Giovedi, 24 marzo 2011 20: 03

Sicurezza contro le radiazioni

Vota questo gioco
(4 voti )

Questo articolo descrive gli aspetti dei programmi di radioprotezione. L'obiettivo della sicurezza dalle radiazioni è eliminare o ridurre al minimo gli effetti dannosi delle radiazioni ionizzanti e del materiale radioattivo sui lavoratori, sul pubblico e sull'ambiente, consentendone al tempo stesso gli usi benefici.

La maggior parte dei programmi di radioprotezione non dovrà implementare tutti gli elementi descritti di seguito. La progettazione di un programma di protezione dalle radiazioni dipende dai tipi di sorgenti di radiazioni ionizzanti coinvolte e dal modo in cui vengono utilizzate.

Principi di sicurezza dalle radiazioni

La Commissione internazionale per la protezione radiologica (ICRP) ha proposto che i seguenti principi dovrebbero guidare l'uso delle radiazioni ionizzanti e l'applicazione degli standard di sicurezza dalle radiazioni:

  1. Nessuna pratica che implichi l'esposizione alle radiazioni dovrebbe essere adottata a meno che non produca un beneficio sufficiente per gli individui esposti o per la società da compensare il danno da radiazioni che provoca (il giustificazione di una pratica).
  2. In relazione a qualsiasi particolare fonte all'interno di una pratica, l'entità delle dosi individuali, il numero di persone esposte e la probabilità di incorrere in esposizioni laddove queste non siano certe da ricevere dovrebbero essere mantenute al livello più basso ragionevolmente realizzabile (ALARA), economico e fattori sociali presi in considerazione. Questa procedura dovrebbe essere vincolata da restrizioni sulle dosi agli individui (vincoli di dose), in modo da limitare l'iniquità che potrebbe derivare dai giudizi economici e sociali intrinseci (il ottimizzazione della protezione).
  3. L'esposizione degli individui risultante dalla combinazione di tutte le pratiche pertinenti dovrebbe essere soggetta a limiti di dose oa un certo controllo del rischio in caso di esposizioni potenziali. Questi hanno lo scopo di garantire che nessun individuo sia esposto a rischi di radiazioni giudicati inaccettabili da queste pratiche in circostanze normali. Non tutte le fonti sono suscettibili di controllo mediante azione alla fonte ed è necessario specificare le fonti da includere come pertinenti prima di selezionare un limite di dose (dose individuale e limiti di rischio).

 

Standard di sicurezza dalle radiazioni

Esistono standard per l'esposizione alle radiazioni dei lavoratori e del pubblico in generale e per i limiti annuali di assunzione (ALI) di radionuclidi. Gli standard per le concentrazioni di radionuclidi nell'aria e nell'acqua possono essere ricavati dagli ALI.

L'ICRP ha pubblicato ampie tabulazioni degli ALI e ne ha derivato le concentrazioni nell'aria e nell'acqua. Un riassunto dei suoi limiti di dose raccomandati è nella tabella 1.

Tabella 1. Limiti di dose raccomandati dalla Commissione internazionale per la protezione radiologica1

Applicazioni

Limite di dose

 
 

Professionale

Pubblico

Dose efficace

20 mSv all'anno in media
periodi definiti di 5 anni2

1 mSv in un anno3

Dose equivalente annuale in:

Lente dell'occhio

150 mSv

15 mSv

Pelle4

500 mSv

50 mSv

Mani e piedi

500 mSv

-

1 I limiti si applicano alla somma delle dosi rilevanti dall'esposizione esterna nel periodo specificato e alla dose impegnata di 50 anni (fino all'età di 70 anni per i bambini) dall'assunzione nello stesso periodo.

2 Con l'ulteriore disposizione che la dose efficace non deve superare i 50 mSv in un singolo anno. Ulteriori restrizioni si applicano all'esposizione professionale delle donne incinte.

3 In circostanze particolari, un valore più elevato di dose efficace potrebbe essere consentito in un solo anno, a condizione che la media su 5 anni non superi 1 mSv all'anno.

4 La limitazione della dose efficace fornisce una protezione sufficiente per la pelle contro gli effetti stocastici. Un limite aggiuntivo è necessario per le esposizioni localizzate al fine di prevenire effetti deterministici.

dosimetria

La dosimetria viene utilizzata per indicare gli equivalenti di dose da cui ricevono i lavoratori esterno campi di radiazione a cui possono essere esposti. I dosimetri sono caratterizzati dal tipo di dispositivo, dal tipo di radiazione che misurano e dalla porzione del corpo per la quale si vuole indicare la dose assorbita.

Tre tipi principali di dosimetri sono più comunemente impiegati. Sono dosimetri termoluminescenti, dosimetri a film e camere di ionizzazione. Altri tipi di dosimetri (non discussi qui) includono fogli di fissione, dispositivi track-etch e dosimetri a "bolle" di plastica.

I dosimetri termoluminescenti sono il tipo di dosimetro personale più comunemente utilizzato. Sfruttano il principio che quando alcuni materiali assorbono energia dalle radiazioni ionizzanti, la immagazzinano in modo tale che successivamente possa essere recuperata sotto forma di luce quando i materiali vengono riscaldati. In larga misura, la quantità di luce rilasciata è direttamente proporzionale all'energia assorbita dalla radiazione ionizzante e quindi alla dose assorbita dal materiale ricevuto. Questa proporzionalità è valida su una gamma molto ampia di energia delle radiazioni ionizzanti e velocità di dose assorbita.

Sono necessarie attrezzature speciali per elaborare con precisione i dosimetri termoluminescenti. La lettura del dosimetro termoluminescente distrugge le informazioni sulla dose in esso contenute. Tuttavia, dopo un'adeguata elaborazione, i dosimetri termoluminescenti sono riutilizzabili.

Il materiale utilizzato per i dosimetri termoluminescenti deve essere trasparente alla luce che emette. I materiali più comunemente utilizzati per i dosimetri termoluminescenti sono il fluoruro di litio (LiF) e il fluoruro di calcio (CaF2). I materiali possono essere drogati con altri materiali o realizzati con una composizione isotopica specifica per scopi specializzati come la dosimetria dei neutroni.

Molti dosimetri contengono diversi chip termoluminescenti con diversi filtri davanti per consentire la discriminazione tra energie e tipi di radiazioni.

La pellicola era il materiale più popolare per la dosimetria del personale prima che la dosimetria termoluminescente diventasse comune. Il grado di oscuramento del film dipende dall'energia assorbita dalla radiazione ionizzante, ma la relazione non è lineare. La dipendenza della risposta del film dalla dose totale assorbita, dalla velocità di dose assorbita e dall'energia di radiazione è maggiore di quella dei dosimetri termoluminescenti e può limitare il campo di applicabilità del film. Tuttavia, la pellicola ha il vantaggio di fornire una registrazione permanente della dose assorbita alla quale è stata esposta.

Varie formulazioni di film e disposizioni di filtri possono essere utilizzate per scopi speciali, come la dosimetria di neutroni. Come per i dosimetri termoluminescenti, è necessaria un'attrezzatura speciale per un'analisi corretta.

