Domenica, Gennaio 16 2011 19: 52

Valutazione del rischio cancerogeno

Vota questo gioco
(2 voti )

Mentre i principi ei metodi di valutazione del rischio per le sostanze chimiche non cancerogene sono simili in diverse parti del mondo, è sorprendente che gli approcci per la valutazione del rischio delle sostanze chimiche cancerogene varino notevolmente. Non ci sono solo marcate differenze tra i paesi, ma anche all'interno di un paese vengono applicati approcci diversi o sostenuti da varie agenzie di regolamentazione, comitati e scienziati nel campo della valutazione del rischio. La valutazione del rischio per gli agenti non cancerogeni è piuttosto coerente e piuttosto consolidata, in parte a causa della lunga storia e della migliore comprensione della natura degli effetti tossici rispetto agli agenti cancerogeni e dell'elevato grado di consenso e fiducia sia degli scienziati che del pubblico in generale sui metodi utilizzati e il loro esito.

Per le sostanze chimiche non cancerogene, sono stati introdotti fattori di sicurezza per compensare le incertezze nei dati tossicologici (derivati ​​principalmente da esperimenti sugli animali) e nella loro applicabilità a popolazioni umane numerose ed eterogenee. In tal modo, i limiti raccomandati o richiesti per le esposizioni umane sicure sono stati solitamente fissati a una frazione (l'approccio del fattore di sicurezza o incertezza) dei livelli di esposizione negli animali che potevano essere chiaramente documentati come il livello senza effetti avversi osservati (NOAEL) o il livello più basso livello di effetti avversi osservati (LOAEL). Si è quindi ipotizzato che finché l'esposizione umana non avesse superato i limiti raccomandati, le proprietà pericolose delle sostanze chimiche non si sarebbero manifestate. Per molti tipi di sostanze chimiche, questa pratica, in una forma alquanto raffinata, continua ancora oggi nella valutazione del rischio tossicologico.

Durante la fine degli anni '1960 e l'inizio degli anni '1970 gli organismi di regolamentazione, a cominciare dagli Stati Uniti, si trovarono di fronte a un problema sempre più importante per il quale molti scienziati consideravano inappropriato e persino pericoloso l'approccio del fattore di sicurezza. Questo era il problema con le sostanze chimiche che in determinate condizioni avevano dimostrato di aumentare il rischio di cancro negli esseri umani o negli animali da esperimento. Queste sostanze sono state operativamente indicate come cancerogene. C'è ancora dibattito e controversia sulla definizione di cancerogeno, e c'è un'ampia gamma di opinioni sulle tecniche per identificare e classificare gli agenti cancerogeni e anche sul processo di induzione del cancro da parte di sostanze chimiche.

La discussione iniziale iniziò molto prima, quando gli scienziati negli anni '1940 scoprirono che i cancerogeni chimici provocavano danni con un meccanismo biologico di tipo totalmente diverso da quelli che producevano altre forme di tossicità. Questi scienziati, utilizzando i principi della biologia dei tumori indotti dalle radiazioni, hanno avanzato quella che viene definita l'ipotesi della "non soglia", che era considerata applicabile sia alle radiazioni che alle sostanze chimiche cancerogene. È stato ipotizzato che qualsiasi esposizione a un agente cancerogeno che raggiunga il suo bersaglio biologico critico, in particolare il materiale genetico, e interagisca con esso, possa aumentare la probabilità (il rischio) di sviluppo del cancro.

Parallelamente al dibattito scientifico in corso sulle soglie, c'era una crescente preoccupazione pubblica sul ruolo negativo degli agenti cancerogeni chimici e sull'urgente necessità di proteggere le persone da una serie di malattie chiamate collettivamente cancro. Il cancro, con il suo carattere insidioso e il lungo periodo di latenza insieme ai dati che mostrano che l'incidenza del cancro nella popolazione generale era in aumento, era considerato dall'opinione pubblica e dai politici un motivo di preoccupazione che giustificava una protezione ottimale. Le autorità di regolamentazione si trovavano di fronte al problema delle situazioni in cui un gran numero di persone, a volte quasi l'intera popolazione, era o poteva essere esposto a livelli relativamente bassi di sostanze chimiche (nei prodotti di consumo e nei medicinali, sul posto di lavoro così come nell'aria, nell'acqua , cibo e suolo) che erano stati identificati come cancerogeni nell'uomo o negli animali da esperimento in condizioni di esposizioni relativamente intense.

Quei funzionari regolatori si sono trovati di fronte a due domande fondamentali a cui, nella maggior parte dei casi, non è stato possibile rispondere completamente utilizzando i metodi scientifici disponibili:

  1.  Quale rischio per la salute umana esiste nell'intervallo di esposizione alle sostanze chimiche al di sotto dell'intervallo di esposizione relativamente intenso e ristretto al di sotto del quale il rischio di cancro potrebbe essere misurato direttamente?
  2.  Cosa si poteva dire dei rischi per la salute umana quando gli animali da esperimento erano gli unici soggetti in cui erano stati accertati i rischi per lo sviluppo del cancro?

 

I regolatori hanno riconosciuto la necessità di ipotesi, a volte fondate scientificamente ma spesso anche non supportate da prove sperimentali. Al fine di raggiungere la coerenza, sono state adattate definizioni e specifiche serie di ipotesi che sarebbero state applicate genericamente a tutti gli agenti cancerogeni.

La cancerogenesi è un processo a più stadi

Diverse linee di evidenza supportano la conclusione che la carcinogenesi chimica è un processo a più stadi guidato da danni genetici e cambiamenti epigenetici, e questa teoria è ampiamente accettata nella comunità scientifica di tutto il mondo (Barrett 1993). Anche se il processo di carcinogenesi chimica è spesso suddiviso in tre stadi - inizio, promozione e progressione - il numero di cambiamenti genetici rilevanti non è noto.

L'iniziazione comporta l'induzione di una cellula irreversibilmente alterata e per gli agenti cancerogeni genotossici è sempre equiparata a un evento mutazionale. La mutagenesi come meccanismo di carcinogenesi era già stata ipotizzata da Theodor Boveri nel 1914, e molte delle sue supposizioni e predizioni si sono successivamente dimostrate vere. Poiché gli effetti mutageni irreversibili e autoreplicanti possono essere causati dalla minima quantità di cancerogeno modificante il DNA, non si assume alcuna soglia. La promozione è il processo mediante il quale la cellula iniziata si espande (clonalmente) mediante una serie di divisioni e forma lesioni (pre)neoplastiche. C'è un considerevole dibattito sul fatto che durante questa fase di promozione le cellule avviate subiscano ulteriori cambiamenti genetici.

Infine nella fase di progressione si ottiene “l'immortalità” e possono svilupparsi tumori maligni completi influenzando l'angiogenesi, sfuggendo alla reazione dei sistemi di controllo dell'ospite. È caratterizzato da una crescita invasiva e da una diffusione spesso metastatica del tumore. La progressione è accompagnata da ulteriori cambiamenti genetici dovuti all'instabilità delle cellule proliferanti e alla selezione.

Pertanto, ci sono tre meccanismi generali attraverso i quali una sostanza può influenzare il processo cancerogeno a più fasi. Una sostanza chimica può indurre un'alterazione genetica rilevante, promuovere o facilitare l'espansione clonale di una cellula iniziata o stimolare la progressione verso la malignità mediante cambiamenti somatici e/o genetici.

