.

Source : ICNIRP sous presse.


 

Les dangers et leur prévention

Fabrication de polymères

Les risques particuliers de l'industrie des polymères sont étroitement liés à ceux de l'industrie pétrochimique et dépendent dans une large mesure des substances utilisées. Les dangers pour la santé des matières premières individuelles se trouvent ailleurs dans ce Encyclopédie. Le danger d'incendie et d'explosion est un danger général important. De nombreux procédés polymères/résines présentent un risque d'incendie et d'explosion en raison de la nature des matières premières primaires utilisées. Si des mesures de protection adéquates ne sont pas prises, il existe parfois un risque pendant la réaction, généralement à l'intérieur de bâtiments partiellement clos, que des gaz ou des liquides inflammables s'échappent à des températures supérieures à leurs points d'éclair. Si les pressions impliquées sont très élevées, il convient de prévoir une ventilation adéquate dans l'atmosphère. Une accumulation excessive de pression due à des réactions exothermiques rapides et inattendues peut se produire et la manipulation de certains additifs et la préparation de certains catalyseurs peuvent augmenter le risque d'explosion ou d'incendie. L'industrie s'est penchée sur ces problèmes et, en particulier sur la fabrication des résines phénoliques, a produit des notes d'orientation détaillées sur l'ingénierie de conception des usines et les procédures d'exploitation sûres.

Traitement des plastiques

L'industrie de transformation des matières plastiques présente des risques de blessures en raison des machines utilisées, des risques d'incendie en raison de la combustibilité des plastiques et de leurs poudres et des risques pour la santé en raison des nombreux produits chimiques utilisés dans l'industrie.

blessures

Le principal domaine de blessures se situe dans le secteur de la transformation des matières plastiques de l'industrie des matières plastiques. La majorité des processus de conversion des plastiques dépendent presque entièrement de l'utilisation de machines. En conséquence, les principaux risques sont ceux associés à l'utilisation de telles machines, non seulement pendant le fonctionnement normal mais aussi pendant le nettoyage, le réglage et l'entretien des machines.

Les machines de compression, de transfert, d'injection et de soufflage ont toutes des plateaux de presse avec une force de verrouillage de plusieurs tonnes par centimètre carré. Des protections adéquates doivent être installées pour éviter les amputations ou les blessures par écrasement. Ceci est généralement réalisé en enfermant les parties dangereuses et en interverrouillant les protecteurs mobiles avec les commandes de la machine. Un protecteur à verrouillage ne doit pas permettre un mouvement dangereux à l'intérieur de la zone protégée lorsque le protecteur est ouvert et doit arrêter les parties dangereuses ou inverser le mouvement dangereux si le protecteur est ouvert pendant le fonctionnement de la machine.

Lorsqu'il existe un risque grave de blessure sur des machines telles que les plateaux des machines de moulage et un accès régulier à la zone de danger, une norme de verrouillage plus élevée est alors requise. Ceci peut être réalisé par un deuxième dispositif de verrouillage indépendant au niveau du protecteur pour interrompre l'alimentation électrique et empêcher un mouvement dangereux lorsqu'il est ouvert.

Pour les processus impliquant des feuilles de plastique, un danger courant pour les machines est la formation de pièges entre les rouleaux ou entre les rouleaux et la feuille en cours de traitement. Ceux-ci se produisent au niveau des rouleaux tendeurs et des dispositifs de transport dans les usines d'extrusion et les calandres. La sécurisation peut être réalisée en utilisant un déclencheur convenablement placé, qui amène immédiatement les rouleaux à l'arrêt ou inverse le mouvement dangereux.

De nombreuses machines de traitement des matières plastiques fonctionnent à des températures élevées et des brûlures graves peuvent survenir si des parties du corps entrent en contact avec du métal ou du plastique chaud. Dans la mesure du possible, ces pièces doivent être protégées lorsque la température dépasse 50 ºC. De plus, les blocages qui se produisent sur les presses à injecter et les extrudeuses peuvent se libérer violemment. Un système de travail sûr doit être suivi lors d'une tentative de libération de bouchons de plastique gelés, qui doit inclure l'utilisation de gants appropriés et d'une protection faciale.