La pellicola è generalmente molto più sensibile all'umidità e alla temperatura ambiente rispetto ai materiali termoluminescenti e può fornire letture falsamente elevate in condizioni avverse. D'altra parte, gli equivalenti di dose indicati dai dosimetri termoluminescenti possono essere influenzati dall'urto di una loro caduta su una superficie dura.

Solo le organizzazioni più grandi gestiscono i propri servizi di dosimetria. La maggior parte ottiene tali servizi da società specializzate nella loro fornitura. È importante che tali società siano autorizzate o accreditate dalle autorità indipendenti appropriate in modo da garantire risultati di dosimetria accurati.

Autolettura, piccole camere di ionizzazione, chiamate anche camere tascabili, vengono utilizzati per ottenere informazioni dosimetriche immediate. Il loro utilizzo è spesso richiesto quando il personale deve entrare in aree ad alta o altissima radiazione, dove il personale potrebbe ricevere una grande dose assorbita in un breve periodo di tempo. Le camere tascabili sono spesso calibrate localmente e sono molto sensibili agli urti. Di conseguenza, dovrebbero sempre essere integrati da dosimetri termoluminescenti oa film, che sono più precisi e affidabili ma non forniscono risultati immediati.

La dosimetria è richiesta per un lavoratore quando ha una ragionevole probabilità di accumulare una certa percentuale, solitamente il 5 o il 10%, dell'equivalente di dose massimo consentito per l'intero corpo o alcune parti del corpo.

Un dosimetro per tutto il corpo dovrebbe essere indossato da qualche parte tra le spalle e la vita, in un punto in cui è prevista la massima esposizione. Quando le condizioni di esposizione lo richiedono, altri dosimetri possono essere indossati sulle dita o sui polsi, sull'addome, su una fascia o un cappello sulla fronte, o su un collare, per valutare l'esposizione localizzata alle estremità, a un feto o embrione, alla tiroide o al lenti degli occhi. Fare riferimento alle linee guida normative appropriate sull'opportunità di indossare i dosimetri all'interno o all'esterno di indumenti protettivi come grembiuli, guanti e colletti di piombo.

I dosimetri del personale indicano solo la radiazione a cui il dosimetro è stato esposto. L'assegnazione della dose del dosimetro equivalente alla persona o agli organi della persona è accettabile per dosi piccole e banali, ma le grandi dosi del dosimetro, in particolare quelle che superano di gran lunga gli standard normativi, dovrebbero essere analizzate attentamente per quanto riguarda il posizionamento del dosimetro e i campi di radiazione effettivi a cui il dosimetro lavoratore è stato esposto durante la stima della dose che il lavoratore effettivamente ricevuto. Una dichiarazione dovrebbe essere ottenuta dal lavoratore come parte dell'indagine e inclusa nel verbale. Tuttavia, molto più spesso che no, dosi molto elevate del dosimetro sono il risultato di un'esposizione deliberata alle radiazioni del dosimetro mentre non veniva indossato.

bioassay

bioassay (anche detto radiobiologico) indica la determinazione di tipi, quantità o concentrazioni e, in alcuni casi, l'ubicazione di materiale radioattivo nel corpo umano, sia mediante misurazione diretta (in vivo conteggio) o mediante analisi e valutazione dei materiali escreti o rimossi dal corpo umano.

Il biodosaggio viene solitamente utilizzato per valutare l'equivalente di dose del lavoratore a causa del materiale radioattivo introdotto nel corpo. Può anche fornire un'indicazione dell'efficacia delle misure attive adottate per prevenire tale assunzione. Più raramente può essere utilizzato per stimare la dose che un lavoratore ha ricevuto da una massiccia esposizione esterna alle radiazioni (ad esempio, contando i globuli bianchi oi difetti cromosomici).

Il saggio biologico deve essere eseguito quando esiste una ragionevole possibilità che un lavoratore possa assumere o abbia assunto nel proprio corpo più di una certa percentuale (solitamente il 5 o il 10%) dell'ALI per un radionuclide. La forma chimica e fisica del radionuclide ricercato nel corpo determina il tipo di saggio biologico necessario per rilevarlo.

Il biodosaggio può consistere nell'analisi di campioni prelevati dal corpo (ad esempio urina, feci, sangue o capelli) per isotopi radioattivi. In questo caso, la quantità di radioattività nel campione può essere correlata alla radioattività nel corpo della persona e successivamente alla dose di radiazioni che il corpo della persona o alcuni organi hanno ricevuto o si impegnano a ricevere. Il biodosaggio delle urine per il trizio è un esempio di questo tipo di biodosaggio.

La scansione del corpo intero o parziale può essere utilizzata per rilevare radionuclidi che emettono raggi x o gamma di energia ragionevolmente rilevabili all'esterno del corpo. Biodosaggio tiroideo per iodio-131 (131I) è un esempio di questo tipo di saggio biologico.

Il saggio biologico può essere eseguito internamente oppure i campioni o il personale possono essere inviati a una struttura o organizzazione specializzata nel saggio biologico da eseguire. In entrambi i casi, la corretta calibrazione delle apparecchiature e l'accreditamento delle procedure di laboratorio è essenziale per garantire risultati accurati, precisi e difendibili del biodosaggio.

Abbigliamento protettivo

L'abbigliamento protettivo viene fornito dal datore di lavoro al lavoratore per ridurre la possibilità di contaminazione radioattiva del lavoratore o dei suoi indumenti o per proteggere parzialmente il lavoratore dalle radiazioni beta, x o gamma. Esempi dei primi sono indumenti, guanti, cappucci e stivali anti-contaminazione. Esempi di questi ultimi sono grembiuli, guanti e occhiali piombati.

Protezione respiratoria

Un dispositivo di protezione delle vie respiratorie è un apparecchio, come un respiratore, utilizzato per ridurre l'assunzione da parte di un lavoratore di materiali radioattivi trasportati dall'aria.

I datori di lavoro devono utilizzare, per quanto possibile, processi o altri controlli tecnici (ad esempio, contenimento o ventilazione) per limitare le concentrazioni di materiali radioattivi nell'aria. Quando ciò non sia possibile per il controllo delle concentrazioni di materiale radioattivo nell'aria a valori inferiori a quelli che definiscono un'area di radioattività aerea, il datore di lavoro, compatibilmente con il mantenimento della dose totale efficace equivalente ALARA, deve aumentare il monitoraggio e limitare gli apporti di uno o più dei seguenti mezzi:

  • controllo degli accessi
  • limitazione dei tempi di esposizione
  • uso di dispositivi di protezione delle vie respiratorie
  • altri controlli.

 

I dispositivi di protezione respiratoria forniti ai lavoratori devono essere conformi alle norme nazionali applicabili per tali dispositivi.

Il datore di lavoro deve attuare e mantenere un programma di protezione delle vie respiratorie che includa:

  • campionamento dell'aria sufficiente per identificare il potenziale pericolo, consentire una corretta selezione delle attrezzature e stimare le esposizioni
  • indagini e analisi biologiche, a seconda dei casi, per valutare le effettive assunzioni
  • test di funzionalità dei respiratori immediatamente prima di ogni utilizzo
  • procedure scritte riguardanti la selezione, l'adattamento, l'emissione, la manutenzione e il collaudo dei respiratori, compresi i test di funzionalità immediatamente prima di ogni utilizzo; supervisione e formazione del personale; monitoraggio, compreso il campionamento dell'aria e le analisi biologiche; e tenuta dei registri
  • determinazione da parte di un medico prima dell'applicazione iniziale dei respiratori, e periodicamente con una frequenza stabilita da un medico, che il singolo utente è idoneo dal punto di vista medico a utilizzare l'attrezzatura di protezione delle vie respiratorie.

