Mercoledì, marzo 16 2011 21: 45

Le basi fisiche del lavoro in calore

Vota questo gioco
(2 voti )

Scambi termici

Il corpo umano scambia calore con l'ambiente attraverso varie vie: conduzione attraverso le superfici a contatto con esso, convezione ed evaporazione con l'aria ambiente, irraggiamento con le superfici vicine.

Conduzione

La conduzione è la trasmissione del calore tra due corpi solidi a contatto. Tali scambi si osservano tra pelle e abbigliamento, calzature, punti di pressione (sedile, maniglie), strumenti e così via. In pratica, nel calcolo matematico del bilancio termico, questo flusso termico per conduzione viene approssimato indirettamente come una quantità pari al flusso termico per convezione e irraggiamento che si verificherebbe se queste superfici non fossero a contatto con altri materiali.

Convezione

La convezione è il trasferimento di calore tra la pelle e l'aria che la circonda. Se la temperatura della pelle, tsk, in unità di gradi Celsius (°C), è superiore alla temperatura dell'aria (ta), l'aria a contatto con la pelle si riscalda e di conseguenza sale. La circolazione dell'aria, nota come convezione naturale, si stabilisce così sulla superficie del corpo. Questo scambio diventa maggiore se l'aria ambiente passa sopra la pelle ad una certa velocità: la convezione diventa forzata. Il flusso di calore scambiato per convezione, C, in unità di watt per metro quadrato (W/m2), può essere stimato da:

C = hc FclC (tsk - ta)

where hc è il coefficiente di convezione (W/°C m2), che è una funzione della differenza tra tsk ed ta nel caso della convezione naturale, e della velocità dell'aria Va (in m/s) in convezione forzata; FclC è il fattore grazie al quale l'abbigliamento riduce lo scambio termico per convezione.

Radiazione

Ogni corpo emette radiazioni elettromagnetiche la cui intensità è funzione della quarta potenza della sua temperatura assoluta T (in gradi Kelvin—K). La pelle, la cui temperatura può essere compresa tra 30 e 35°C (303 e 308K), emette tale radiazione, che si trova nella zona dell'infrarosso. Inoltre, riceve la radiazione emessa dalle superfici vicine. Il flusso termico scambiato per irraggiamento, R (in W/m2), tra il corpo e ciò che lo circonda può essere descritto dalla seguente espressione:

dove:

s è la costante universale della radiazione (5.67 × 10-8 W/m2 K4)

e è l'emissività della pelle, che per la radiazione infrarossa è pari a 0.97 e indipendente dalla lunghezza d'onda, e per la radiazione solare è circa 0.5 per la pelle di un soggetto Bianco e 0.85 per la pelle di un soggetto Nero

AR/AD è la frazione della superficie corporea che partecipa agli scambi, che è dell'ordine di 0.66, 0.70 o 0.77, a seconda che il soggetto sia accovacciato, seduto o in piedi

FclR è il fattore grazie al quale l'abbigliamento riduce lo scambio di calore per irraggiamento

Tsk (in K) è la temperatura media della pelle

Tr (in K) è la temperatura media radiante dell'ambiente, cioè la temperatura uniforme di una sfera opaca nera di grande diametro che circonderebbe il soggetto e scambierebbe con esso la stessa quantità di calore dell'ambiente reale.

Questa espressione può essere sostituita da un'equazione semplificata dello stesso tipo di quella per gli scambi per convezione:

R = hr (AR/AD) FclR (tsk - tr)

where hr è il coefficiente di scambio per irraggiamento (W/°C m2).