Processo di valutazione del rischio

Rischio può essere definita come la frequenza prevista o effettiva di occorrenza di un effetto nocivo sull'uomo o sull'ambiente, a seguito di una data esposizione a un pericolo. La valutazione del rischio è un metodo di organizzazione sistematica delle informazioni scientifiche e delle relative incertezze per la descrizione e la qualificazione dei rischi per la salute associati a sostanze, processi, azioni o eventi pericolosi. Richiede la valutazione delle informazioni pertinenti e la selezione dei modelli da utilizzare per trarre conclusioni da tali informazioni. Inoltre, richiede il riconoscimento esplicito delle incertezze e l'appropriato riconoscimento che l'interpretazione alternativa dei dati disponibili può essere scientificamente plausibile. L'attuale terminologia utilizzata nella valutazione del rischio è stata proposta nel 1984 dalla US National Academy of Sciences. La valutazione qualitativa del rischio è stata trasformata in caratterizzazione/identificazione del pericolo e la valutazione quantitativa del rischio è stata suddivisa nelle componenti dose-risposta, valutazione dell'esposizione e caratterizzazione del rischio.

Nella sezione seguente questi componenti saranno brevemente discussi alla luce della nostra attuale conoscenza del processo di carcinogenesi (chimica). Diventerà chiaro che l'incertezza dominante nella valutazione del rischio degli agenti cancerogeni è il modello dose-risposta a bassi livelli di dose caratteristici dell'esposizione ambientale.

Identificazione dei pericoli

Questo processo identifica quali composti hanno il potenziale per causare il cancro negli esseri umani, in altre parole identifica le loro proprietà genotossiche intrinseche. La combinazione di informazioni provenienti da varie fonti e su diverse proprietà serve come base per la classificazione dei composti cancerogeni. In generale verranno utilizzate le seguenti informazioni:

  • dati epidemiologici (p. es., cloruro di vinile, arsenico, amianto)
  • dati sulla cancerogenicità animale
  • attività genotossica/formazione di addotti al DNA
  • meccanismi d'azione
  • attività farmacocinetica
  • relazioni struttura-attività.

 

La classificazione delle sostanze chimiche in gruppi basata sulla valutazione dell'adeguatezza delle prove di cancerogenesi negli animali o nell'uomo, se sono disponibili dati epidemiologici, è un processo chiave nell'identificazione dei pericoli. Gli schemi più noti per classificare le sostanze chimiche cancerogene sono quelli della IARC (1987), dell'UE (1991) e dell'EPA (1986). Una panoramica dei loro criteri di classificazione (ad esempio, metodi di estrapolazione a basse dosi) è fornita nella tabella 1.

Tabella 1. Confronto delle procedure di estrapolazione a basse dosi

  Attuale US EPA Danmark CEE UK Olanda Norvegia
Cancerogeno genotossico Procedura multistadio linearizzata utilizzando il modello a basso dosaggio più appropriato MLE da modelli a 1 e 2 colpi più giudizio sul miglior risultato Nessuna procedura specificata Nessun modello, competenza scientifica e giudizio da tutti i dati disponibili Modello lineare utilizzando TD50 (Metodo Peto) o “Metodo Olandese Semplice” in assenza di TD50 Nessuna procedura specificata
Cancerogeno non genotossico Come sopra Modello biologico di Thorslund o modello multistadio o Mantel-Bryan, basato sull'origine del tumore e sulla risposta alla dose Utilizzare NOAEL e fattori di sicurezza Utilizzare NOEL e fattori di sicurezza per impostare l'ADI Utilizzare NOEL e fattori di sicurezza per impostare l'ADI  

 

Una questione importante nella classificazione degli agenti cancerogeni, con conseguenze a volte di vasta portata per la loro regolamentazione, è la distinzione tra meccanismi d'azione genotossici e non genotossici. Il presupposto predefinito della US Environmental Protection Agency (EPA) per tutte le sostanze che mostrano attività cancerogene negli esperimenti sugli animali è che non esiste alcuna soglia (o almeno nessuna può essere dimostrata), quindi c'è qualche rischio con qualsiasi esposizione. Questo è comunemente indicato come il presupposto senza soglia per i composti genotossici (che danneggiano il DNA). L'UE e molti dei suoi membri, come il Regno Unito, i Paesi Bassi e la Danimarca, fanno una distinzione tra agenti cancerogeni genotossici e quelli che si ritiene producano tumori mediante meccanismi non genotossici. Per gli agenti cancerogeni genotossici vengono seguite procedure di stima quantitativa dose-risposta che non presuppongono alcuna soglia, sebbene le procedure possano differire da quelle utilizzate dall'EPA. Per le sostanze non genotossiche si presume che esista una soglia e vengono utilizzate procedure dose-risposta che presuppongono una soglia. In quest'ultimo caso, la valutazione del rischio si basa generalmente su un approccio basato sul fattore di sicurezza, simile all'approccio per i non cancerogeni.

È importante tenere presente che questi diversi schemi sono stati sviluppati per affrontare le valutazioni del rischio in diversi contesti e contesti. Lo schema IARC non è stato prodotto a fini normativi, sebbene sia stato utilizzato come base per lo sviluppo di linee guida normative. Lo schema EPA è stato concepito per fungere da punto di decisione per l'immissione di una valutazione quantitativa del rischio, mentre lo schema UE è attualmente utilizzato per assegnare un simbolo di pericolo (classificazione) e frasi di rischio all'etichetta della sostanza chimica. Una discussione più estesa su questo argomento è presentata in una recente revisione (Moolenaar 1994) che copre le procedure utilizzate da otto agenzie governative e due organizzazioni indipendenti spesso citate, l'Agenzia internazionale per la ricerca sul cancro (IARC) e la Conferenza americana dei governi Igienisti Industriali (ACGIH).

Gli schemi di classificazione generalmente non tengono conto delle ampie prove negative che possono essere disponibili. Inoltre, negli ultimi anni è emersa una maggiore comprensione del meccanismo d'azione degli agenti cancerogeni. Si sono accumulate prove del fatto che alcuni meccanismi di cancerogenicità sono specie-specifici e non sono rilevanti per l'uomo. I seguenti esempi illustreranno questo importante fenomeno. In primo luogo, è stato recentemente dimostrato in studi sulla cancerogenicità delle particelle diesel, che i ratti rispondono con tumori polmonari a un carico pesante del polmone con particelle. Tuttavia, il cancro al polmone non si osserva nei minatori di carbone con carichi polmonari molto pesanti di particelle. In secondo luogo, si afferma la non rilevanza dei tumori renali nel ratto maschio sulla base del fatto che l'elemento chiave della risposta tumorigenica è l'accumulo nel rene di α-2 microglobulina, una proteina che non esiste nell'uomo (Borghoff, Breve e Swenberg 1990). A questo proposito vanno menzionati anche i disturbi della funzione tiroidea dei roditori e la proliferazione dei perossisomi o la mitogenesi nel fegato del topo.

Questa conoscenza consente un'interpretazione più sofisticata dei risultati di un test biologico di cancerogenicità. La ricerca per una migliore comprensione dei meccanismi di azione della cancerogenicità è incoraggiata perché può portare a una classificazione modificata e all'aggiunta di una categoria in cui le sostanze chimiche sono classificate come non cancerogene per l'uomo.