 

Il datore di lavoro deve avvisare ciascun utilizzatore del respiratore che l'utente può lasciare l'area di lavoro in qualsiasi momento per alleviare l'uso del respiratore in caso di malfunzionamento dell'apparecchiatura, disagio fisico o psicologico, errore procedurale o di comunicazione, deterioramento significativo delle condizioni operative o qualsiasi altra condizione che potrebbe richiedere tale sollievo.

Anche se le circostanze potrebbero non richiedere l'uso di routine dei respiratori, condizioni di emergenza credibili possono imporre la loro disponibilità. In tali casi, anche i respiratori devono essere certificati per tale uso da un organismo di accreditamento appropriato e mantenuti in condizioni pronte per l'uso.

Sorveglianza della salute sul lavoro

I lavoratori esposti a radiazioni ionizzanti dovrebbero ricevere servizi di medicina del lavoro nella stessa misura dei lavoratori esposti ad altri rischi professionali.

Gli esami generali di preplacement valutano la salute generale del potenziale dipendente e stabiliscono i dati di riferimento. È sempre necessario ottenere una precedente storia medica e di esposizione. A seconda della natura dell'esposizione alle radiazioni prevista, possono essere necessari esami specialistici, come il cristallino dell'occhio e la conta delle cellule del sangue. Questo dovrebbe essere lasciato alla discrezione del medico curante.

Indagini sulla contaminazione

Un'indagine sulla contaminazione è una valutazione delle condizioni radiologiche relative alla produzione, all'uso, al rilascio, allo smaltimento o alla presenza di materiali radioattivi o altre sorgenti di radiazioni. Se del caso, tale valutazione include un'indagine fisica dell'ubicazione del materiale radioattivo e misurazioni o calcoli dei livelli di radiazione, o concentrazioni o quantità di materiale radioattivo presente.

Le indagini sulla contaminazione vengono eseguite per dimostrare la conformità alle normative nazionali e per valutare l'entità dei livelli di radiazione, le concentrazioni o le quantità di materiale radioattivo e i potenziali pericoli radiologici che potrebbero essere presenti.

La frequenza delle indagini sulla contaminazione è determinata dal grado di potenziale pericolo presente. Dovrebbero essere effettuate indagini settimanali nelle aree di stoccaggio dei rifiuti radioattivi e nei laboratori e nelle cliniche in cui vengono utilizzate quantità relativamente elevate di sorgenti radioattive non sigillate. Le indagini mensili sono sufficienti per i laboratori che lavorano con piccole quantità di sorgenti radioattive, come i laboratori che effettuano in vitro test utilizzando isotopi come trizio, carbonio-14 (14C) e iodio-125 (125I) con attività inferiori a pochi kBq.

Le apparecchiature di sicurezza contro le radiazioni e i misuratori di rilevamento devono essere adeguati ai tipi di materiale radioattivo e alle radiazioni coinvolte e devono essere adeguatamente calibrati.

Le indagini di contaminazione consistono in misurazioni dei livelli di radiazione ambientale con un contatore Geiger-Mueller (GM), una camera di ionizzazione o un contatore a scintillazione; misure di possibile contaminazione superficiale α o βγ con opportuni contatori a scintillazione GM o solfuro di zinco (ZnS) a finestra sottile; e wipe test delle superfici da contare successivamente in un contatore a scintillazione (ioduro di sodio (NaI)), un contatore al germanio (Ge) o un contatore a scintillazione liquida, a seconda dei casi.

Devono essere stabiliti livelli di azione appropriati per i risultati delle misurazioni della radiazione ambientale e della contaminazione. Quando viene superato un livello di azione, devono essere prese immediatamente misure per mitigare i livelli rilevati, riportarli a condizioni accettabili e prevenire l'esposizione non necessaria del personale alle radiazioni e l'assorbimento e la diffusione di materiale radioattivo.

Monitoraggio Ambientale

Il monitoraggio ambientale si riferisce alla raccolta e alla misurazione di campioni ambientali per materiali radioattivi e al monitoraggio delle aree al di fuori dei dintorni del luogo di lavoro per i livelli di radiazione. Gli scopi del monitoraggio ambientale includono la stima delle conseguenze per gli esseri umani derivanti dal rilascio di radionuclidi nella biosfera, il rilevamento di rilasci di materiale radioattivo nell'ambiente prima che diventino gravi e la dimostrazione della conformità alle normative.

Una descrizione completa delle tecniche di monitoraggio ambientale esula dallo scopo di questo articolo. Tuttavia, i principi generali saranno discussi.

Devono essere prelevati campioni ambientali che monitorino il percorso più probabile dei radionuclidi dall'ambiente all'uomo. Ad esempio, i campioni di suolo, acqua, erba e latte nelle regioni agricole intorno a una centrale nucleare dovrebbero essere prelevati regolarmente e analizzati per lo iodio-131 (131I) e stronzio-90 (90Sr) contenuto.

Il monitoraggio ambientale può includere il prelievo di campioni di aria, acque sotterranee, acque superficiali, suolo, fogliame, pesci, latte, selvaggina e così via. La scelta di quali campioni prelevare e quanto spesso prelevarli dovrebbe basarsi sugli scopi del monitoraggio, sebbene un piccolo numero di campioni casuali possa talvolta identificare un problema precedentemente sconosciuto.

Il primo passo nella progettazione di un programma di monitoraggio ambientale è quello di caratterizzare i radionuclidi rilasciati o che potrebbero essere rilasciati accidentalmente, rispetto al tipo, alla quantità e alla forma fisica e chimica.

La possibilità di trasporto di questi radionuclidi attraverso l'aria, le acque sotterranee e superficiali è la considerazione successiva. L'obiettivo è prevedere le concentrazioni di radionuclidi che raggiungono l'uomo direttamente attraverso l'aria e l'acqua o indirettamente attraverso il cibo.

Il successivo elemento di preoccupazione è il bioaccumulo di radionuclidi derivante dalla deposizione in ambienti acquatici e terrestri. L'obiettivo è prevedere la concentrazione di radionuclidi una volta entrati nella catena alimentare.

Infine, vengono esaminati il ​​tasso di consumo umano di questi alimenti potenzialmente contaminati e il modo in cui questo consumo contribuisce alla dose di radiazioni umana e al conseguente rischio per la salute. I risultati di questa analisi vengono utilizzati per determinare l'approccio migliore al campionamento ambientale e per garantire che gli obiettivi del programma di monitoraggio ambientale siano raggiunti.

Test di tenuta di sorgenti sigillate

Una sorgente sigillata indica materiale radioattivo racchiuso in una capsula progettata per impedire la fuoriuscita o la fuoriuscita del materiale. Tali sorgenti devono essere testate periodicamente per verificare che la sorgente non perda materiale radioattivo.