La plupart des fonctions des machines modernes sont désormais contrôlées par des systèmes de commande électronique programmés ou des systèmes informatiques qui peuvent également contrôler des dispositifs de décollage mécaniques ou sont liés à des robots. Sur les nouvelles machines, un opérateur a moins besoin de s'approcher des zones dangereuses et il s'ensuit que la sécurité sur les machines devrait s'améliorer en conséquence. Il y a cependant un plus grand besoin de poseurs et d'ingénieurs pour aborder ces parties. Il est donc essentiel qu'un programme de verrouillage/étiquetage adéquat soit institué avant que ce type de travail ne soit effectué, en particulier lorsqu'une protection complète par les dispositifs de sécurité de la machine ne peut pas être obtenue. De plus, des systèmes de secours ou d'urgence adéquats devraient être conçus et conçus pour faire face aux situations où la commande programmée tombe en panne pour quelque raison que ce soit, par exemple en cas de perte de l'alimentation électrique.

Il est important que les machines soient correctement disposées dans l'atelier avec de bons espaces de travail dégagés pour chacune. Cela aide à maintenir des normes élevées de propreté et d'ordre. Les machines elles-mêmes doivent également être correctement entretenues et les dispositifs de sécurité doivent être vérifiés régulièrement.

Un bon entretien ménager est essentiel et une attention particulière doit être portée à la propreté des sols. Sans un nettoyage de routine, les sols seront gravement contaminés par l'huile de machine ou les granulés de plastique renversés. Des méthodes de travail comprenant des moyens d'accès sûrs aux zones au-dessus du niveau du sol doivent également être envisagées et fournies.

Un espacement adéquat doit également être prévu pour le stockage des matières premières et des produits finis ; ces zones doivent être clairement désignées.

Les plastiques sont de bons isolants électriques et, à cause de cela, des charges statiques peuvent s'accumuler sur les machines sur lesquelles la feuille ou le film se déplace. Ces charges peuvent avoir un potentiel suffisamment élevé pour provoquer un accident grave ou agir comme source d'inflammation. Des éliminateurs d'électricité statique doivent être utilisés pour réduire ces charges et des pièces métalliques correctement mises à la terre ou mises à la terre.

De plus en plus, les déchets de matières plastiques sont retraités à l'aide de granulateurs et mélangés avec du nouveau stock. Les granulateurs doivent être totalement fermés pour empêcher toute possibilité d'atteindre les rotors par les ouvertures de décharge et d'alimentation. La conception des ouvertures d'alimentation sur les grandes machines doit être telle qu'elle empêche l'entrée du corps entier. Les rotors fonctionnent à grande vitesse et les couvercles ne doivent pas être retirés tant qu'ils ne se sont pas immobilisés. Lorsque des protecteurs de verrouillage sont installés, ils doivent empêcher tout contact avec les lames jusqu'à ce qu'elles soient complètement arrêtées.

Risques d'incendie et d'explosion

Les plastiques sont des matériaux combustibles, bien que tous les polymères ne supportent pas la combustion. Sous forme de poudre finement divisée, beaucoup peuvent former des concentrations explosives dans l'air. En cas de risque, les poudres doivent être contrôlées, de préférence dans un système fermé, avec des panneaux de décharge suffisants évacuant à basse pression (environ 0.05 bar) vers un endroit sûr. Une propreté scrupuleuse est essentielle pour éviter les accumulations dans les locaux de travail qui pourraient être en suspension dans l'air et provoquer une explosion secondaire.