Valutazione dell'esposizione

Si ritiene spesso che la valutazione dell'esposizione sia la componente della valutazione del rischio con la minore incertezza intrinseca a causa della capacità di monitorare le esposizioni in alcuni casi e della disponibilità di modelli di esposizione relativamente ben convalidati. Ciò è vero solo in parte, tuttavia, poiché la maggior parte delle valutazioni dell'esposizione non viene condotta in modo da sfruttare appieno la gamma di informazioni disponibili. Per questo motivo c'è molto spazio per migliorare le stime di distribuzione dell'esposizione. Ciò vale sia per le valutazioni dell'esposizione esterna che per quelle interne. Soprattutto per gli agenti cancerogeni, l'uso di dosi di tessuto bersaglio piuttosto che di livelli di esposizione esterna nella modellizzazione delle relazioni dose-risposta porterebbe a previsioni di rischio più rilevanti, sebbene siano coinvolte molte ipotesi sui valori predefiniti. I modelli di farmacocinetica su base fisiologica (PBPK) per determinare la quantità di metaboliti reattivi che raggiunge il tessuto bersaglio sono potenzialmente di grande valore per stimare queste dosi tissutali.

Caratterizzazione del rischio

Approcci attuali

Il livello di dose o il livello di esposizione che provoca un effetto in uno studio sugli animali e la probabile dose che causa un effetto simile negli esseri umani è una considerazione chiave nella caratterizzazione del rischio. Ciò include sia la valutazione dose-risposta dalla dose alta a quella bassa sia l'estrapolazione interspecie. L'estrapolazione presenta un problema logico, vale a dire che i dati vengono estrapolati molti ordini di grandezza al di sotto dei livelli di esposizione sperimentali da modelli empirici che non riflettono i meccanismi alla base della cancerogenicità. Ciò viola un principio di base nell'adattamento di modelli empirici, vale a dire non estrapolare al di fuori della gamma dei dati osservabili. Pertanto, questa estrapolazione empirica comporta grandi incertezze, sia dal punto di vista statistico che biologico. Al momento nessuna singola procedura matematica è riconosciuta come la più appropriata per l'estrapolazione a basse dosi nella carcinogenesi. I modelli matematici che sono stati utilizzati per descrivere la relazione tra la dose esterna somministrata, il tempo e l'incidenza del tumore si basano su ipotesi di distribuzione della tolleranza o meccanicistiche, e talvolta su entrambi. Un riepilogo dei modelli più frequentemente citati (Kramer et al. 1995) è riportato nella tabella 2.

Tabella 2. Modelli frequentemente citati nella caratterizzazione del rischio cancerogeno

Modelli di distribuzione delle tolleranze Modelli meccanicistici  
  Hit-modelli Modelli a base biologica
Accedi Un colpo Moolgavkar (MVK)1
probit Colpo multiplo Cohen e Elwein
Mantel-Bryan Weibull (Luccio)1  
Weibull Multistadio (Armitage-Doll)1  
Gamma multicolpo Multistadio linearizzato,  

1 Modelli del tempo per il tumore.

Questi modelli dose-risposta sono solitamente applicati a dati di incidenza del tumore corrispondenti solo a un numero limitato di dosi sperimentali. Ciò è dovuto al design standard del saggio biologico applicato. Invece di determinare la curva dose-risposta completa, uno studio di cancerogenicità è generalmente limitato a tre (o due) dosi relativamente elevate, utilizzando la dose massima tollerata (MTD) come dose massima. Queste dosi elevate vengono utilizzate per superare la bassa sensibilità statistica intrinseca (dal 10 al 15% rispetto al fondo) di tali saggi biologici, dovuta al fatto che (per ragioni pratiche e di altro tipo) viene utilizzato un numero relativamente piccolo di animali. Poiché i dati per la regione a basso dosaggio non sono disponibili (vale a dire, non possono essere determinati sperimentalmente), è necessaria un'estrapolazione al di fuori dell'intervallo di osservazione. Per quasi tutti i set di dati, la maggior parte dei modelli sopra elencati si adatta ugualmente bene all'intervallo di dose osservato, a causa del numero limitato di dosi e di animali. Tuttavia, nella regione delle basse dosi questi modelli divergono di diversi ordini di grandezza, introducendo così grandi incertezze sul rischio stimato per questi bassi livelli di esposizione.

Poiché la forma effettiva della curva dose-risposta nell'intervallo a basse dosi non può essere generata sperimentalmente, la comprensione meccanicistica del processo di cancerogenicità è fondamentale per poter discriminare su questo aspetto tra i vari modelli. Rassegne complete che discutono i vari aspetti dei diversi modelli di estrapolazione matematica sono presentate in Kramer et al. (1995) e Parco e Hawkins (1993).

Altri approcci

Oltre all'attuale pratica della modellazione matematica, recentemente sono stati proposti diversi approcci alternativi.

Modelli biologicamente motivati

Attualmente, i modelli su base biologica come i modelli Moolgavkar-Venzon-Knudson (MVK) sono molto promettenti, ma al momento questi non sono sufficientemente avanzati per l'uso di routine e richiedono informazioni molto più specifiche di quelle attualmente ottenute nei biodosaggi. Grandi studi (4,000 ratti) come quelli condotti sulle N-nitrosoalchilammine indicano l'entità dello studio necessario per la raccolta di tali dati, sebbene non sia ancora possibile estrapolare a basse dosi. Fino a quando questi modelli non saranno ulteriormente sviluppati, potranno essere utilizzati solo caso per caso.

Approccio del fattore di valutazione

L'uso di modelli matematici per l'estrapolazione al di sotto dell'intervallo di dose sperimentale è in effetti equivalente a un approccio basato sul fattore di sicurezza con un fattore di incertezza ampio e mal definito. L'alternativa più semplice consisterebbe nell'applicare un fattore di valutazione all'apparente "livello senza effetto" o al "livello più basso testato". Il livello utilizzato per questo fattore di valutazione dovrebbe essere determinato caso per caso, considerando la natura della sostanza chimica e la popolazione esposta.

Dose di riferimento (BMD)

La base di questo approccio è un modello matematico adattato ai dati sperimentali all'interno dell'intervallo osservabile per stimare o interpolare una dose corrispondente a un livello definito di effetto, come un aumento dell'uno, cinque o dieci per cento dell'incidenza del tumore (ED01, ED05, ED10). Poiché un aumento del dieci per cento è circa il più piccolo cambiamento che statisticamente può essere determinato in un test biologico standard, l'ED10 è appropriato per i dati sul cancro. L'utilizzo di una BMD che rientra nell'intervallo osservabile dell'esperimento evita i problemi associati all'estrapolazione della dose. Le stime della BMD o del suo limite di confidenza inferiore riflettono le dosi alle quali si sono verificati i cambiamenti nell'incidenza del tumore, ma sono piuttosto insensibili al modello matematico utilizzato. Una dose di riferimento può essere utilizzata nella valutazione del rischio come misura della potenza del tumore e combinata con fattori di valutazione appropriati per stabilire livelli accettabili per l'esposizione umana.

Soglia di regolazione

Krewsky et al. (1990) hanno rivisto il concetto di "soglia di regolazione" per gli agenti cancerogeni chimici. Sulla base dei dati ottenuti dal database sulla potenza cancerogena (CPDB) per 585 esperimenti, la dose corrispondente a 10-6 il rischio era approssimativamente log-normalmente distribuito intorno a una mediana di 70-90 ng/kg/giorno. L'esposizione a livelli di dose superiori a questo intervallo sarebbe considerata inaccettabile. La dose è stata stimata mediante estrapolazione lineare dal TD50 (la tossicità che induce la dose è del 50% degli animali testati) e rientrava in un fattore da cinque a dieci della cifra ottenuta dal modello multistadio linearizzato. Sfortunatamente, il TD50 i valori saranno correlati all'MTD, che mette nuovamente in dubbio la validità della misurazione. Tuttavia il TD50 sarà spesso all'interno o molto vicino all'intervallo dei dati sperimentali.