Ogni sorgente sigillata deve essere testata per perdite prima del suo primo utilizzo, a meno che il fornitore non abbia fornito un certificato indicante che la sorgente è stata testata entro sei mesi (tre mesi per gli emettitori α) prima del trasferimento all'attuale proprietario. Ogni sorgente sigillata deve essere testata per perdite almeno una volta ogni sei mesi (tre mesi per gli emettitori α) o ad un intervallo specificato dall'autorità di regolamentazione.

Generalmente non sono richieste prove di tenuta sulle seguenti sorgenti:

  • sorgenti contenenti solo materiale radioattivo con un tempo di dimezzamento inferiore a 30 giorni
  • sorgenti contenenti solo materiale radioattivo come gas
  • sorgenti contenenti 4 MBq o meno di materiale che emette βγ o 0.4 MBq o meno di materiale che emette α
  • fonti memorizzate e non utilizzate; tuttavia, ciascuna di tali fonti deve essere testata per perdite prima di qualsiasi utilizzo o trasferimento a meno che non sia stata testata per perdite entro sei mesi prima della data di utilizzo o trasferimento
  • semi di iridio-192 (192Ir) racchiuso in nastro di nylon.

 

Un test di tenuta viene eseguito prelevando un campione di strofinamento dalla sorgente sigillata o dalle superfici del dispositivo in cui è montata o conservata la sorgente sigillata su cui è prevedibile l'accumulo di contaminazione radioattiva o lavando la sorgente in una piccola quantità di detergente soluzione e trattando l'intero volume come campione.

Il campione dovrebbe essere misurato in modo che il test di perdita possa rilevare la presenza di almeno 200 Bq di materiale radioattivo sul campione.

Le sorgenti di radio sigillate richiedono speciali procedure di prova di tenuta per rilevare perdite di gas radon (Rn). Ad esempio, una procedura prevede di conservare la fonte sigillata in un barattolo con fibre di cotone per almeno 24 ore. Alla fine del periodo, le fibre di cotone vengono analizzate per la presenza di progenie Rn.

Una sorgente sigillata che presenta perdite superiori ai limiti consentiti deve essere rimossa dal servizio. Se la sorgente non è riparabile, dovrebbe essere gestita come rifiuto radioattivo. L'autorità di regolamentazione può richiedere che le fonti di perdita siano segnalate nel caso in cui la perdita sia il risultato di un difetto di fabbricazione meritevole di ulteriori indagini.

Inventario

Il personale addetto alla sicurezza in materia di radiazioni deve mantenere un inventario aggiornato di tutto il materiale radioattivo e di altre fonti di radiazioni ionizzanti di cui è responsabile il datore di lavoro. Le procedure dell'organizzazione devono garantire che il personale addetto alla sicurezza contro le radiazioni sia a conoscenza della ricezione, dell'uso, del trasferimento e dello smaltimento di tutto il materiale e le sorgenti, in modo che l'inventario possa essere mantenuto aggiornato. Un inventario fisico di tutte le fonti sigillate dovrebbe essere fatto almeno una volta ogni tre mesi. L'inventario completo delle sorgenti di radiazioni ionizzanti dovrebbe essere verificato durante l'audit annuale del programma di radioprotezione.

Inserimento delle Aree

La figura 1 mostra il simbolo della radiazione standard internazionale. Questo deve apparire ben visibile su tutti i segnali che denotano aree controllate ai fini della radioprotezione e sulle etichette dei contenitori che indicano la presenza di materiali radioattivi.

Figura 1. Simbolo di radiazione

ION050F1

Le aree controllate ai fini della radioprotezione sono spesso designate in termini di livelli di intensità di dose crescenti. Tali aree devono essere affisse in modo ben visibile con uno o più cartelli recanti il ​​simbolo delle radiazioni e le parole "ATTENZIONE, AREA DI RADIAZIONE", "ATTENZIONE (or PERICOLO), ZONA DI RADIAZIONI ELEVATE” o “PERICOLO GRAVE, ZONA DI RADIAZIONI MOLTO ELEVATE”, a seconda dei casi.

  1. Un'area di radiazione è un'area, accessibile al personale, in cui i livelli di radiazione potrebbero comportare che un individuo riceva una dose equivalente superiore a 0.05 mSv in 1 ora a 30 cm dalla sorgente di radiazione o da qualsiasi superficie che la radiazione penetra.
  2. Un'area ad alta radiazione è un'area, accessibile al personale, in cui i livelli di radiazione potrebbero comportare che un individuo riceva una dose equivalente superiore a 1 mSv in 1 ora a 30 cm dalla sorgente di radiazioni o da qualsiasi superficie che la radiazione penetra.
  3. Un'area ad altissima radiazione è un'area, accessibile al personale, in cui i livelli di radiazione potrebbero comportare che un individuo riceva una dose assorbita superiore a 5 Gy in 1 ora a 1 m da una sorgente di radiazioni o da qualsiasi superficie che la radiazione penetra.

Se un'area o un locale contiene una quantità significativa di materiale radioattivo (come definito dall'autorità di regolamentazione), l'ingresso a tale area o locale deve essere ben visibile con un cartello recante il simbolo della radiazione e la dicitura "ATTENZIONE (or PERICOLO), MATERIALI RADIOATTIVI”.

Un'area di radioattività aerea è una stanza o un'area in cui la radioattività aerea supera determinati livelli definiti dall'autorità di regolamentazione. Ogni area di radioattività aerea deve essere affissa con uno o più cartelli ben visibili recanti il ​​simbolo della radiazione e la dicitura “ATTENZIONE, AREA DI RADIOATTIVITÀ AEREA” o “PERICOLO, AREA DI RADIOATTIVITÀ AEREA”.

Eccezioni a questi requisiti di distacco possono essere concesse per le stanze dei pazienti negli ospedali dove tali stanze sono altrimenti sotto controllo adeguato. Non è necessario affiggere aree o locali in cui le sorgenti di radiazioni devono essere collocate per periodi di otto ore o meno e sono comunque costantemente presidiate sotto adeguato controllo da parte di personale qualificato.

Access Control

Il grado di controllo dell'accesso a un'area è determinato dal grado del potenziale rischio di radiazioni nell'area.

Controllo dell'accesso alle aree ad alta radiazione

Ogni ingresso o punto di accesso ad un'area ad alta radiazione deve avere una o più delle seguenti caratteristiche:

  • un dispositivo di controllo che, all'ingresso nell'area, provoca la riduzione del livello di radiazione al di sotto del livello al quale un individuo potrebbe ricevere una dose di 1 mSv in 1 ora a 30 cm dalla sorgente di radiazione o da qualsiasi superficie che la radiazione penetra
  • un dispositivo di controllo che emette un segnale di allarme visivo o acustico ben visibile in modo che l'individuo che entra nell'area ad alta radiazione e il supervisore dell'attività siano informati dell'ingresso
  • ingressi chiusi a chiave, salvo nei periodi in cui è richiesto l'accesso all'area, con controllo positivo di ogni singolo ingresso.

 

Ai controlli richiesti per un'area ad alta radiazione può essere sostituita una sorveglianza continua diretta o elettronica che sia in grado di impedire l'ingresso non autorizzato.

I controlli devono essere stabiliti in modo da non impedire alle persone di lasciare l'area ad alta radiazione.