Les polymères peuvent être soumis à une dégradation thermique et à une pyrolyse à des températures pas très supérieures aux températures de traitement normales. Dans ces circonstances, des pressions suffisantes peuvent s'accumuler dans le cylindre d'une extrudeuse, par exemple, pour éjecter du plastique fondu et tout bouchon solide de plastique provoquant un blocage initial.

Les liquides inflammables sont couramment utilisés dans cette industrie, par exemple, comme peintures, adhésifs, agents de nettoyage et dans le soudage au solvant. Les résines de fibre de verre (polyester) dégagent également des vapeurs de styrène inflammables. Les stocks de ces liquides doivent être réduits au minimum dans la salle de travail et stockés dans un endroit sûr lorsqu'ils ne sont pas utilisés. Les zones de stockage doivent comprendre des endroits sûrs à l'air libre ou un magasin résistant au feu.

Les peroxydes utilisés dans la fabrication de résines plastiques renforcées de verre (GRP) doivent être stockés séparément des liquides inflammables et autres matériaux combustibles et non soumis à des températures extrêmes car ils sont explosifs lorsqu'ils sont chauffés.

Dangers pour la santé

Il existe un certain nombre de risques potentiels pour la santé associés au traitement des plastiques. Les plastiques bruts sont rarement utilisés seuls et des précautions appropriées doivent être prises concernant les additifs utilisés dans les différentes formulations. Les additifs utilisés comprennent les savons au plomb dans le PVC et certains colorants organiques et au cadmium.

Il existe un risque important de dermatite à partir de liquides et de poudres généralement issus de « produits chimiques réactifs » tels que les résines phénol-formaldéhyde (avant la réticulation), les uréthanes et les résines de polyester insaturé utilisées dans la production de produits en PRV. Des vêtements de protection appropriés doivent être portés.

Il est possible que des fumées soient générées par la dégradation thermique des polymères lors du traitement à chaud. Les contrôles techniques peuvent minimiser le problème. Des précautions particulières doivent toutefois être prises pour éviter l'inhalation de produits de pyrolyse dans des conditions défavorables, par exemple lors de la purge du cylindre de l'extrudeuse. Des conditions de bon LEV peuvent être nécessaires. Des problèmes sont survenus, par exemple, lorsque des opérateurs ont été submergés par le gaz acide chlorhydrique et ont souffert de la «fièvre des polymères» suite à une surchauffe du PVC et du polytétrafluoréthylène (PTFE), respectivement. L'encadré qui l'accompagne détaille certains produits de décomposition chimique des plastiques.


 

Tableau 1. Produits volatils de la décomposition des plastiques (composants de référence)*

*Reproduit de BIA 1997, avec permission.

Dans de nombreux secteurs industriels, les plastiques sont soumis à des contraintes thermiques. Les températures vont de valeurs relativement basses dans le traitement des matières plastiques (par exemple, 150 à 250 ºC) à des cas extrêmes, par exemple, lorsque des tôles peintes ou des tuyaux revêtus de plastique sont soudés). La question qui se pose constamment dans de tels cas est de savoir si des concentrations toxiques de produits volatils de pyrolyse se produisent dans les zones de travail.

Pour répondre à cette question, il faut d'abord déterminer les substances rejetées, puis mesurer les concentrations. Bien que la deuxième étape soit en principe réalisable, il n'est généralement pas possible de déterminer les produits de pyrolyse pertinents sur le terrain. Le Berufsgenossenschaftliches Institut für Arbeitssicherheit (BIA) étudie donc ce problème depuis des années et, au cours de nombreux tests en laboratoire, a déterminé des produits de décomposition volatils pour les plastiques. Les résultats des tests pour les différents types de plastique ont été publiés (Lichtenstein et Quellmalz 1984, 1986a, 1986b, 1986c).

Voici un bref résumé des résultats à ce jour. Ce tableau est destiné à aider tous ceux qui sont confrontés à la tâche de mesurer les concentrations de substances dangereuses dans les zones de travail concernées. Les produits de décomposition répertoriés pour les différents plastiques peuvent servir de "composants de référence". Il convient toutefois de rappeler que la pyrolyse peut donner lieu à des mélanges de substances très complexes, leurs compositions dépendant de nombreux facteurs.