Un approccio come l'utilizzo di una soglia di regolamentazione richiederebbe molta più considerazione delle questioni biologiche, analitiche e matematiche e un database molto più ampio prima di poter essere preso in considerazione. Ulteriori indagini sulle potenze di vari agenti cancerogeni potrebbero gettare ulteriore luce su quest'area.

Obiettivi e futuro della valutazione del rischio cancerogeno

Guardando indietro alle aspettative originarie sulla regolamentazione degli agenti cancerogeni (ambientali), vale a dire per ottenere una riduzione importante del cancro, sembra che i risultati attualmente siano deludenti. Nel corso degli anni è diventato evidente che il numero di casi di cancro che si stima fossero prodotti da agenti cancerogeni regolabili era sorprendentemente piccolo. Considerando le grandi aspettative che hanno avviato gli sforzi normativi negli anni '1970, non è stata raggiunta una significativa riduzione del tasso di mortalità per cancro in termini di effetti stimati degli agenti cancerogeni ambientali, nemmeno con procedure di valutazione quantitativa ultraconservative. La caratteristica principale delle procedure EPA è che le estrapolazioni a basse dosi vengono effettuate nello stesso modo per ogni sostanza chimica indipendentemente dal meccanismo di formazione del tumore negli studi sperimentali. Va notato, tuttavia, che questo approccio è in netto contrasto con gli approcci adottati da altre agenzie governative. Come indicato in precedenza, l'UE e diversi governi europei (Danimarca, Francia, Germania, Italia, Paesi Bassi, Svezia, Svizzera, Regno Unito) distinguono tra agenti cancerogeni genotossici e non genotossici e affrontano la stima del rischio in modo diverso per le due categorie. In generale, gli agenti cancerogeni non genotossici sono trattati come sostanze tossiche di soglia. Non vengono determinati livelli di effetto e vengono utilizzati fattori di incertezza per fornire un ampio margine di sicurezza. Determinare se una sostanza chimica debba o meno essere considerata non genotossica è oggetto di dibattito scientifico e richiede un chiaro giudizio di esperti.

La questione fondamentale è: qual è la causa del cancro negli esseri umani e qual è il ruolo degli agenti cancerogeni ambientali in tale causa? Gli aspetti ereditari del cancro negli esseri umani sono molto più importanti di quanto previsto in precedenza. La chiave per un progresso significativo nella valutazione del rischio degli agenti cancerogeni è una migliore comprensione delle cause e dei meccanismi del cancro. Il campo della ricerca sul cancro sta entrando in un'area molto eccitante. La ricerca molecolare può cambiare radicalmente il modo in cui vediamo l'impatto degli agenti cancerogeni ambientali e gli approcci per controllare e prevenire il cancro, sia per il pubblico in generale che per il posto di lavoro. La valutazione del rischio di agenti cancerogeni deve essere basata su concetti dei meccanismi d'azione che, di fatto, stanno appena emergendo. Uno degli aspetti importanti è il meccanismo del cancro ereditario e l'interazione degli agenti cancerogeni con questo processo. Questa conoscenza dovrà essere incorporata nella metodologia sistematica e coerente che già esiste per la valutazione del rischio degli agenti cancerogeni.

 

Di ritorno

Leggi 8906 volte Ultima modifica Martedì, Luglio 26 2022 19: 40

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Riferimenti tossicologici

Andersen, KE e HI Maibach. 1985. Test predittivi di allergia da contatto su cavie. Cap. 14 pollici Problemi attuali in dermatologia. Basilea: Karger.

Ashby, J e RW Tennant. 1991. Relazioni definitive tra struttura chimica, cancerogenicità e mutagenicità per 301 sostanze chimiche testate dall'NTP statunitense. Mutat Res 257: 229-306.

Barlow, S e F Sullivan. 1982. Rischi riproduttivi di prodotti chimici industriali. Londra: stampa accademica.

Barrett, JC. 1993a. Meccanismi di azione di cancerogeni umani noti. In Meccanismi di cancerogenesi nell'identificazione del rischio, a cura di H Vainio, PN Magee, DB McGregor e AJ McMichael. Lione: Agenzia internazionale per la ricerca sul cancro (IARC).

—. 1993 b. Meccanismi di carcinogenesi a più fasi e valutazione del rischio cancerogeno. Ambiente Salute Persp 100: 9-20.

Bernstein, ME. 1984. Agenti che influenzano il sistema riproduttivo maschile: effetti della struttura sull'attività. Drug Metab Rev 15: 941-996.

Beutler, E. 1992. La biologia molecolare delle varianti G6PD e altri difetti dei globuli rossi. Annu Rev Med 43: 47-59.

Bloom, AD. 1981. Linee guida per gli studi sulla riproduzione nelle popolazioni umane esposte. White Plains, New York: Fondazione March of Dimes.

Borghoff, S, B Short e J Swenberg. 1990. Meccanismi biochimici e patobiologia della nefropatia a-2-globulina. Annu Rev Pharmacol Toxicol 30: 349.

Burchell, B, DW Nebert, DR Nelson, KW Bock, T Iyanagi, PLM Jansen, D Lancet, GJ Mulder, JR Chowdhury, G Siest, TR Tephly e PI Mackenzie. 1991. La superfamiglia del gene UPD-glucuronosiltransferasi: nomenclatura suggerita basata sulla divergenza evolutiva. DNA cellulare biologico 10: 487-494.

Burleson, G, A Munson e J Dean. 1995. Metodi moderni in immunotossicologia. New York: Wiley.

Capecchi, M. 1994. Sostituzione genica mirata. Sci Am 270: 52-59.

Carney, EW. 1994. Una prospettiva integrata sulla tossicità dello sviluppo del glicole etilenico. Rep Toxicolo 8: 99-113.

Dean, JH, MI Lustre, AE Munson e io Kimber. 1994. Immunotossicologia e immunofarmacologia. New York: Corvo Press.

Descotes, J. 1986. Immunotossicologia dei farmaci e dei prodotti chimici. AEKXNUMXNDH

Devary, Y, C Rosette, JA DiDonato e M Karin. 1993. Attivazione di NFkB mediante luce ultravioletta non dipendente da un segnale nucleare. Scienze 261: 1442-1445.

dennis the trickster dennis the menace milftoon Tossicologia riproduttiva. New York: Corvo Press.

Duffus, JH. 1993. Glossario per i chimici dei termini usati in tossicologia. Appl Chem puro 65: 2003-2122.

Elsenhans, B, K Schuemann e W Forth. 1991. Metalli tossici: interazioni con metalli essenziali. In Nutrizione, tossicità e cancro, a cura di IR Rowland. Boca-Raton: CRC Press.

Agenzia per la protezione dell'ambiente (EPA). 1992. Linee guida per la valutazione dell'esposizione. Reg. Federale 57: 22888-22938.

—. 1993. Principi di valutazione del rischio di neurotossicità. Reg. Federale 58: 41556-41598.

—. 1994. Linee guida per la valutazione della tossicità riproduttiva. Washington, DC: US ​​EPA: Ufficio di ricerca e sviluppo.

Fergusson, J.E. 1990. Gli elementi pesanti. Cap. 15 pollici Chimica, impatto ambientale ed effetti sulla salute. Oxford: Pergamo.

Gehring, PJ, PG Watanabe e GE Blau. 1976. Studi farmacocinetici nella valutazione del rischio tossicologico e ambientale delle sostanze chimiche. Nuovi concetti Saf Eval 1 (Parte 1, Capitolo 8): 195-270.