Evaporazione

Ogni superficie bagnata ha su di sé uno strato d'aria satura di vapore acqueo. Se l'atmosfera stessa non è satura, il vapore si diffonde da questo strato verso l'atmosfera. Lo strato tende poi a rigenerarsi attingendo al calore di evaporazione (0.674 Wattora per grammo di acqua) dalla superficie bagnata, che si raffredda. Se la pelle è interamente ricoperta di sudore, l'evaporazione è massima (Emax) e dipende solo dalle condizioni ambientali, secondo la seguente espressione:

Emax =he Fpz (Psc, s - Pa)

dove:

he è il coefficiente di scambio per evaporazione (W/m2kPa)

Psc, s è la pressione satura del vapore acqueo alla temperatura della pelle (espressa in kPa)

Pa è la pressione parziale ambiente del vapore acqueo (espressa in kPa)

Fpz è il fattore di riduzione degli scambi per evaporazione dovuta all'abbigliamento.

Isolamento termico degli indumenti

Nel calcolo del flusso termico per convezione, irraggiamento ed evaporazione interviene un fattore di correzione per tener conto dell'abbigliamento. Nel caso di abbigliamento in cotone, i due fattori di riduzione FclC ed FclR può essere determinato da:

Fcl = 1/(1+(hc+hr)Icl)

dove:

hc è il coefficiente di scambio per convezione

hr è il coefficiente di scambio per irraggiamento

Icl è l'effettivo isolamento termico (m2/W) di abbigliamento.

Per quanto riguarda la riduzione del trasferimento di calore per evaporazione, il fattore di correzione Fpz è data dalla seguente espressione:

Fpz = 1 / (1+2.22hc Icl)

L'isolamento termico dell'abbigliamento Icl si esprime in m2/W o in clo. Un isolamento di 1 clo corrisponde a 0.155 m2/W ed è fornito, ad esempio, dal normale abbigliamento da città (camicia, cravatta, pantaloni, giacca, ecc.).

Lo standard ISO 9920 (1994) fornisce l'isolamento termico fornito da diverse combinazioni di indumenti. Nel caso di indumenti protettivi speciali che riflettono il calore o limitano la permeabilità al vapore in condizioni di esposizione al calore, o assorbono e isolano in condizioni di stress da freddo, devono essere utilizzati fattori di correzione individuali. Ad oggi, tuttavia, il problema rimane poco compreso e le previsioni matematiche rimangono molto approssimative.

Valutazione dei parametri fondamentali della situazione lavorativa

Come visto in precedenza, gli scambi termici per convezione, irraggiamento ed evaporazione sono funzione di quattro parametri climatici: la temperatura dell'aria ta in °C, l'umidità dell'aria espressa dalla sua tensione di vapore parziale Pa in kPa, la temperatura media radiante tr in °C e la velocità dell'aria Va in m/sec. Gli apparecchi ei metodi per misurare questi parametri fisici dell'ambiente sono oggetto della norma ISO 7726 (1985), che descrive i diversi tipi di sensori da utilizzare, specifica il loro campo di misura e la loro accuratezza e raccomanda alcune procedure di misurazione. Questa sezione riassume parte dei dati di tale norma, con particolare riferimento alle condizioni di utilizzo degli apparecchi e apparecchi più comuni.

Temperatura dell'aria

La temperatura dell'aria (ta) deve essere misurato indipendentemente da qualsiasi radiazione termica; la precisione della misurazione deve essere ±0.2ºC nell'intervallo da 10 a 30ºC e ±0.5 °C al di fuori di tale intervallo.

In commercio esistono numerosi tipi di termometri. I termometri a mercurio sono i più comuni. Il loro vantaggio è la precisione, a condizione che siano stati calibrati correttamente in origine. I loro principali svantaggi sono i lunghi tempi di risposta e la mancanza di capacità di registrazione automatica. I termometri elettronici, invece, generalmente hanno un tempo di risposta molto breve (da 5 s a 1 min) ma possono avere problemi di calibrazione.

Qualunque sia il tipo di termometro, il sensore deve essere protetto dalle radiazioni. Ciò è generalmente garantito da un cilindro cavo di alluminio lucido che circonda il sensore. Tale protezione è assicurata dallo psicrometro, di cui si parlerà nella prossima sezione.