Le tableau ne prétend donc pas être complet en ce qui concerne les produits de pyrolyse cités comme composants de référence (tous déterminés lors d'expériences en laboratoire). La présence d'autres substances présentant des risques potentiels pour la santé ne peut être exclue. Il est pratiquement impossible d'enregistrer complètement toutes les substances présentes.

Plastique

Abréviation

Substances volatiles

Polyoxyméthylène

POM

Formaldéhyde

Résines époxy à base de
bisphénol A

 

Phénol

Caoutchouc chloroprène

CR

Chloroprène(2-chlorobuta-1,3-diène),
chlorure d'hydrogène

polystyrène

PS

Styrène

Acrylonitrile butadiène styrène-
copolymère

ABS

Styrène, 1,3-butadiène, acrylonitrile

Copolymère styrène-acrylonitrile

SAN

Acrylonitrile, styrène

Polycarbonate

PC

Phénol

Chlorure de polyvinyle

PVC

Chlorure d'hydrogène, plastifiants
(souvent des esters d'acide phtalique tels
comme phtalate de dioctyle, phtalate de dibutyle)

Polyamide 6

PA 6

e-caprolactame

Polyamide 66

PA 66

Cyclopentanone,
hexaméthylènediamine

Polyéthylène

PEHD, PEBD

Hydrocarbures aliphatiques insaturés,
aldéhydes aliphatiques

Polytétrafluoroéthylène

PTFE

Insaturé perfluoré
hydrocarbures (par exemple, tétrafluoroéthylène,
hexafluoropropène, octafluorobutène)

Le polyméthacrylate de méthyle

PMMA

Le méthacrylate de méthyle

polyuréthane

PUR

Selon le type, très variable
produits de décomposition
(par exemple, les CFC1 comme agents moussants,
éther et éther de glycol,
diisocyanates, acide cyanhydrique,
2 amines aromatiques chlorées
esters d'acide phosphorique comme flamme
agent de protection)

polypropylène

PP

Aliphatique insaturé et saturé
les hydrocarbures

Entéréphtalate de polybutyle
(polyester)

PBTP

1,3-butadiène, benzène

Polyacrylonitrile

PAN

Acrylonitrile, cyanure d'hydrogène2

Acétate de cellulose

CA

Acide acétique

Norbert Lichtenstein

1 L'utilisation s'arrête.
2 N'a pas pu être détecté avec la technique analytique utilisée (GC/MS) mais est connu de la littérature.

 


 

Il existe également un danger d'inhalation de vapeurs toxiques de certaines résines thermodurcissables. L'inhalation d'isocyanates utilisés avec des résines de polyuréthane peut entraîner une pneumonie chimique et un asthme sévère et, une fois sensibilisées, les personnes doivent être transférées vers un autre travail. Un problème similaire existe avec les résines de formaldéhyde. Dans ces deux exemples, un niveau élevé de LEV est nécessaire. Lors de la fabrication d'articles en PRV, des quantités importantes de vapeur de styrène sont dégagées et ce travail doit être effectué dans des conditions de bonne ventilation générale de l'atelier.

Certains risques sont également communs à un certain nombre d'industries. Celles-ci comprennent l'utilisation de solvants pour la dilution ou aux fins mentionnées précédemment. Les hydrocarbures chlorés sont couramment utilisés pour le nettoyage et le collage et sans une ventilation par aspiration adéquate, les personnes peuvent très bien souffrir de narcose.

L'élimination des déchets de plastique par combustion doit se faire dans des conditions soigneusement contrôlées ; par exemple, le PTFE et les uréthanes doivent se trouver dans une zone où les vapeurs sont évacuées vers un endroit sûr.