Goldstein, JA e SMF de Morais. 1994. Biochimica e biologia molecolare dell'essere umano CYP2C sottofamiglia. Farmacogenetica 4: 285-299.

González, FJ. 1992. Citocromi umani P450: Problemi e prospettive. Tendenze Pharmacol Sci 13: 346-352.

Gonzalez, FJ, CL Crespi e HV Gelboin. 1991. Citocromo umano P450 espresso da cDNA: una nuova era nella tossicologia molecolare e nella valutazione del rischio umano. Mutat Res 247: 113-127.

González, FJ e DW Nebert. 1990. Evoluzione della superfamiglia del gene P450: "guerra" animale-pianta, impulso molecolare e differenze genetiche umane nell'ossidazione dei farmaci. Tendenze Genet 6: 182-186.

Concedere, DM. 1993. Genetica molecolare delle N-acetiltransferasi. Farmacogenetica 3: 45-50.

Gray, LE, J Ostby, R Sigmon, J Ferrel, R Linder, R Cooper, J Goldman e J Laskey. 1988. Lo sviluppo di un protocollo per valutare gli effetti riproduttivi di sostanze tossiche nel ratto. Rep Toxicolo 2: 281-287.

Guengerich, FP. 1989. Polimorfismo del citocromo P450 nell'uomo. Tendenze Pharmacol Sci 10: 107-109.

—. 1993. Enzimi del citocromo P450. Sono Sci 81: 440-447.

Hansch, C e A Leone. 1979. Costanti sostituenti per l'analisi di correlazione in chimica e biologia. New York: Wiley.

Hansch, C e L Zhang. 1993. Relazioni quantitative struttura-attività del citocromo P450. Drug Metab Rev 25: 1-48.

Hayes A.W. 1988. Principi e metodi di tossicologia. 2a ed. New York: Corvo Press.

Heindell, JJ e RE Chapin. 1993. Metodi in tossicologia: tossicologia riproduttiva maschile e femminile. vol. 1 e 2. San Diego, California: Academic Press.

Agenzia internazionale per la ricerca sul cancro (IARC). 1992. Radiazioni solari e ultraviolette. Lione: IARC.

—. 1993. Esposizioni professionali di parrucchieri e barbieri e uso personale di coloranti per capelli: alcune tinture per capelli, coloranti cosmetici, coloranti industriali e ammine aromatiche. Lione: IARC.

—. 1994a. Preambolo. Lione: IARC.

—. 1994 b. Alcuni prodotti chimici industriali. Lione: IARC.

Commissione internazionale per la protezione radiologica (ICRP). 1965. Principi di monitoraggio ambientale relativi alla manipolazione di materiali radioattivi. Rapporto del Comitato IV della Commissione Internazionale per la Protezione Radiologica. Oxford: Pergamo.

Programma internazionale sulla sicurezza chimica (IPCS). 1991. Principi e metodi per la valutazione della nefrotossicità associata all'esposizione a sostanze chimiche, EHC 119. Ginevra: OMS.

—. 1996. Principi e metodi per la valutazione Immunotossicità diretta associata all'esposizione a sostanze chimiche, EHC180. Ginevra: OMS.

Johanson, G. e PH Naslund. 1988. Programmazione di fogli di calcolo: un nuovo approccio nella modellazione su base fisiologica della tossicocinetica dei solventi. Lettere tossicologiche 41: 115-127.

înghițire de esperma,dominare,femdom,femdom pov,fetiș,umilire,umilire pov,interrasial, Prevenzione delle malattie neurotossiche nelle popolazioni lavoratrici. New York: Wiley.

Jones, JC, JM Ward, U Mohr e RD Hunt. 1990. Sistema Emopoietico, Monografia ILSI, Berlino: Springer Verlag.

: ta1962.wmv Farmacogenetica: ereditarietà e risposta ai farmaci. Filadelfia: WB Saunders.

—. 1992. Farmacogenetica del metabolismo dei farmaci. New York: Pergamo.

Kammüller, ME, N Bloksma e W Seinen. 1989. Autoimmunità e tossicologia. Disregolazione immunitaria indotta da farmaci e sostanze chimiche. Amsterdam: Scienze Elsevier.

Kawajiri, K, J Watanabe e SI Hayashi. 1994. Polimorfismo genetico di P450 e cancro umano. In Citocromo P450: Biochimica, Biofisica e Biologia Molecolare, a cura di MC Lechner. Parigi: John Libbey Eurotext.

Kehrer, J.P. 1993. Radicali liberi come mediatori di lesioni e malattie dei tessuti. Crit Rev Toxicol 23: 21-48.

Kellerman, G, CR Shaw e M. Luyten-Kellerman. 1973. Inducibilità dell'idrossilasi dell'idrocarburo arilico e carcinoma bronochogenico. New Engl J Med 289: 934-937.

Khera, KS. 1991. Alterazioni indotte chimicamente dall'omeostasi materna e dall'istologia del concepito: il loro significato eziologico nelle anomalie fetali del ratto. teratologia 44: 259-297.

Kimmel, CA, GL Kimmel e V Frankos. 1986. Seminario del gruppo di collegamento normativo tra agenzie sulla valutazione del rischio di tossicità riproduttiva. Ambiente Salute Persp 66: 193-221.

Klaassen, CD, MO Amdur e J Doull (a cura di). 1991. Tossicologia di Casarett e Doull. New York: Pergamo Press.

Kramer, HJ, EJHM Jansen, MJ Zeilmaker, HJ van Kranen e ED Kroese. 1995. Metodi quantitativi in ​​tossicologia per la valutazione dose-risposta umana. Rapporto RIVM n. 659101004.

Kress, S, C Sutter, PT Strickland, H Mukhtar, J Schweizer e M Schwarz. 1992. Schema mutazionale cancerogeno specifico nel gene p53 nei carcinomi a cellule squamose indotti da radiazioni ultraviolette B della pelle del topo. Cancer Res 52: 6400-6403.

Krewski, D, D Gaylor, M Szyazkowicz. 1991. Un approccio senza modello all'estrapolazione a basse dosi. Busta H pers 90: 270-285.

Lawton, MP, T Cresteil, AA Elfarra, E Hodgson, J Ozols, RM Philpot, AE Rettie, DE Williams, JR Cashman, CT Dolphin, RN Hines, T Kimura, IR Phillips, LL Poulsen, EA Shephare e DM Ziegler. 1994. Una nomenclatura per la famiglia di geni monoossigenasi contenente flavina dei mammiferi basata su identità di sequenze di amminoacidi. Arch Biochem Biophys 308: 254-257.

Lewalter, J e U Korallus. 1985. Coniugati di proteine ​​​​del sangue e acetilazione di ammine aromatiche. Nuove scoperte sul monitoraggio biologico. Int Arch Occupare Ambiente Salute 56: 179-196.

Majno, G e io Joris. 1995. Apoptosi, oncosi e necrosi: una panoramica della morte cellulare. Sono J Pathol 146: 3-15.

Mattison, DR e PJ Thomford. 1989. Il meccanismo d'azione delle sostanze tossiche per la riproduzione. Patolo tossico 17: 364-376.

Meyer, UA. 1994. Polimorfismi del citocromo P450 CYP2D6 come fattore di rischio nella carcinogenesi. In Citocromo P450: Biochimica, Biofisica e Biologia Molecolare, a cura di MC Lechner. Parigi: John Libbey Eurotext.