Controllo dell'accesso ad aree ad altissima radiazione

Oltre ai requisiti per un'area ad alta radiazione, devono essere istituite misure aggiuntive per garantire che un individuo non sia in grado di ottenere un accesso non autorizzato o involontario ad aree in cui si potrebbero incontrare livelli di radiazione a 5 Gy o più in 1 h a 1 m da una sorgente di radiazioni o da qualsiasi superficie attraverso la quale penetra la radiazione.

Marcature su contenitori e attrezzature

Ogni contenitore di materiale radioattivo superiore a una quantità determinata dall'autorità di regolamentazione deve recare un'etichetta durevole e ben visibile recante il simbolo della radiazione e le parole "ATTENZIONE, MATERIALE RADIOATTIVO" o "PERICOLO, MATERIALE RADIOATTIVO". L'etichetta deve inoltre fornire informazioni sufficienti - come il(i) radionuclide(i) presente(i), una stima della quantità di radioattività, la data per la quale l'attività è stimata, i livelli di radiazione, i tipi di materiali e l'arricchimento di massa - per consentire alle persone di maneggiare o utilizzare contenitori, o lavorando nelle vicinanze dei contenitori, prendere precauzioni per evitare o ridurre al minimo le esposizioni.

Prima della rimozione o dello smaltimento di contenitori vuoti non contaminati in aree non ristrette, l'etichetta del materiale radioattivo deve essere rimossa o cancellata, oppure deve essere chiaramente indicato che il contenitore non contiene più materiali radioattivi.

I contenitori non devono essere etichettati se:

  1. i contenitori sono presidiati da un soggetto che adotta le precauzioni necessarie per evitare l'esposizione di soggetti eccedenti i limiti regolamentari
  2. i contenitori, quando sono in trasporto, sono imballati ed etichettati in conformità con le norme di trasporto appropriate
  3. i contenitori sono accessibili solo alle persone autorizzate a maneggiarli o utilizzarli, o a lavorare nelle vicinanze dei contenitori, se il contenuto è identificato da tali persone mediante una registrazione scritta prontamente disponibile (esempi di contenitori di questo tipo sono i contenitori in luoghi come canali pieni d'acqua, depositi o celle calde); il registro deve essere conservato fintanto che i contenitori sono utilizzati per lo scopo indicato nel registro; o
  4. i contenitori sono installati in apparecchiature di produzione o di processo, come componenti di reattori, tubazioni e serbatoi.

 

Dispositivi di avviso e allarmi

Le aree ad alta radiazione e le aree ad altissima radiazione devono essere dotate di dispositivi di allarme e allarmi come discusso sopra. Questi dispositivi e allarmi possono essere visibili o udibili o entrambi. I dispositivi e gli allarmi per sistemi come gli acceleratori di particelle dovrebbero essere automaticamente alimentati come parte della procedura di avvio in modo che il personale abbia il tempo di lasciare l'area o spegnere il sistema con un pulsante "scram" prima che venga prodotta la radiazione. I pulsanti "Scram" (pulsanti nell'area controllata che, se premuti, fanno scendere immediatamente i livelli di radiazione a livelli di sicurezza) devono essere facilmente accessibili e contrassegnati e visualizzati in modo ben visibile.

I dispositivi di monitoraggio, come i monitor ad aria continua (CAM), possono essere preimpostati per emettere allarmi acustici e visivi o per spegnere un sistema quando vengono superati determinati livelli di azione.

Strumentazione

Il datore di lavoro deve mettere a disposizione strumentazione adeguata al grado e al tipo di radiazioni e materiale radioattivo presenti nell'ambiente di lavoro. Questa strumentazione può essere utilizzata per rilevare, monitorare o misurare i livelli di radiazioni o radioattività.

La strumentazione deve essere calibrata a intervalli appropriati utilizzando metodi accreditati e fonti di calibrazione. Le sorgenti di calibrazione dovrebbero essere il più possibile simili alle sorgenti da rilevare o misurare.

I tipi di strumentazione includono strumenti di rilevamento portatili, monitor ad aria continua, monitor a portale a mano e piedi, contatori a scintillazione liquida, rivelatori contenenti cristalli di Ge o NaI e così via.

Trasporto di materiale radioattivo

L'Agenzia internazionale per l'energia atomica (AIEA) ha stabilito regolamenti per il trasporto di materiale radioattivo. La maggior parte dei paesi ha adottato regolamenti compatibili con i regolamenti sulle spedizioni radioattive dell'AIEA.

Figura 2. Categoria I - etichetta BIANCA

ION050F2

La figura 2, la figura 3 e la figura 4 sono esempi di etichette di spedizione che i regolamenti IAEA richiedono sull'esterno dei pacchi presentati per la spedizione che contengono materiali radioattivi. L'indice di trasporto sulle etichette mostrato in figura 3 e figura 4 si riferisce al massimo rateo di dose efficace a 1 m da qualsiasi superficie del collo in mSv/h moltiplicato per 100, quindi arrotondato al decimo più vicino. (Ad esempio, se il tasso di dose efficace più elevato a 1 m da qualsiasi superficie di un pacco è 0.0233 mSv/h, l'indice di trasporto è 2.4.)

Figura 3. Categoria II - Etichetta GIALLA

ION050F3
Figura 4. Categoria III - Etichetta GIALLA
ION050F4

 

La figura 5 mostra un esempio di cartello che i veicoli terrestri devono esporre in modo ben visibile quando trasportano colli contenenti materiali radioattivi superiori a determinate quantità.

Figura 5. Targhetta del veicolo

ION050F5

Gli imballaggi destinati all'uso nella spedizione di materiali radioattivi devono essere conformi a severi requisiti di test e documentazione. Il tipo e la quantità di materiale radioattivo spedito determinano le specifiche che l'imballaggio deve soddisfare.

Le normative sul trasporto di materiale radioattivo sono complicate. Le persone che non spediscono abitualmente materiali radioattivi dovrebbero sempre consultare esperti esperti in tali spedizioni.

Scorie radioattive

Sono disponibili vari metodi di smaltimento dei rifiuti radioattivi, ma tutti sono controllati dalle autorità di regolamentazione. Pertanto, un'organizzazione deve sempre conferire con la propria autorità di regolamentazione per garantire che un metodo di smaltimento sia consentito. I metodi di smaltimento dei rifiuti radioattivi includono il mantenimento del materiale per il decadimento radioattivo e il successivo smaltimento indipendentemente dalla radioattività, l'incenerimento, lo smaltimento nel sistema fognario sanitario, il seppellimento a terra e il seppellimento in mare. La sepoltura in mare spesso non è consentita dalla politica nazionale o dal trattato internazionale e non sarà discussa ulteriormente.

Le scorie radioattive provenienti dal nocciolo del reattore (scorie radioattive ad alta attività) presentano particolari problemi per quanto riguarda lo smaltimento. La gestione e lo smaltimento di tali rifiuti è controllata dalle autorità di regolamentazione nazionali e internazionali.

Spesso i rifiuti radioattivi possono avere una proprietà diversa dalla radioattività che di per sé li renderebbe pericolosi. Tali rifiuti sono chiamati rifiuti misti. Gli esempi includono i rifiuti radioattivi che rappresentano anche un rischio biologico o sono tossici. I rifiuti misti richiedono un trattamento speciale. Fare riferimento alle autorità di regolamentazione per il corretto smaltimento di tali rifiuti.