Des niveaux de bruit très élevés sont généralement obtenus lors de l'utilisation de broyeurs, ce qui peut entraîner une perte d'audition pour les opérateurs et les personnes travaillant à proximité. Ce risque peut être limité en séparant cet équipement des autres zones de travail. De préférence, les niveaux de bruit doivent être réduits à la source. Ceci a été réalisé avec succès en enduisant le granulateur d'un matériau insonorisant et en installant des chicanes à l'ouverture d'alimentation. Il peut également y avoir un danger pour l'ouïe créé par le son audible produit par les machines de soudage par ultrasons en tant qu'accompagnement normal des énergies ultrasonores. Des boîtiers appropriés peuvent être conçus pour réduire les niveaux de bruit reçus et peuvent être verrouillés pour éviter un risque mécanique. Comme norme minimale, les personnes travaillant dans des zones à haut niveau de bruit doivent porter une protection auditive appropriée et il doit y avoir un programme de conservation de l'ouïe adapté, comprenant des tests audiométriques et une formation.

Les brûlures sont également un danger. Certains additifs et catalyseurs pour la production et le traitement des matières plastiques peuvent être très réactifs au contact de l'air et de l'eau et peuvent facilement provoquer des brûlures chimiques. Partout où des thermoplastiques fondus sont manipulés ou transportés, il existe un risque d'éclaboussures de matière chaude et de brûlures et d'échaudures. La gravité de ces brûlures peut être augmentée par la tendance des thermoplastiques chauds, comme la cire chaude, à adhérer à la peau.

Les peroxydes organiques sont irritants et peuvent provoquer la cécité en cas de projection dans les yeux. Une protection oculaire appropriée doit être portée.

 

Retour

Lire 47420 fois Dernière modification le Mercredi, Octobre 19 2011 20: 00

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références de traitement chimique

Adams, WV, RR Dingman et JC Parker. 1995. Technologie d'étanchéité double gaz pour pompes. Actes du 12e Symposium international des utilisateurs de pompes. Mars, College Station, TX.

Institut américain du pétrole (API). 1994. Systèmes d'étanchéité d'arbre pour pompes centrifuges. Norme API 682. Washington, DC : API.

Auger, JE. 1995. Construire un programme PSM approprié à partir de zéro. Progrès du génie chimique 91: 47-53.

Bahner, M. 1996. Les outils de mesure de niveau maintiennent le contenu du réservoir à sa place. Monde de l'ingénierie environnementale 2: 27-31.

Balzer, K. 1994. Stratégies d'élaboration de programmes de biosécurité dans les installations de biotechnologie. Présenté au 3e Symposium national sur la biosécurité, 1er mars, Atlanta, GA.

Barletta, T, R Bayle et K Kennelley. 1995. Fond de réservoir de stockage TAPS : Équipé d'une connexion améliorée. Journal du pétrole et du gaz 93: 89-94.

Bartknecht, W. 1989. Explosions de poussière. New York : Springer-Verlag.

Basta, N. 1994. La technologie soulève le nuage de COV. Génie chimique 101:43-48.

Bennett, AM. 1990. Dangers pour la santé en biotechnologie. Salisbury, Wiltshire, Royaume-Uni : Division des produits biologiques, Service de laboratoire de santé publique, Centre de microbiologie appliquée et de recherche.

Berufsgenossenschaftlices Institut für Arbeitssicherheit (BIA). 1997. Mesure des substances dangereuses : Détermination de l'exposition aux agents chimiques et biologiques. Dossier de travail BIA. Bielefeld : Erich Schmidt Verlag.

Bewanger, PC et RA Krecter. 1995. Rendre « sûres » les données de sécurité. Génie chimique 102:62-66.

Boicourt, GW. 1995. Conception du système de secours d'urgence (ERS) : Une approche intégrée utilisant la méthodologie DIERS. Progrès de la sécurité des processus 14:93-106.