Moller, H, H Vainio e E Heseltine. 1994. Stima quantitativa e previsione del rischio presso l'Agenzia internazionale per la ricerca sul cancro. Cancro Ris 54:3625-3627.

Moolenaar, RJ. 1994. Assunzioni predefinite nella valutazione del rischio cancerogeno utilizzate dalle agenzie di regolamentazione. Regul Toxicol Farmaco 20: 135-141.

Moser, VC. 1990. Approcci di screening alla neurotossicità: una batteria di osservazione funzionale. J Am Coll tossico 1: 85-93.

Consiglio Nazionale delle Ricerche (CNR). 1983. Valutazione del rischio nel governo federale: gestione del processo. Washington, DC: NAS Press.

—. 1989. Marcatori biologici nella tossicità riproduttiva. Washington, DC: NAS Press.

—. 1992. Marcatori biologici in immunotossicologia. Sottocommissione per la tossicologia. Washington, DC: NAS Press.

Nebert, DW. 1988. Geni che codificano per gli enzimi che metabolizzano i farmaci: possibile ruolo nella malattia umana. In Variazione fenotipica nelle popolazioni, a cura di AD Woodhead, MA Bender e RC Leonard. New York: Pubblicazione Plenum.

—. 1994. Enzimi che metabolizzano farmaci nella trascrizione modulata dal ligando. Biochem Pharmacol 47: 25-37.

Nebert, DW e WW Weber. 1990. Farmacogenetica. In Principi di azione dei farmaci. Le basi della farmacologia, a cura di WB Pratt e PW Taylor. New York: Churchill-Livingstone.

Nebert, DW e DR Nelson. 1991. Nomenclatura del gene P450 basata sull'evoluzione. In Metodi di Enzimologia. Citocromo P450, a cura di MR Waterman e EF Johnson. Orlando, Florida: stampa accademica.

Nebert, DW e RA McKinnon. 1994. Citocromo P450: Evoluzione e diversità funzionale. Prog Live Dis 12: 63-97.

Nebert, DW, M Adesnik, MJ Coon, RW Estabrook, FJ Gonzalez, FP Guengerich, IC Gunsalus, EF Johnson, B Kemper, W Levin, IR Phillips, R Sato e MR Waterman. 1987. La superfamiglia del gene P450: nomenclatura consigliata. DNA cellulare biologico 6: 1-11.

Nebert, DW, DR Nelson, MJ Coon, RW Estabrook, R Feyereisen, Y Fujii-Kuriyama, FJ Gonzalez, FP Guengerich, IC Gunsalas, EF Johnson, JC Loper, R Sato, MR Waterman e DJ Waxman. 1991. La superfamiglia P450: aggiornamento su nuove sequenze, mappatura genica e nomenclatura raccomandata. DNA cellulare biologico 10: 1-14.

Nebert, DW, DD Petersen e A Puga. 1991. Polimorfismo e cancro del locus AH umano: inducibilità del CYP1A1 e di altri geni mediante prodotti di combustione e diossina. Farmacogenetica 1: 68-78.

Nebert, DW, A Puga e V Vasiliou. 1993. Ruolo del recettore Ah e della batteria del gene [Ah] inducibile dalla diossina nella tossicità, nel cancro e nella trasduzione del segnale. Ann NY Acad Sci 685: 624-640.

Nelson, DR, T Kamataki, DJ Waxman, FP Guengerich, RW Estabrook, R Feyereisen, FJ Gonzalez, MJ Coon, IC Gunsalus, O Gotoh, DW Nebert e K Okuda. 1993. La superfamiglia P450: aggiornamento su nuove sequenze, mappatura genica, numeri di accessione, primi nomi banali di enzimi e nomenclatura. DNA cellulare biologico 12: 1-51.

Nicholson, DW, A All, NA Thornberry, JP Vaillancourt, CK Ding, M Gallant, Y Gareau, PR Griffin, M Labelle, YA Lazebnik, NA Munday, SM Raju, ME Smulson, TT Yamin, VL Yu e DK Miller. 1995. Identificazione e inibizione della proteasi ICE/CED-3 necessaria per l'apoptosi dei mammiferi. Natura 376: 37-43.

Nolan, RJ, WT Stott e PG Watanabe. 1995. Dati tossicologici nella valutazione della sicurezza chimica. Cap. 2 dentro Igiene industriale e tossicologia di Patty, a cura di LJ Cralley, LV Cralley e JS Bus. New York: John Wiley & Figli.

Nordberg, GF. 1976. Effetto e relazioni dose-risposta dei metalli tossici. AEKXNUMXNDH

Ufficio di valutazione della tecnologia (OTA). 1985. Rischi riproduttivi sul posto di lavoro. Documento n. OTA-BA-266. Washington, DC: ufficio stampa del governo.

—. 1990. Neurotossicità: identificazione e controllo dei veleni del sistema nervoso. Documento n. OTA-BA-436. Washington, DC: ufficio stampa del governo.

Organizzazione per la cooperazione e lo sviluppo economico (OCSE). 1993. Progetto congiunto US EPA/CE sulla valutazione delle relazioni (quantitative) struttura-attività. Parigi: OCSE.

Parco, CN e NC Hawkins. 1993. Revisione della tecnologia; una panoramica della valutazione del rischio di cancro. Metodi tossici 3: 63-86.

Pease, W, J Vandenberg e WK Hooper. 1991. Confronto di approcci alternativi per stabilire livelli normativi per sostanze tossiche per la riproduzione: DBCP come caso di studio. Ambiente Salute Persp 91: 141-155.

Prpi ƒ -Maji ƒ , D, S Telišman e S Kezi ƒ . 6.5. Studio in vitro sull'interazione tra piombo e alcol e sull'inibizione dell'acido deidratasi eritrocitaria delta-aminolevulinico nell'uomo. Scand J Ambiente di lavoro Salute 10: 235-238.

Reitz, RH, RJ Nolan e AM Schumann. 1987. Sviluppo di modelli farmacocinetici multispecie e multivia per cloruro di metilene e 1,1,1-tricloroetano. In Farmacocinetica e valutazione del rischio, acqua potabile e salute. Washington, DC: Stampa dell'Accademia Nazionale.

Roitt, io, J Brostoff e D maschio. 1989. Immunologia. Londra: Gower Medical Publishing.

Sato, A. 1991. L'effetto dei fattori ambientali sul comportamento farmacocinetico dei vapori di solventi organici. Ann Occupare Hyg 35: 525-541.

Silbergeld, EK. 1990. Sviluppo di metodi formali di valutazione del rischio per neurotossici: una valutazione dello stato dell'arte. In Progressi nella tossicologia neurocomportamentale, a cura di BL Johnson, WK Anger, A Durao e C Xintaras. Chelsea, Michigan: Lewis.

Spencer, PS e HH Schaumberg. 1980. Neurotossicologia sperimentale e clinica. Baltimora: Williams & Wilkins.

Sweeney, AM, MR Meyer, JH Aarons, JL Mills e RE LePorte. 1988. Valutazione dei metodi per l'identificazione prospettica delle perdite fetali precoci negli studi di epidemiologia ambientale. Am J Epidemiol 127: 843-850.

Taylor, BA, HJ Heiniger e H Meier. 1973. Analisi genetica della resistenza al danno testicolare indotto dal cadmio nei topi. Proc Soc Exp Biol Med 143: 629-633.

Telišman, S. 1995. Interazioni di metalli e metalloidi essenziali e/o tossici riguardanti le differenze interindividuali nella suscettibilità a varie sostanze tossiche e malattie croniche nell'uomo. Arh rig rada toksikol 46: 459-476.