Pressione parziale del vapore acqueo

L'umidità dell'aria può essere caratterizzata in quattro modi diversi:

1. il temperatura di rugiada: la temperatura alla quale l'aria deve essere raffreddata per saturarsi di umidità (td,°C)

2. il pressione parziale del vapore acqueo: la frazione della pressione atmosferica dovuta al vapore acqueo (Pa,kPa)

3. l'umidità relativa (destra), che è data dall'espressione:

RH = 100·Pa/PS,ta

dove PS,ta è la pressione di vapore saturo associata alla temperatura dell'aria

4. il temperatura del bulbo umido (tw), che è la temperatura più bassa raggiunta da un manicotto umido protetto dalle radiazioni e ventilato a più di 2 m/s dall'aria ambiente.

Tutti questi valori sono collegati matematicamente.

La pressione del vapore acqueo saturo PS, t a qualsiasi temperatura t è dato da:

mentre la pressione parziale del vapore acqueo è collegata alla temperatura da:

Pa = PS, tw - (Ta - tw)/15

where PS, tw è la pressione di vapore saturo alla temperatura di bulbo umido.

Il diagramma psicrometrico (figura 1) permette di combinare tutti questi valori. Comprende:

Figura 1. Diagramma psicrometrico.

HEA010F1

  • nel y asse, la scala della pressione parziale del vapore acqueo Pa, espresso in kPa
  • nel x asse, la scala della temperatura dell'aria
  • le curve di umidità relativa costante
  • le linee rette oblique della temperatura costante del bulbo umido.
  • I parametri di umidità più spesso utilizzati nella pratica sono:
  • l'umidità relativa, misurata mediante igrometri o apparecchi elettronici più specializzati
  • la temperatura di bulbo umido, misurata mediante lo psicrometro; da ciò si ricava la pressione parziale del vapore acqueo, che è il parametro più utilizzato nell'analisi del bilancio termico

 

L'intervallo di misurazione e la precisione raccomandati sono da 0.5 a 6 kPa e ±0.15 kPa. Per la misurazione della temperatura a bulbo umido, l'intervallo va da 0 a 36ºC, con una precisione identica a quella della temperatura dell'aria. Per quanto riguarda gli igrometri per la misura dell'umidità relativa, il range va dallo 0 al 100%, con una precisione del ±5%.

Temperatura media radiante

La temperatura media radiante (tr) è stato definito in precedenza; può essere determinato in tre modi diversi:

1. dalla temperatura misurata dal termometro a sfera nera

2. dal piano temperature radianti misurate lungo tre assi perpendicolari

3. mediante calcolo, integrando gli effetti delle diverse sorgenti di radiazione.

Solo la prima tecnica verrà esaminata qui.

Il termometro a sfera nera è costituito da una sonda termica, il cui elemento sensibile è posto al centro di una sfera completamente chiusa, realizzata in un metallo buon conduttore di calore (rame) e verniciata di nero opaco in modo da avere un coefficiente di assorbimento nella zona dell'infrarosso vicino a 1.0. La sfera viene posizionata sul posto di lavoro e sottoposta a scambi per convezione e irraggiamento. La temperatura del globo (tg) dipende quindi dalla temperatura media radiante, dalla temperatura dell'aria e dalla velocità dell'aria.

Per un globo nero standard di 15 cm di diametro, la temperatura media di radiazione può essere calcolata dalla temperatura del globo sulla base della seguente espressione:

In pratica va sottolineata la necessità di mantenere l'emissività del globo prossima a 1.0 ridipingendolo accuratamente di nero opaco.

Il principale limite di questo tipo di globo è il suo lungo tempo di risposta (dell'ordine di 20-30 min, a seconda del tipo di globo utilizzato e delle condizioni ambientali). La misura è valida solo se le condizioni di irraggiamento sono costanti durante questo periodo di tempo, e questo non è sempre il caso in un ambiente industriale; la misurazione è quindi imprecisa. Questi tempi di risposta si applicano a globi di 15 cm di diametro, utilizzando normali termometri a mercurio. Sono più corti se si utilizzano sensori di minore capacità termica o se il diametro del globo è ridotto. L'equazione di cui sopra deve quindi essere modificata per tener conto di questa differenza di diametro.