Tenuta per decadimento radioattivo

Se il tempo di dimezzamento del materiale radioattivo è breve (generalmente inferiore a 65 giorni) e se l'organizzazione dispone di spazio di stoccaggio sufficiente, i rifiuti radioattivi possono essere conservati per il decadimento con successivo smaltimento indipendentemente dalla loro radioattività. Un periodo di mantenimento di almeno dieci emivite di solito è sufficiente per rendere i livelli di radiazione indistinguibili dallo sfondo.

I rifiuti devono essere esaminati prima di poter essere smaltiti. L'indagine dovrebbe impiegare strumentazione appropriata per la radiazione da rilevare e dimostrare che i livelli di radiazione sono indistinguibili dallo sfondo.

Iincinerazione

Se l'autorità di regolamentazione consente l'incenerimento, di solito si deve dimostrare che tale incenerimento non fa sì che la concentrazione di radionuclidi nell'aria superi i livelli consentiti. La cenere deve essere esaminata periodicamente per verificare che non sia radioattiva. In alcune circostanze può essere necessario monitorare il camino per garantire che le concentrazioni d'aria consentite non vengano superate.

Smaltimento nella rete fognaria sanitaria

Se l'autorità di regolamentazione consente tale smaltimento, di solito si deve dimostrare che tale smaltimento non fa sì che la concentrazione di radionuclidi nell'acqua superi i livelli consentiti. Il materiale da smaltire deve essere solubile o altrimenti facilmente disperdibile in acqua. L'autorità di regolamentazione fissa spesso limiti annuali specifici a tale smaltimento da parte del radionuclide.

Sepoltura terrestre

I rifiuti radioattivi non smaltibili con altri mezzi saranno smaltiti mediante interramento in siti autorizzati dalle autorità di regolamentazione nazionali o locali. Le autorità di regolamentazione controllano strettamente tale smaltimento. I produttori di rifiuti di solito non sono autorizzati a smaltire rifiuti radioattivi sul proprio terreno. I costi associati alla sepoltura in terra comprendono le spese di imballaggio, spedizione e stoccaggio. Questi costi si aggiungono al costo dello spazio di sepoltura stesso e spesso possono essere ridotti compattando i rifiuti. I costi di seppellimento in terra per lo smaltimento dei rifiuti radioattivi stanno aumentando rapidamente.

Audit del programma

I programmi di sicurezza dalle radiazioni dovrebbero essere verificati periodicamente per verificarne l'efficacia, la completezza e la conformità con l'autorità di regolamentazione. L'audit dovrebbe essere svolto almeno una volta all'anno ed essere completo. Gli auto-audit sono generalmente consentiti, ma sono auspicabili audit da parte di agenzie esterne indipendenti. Gli audit delle agenzie esterne tendono ad essere più obiettivi e hanno un punto di vista più globale rispetto agli audit locali. Un'agenzia di controllo non associata alle operazioni quotidiane di un programma di sicurezza dalle radiazioni spesso può identificare problemi non visti dagli operatori locali, che potrebbero essersi abituati a trascurarli.

Training

I datori di lavoro devono fornire formazione sulla radioprotezione a tutti i lavoratori esposti o potenzialmente esposti a radiazioni ionizzanti o materiali radioattivi. Devono fornire una formazione iniziale prima che un lavoratore inizi a lavorare e una formazione di aggiornamento annuale. Inoltre, ogni lavoratrice in età fertile deve ricevere una formazione specifica e informazioni sugli effetti delle radiazioni ionizzanti sul nascituro e sulle opportune precauzioni da adottare. Questa formazione speciale deve essere impartita al momento della prima assunzione, durante il corso di aggiornamento annuale e se comunica al suo datore di lavoro di essere incinta.

Tutte le persone che lavorano o frequentano qualsiasi parte di un'area il cui accesso è limitato ai fini della radioprotezione:

  • devono essere tenuti informati dello stoccaggio, del trasferimento o dell'uso di materiali radioattivi o di radiazioni in tali porzioni dell'area riservata
  • deve essere istruito sui problemi di protezione della salute associati all'esposizione a tali materiali radioattivi o radiazioni, sulle precauzioni o procedure per ridurre al minimo l'esposizione e sugli scopi e le funzioni dei dispositivi di protezione impiegati
  • deve essere istruito e istruito ad osservare, per quanto sotto il controllo del lavoratore, le disposizioni applicabili delle normative nazionali e del datore di lavoro per la protezione del personale dalle esposizioni a radiazioni o materiali radioattivi che si verificano in tali aree
  • devono essere istruiti della loro responsabilità di segnalare tempestivamente al datore di lavoro qualsiasi condizione che possa portare o causare una violazione delle normative nazionali o del datore di lavoro o un'esposizione non necessaria a radiazioni o materiale radioattivo
  • deve essere istruito nella risposta adeguata agli avvertimenti fatti in caso di qualsiasi evento insolito o malfunzionamento che possa comportare l'esposizione a radiazioni o materiale radioattivo
  • devono essere informati sui rapporti sull'esposizione alle radiazioni che i lavoratori possono richiedere.

 

L'estensione delle istruzioni sulla radioprotezione deve essere commisurata ai potenziali problemi di radioprotezione della salute nell'area controllata. Le istruzioni devono essere estese, se del caso, al personale ausiliario, come gli infermieri che assistono i pazienti radioattivi negli ospedali, i vigili del fuoco e gli agenti di polizia che potrebbero rispondere alle emergenze.

Qualifiche del lavoratore

I datori di lavoro devono garantire che i lavoratori che utilizzano radiazioni ionizzanti siano qualificati per svolgere il lavoro per il quale sono impiegati. I lavoratori devono avere il background e l'esperienza per svolgere il proprio lavoro in sicurezza, in particolare con riferimento all'esposizione e all'uso di radiazioni ionizzanti e materiali radioattivi.

Il personale addetto alla sicurezza dalle radiazioni deve possedere le conoscenze e le qualifiche appropriate per attuare e gestire un buon programma di sicurezza dalle radiazioni. Le loro conoscenze e qualifiche devono essere almeno commisurate ai potenziali problemi di radioprotezione della salute che loro e i lavoratori possono ragionevolmente incontrare.

Pianificazione di emergenza

Tutte le operazioni tranne le più piccole che utilizzano radiazioni ionizzanti o materiali radioattivi devono disporre di piani di emergenza. Tali piani devono essere mantenuti aggiornati ed esercitati periodicamente.

I piani di emergenza dovrebbero affrontare tutte le situazioni di emergenza credibili. I piani per una grande centrale nucleare saranno molto più estesi e coinvolgeranno un'area e un numero di persone molto più ampi rispetto ai piani per un piccolo laboratorio di radioisotopi.

Tutti gli ospedali, specialmente nelle grandi aree metropolitane, dovrebbero avere piani per l'accoglienza e la cura dei pazienti contaminati radioattivamente. La polizia e le organizzazioni antincendio dovrebbero disporre di piani per affrontare gli incidenti di trasporto che coinvolgono materiale radioattivo.