Carroll, LA et EN Ruddy. 1993. Sélectionnez la meilleure stratégie de contrôle des COV. Progrès du génie chimique 89: 28-35.

Centre pour la sécurité des procédés chimiques (CCPS). 1988. Directives pour le stockage et la manipulation en toute sécurité des matériaux à haut risque toxique. New York : Institut américain des ingénieurs chimistes.

—. 1993. Lignes directrices pour la conception technique pour la sécurité des procédés. New York : Institut américain des ingénieurs chimistes.
Cesana, C et R Siwek. 1995. Comportement d'inflammation des poussières, signification et interprétation. Progrès de la sécurité des processus 14:107-119.

Nouvelles de la chimie et de l'ingénierie. 1996. Faits et chiffres de l'industrie chimique. C&EN (24 juin):38-79.

Association des fabricants de produits chimiques (AMC). 1985. Gestion de la sécurité des procédés (contrôle des risques aigus). Washington, DC : CMA.

Comité sur les molécules d'ADN recombinant, Assemblée des sciences de la vie, Conseil national de la recherche, Académie nationale des sciences. 1974. Lettre à l'éditeur. Sciences 185:303.

Conseil des Communautés européennes. 1990a. Directive du Conseil du 26 novembre 1990 concernant la protection des travailleurs contre les risques liés à l'exposition à des agents biologiques au travail. 90/679/CEE. Journal officiel des Communautés européennes 50(374):1-12.

—. 1990b. Directive du Conseil du 23 avril 1990 concernant la dissémination volontaire dans l'environnement d'organismes génétiquement modifiés. 90/220/CEE. Journal officiel des Communautés européennes 50(117): 15-27.

Dow Chemical Company. 1994a. Dow's Fire & Explosion Index Hazard Classification Guide, 7e édition. New York : Institut américain des ingénieurs chimistes.

—. 1994b. Guide de l'indice d'exposition chimique de Dow. New York : Institut américain des ingénieurs chimistes.

Ebadat, V. 1994. Essais pour évaluer les risques d'incendie et d'explosion de votre poudre. Ingénierie en poudre et en vrac 14: 19-26.
Agence de protection de l'environnement (EPA). 1996. Lignes directrices proposées pour l'évaluation des risques écologiques. Registre fédéral 61.

Fone, CJ. 1995. L'application de l'innovation et de la technologie au confinement des joints d'arbre. Présenté à la First European Conference on Controlling Fugitive Emissions from Valves, Pumps, and Flanges, 18-19 octobre, Anvers.

Foudin, AS et Gay C. 1995. Introduction de micro-organismes génétiquement modifiés dans l'environnement : Examen sous l'autorité de réglementation de l'USDA et de l'APHIS. Dans Engineered Organisms in Environmental Settings: Biotechnological and Agricultural Applications, édité par MA Levin et E Israel. Boca Raton, Floride : CRC Press.

Freifelder, D (éd.). 1978. La controverse. Dans l'ADN recombinant. San Francisco, Californie : WH Freeman.

Garzia, HW et JA Senecal. 1996. Protection contre les explosions des systèmes de tuyauterie véhiculant des poussières combustibles ou des gaz inflammables. Présenté au 30th Loss Prevention Symposium, 27 février, New Orleans, LA.

Vert, DW, JO Maloney et RH Perry (eds.). 1984. Manuel de l'ingénieur chimique de Perry, 6e édition. New York : McGraw Hill.

Hagen, T et R Rials. 1994. La méthode de détection des fuites garantit l'intégrité des réservoirs de stockage à double fond. Oil & Gas Journal (14 novembre).

Ho, MW. 1996. Les technologies transgéniques actuelles sont-elles sûres ? Présenté à l'atelier sur le renforcement des capacités en biosécurité pour les pays en développement, 22-23 mai, Stockholm.

Association de biotechnologie industrielle. 1990. Biotechnologie en perspective. Cambridge, Royaume-Uni : Hobsons Publishing plc.