L'indice WBGT utilizza direttamente la temperatura del globo nero. È quindi indispensabile utilizzare un globo di 15 cm di diametro. Altri indici, invece, fanno uso della temperatura media radiante. È quindi possibile selezionare un globo più piccolo per ridurre il tempo di risposta, a condizione che l'equazione di cui sopra venga modificata per tenerne conto. Lo standard ISO 7726 (1985) consente una precisione di ±2ºC nella misurazione di tr tra 10 e 40ºC e ±5ºC al di fuori di tale intervallo.

Velocità aerea

La velocità dell'aria deve essere misurata indipendentemente dalla direzione del flusso d'aria. In caso contrario, la misurazione deve essere eseguita su tre assi perpendicolari (x, y ed z) e la velocità globale calcolata per somma vettoriale:

Il campo di misura raccomandato dalla norma ISO 7726 va da 0.05 a 2 m/s La precisione richiesta è del 5%. Dovrebbe essere misurato come valore medio di 1 o 3 minuti.

Esistono due categorie di apparecchi per la misurazione della velocità dell'aria: gli anemometri a palette e gli anemometri termici.

Anemometri a palette

La misurazione viene effettuata contando il numero di giri compiuti dalle palette durante un certo periodo di tempo. In questo modo si ottiene in modo discontinuo la velocità media in quel periodo di tempo. Questi anemometri presentano due svantaggi principali:

  1. Sono molto direzionali e devono essere orientati rigorosamente nella direzione del flusso d'aria. Quando questo è vago o sconosciuto, le misurazioni devono essere prese in tre direzioni ad angolo retto.
  2. Il campo di misura si estende da circa 0.3 m/s a 10 m/s. Questa limitazione alle basse velocità è importante quando, ad esempio, si tratta di analizzare una situazione di comfort termico in cui si consiglia generalmente di non superare una velocità di 0.25 m/s. Sebbene il campo di misura possa estendersi oltre i 10 m/s, difficilmente scende al di sotto di 0.3 o addirittura 0.5 m/s, il che limita notevolmente le possibilità di utilizzo in ambienti prossimi al comfort, dove le velocità massime consentite sono di 0.5 o addirittura 0.25 m/ S.

Anemometri a filo caldo

Questi apparecchi sono infatti complementari agli anemometri a palette nel senso che la loro gamma dinamica si estende essenzialmente da 0 a 1 m/s. Sono apparecchi che danno una stima istantanea della velocità in un punto dello spazio: è quindi necessario utilizzare valori medi nel tempo e nello spazio. Questi apparecchi sono spesso anche molto direzionali e si applicano anche le osservazioni di cui sopra. Infine, la misura è corretta solo dal momento in cui la temperatura dell'apparecchio ha raggiunto quella dell'ambiente da valutare.

 

Di ritorno

Leggi 7645 volte Ultima modifica giovedì 13 ottobre 2011 21:14

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Riferimenti di calore e freddo

ACGIH (Conferenza americana degli igienisti industriali governativi). 1990. Valori limite di soglia e indici di esposizione biologica per il periodo 1989-1990. New York: ACGIH.

—. 1992. Stress da freddo. In Valori limite di soglia per gli agenti fisici nell'ambiente di lavoro. New York: ACGIH.

Bedford, T. 1940. Calore ambientale e sua misurazione. Memorandum di ricerca medica n. 17. Londra: ufficio di cancelleria di Sua Maestà.

Belding, HS e TF Hatch. 1955. Indice per la valutazione dello stress da calore in termini di ceppo fisiologico risultante. Tubazioni di riscaldamento Aria condizionata 27:129–136.

Bittel, JHM. 1987. Debito di calore come indice di adattamento al freddo negli uomini. JAppl Physiol 62(4):1627–1634.

Bittel, JHM, C Nonotte-Varly, GH Livecchi-Gonnot, GLM Savourey e AM Hanniquet. 1988. Idoneità fisica e reazioni termoregolatorie in un ambiente freddo negli uomini. JAppl Physiol 65:1984-1989.