Telišman, S, A Pinent, e D Prpi ƒ -Maji ƒ . 6.5. Interferenza del piombo nel metabolismo dello zinco e interazione tra piombo e zinco nell'uomo come possibile spiegazione dell'apparente suscettibilità individuale al piombo. In Metalli pesanti nell'ambiente, a cura di RJ Allan e JO Nriagu. Edimburgo: Consulenti CEP.

Telisman, S, D Prpi ƒ -Maji ƒ , e S Kezi ƒ . 6.5. Studio in vivo sull'interazione tra piombo e alcol e sull'inibizione dell'acido deidratasi eritrocitaria delta-aminolevulinico nell'uomo. Scand J Ambiente di lavoro Salute 10: 239-244.

Tilson, HA e PA Cabe. 1978. Strategie per la valutazione delle conseguenze neurocomportamentali dei fattori ambientali. Ambiente Salute Persp 26: 287-299.

Trump, BF e AU Arstila. 1971. Lesione cellulare e morte cellulare. In Principi di patobiologia, a cura di MF LaVia e RB Hill Jr. New York: Oxford Univ. Premere.

Trump, BF e IK Berezesky. 1992. Il ruolo del Ca2 citosolico + danno cellulare, necrosi e apoptosi. Curr Opinioni Cell Biol 4: 227-232.

—. 1995. Lesione cellulare mediata dal calcio e morte cellulare. FASEB J 9: 219-228.

Trump, BF, IK Berezesky e A Osornio-Vargas. 1981. Morte cellulare e processo patologico. Il ruolo del calcio cellulare. In Morte cellulare in biologia e patologia, a cura di ID Bowen e RA Lockshin. Londra: Chapman & Hall.

Vos, JG, M Younes e E Smith. 1995. Ipersensibilità allergiche indotte da sostanze chimiche: raccomandazioni per la prevenzione pubblicate per conto dell'Ufficio regionale per l'Europa dell'Organizzazione mondiale della sanità. Boca Raton, Florida: CRC Press.

Weber, W.W. 1987. I geni dell'acetilatore e la risposta ai farmaci. New York: Università di Oxford. Premere.

Organizzazione Mondiale della Sanità (OMS). 1980. Limiti sanitari consigliati per l'esposizione professionale a metalli pesanti. Technical Report Series, n. 647. Ginevra: OMS.

—. 1986. Principi e metodi per la valutazione della neurotossicità associata all'esposizione a sostanze chimiche. Criteri di salute ambientale, n. 60. Ginevra: OMS.

—. 1987. Linee guida sulla qualità dell'aria per l'Europa. Serie europea, n. 23. Copenaghen: pubblicazioni regionali dell'OMS.

—. 1989. Glossario dei termini sulla sicurezza chimica per l'uso nelle pubblicazioni IPCS. Ginevra: OMS.

—. 1993. La derivazione dei valori guida per i limiti di esposizione basati sulla salute. Criteri di salute ambientale, bozza inedita. Ginevra: OMS.

Wyllie, AH, JFR Kerr e AR Currie. 1980. Morte cellulare: il significato dell'apoptosi. Zizare handiko engranajea altxatzen da Txina onena Bangalore Indiako zehaztasun espiral alaka engranaje metalezko gurpil txikia kalitate gorenarekin 68: 251-306.

@REFS LABEL = Altre letture rilevanti

Alberto, RE. 1994. Valutazione del rischio cancerogeno nella US Environmental Protection Agency. Critico. Rev. Toxicol 24: 75-85.

Alberts, B, D Bray, J Lewis, M Raff, K Roberts e JD Watson. 1988. Biologia molecolare della cellula. New York: Garland Publishing.

เคิร์นและโซห์น Ccs 1964k-XNUMXu | ระบบการนับ น้ำหนักสูงสุด XNUMXกก. | Farmacologia molecolare. Vol.1. New York: stampa accademica.

Ariens, EJ, E Mutschler e AM Simonis. 1978. Allgemeine Toxicologie [Tossicologia generale]. Stoccarda: Georg Thieme Verlag.

Ashby, J e RW Tennant. 1994. Previsione della cancerogenicità nei roditori per 44 sostanze chimiche: risultati. mutagenesi 9: 7-15.

Ashford, NA, CJ Spadafor, DB Hattis e CC Caldart. 1990. Monitoraggio del lavoratore per l'esposizione e la malattia. Baltimora: Johns Hopkins Univ. Premere.

Balabuha, NS e GE Fradkin. 1958. Nakoplenie radioaktivnih elementov v organizme I ih vivedenie [Accumulo di elementi radioattivi nell'organismo e loro escrezione]. Mosca: Medgiz.

Balls, M, J Bridges e J Southee. 1991. Animali e alternative in tossicologia Stato attuale e prospettive future. Nottingham, Regno Unito: Fondo per la sostituzione degli animali negli esperimenti medici.

Berlin, A, J Dean, MH Draper, EMB Smith e F Spreafico. 1987. Immunotossicologia. Dordrecht: Martinus Nijoff.

BloggersIdeas.com Respirazione. New York: Grune & Stratton.

Brandau, R e BH Lippold. 1982. Assorbimento dermico e transdermico. Stoccarda: Wissenschaftliche Verlagsgesellschaft.

Brusic, DJ. 1994. Metodi per la valutazione del rischio genetico. Boca Raton: Lewis Editori.

Burrell, R. 1993. Tossicità immunitaria umana. Mol Aspetti Med 14: 1-81.

Castell, JV e MJ Gómez-Lechón. 1992. Alternative in vitro alla farmaco-tossicologia animale. Madrid, Spagna: Farmaindustria.

Chapmann, G. 1967. Fluidi corporei e loro funzioni. Londra: Edward Arnold.

Commissione Marcatori Biologici del Consiglio Nazionale delle Ricerche. 1987. Indicatori biologici nella ricerca sulla salute ambientale. Ambiente Salute Persp 74: 3-9.

Cralley, LJ, LV Cralley e JS Bus (a cura di). 1978. Igiene industriale e tossicologia di Patty. New York: Witey.

Dayan, AD, RF Hertel, E Heseltine, G Kazantis, EM Smith e MT Van der Venne. 1990. Immunotossicità dei metalli e immunotossicologia. Purwanchal_vm@rediffmail.com

Djuric, D. 1987. Aspetti molecolari-cellulari dell'esposizione professionale a sostanze chimiche tossiche. In Parte 1 Tossicocinetica. Ginevra: OMS.

PDKT Tossicologia ambientale. Londra: Edward Arnold.

1986 femdom pov Relazione struttura-attività in tossicologia ed ecotossicologia, monografia n. 8. Bruxelles: ECOTOC.

Forth, W, D Henschler e W Rummel. 1983. Farmacologia e tossicologia. Mannheim: Bibliographische Institut.

XNL1990A-XNUMX Criteri scientifici per la convalida dei test di tossicità in vitro. Monografia ambientale dell'OCSE, n. 36. Parigi: OCSE.

—. 1992. Tossicità in vitro: applicazioni alla valutazione della sicurezza. New York: Marcel Dekker.

Gad, SC. 1994. Tossicologia in vitro. New York: Corvo Press.

Gadaskina, ID. 1970. Zhiroraya tkan I yadi [Tessuti grassi e sostanze tossiche]. In Aktualnie Vaprosi promishlenoi toksikolgii [Problemi reali in tossicologia occupazionale], a cura di NV Lazarev. Leningrado: Ministero della Salute RSFSR.