Tenuta del registro

Le attività di radioprotezione di un'organizzazione devono essere completamente documentate e opportunamente conservate. Tali registrazioni sono essenziali se si presenta la necessità di precedenti esposizioni alle radiazioni o rilasci di radioattività e per dimostrare la conformità ai requisiti delle autorità di regolamentazione. La registrazione coerente, accurata e completa deve avere la massima priorità.

Considerazioni organizzative

La posizione della persona principalmente responsabile della radioprotezione deve essere inserita nell'organizzazione in modo che abbia accesso immediato a tutti i livelli dei lavoratori e della direzione. Lui o lei deve avere libero accesso alle aree a cui l'accesso è limitato ai fini della sicurezza dalle radiazioni e l'autorità di interrompere immediatamente le pratiche non sicure o illegali.

 

Di ritorno

Leggi 5666 volte Ultima modifica giovedì 13 ottobre 2011 21:30

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Radiazioni: riferimenti ionizzanti

Istituto nazionale americano per gli standard (ANSI). 1977. Sicurezza dalle radiazioni per apparecchiature di analisi a raggi X, diffrazione e fluorescenza. vol. 43.2. New York: ANSI.

Società nucleare americana. 1961. Rapporto speciale sull'incidente SL-1. Notizie nucleari.

Bethe, HA. 1950. Riv. mod. Fis., 22, 213.

Brill, AB e EH Forgotson. 1964. Radiazioni e malformazioni congenite. Am J Obstet Gynecol 90:1149-1168.

Brown, P. 1933. Martiri americani alla scienza attraverso i raggi Roentgen. Springfield, Ill: Charles C Thomas.

Bryant, PM. 1969. Valutazioni dei dati riguardanti rilasci controllati e accidentali di I-131 e Cs-137 nell'atmosfera. Salute Fisica 17(1).

Doll, R, NJ Evans e SC Darby. 1994. Esposizione paterna non da biasimare. Natura 367:678-680.

Friedenwald, JS e S Sigelmen. 1953. L'influenza delle radiazioni ionizzanti sull'attività mitotica nell'epitelio corneale del ratto. Exp Cell Res 4:1-31.

Gardner, MJ, A Hall, MP Snee, S Downes, CA Powell e JD Terell. 1990. Risultati dello studio caso-controllo sulla leucemia e sul linfoma tra i giovani vicino alla centrale nucleare di Sellafield nella Cumbria occidentale. Brit MedJ 300:423-429.

Bravo, DJ. 1988. Distribuzione spaziale e temporale dell'energia. Salute Fisica 55:231-240.

Sala, E.J. 1994. Radiobiologia per il radiologo. Filadelfia: JB Lippincott.

Haynie, JS e RH Olsher. 1981. Un riepilogo degli incidenti dovuti all'esposizione a macchine a raggi X al Los Alamos National Laboratory. LAUP.

Hill, C e A Laplanche. 1990. Mortalità complessiva e mortalità per cancro intorno ai siti nucleari francesi. Natura 347:755-757.

Agenzia internazionale per la ricerca sul cancro (IARC). 1994. Gruppo di studio IARC sul rischio di cancro tra i lavoratori dell'industria nucleare, nuove stime del rischio di cancro dovuto a basse dosi di radiazioni ionizzanti: uno studio internazionale. Lancetta 344:1039-1043.

Agenzia internazionale per l'energia atomica (AIEA). 1969. Simposio sulla gestione degli incidenti da radiazioni. Vienna: AIEA.

—. 1973. Procedura di protezione dalle radiazioni. Serie sulla sicurezza dell'Agenzia internazionale per l'energia atomica, n. 38. Vienna: IAEA.

—. 1977. Simposio sulla gestione degli incidenti da radiazioni. Vienna: AIEA.

—. 1986. Dosimetria biologica: analisi dell'aberrazione cromosomica per la valutazione della dose. Rapporto tecnico n. 260. Vienna: IAEA.

Commissione internazionale per la protezione radiologica (ICRP). 1984. Effetti non stocastici delle radiazioni ionizzanti. Ann ICRP 14(3):1-33.

—. 1991. Raccomandazioni della Commissione internazionale per la protezione radiologica. Ann ICRP 21:1-3.

Jablon, S, Z Hrubec e JDJ Boice. 1991. Cancro nelle popolazioni che vivono vicino agli impianti nucleari. Un'indagine sulla mortalità a livello nazionale e l'incidenza in due aree. GIAMA 265:1403-1408.

Jensen, RH, RG Langlois e WL Bigbee. 1995. Elevata frequenza di mutazioni della glicoforina A negli eritrociti delle vittime di incidenti di Chernobyl. Rad Res 141:129-135.

Giornale di medicina del lavoro (JOM). 1961. Supplemento speciale. J Occup Med 3(3).

Kasakov, VS, EP Demidchik e LN Astakhova. 1992. Cancro alla tiroide dopo Chernobyl. Natura 359:21.

Kerber, RA, JE Till, SL Simon, JL Lyon, DC Thomas, S Preston-Martin, ML Rallison, RD Lloyd e WS Stevens. 1993. Uno studio di coorte sulla malattia della tiroide in relazione alle ricadute dei test sulle armi nucleari. GIAMA 270:2076-2082.

Kinlen, L.J. 1988. Prove per una causa infettiva di leucemia infantile: Confronto di una New Town scozzese con siti di ritrattamento nucleare in Gran Bretagna. Lancetta II: 1323-1327.

Kinlen, LJ, K Clarke e A Balkwill. 1993. Esposizione preconcezionale paterna alle radiazioni nell'industria nucleare e leucemia e linfoma non-Hodgkin nei giovani in Scozia. Brit MedJ 306:1153-1158.

Lindell, B. 1968. Rischi professionali nel lavoro analitico ai raggi X. Salute Fis 15:481-486.

Little, MP, MW Charles e R Wakeford. 1995. Una revisione dei rischi di leucemia in relazione all'esposizione preconcezionale dei genitori alle radiazioni. Salute Fisica 68:299-310.

Lloyd, DC e RJ Purrott. 1981. Analisi dell'aberrazione cromosomica nella dosimetria di protezione radiologica. Rad Prot Dosimetria 1:19-28.

Lubenau, JO, J Davis, D McDonald e T Gerusky. 1967. Rischi analitici dei raggi X: un problema continuo. Documento presentato al 12° meeting annuale della Health Physics Society. Washington, DC: Società di fisica sanitaria.

Lubin, JH, JDJ Boice e C Edling. 1994. Radon e rischio di cancro ai polmoni: un'analisi congiunta di 11 studi sui minatori sotterranei. Pubblicazione NIH n. 94-3644. Rockville, Md: Istituti Nazionali della Salute (NIH).

Lushbaugh, CC, SA Fry e RC Ricks. 1987. Incidenti al reattore nucleare: preparazione e conseguenze. Brit J Radiol 60:1159-1183.

McLaughlin, JR, EA Clarke, D Bishri e TW Anderson. 1993. Leucemia infantile in prossimità di impianti nucleari canadesi. Cause e controllo del cancro 4:51-58.

Mettler, FA e AC Upton. 1995. Effetti medici delle radiazioni ionizzanti. New York: Grune & Stratton.