Bittel, JHM, GH Livecchi-Gonnot, AM Hanniquet e JL Etienne. 1989. Cambiamenti termici osservati prima e dopo il viaggio di JL Etienne al Polo Nord. Eur J Appl Physiol 58:646–651.

Bligh, J e KG Johnson. 1973. Glossario dei termini per la fisiologia termica. JAppl Physiol 35(6):941–961.

Botsford, J.H. 1971. Termometro a globo umido per la misurazione del calore ambientale. Am Ind Hyg J 32:1–10.

Boutelier, C. 1979. Survie et protection des équipages en cas d'immersion accidentelle en eau froide. Neuilly-sur-Seine: AGARD AG 211.

Brouha, L. 1960. Fisiologia nell'industria. New York: Pergamo Press.

Burton, AC e OG Edholm. 1955. L'uomo in un ambiente freddo. Londra: Edward Arnold.

Chen, F, H Nilsson e RI Holmér. 1994. Risposte di raffreddamento del polpastrello a contatto con una superficie di alluminio. Am Ind Hyg Assoc J 55(3):218-22.

Comitato europeo di normalizzazione (CEN). 1992. EN 344. Abbigliamento protettivo contro il freddo. Bruxelles: CEN.

—. 1993. EN 511. Guanti protettivi contro il freddo. Bruxelles: CEN.

Commissione delle Comunità Europee (CEC). 1988. Atti di un seminario sugli indici di stress da calore. Lussemburgo: CEC, Direzione Salute e Sicurezza.

Daanen, HAM. 1993. Deterioramento delle prestazioni manuali in condizioni di freddo e vento. AGARD, NATO, CP-540.

Dasler, AR. 1974. Ventilazione e stress termico, a terra ea galla. Nel Capitolo 3, Manuale di Medicina Preventiva Navale. Washington, DC: Dipartimento della Marina, Ufficio di Medicina e Chirurgia.

—. 1977. Stress da calore, funzioni lavorative e limiti fisiologici di esposizione al calore nell'uomo. In Analisi termica—Comfort umano—Ambienti interni. NBS Special Publication 491. Washington, DC: Dipartimento del Commercio degli Stati Uniti.

Deutsches Institut für Normierung (DIN) 7943-2. 1992. Schlafsacke, Thermophysiologische Prufung. Berlino: DIN.

Dubois, D e EF Dubois. 1916. Calorimetria clinica X: una formula per stimare la superficie appropriata se si conoscono altezza e peso. Arch Int Med 17:863–871.

Eagan, CJ. 1963. Introduzione e terminologia. Fed Proc 22:930–933.

Edwards, JSA, DE Roberts e SH Mutter. 1992. Relazioni per l'uso in un ambiente freddo. J Fauna selvatica Med 3:27–47.

Enander, A. 1987. Reazioni sensoriali e prestazioni a freddo moderato. Tesi di dottorato. Solna: Istituto nazionale di medicina del lavoro.

Fuller, FH e L Brouha. 1966. Nuovi metodi ingegneristici per la valutazione dell'ambiente di lavoro. ASHRAE J 8(1):39–52.

Fuller, FH e PE Smith. 1980. L'efficacia delle procedure di lavoro preventive in un'officina calda. In FN Dukes-Dobos e A Henschel (a cura di). Atti di un seminario NIOSH sugli standard raccomandati per lo stress da calore. Washington DC: pubblicazione DHSS (NIOSH) n. 81-108.

—. 1981. Valutazione dello stress da calore in un'officina calda mediante misurazioni fisiologiche. Am Ind Hyg Assoc J 42:32–37.

Gagge, AP, AP Fobelets e LG Berglund. 1986. Un indice predittivo standard della risposta umana all'ambiente termico. ASHRAE Trans 92:709–731.

Gisolfi, CV e CB Wenger. 1984. Regolazione della temperatura durante l'esercizio: vecchi concetti, nuove idee. Esercizio Sport Sci Rev 12:339–372.