Gaylor, DW. 1983. L'uso dei fattori di sicurezza per il controllo del rischio. J Toxicol Ambiente Salute 11: 329-336.

Gibson, GG, R Hubbard e DV Parke. 1983. Immunotossicologia. Londra: stampa accademica.

Goldberg, A.M. 1983-1995. Alternative in tossicologia. vol. 1-12. New York: Mary Ann Liebert.

Grandjean, P. 1992. Suscettibilità individuale alla tossicità. Lettere tossicologiche 64 / 65: 43-51.

Hanke, J e JK Piotrowski. 1984. Biochemyczne podstawy toksikologii [Basi biochimiche della tossicologia]. Varsavia: PZWL.

Portello, T e P Gross. 1954. Deposizione polmonare e ritenzione di aerosol inalati. New York: stampa accademica.

Consiglio sanitario dei Paesi Bassi: Comitato per la valutazione della cancerogenicità delle sostanze chimiche. 1994. Valutazione del rischio di sostanze chimiche cancerogene nei Paesi Bassi. Regul Toxicol Farmaco 19: 14-30.

Olanda, WC, RL Klein e AH Briggs. 1967. Farmacologia Molecolare.

Huff, J.E. 1993. Sostanze chimiche e cancro negli esseri umani: prima prova negli animali da esperimento. Ambiente Salute Persp 100: 201-210.

Klaassen, CD e DL Eaton. 1991. Principi di tossicologia. Cap. 2 dentro Tossicologia di Casarett e Doull, a cura di CD Klaassen, MO Amdur e J Doull. New York: Pergamo Press.

Kossover, E.M. 1962. Biochimica molecolare. New York: McGraw-Hill.

Kundiev, YI. 1975.Vssavanie pesticidov cherez kozsu I profilaktika otravlenii [Assorbimento di pesticidi attraverso la pelle e prevenzione dell'intossicazione]. Kiev: Zdorovia.

Kustov, VV, LA Tiunov e JA Vasiljev. 1975. Komvinovanie deistvie promishlenih yadov [Effetti combinati di sostanze tossiche industriali]. Mosca: Medicina.

Lauwerys, R. 1982. Tossicologie industrielle et intossicazioni professionali. Parigi: Masson.

Li, AP e RH Heflich. 1991. Tossicologia genetica. วาล์วระบายความปลอดภัย ขนาดทางเข้า XNUMX/XNUMX นิ้ว XNUMX PSI สเตนเลส | CNXNUMXAJA - ชำระเป็น EUR | จัดส่งทั่วไทย |

Loewey, AG e P. Siekewitz. 1969. Struttura e funzioni delle cellule. New York: Holt, Reinhart e Winston.

จาก นิวสมา ภัทรนนคร Elementi essenziali di tossicologia. Filadelfia: Lea & Febiger.

Mendelsohn, ML e RJ Albertini. 1990. Mutazione e ambiente, parti AE. Îi vei suge penisul și îi vei înghiți sperma video porno gay. Înghițire perfectă de sperma, fetiș, video interracial cu băieți fierbinți. Verificați mii de videoclipuri porno gay din categorii precum Deepthroat, Anal sau Bareback.

Metzler, DE. 1977. Biochimica. New York: stampa accademica.

Miller, K, JL Turk e S Nicklin. 1992. Principi e pratica di immunotossicologia. Oxford: Blackwell Scientific.

Ministero del Commercio Internazionale e dell'Industria. 1981. Manuale delle sostanze chimiche esistenti. Tokyo: stampa quotidiana chimica.

—. 1987. Domanda di approvazione di sostanze chimiche da parte della legge sul controllo delle sostanze chimiche. (In giapponese e in inglese). Tokio: Kagaku Kogyo Nippo Press.

Montagna, W. 1956. La struttura e la funzione della pelle. New York: stampa accademica.

Moolenaar, RJ. 1994. Valutazione del rischio cancerogeno: confronto internazionale. RHare-Kon. 20: 302-336.

Consiglio Nazionale per la Ricerca. 1989. Marcatori biologici nella tossicità riproduttiva. Washington, DC: NAS Press.

Neuman, WG e M. Neuman. 1958. La dinamica chimica dei minerali ossei. Chicago: l'univ. della Chicago Press.

Newcombe, DS, NR Rose e JC Bloom. 1992. Immunotossicologia clinica. New York: Corvo Press.

Pacheco, H.1973. La farmacologia molecolare. Parigi: Presse Universitaire.

Piotrowski, JK. 1971. L'applicazione della cinetica metabolica ed escretoria ai problemi di tossicologia industriale. Washington, DC: Dipartimento della salute, dell'istruzione e del benessere degli Stati Uniti.

—. 1983. Interazioni biochimiche di metalli pesanti: Metalotioneina. In Effetti sulla salute dell'esposizione combinata a sostanze chimiche. Copenaghen: Ufficio regionale dell'OMS per l'Europa.

Atti della conferenza Arnold O. Beckman/IFCC sui biomarcatori di tossicologia ambientale dell'esposizione chimica. 1994. Clin Chem 40(7B).

Russell, WMS e RL Burch. 1959. I principi della tecnica sperimentale umana. Londra: Methuen & Co. Ristampato dalla Universities Federation for Animal Welfare, 1993.

Rycroft, RJG, T Menné, PJ Frosch e C Benezra. 1992. Manuale di dermatite da contatto. Berlino: Springer-Verlag.

Schubert, J. 1951. Stima dei radioelementi negli individui esposti. Nucleonica 8: 13-28.

Shelby, MD ed E Zeiger. 1990. Attività di agenti cancerogeni umani nei test di citogenetica del midollo osseo di roditori e salmonella. Mutat Res 234: 257-261.

Stone, R. 1995. Un approccio molecolare al rischio di cancro. Scienze 268: 356-357.

Teisinger, J. 1984. Test di esposizione nella tossicologia industriale [Test di esposizione in tossicologia industriale]. Berlino: VEB Verlag Volk und Gesundheit.

Congresso degli Stati Uniti. 1990. Monitoraggio genetico e screening sul posto di lavoro, OTA-BA-455. Washington, DC: ufficio stampa del governo degli Stati Uniti.

VEB. 1981. Kleine Enzyklopaedie: Leben [Vita]. Lipsia: VEB Bibliographische Institut.

Weil, E. 1975. Elementi di tossicologia industriale [Elementi di Tossicologia Industriale]. Parigi: Masson et Cie.

Organizzazione Mondiale della Sanità (OMS). 1975. Metodi utilizzati in URSS per stabilire livelli sicuri di sostanze tossiche. Ginevra: OMS.

1978 Principi e metodi per valutare la tossicità delle sostanze chimiche, parte 1. Criteri di salute ambientale, n.6. Ginevra: OMS.

—. 1981. Esposizione combinata a sostanze chimiche, documento provvisorio n.11. Copenaghen: Ufficio regionale dell'OMS per l'Europa.

—. 1986. Principi di studi tossicocinetici. Criteri di salute ambientale, n. 57. Ginevra: OMS.

Yoftrey, JM e FC Courtice. 1956. Linfatici, linfa e tessuto linfoide. Cambridge: Università di Harvard. Premere.

Zakutinsky, DI. 1959. Voprosi toksikologii radioaktivnih veshchestv [Problemi di tossicologia dei materiali radioattivi]. Mosca: Medgiz.

Zurlo, J, D Rudacille e AM Goldberg. 1993. Animali e alternative nei test: storia, scienza ed etica. New York: Mary Ann Liebert.