Mettler, FA, MR Williamson e HD Royal. 1992. Noduli tiroidei nella popolazione che vive intorno a Chernobyl. GIAMA 268:616-619.

Accademia nazionale delle scienze (NAS) e Consiglio nazionale delle ricerche (NRC). 1990. Effetti sulla salute dell'esposizione a bassi livelli di radiazioni ionizzanti. Washington, DC: National Academy Press.

—. 1994. Effetti sulla salute dell'esposizione al radon. Tempo per la rivalutazione? Washington, DC: National Academy Press.

Consiglio nazionale per la protezione dalle radiazioni e le misurazioni (NCRP). 1987. Esposizione alle radiazioni della popolazione statunitense da prodotti di consumo e fonti varie. Rapporto n. 95, Bethesda, Md: NCRP.

Istituti Nazionali della Salute (NIH). 1985. Rapporto del gruppo di lavoro ad hoc del National Institutes of Health per lo sviluppo di tabelle radioepidemiologiche. Pubblicazione NIH n. 85-2748. Washington, DC: ufficio stampa del governo degli Stati Uniti.

Neel, JV, W Schull e A Awa. 1990. I figli di genitori esposti a bombe atomiche: stime della dose di radiazione genetica raddoppiata per l'uomo. Am J Hum Genet 46:1053-1072.

Commissione di regolamentazione nucleare (NUREG). 1980. Criteri per la preparazione e la valutazione dei piani di risposta alle emergenze radiologiche e preparazione a sostegno delle centrali nucleari. Documento N. NUREG 0654/FEMA-REP-1, Rev. 1. Washington, DC: NUREG.

Otake, M, H Yoshimaru e WJ Schull. 1987. Grave ritardo mentale tra i sopravvissuti prenatalmente esposti al bombardamento atomico di Hiroshima e Nagasaki: un confronto tra il vecchio e il nuovo sistema di dosimetria. Nella relazione tecnica RERF. Hiroshima: Fondazione per la ricerca sugli effetti delle radiazioni.

Prisyazhiuk, A, OA Pjatak e VA Buzanov. 1991. Cancro in Ucraina, dopo Chernobyl. Lancetta 338:1334-1335.

Robbins, J e W Adams. 1989. Effetti delle radiazioni nelle Isole Marshall. In Radiation and the Thyroid, a cura di S Nagataki. Tokio: Excerpta Medica.

Rubin, P, e GW Casarett. 1972. Una direzione per la patologia clinica da radiazioni: la dose di tolleranza. In Frontiers of Radiation Therapy and Oncology, a cura di JM Vaeth. Basilea: Karger e Baltimora: Univ. Park Press.

Schaeffer, NM. 1973. Schermatura del reattore per ingegneri nucleari. Rapporto n. TID-25951. Springfield, Virginia: Servizi nazionali di informazione tecnica.

Shapiro, J. 1972. Protezione dalle radiazioni: una guida per scienziati e medici. Cambridge, Massachusetts: Università di Harvard. Premere.

Stanard, J.N. 1988. Radioattività e salute: una storia. Rapporto del Dipartimento dell'Energia degli Stati Uniti, DOE/RL/01830-T59. Washington, DC: Servizi nazionali di informazione tecnica, Stati Uniti. Dipartimento di Energia.

Stevens, W, JE Till, L Lione et al. 1990. Leucemia nello Utah e ricaduta radioattiva dal sito di test del Nevada. GIAMA. 264: 585–591.

Pietra, RS. 1959. Standard di esposizione massimi consentiti. In Protection in Diagnostic Radiology, a cura di BP Sonnenblick. Nuovo Brunswick: Rutgers Univ. Premere.

Comitato scientifico delle Nazioni Unite sugli effetti delle radiazioni atomiche (UNSCEAR). 1982. Radiazioni ionizzanti: fonti ed effetti biologici. Relazione all'Assemblea Generale, con allegati. New York: Nazioni Unite.

—. 1986. Effetti genetici e somatici delle radiazioni ionizzanti. Relazione all'Assemblea Generale, con allegati. New York: Nazioni Unite.

—. 1988. Fonti, effetti e rischi delle radiazioni ionizzanti. Relazione all'Assemblea Generale, con allegati. New York: Nazioni Unite.

—. 1993. Fonti ed effetti delle radiazioni ionizzanti. Relazione all'Assemblea Generale, con allegati. New York: Nazioni Unite.

—. 1994. Fonti ed effetti delle radiazioni ionizzanti. Relazione all'Assemblea Generale, con allegati. New York: Nazioni Unite.

Upton, CA. 1986. Prospettive storiche sulla carcinogenesi da radiazioni. In Radiation Carcinogenesis, a cura di AC Upton, RE Albert, FJ Burns e RE Shore. New York. Altrove.

Upton, CA. 1996 Scienze Radiologiche. In The Oxford Textbook of Public Health, a cura di R Detels, W Holland, J McEwen e GS Omenn. New York. La stampa dell'università di Oxford.

Commissione per l'energia atomica degli Stati Uniti (AEC). 1957. L'incidente del reattore Windscale. In Accident Information Bulletin No. 73. Washington, DC: AEC.

—. 1961. Rapporto del comitato investigativo sull'incidente Sl-1. Washington, DC: NRC USA.

Codice dei regolamenti federali degli Stati Uniti (USCFR). 1990. Licenze per radiografia e requisiti di sicurezza dalle radiazioni per operazioni radiografiche. Washington, DC: governo degli Stati Uniti.

Dipartimento dell'Energia degli Stati Uniti (USDOE). 1987. Conseguenze sanitarie e ambientali dell'incidente alla centrale nucleare di Chernobyl. DOE/ER-0332.Washington, DC: USDOE.

Commissione di regolamentazione nucleare degli Stati Uniti (NRC). 1983. Strumentazione per centrali nucleari raffreddate ad acqua leggera per valutare le condizioni dell'impianto e dell'ambiente durante e dopo un incidente. Nella NRC Regulatory Guide 1.97. Rev. 3. Washington, DC: NRC.

Wakeford, R, EJ Tawn, DM McElvenny, LE Scott, K Binks, L Parker, H Dickinson, H e J Smith. 1994a. Le statistiche descrittive e le implicazioni sulla salute delle dosi di radiazioni professionali ricevute dagli uomini presso l'impianto nucleare di Sellafield prima del concepimento dei loro figli. J. Radiol. Proteggere. 14: 3–16.

Wakeford, R., EJ Tawn, DM McElvenny, K Binks, LE Scott e L Parker. 1994 b. I casi di leucemia infantile Seascale: i tassi di mutazione impliciti nelle dosi di radiazioni preconcezionali paterne. J. Radiol. Proteggere. 14: 17–24.

Ward, J.F. 1988. Danni al DNA prodotti dalle radiazioni ionizzanti nelle cellule dei mammiferi: identità, meccanismi di formazione e riparabilità. progr. Ris. acido nucleico Mol. Biol. 35: 96-128.

Yoshimoto, Y, JV Neel, WJ Schull, H Kato, M Soda, REto e K Mabuchi. 1990. Tumori maligni durante i primi due decenni di vita nella prole dei sopravvissuti alla bomba atomica. Sono. J. ronzio. Genet. 46: 1041-1052.