Givoni, B. 1963. Un nuovo metodo per valutare l'esposizione al calore industriale e il carico di lavoro massimo consentito. Documento presentato al Congresso internazionale di biometeorologia a Parigi, Francia, settembre 1963.

—. 1976. Uomo, clima e architettura, 2a ed. Londra: Scienze Applicate.

Givoni, B e RF Goldman. 1972. Previsione della risposta della temperatura rettale al lavoro, all'ambiente e all'abbigliamento. JAppl Physiol 2(6):812–822.

—. 1973. Previsione della risposta della frequenza cardiaca al lavoro, all'ambiente e all'abbigliamento. JAppl Physiol 34(2):201–204.

Goldmann, RF. 1988. Standard per l'esposizione umana al calore. In Environmental Ergonomics, a cura di IB Mekjavic, EW Banister e JB Morrison. Londra: Taylor e Francesco.

Hales, JRS e DAB Richards. 1987. Stress da calore. Amsterdam, New York: Oxford Excerpta Medica.

Hammel, H.T. 1963. Sintesi dei modelli termici comparativi nell'uomo. Fed Proc 22:846–847.

Havenith, G, R Heus e WA Lotens. 1990. Ventilazione degli indumenti, resistenza al vapore e indice di permeabilità: cambiamenti dovuti alla postura, al movimento e al vento. Ergonomia 33:989–1005.

Hayes. 1988. In Environmental Ergonomics, a cura di IB Mekjavic, EW Banister e JB Morrison. Londra: Taylor e Francesco.

Holmér, I. 1988. Valutazione dello stress da freddo in termini di isolamento dell'abbigliamento richiesto—IREQ. Int J Ind Erg 3:159–166.

—. 1993. Lavora al freddo. Revisione dei metodi per la valutazione dello stress da freddo. Int Arch Occ Env Salute 65:147–155.

—. 1994. Stress da freddo: Parte 1—Linee guida per il praticante. Int J Ind Erg 14:1–10.

—. 1994. Stress da freddo: parte 2: la base scientifica (base di conoscenza) per la guida. Int J Ind Erg 14:1–9.

Houghton, FC e CP Yagoglou. 1923. Determinazione di uguali linee di comfort. JASHVE 29:165–176.

Organizzazione internazionale per la standardizzazione (ISO). 1985. ISO 7726. Ambienti termici: strumenti e metodi per misurare le quantità fisiche. Ginevra: ISO.

—. 1989a. ISO 7243. Ambienti caldi: stima dello stress da calore su un lavoratore, basato sull'indice WBGT (Wet Bulb Globe Temperature). Ginevra: ISO.

—. 1989 b. ISO 7933. Ambienti caldi: determinazione analitica e interpretazione dello stress termico utilizzando il calcolo del tasso di sudorazione richiesto. Ginevra: ISO.

—. 1989 c. ISO DIS 9886. Ergonomia: valutazione della deformazione termica mediante misurazioni fisiologiche. Ginevra: ISO.

—. 1990. ISO 8996. Ergonomia: determinazione della produzione di calore metabolico. Ginevra: ISO.

—. 1992. ISO 9886. Valutazione della deformazione termica mediante misurazioni fisiologiche. Ginevra: ISO.

—. 1993. Valutazione dell'influenza dell'ambiente termico utilizzando le scale di giudizio soggettivo. Ginevra: ISO.

—. 1993. ISO CD 12894. Ergonomia dell'ambiente termico: supervisione medica di individui esposti ad ambienti caldi o freddi. Ginevra: ISO.

—. 1993. ISO TR 11079 Valutazione degli ambienti freddi: determinazione dell'isolamento richiesto per l'abbigliamento, IREQ. Ginevra: ISO. (Rapporto tecnico)

—. 1994. ISO 9920. Ergonomia: stima delle caratteristiche termiche di un insieme di indumenti. Ginevra: ISO.

—. 1994. ISO 7730. Ambienti termici moderati: determinazione degli indici PMV e PPD e specifica delle condizioni per il comfort termico. Ginevra: ISO.