Assureurs des Risques Industriels (IRI). 1991. Disposition et espacement des usines pour les usines pétrolières et chimiques. Manuel d'information IRI 2.5.2. Hartford, Connecticut : IRI.

Commission internationale de protection contre les rayonnements non ionisants (ICNIRP). Dans la presse. Guide pratique pour la sécurité dans l'utilisation des éléments chauffants et scellants diélectriques RF. Genève : OIT.

Lee, SB et LP Ryan. 1996. Santé et sécurité au travail dans l'industrie de la biotechnologie : Une enquête auprès des professionnels en exercice. Am Ind Hyg Assoc J 57:381-386.

Legaspi, JA et C Zenz. 1994. Aspects de santé au travail des pesticides : Principes cliniques et hygiéniques. In Occupational Medicine, 3e édition, édité par C Zenz, OB Dickerson et EP Horvath. Saint-Louis: Mosby-Year Book, Inc.

Lipton, S et JR Lynch. 1994. Manuel de contrôle des risques pour la santé dans l'industrie des procédés chimiques. New York : John Wiley & Fils.

Liberman, DF, AM Ducatman et R Fink. 1990. Biotechnologie : Y a-t-il un rôle pour la surveillance médicale ? Dans Bioprocessing Safety: Worker and Community Safety and Health Considerations. Philadelphie, PA : Société américaine pour les essais et les matériaux.

Liberman, DF, L Wolfe, R Fink et E Gilman. 1996. Considérations de sécurité biologique pour la dissémination dans l'environnement d'organismes et de plantes transgéniques. Dans Engineered Organisms in Environmental Settings: Biotechnological and Agricultural Applications, édité par MA Levin et E Israel. Boca Raton, Floride : CRC Press.

Lichtenstein, N et K Quellmalz. 1984. Flüchtige Zersetzungsprodukte von Kunststoffen I : ABS-Polymere. Staub-Reinhalt 44(1):472-474.

—. 1986a. Flüchtige Zersetzungsprodukte von Kunststoffen II : polyéthylène. Staub-Reinhalt 46(1):11-13.

—. 1986b. Flüchtige Zersetzungsprodukte von Kunststoffen III : Polyamide. Staub-Reinhalt 46(1):197-198.

—. 1986c. Flüchtige Zersetzungsprodukte von Kunststoffen IV : Polycarbonate. Staub-Reinhalt 46(7/8):348-350.

Comité des relations communautaires du Massachusetts Biotechnology Council. 1993. Statistiques non publiées.

Mecklembourg, JC. 1985. Aménagement de l'usine de traitement. New York : John Wiley & Fils.

Miller, H. 1983. Rapport du groupe de travail de l'Organisation mondiale de la santé sur les implications sanitaires de la biotechnologie. Bulletin technique d'ADN recombinant 6:65-66.

Miller, HI, MA Tart et TS Bozzo. 1994. Fabrication de nouveaux produits biotechnologiques : Gains et difficultés de croissance. J Chem Technol Biotechnol 59:3-7.

Moretti, EC et N Mukhopadhyay. 1993. Contrôle des COV : Pratiques actuelles et tendances futures. Progrès du génie chimique 89: 20-26.

Mowrer, DS. 1995. Utiliser l'analyse quantitative pour gérer le risque d'incendie. Traitement des hydrocarbures 74:52-56.

Murphy, M. 1994. Préparez-vous à la règle du programme de gestion des risques de l'EPA. Progrès du génie chimique 90: 77-82.

Association nationale de protection contre les incendies (NFPA). 1990. Liquide inflammable et combustible. NFPA 30. Quincy, MA : NFPA.

Institut national pour la sécurité et la santé au travail (NIOSH). 1984. Recommandations pour le contrôle des risques pour la sécurité et la santé au travail. Fabrication de peinture et de produits de revêtement connexes. Publication n° 84-115 du DHSS (NIOSH). Cincinnati, Ohio : NIOSH.

Institut national de la santé (Japon). 1996. Communication personnelle.

Instituts nationaux de la santé (NIH). 1976. Recherche sur l'ADN recombinant. Registre fédéral 41:27902-27905.

—. 1991. Actions de recherche sur l'ADN recombinant dans le cadre des lignes directrices. Registre fédéral 56:138.

—. 1996. Lignes directrices pour la recherche impliquant des molécules d'ADN recombinant. Registre fédéral 61:10004.

Netzel, JP. 1996. Technologie des joints : Un contrôle de la pollution industrielle. Présenté à la 45e réunion annuelle de la Society of Tribologists and Lubrication Engineers. 7-10 mai, Denver.

Nordlee, JA, SL Taylor, JA Townsend, LA Thomas et RK Bush. 1996. Identification d'un allergène de noix du Brésil dans le soja transgénique. New Engl J Med 334 (11):688-692.

Administration de la sécurité et de la santé au travail (OSHA). 1984. 50 FR 14468. Washington, DC : OSHA.

—. 1994. CFR 1910.06. Washington, DC : OSHA.

Bureau de la politique scientifique et technologique (OSTP). 1986. Cadre coordonné pour la réglementation de la biotechnologie. FR 23303. Washington, DC : OSTP.

Openshaw, PJ, WH Alwan, AH Cherrie et FM Record. 1991. Infection accidentelle d'un travailleur de laboratoire par le virus recombinant de la vaccine. Lancette 338.(8764):459.

Parlement des Communautés européennes. 1987. Traité instituant un Conseil unique et une Commission unique des Communautés européennes. Journal officiel des Communautés européennes 50(152):2.

Pennington, RL. 1996. Opérations de contrôle des COV et HAP. Magazine des systèmes de séparation et de filtration 2:18-24.

Pratt, D et J May. 1994. Médecine du travail agricole. In Occupational Medicine, 3e édition, édité par C Zenz, OB Dickerson et EP Horvath. Saint-Louis: Mosby-Year Book, Inc.

Reutsch, CJ et TR Broderick. 1996. Nouvelle législation sur la biotechnologie dans la Communauté européenne et la République fédérale d'Allemagne. Biotechnologie.

Sattelle, D. 1991. La biotechnologie en perspective. Lancet 338:9,28.

Scheff, PA et RA Wadden. 1987. Conception technique pour le contrôle des risques en milieu de travail. New York : McGraw Hill.

Siegel, JH. 1996. Exploration des options de contrôle des COV. Génie chimique 103:92-96.

Société des tribologues et ingénieurs en lubrification (STLE). 1994. Directives pour respecter les réglementations sur les émissions des machines tournantes avec garnitures mécaniques. Publication spéciale STLE SP-30. Park Ridge, Illinois : STLE.

Sutton, IS. 1995. Les systèmes de gestion intégrés améliorent la fiabilité des centrales. Traitement des hydrocarbures 74:63-66.

Comité interdisciplinaire suisse pour la biosécurité dans la recherche et la technologie (SCBS). 1995. Lignes directrices pour le travail avec des organismes génétiquement modifiés. Zürich : SCBS.

Thomas, JA et LA Myers (éd.). 1993. Biotechnologie et évaluation de la sécurité. New York : Raven Press.

Van Houten, J et DO Flemming. 1993. Analyse comparative des réglementations américaines et communautaires actuelles en matière de biosécurité et de leur impact sur l'industrie. Tourillon de microbiologie industrielle 11:209-215.

Watrud, LS, SG Metz et DA Fishoff. 1996. Plantes artificielles dans l'environnement. Dans Engineered Organisms in Environmental Settings: Biotechnological and Agricultural Applications, édité par M Levin et E Israel. Boca Raton, Floride : CRC Press.

Bois, DR. 1995. Conception de processus et pratique d'ingénierie. Falaises d'Englewood, New Jersey : Prentice Hall.