—. 1995. ISO DIS 11933. Ergonomia dell'ambiente termico. Principi e applicazione degli standard internazionali. Ginevra: ISO.

Kenneth, W, P Sathasivam, AL Vallerand e TB Graham. 1990. Influenza della caffeina sulle risposte metaboliche degli uomini a riposo a 28 e 5C. JAppl Physiol 68(5):1889–1895.

Kenney, WL e SR Fowler. 1988. Densità e produzione delle ghiandole sudoripare eccrine attivate dalla metilcolina in funzione dell'età. JAppl Physiol 65:1082–1086.

Kerslake, DMcK. 1972. Lo stress degli ambienti caldi. Cambridge: Pressa dell'Università di Cambridge.

LeBlanc, J. 1975. L'uomo al freddo. Springfield, IL, USA: Charles C Thomas Publ.

Leithead, CA e AR Lind. 1964. Stress da calore e disturbi della testa. Londra: Cassel.

Lindo, AR. 1957. Un criterio fisiologico per porre limiti termici ambientali al lavoro di tutti. J Appl Physiol 18:51–56.

Loten, Washington. 1989. L'effettivo isolamento degli indumenti multistrato. Scand J Ambiente di lavoro Salute 15 Suppl. 1:66–75.

—. 1993. Trasferimento di calore da esseri umani che indossano indumenti. Tesi, Università Tecnica. Delft, Paesi Bassi. (ISBN 90-6743-231-8).

Lotens, Washington e G. Havenith. 1991. Calcolo dell'isolamento degli indumenti e della resistenza al vapore. Ergonomia 34: 233–254.

Maclean, D e D Emslie-Smith. 1977. Ipotermia accidentale. Oxford, Londra, Edimburgo, Melbourne: Blackwell Scientific Publication.

Macpherson, RK. 1960. Risposte fisiologiche ad ambienti caldi. Medical Research Council Special Report Series No. 298. Londra: HMSO.

Martineau, L e io Jacob. 1988. Utilizzo del glicogeno muscolare durante la termogenesi da brividi negli esseri umani. JAppl Physiol 56:2046–2050.

Maughan, RJ. 1991. Perdita e sostituzione di liquidi ed elettroliti durante l'esercizio. J Sport Sci 9:117–142.

McArdle, B, W Dunham, HE Halling, WSS Ladell, JW Scalt, ML Thomson e JS Weiner. 1947. La previsione degli effetti fisiologici degli ambienti caldi e caldi. Consiglio di ricerca medica Rep 47/391. Londra: RNP.

McCullough, EA, BW Jones e PEJ Huck. 1985. Un database completo per la stima dell'isolamento dell'abbigliamento. ASHRAE Trans 91:29–47.

McCullough, EA, BW Jones e T Tamura. 1989. Un database per determinare la resistenza all'evaporazione degli indumenti. ASHRAE Trans 95:316–328.

Mc Intyre, DA. 1980. Clima interno. Londra: Applied Science Publishers Ltd.

Mekjavic, IB, EW Banister e JB Morrison (a cura di). 1988. Ergonomia ambientale. Filadelfia: Taylor & Francesco.

Nielsen, B. 1984. Disidratazione, reidratazione e termoregolazione. In E Jokl e M Hebbelinck (a cura di). Medicina e Scienza dello Sport. Basilea: S. Karger.

—. 1994. Stress da calore e acclimatazione. Ergonomia 37(1):49–58.

Nielsen, R, BW Olesen e PO Fanger. 1985. Effetto dell'attività fisica e della velocità dell'aria sull'isolamento termico degli indumenti. Ergonomia 28: 1617–1632.

Istituto nazionale per la sicurezza e la salute sul lavoro (NIOSH). 1972. Esposizione professionale ad ambienti caldi. HSM 72-10269. Washington, DC: Dipartimento per l'educazione alla salute e il benessere degli Stati Uniti.

—. 1986. Esposizione professionale ad ambienti caldi. Pubblicazione NIOSH n. 86-113. Washington, DC: NIOSH.

Nishi, Y e AP Gagge. 1977. Scala di temperatura effettiva utilizzata per ambienti ipo e iperbarici. Spazio aereo e Envir Med 48:97–107.

Olsen, BW. 1985. Stress da calore. In Bruel e Kjaer Technical Review No. 2. Danimarca: Bruel e Kjaer.

Olesen, BW, E Sliwinska, TL Madsen e PO Fanger. 1982. Effetto della postura e dell'attività del corpo sull'isolamento termico degli indumenti: misurazioni di un manichino termico mobile. ASHRAE Trans 88:791–805.

Pandolf, KB, BS Cadarette, MN Sawka, AJ Young, RP Francesconi e RR Gonzales. 1988. JAppl Physiol 65(1):65–71.

Parsons, K.C. 1993. Ambienti termici umani. Hampshire, Regno Unito: Taylor & Francis.

Reed, HL, D Brice, KMM Shakir, KD Burman, MM D'Alesandro e JT O'Brian. 1990. Diminuzione della frazione libera degli ormoni tiroidei dopo una prolungata permanenza in Antartide. JAppl Physiol 69:1467–1472.

Rowell, L.B. 1983. Aspetti cardiovascolari della termoregolazione umana. Circ Res 52:367–379.

—. 1986. Regolazione della circolazione umana durante lo stress fisico. Oxford: OUP.

Sato, K e F Sato. 1983. Variazioni individuali nella struttura e nella funzione della ghiandola sudoripare eccrina umana. Am J Physiol 245:R203–R208.

Savourey, G, AL Vallerand e J Bittel. 1992. Adattamento generale e locale dopo un viaggio sugli sci in un severo ambiente artico. Eur J Appl Physiol 64:99–105.

Savourey, G, JP Caravel, B Barnavol e J Bittel. 1994. L'ormone tiroideo cambia in un ambiente di aria fredda dopo l'acclimatazione al freddo locale. JAppl Physiol 76(5):1963–1967.

Savourey, G, B Barnavol, JP Caravel, C Feuerstein e J Bittel. 1996. Adattamento al freddo generale ipotermico indotto dall'acclimatazione al freddo locale. Eur J Appl Physiol 73:237–244.

Vallerand, AL, I Jacob e MF Kavanagh. 1989. Meccanismo di maggiore tolleranza al freddo da parte di una miscela di efedrina/caffeina negli esseri umani. J Appl Physiol 67:438–444.

van Dilla, MA, R Day e PA Siple. 1949. Problemi speciali delle mani. In Fisiologia della regolazione del calore, a cura di R Newburgh. Filadelfia: Saunders.

Vellar, OD. 1969. Perdite di nutrienti attraverso la sudorazione. Oslo: Universitetsforlaget.

Vogt, JJ, V Candas, JP Libert e F Daull. 1981. Tasso di sudore richiesto come indice di tensione termica nell'industria. In Bioingegneria, Fisiologia Termica e Comfort, a cura di K Cena e JA Clark. Amsterdam: Elsevier. 99–110.

Wang, LCH, SFP Man e AN Bel Castro. 1987. Risposte metaboliche e ormonali nella resistenza al freddo aumentata dalla teofillina nei maschi. JAppl Physiol 63:589–596.

Organizzazione Mondiale della Sanità (OMS). 1969. Fattori di salute coinvolti nel lavoro in condizioni di stress da calore. Rapporto tecnico 412. Ginevra: OMS.

Wissler, EH. 1988. Una revisione dei modelli termici umani. In Environmental Ergonomics, a cura di IB Mekjavic, EW Banister e JB Morrison. Londra: Taylor e Francesco.

Beccaccia, AH. 1962. Trasferimento di umidità nei sistemi tessili. Parte I. Textile Res J 32:628–633.

Yaglou, CP e D Minard. 1957. Controllo delle vittime di calore nei centri di addestramento militare. Am Med Assoc Arch Ind Health 16:302–316 e 405.