75. Esplorazione e distribuzione di petrolio
Editor del capitolo: Richard S. Kraus
Esplorazione, perforazione e produzione di petrolio e gas naturale
Richard S. Kraus
Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.
1. Proprietà e potenziale di benzina dei greggi
2. Composizione di petrolio greggio e gas naturale
3. Composizione dei gas naturali e di lavorazione del petrolio
4. Tipologie di piattaforme per perforazioni subacquee
Punta su una miniatura per vedere la didascalia della figura, fai clic per vedere la figura nel contesto dell'articolo.
Profilo generale
Il petrolio greggio e i gas naturali sono miscele di molecole di idrocarburi (composti organici di atomi di carbonio e idrogeno) contenenti da 1 a 60 atomi di carbonio. Le proprietà di questi idrocarburi dipendono dal numero e dalla disposizione degli atomi di carbonio e idrogeno nelle loro molecole. La molecola di base dell'idrocarburo è costituita da 1 atomo di carbonio legato a 4 atomi di idrogeno (metano). Tutte le altre variazioni degli idrocarburi del petrolio si evolvono da questa molecola. Gli idrocarburi contenenti fino a 4 atomi di carbonio sono generalmente gas; quelli con da 5 a 19 atomi di carbonio sono generalmente liquidi; e quelli con 20 o più sono solidi. Oltre agli idrocarburi, i greggi ei gas naturali contengono composti di zolfo, azoto e ossigeno insieme a tracce di metalli e altri elementi.
Si ritiene che il petrolio greggio e il gas naturale si siano formati nel corso di milioni di anni dal decadimento della vegetazione e degli organismi marini, compressi sotto il peso della sedimentazione. Poiché il petrolio e il gas sono più leggeri dell'acqua, si sono sollevati per riempire i vuoti in queste formazioni sovrastanti. Questo movimento verso l'alto si fermò quando il petrolio e il gas raggiunsero strati densi, sovrastanti, impermeabili o rocce non porose. Il petrolio e il gas hanno riempito gli spazi nelle giunture rocciose porose e nei giacimenti sotterranei naturali, come le sabbie sature, con il gas più leggero sopra il petrolio più pesante. Questi spazi erano originariamente orizzontali, ma lo spostamento della crosta terrestre ha creato sacche, chiamate faglie, anticlinali, cupole saline e trappole stratigrafiche, dove il petrolio e il gas si raccoglievano in serbatoi.
Olio di scisto
L'olio di scisto, o kerogene, è una miscela di idrocarburi solidi e altri composti organici contenenti azoto, ossigeno e zolfo. Viene estratto, mediante riscaldamento, da una roccia chiamata scisto bituminoso, producendo da 15 a 50 galloni di petrolio per tonnellata di roccia.
Esplorazione e produzione è la terminologia comune applicata a quella parte dell'industria petrolifera che è responsabile dell'esplorazione e della scoperta di nuovi giacimenti di petrolio greggio e gas, della perforazione di pozzi e del trasporto dei prodotti in superficie. Storicamente, il petrolio greggio, che era naturalmente filtrato in superficie, veniva raccolto per essere utilizzato come medicinale, rivestimento protettivo e combustibile per lampade. Le infiltrazioni di gas naturale sono state registrate come incendi che bruciano sulla superficie della terra. Fu solo nel 1859 che furono sviluppati metodi di perforazione e ottenimento di grandi quantità commerciali di petrolio greggio.
Il petrolio greggio e il gas naturale si trovano in tutto il mondo, sotto terra e sotto l'acqua, come segue:
La figura 1 e la figura 2 mostrano la produzione mondiale di petrolio greggio e gas naturale per il 1995.
Figura 1. Produzione mondiale di greggio per il 1995
Figura 2. Produzione mondiale di liquidi negli impianti di gas naturale - 1995
I nomi dei greggi spesso identificano sia il tipo di greggio che le aree in cui sono stati originariamente scoperti. Ad esempio, il primo greggio commerciale, il Pennsylvania Crude, prende il nome dal suo luogo di origine negli Stati Uniti. Altri esempi sono Saudi Light e Venezuelan Heavy. Due greggi di riferimento utilizzati per fissare i prezzi mondiali del greggio sono il Texas Light Sweet e il Brent del Mare del Nord.
Classificazione dei greggi
I greggi sono miscele complesse contenenti molti diversi composti idrocarburici individuali; differiscono nell'aspetto e nella composizione da un giacimento petrolifero all'altro, e talvolta sono anche diversi da pozzi relativamente vicini l'uno all'altro. Gli oli grezzi variano in consistenza da acquoso a solido simile al catrame e in colore da trasparente a nero. Un greggio “medio” contiene circa l'84% di carbonio; 14% di idrogeno; dall'1 al 3% di zolfo; e meno dell'1% di azoto, ossigeno, metalli e sali. Vedi tabella 1 e tabella 2.
Tabella 1. Caratteristiche e proprietà approssimative tipiche e potenziale della benzina di vari greggi tipici.
Fonte grezza e nome * |
paraffine |
Aromatics |
Nafteni |
Sulphur |
Gravità API |
Resa in naftene |
Numero di ottani |
Luce nigeriana |
37 |
9 |
54 |
0.2 |
36 |
28 |
60 |
Luce saudita |
63 |
19 |
18 |
2 |
34 |
22 |
40 |
Pesante saudita |
60 |
15 |
25 |
2.1 |
28 |
23 |
35 |
Venezuela Pesante |
35 |
12 |
53 |
2.3 |
30 |
2 |
60 |
Luce venezuelana |
52 |
14 |
34 |
1.5 |
24 |
18 |
50 |
Dolci medicontinentali degli Stati Uniti |
- |
- |
- |
0.4 |
40 |
- |
- |
USA Texas occidentale Sour |
46 |
22 |
32 |
1.9 |
32 |
33 |
55 |
Mare del Nord Brent |
50 |
16 |
34 |
0.4 |
37 |
31 |
50 |
* Numeri medi rappresentativi.
Tabella 2. Composizione del petrolio greggio e del gas naturale
idrocarburi
Paraffine: Le molecole di idrocarburi (alifatici) del tipo a catena satura paraffinica nel petrolio greggio hanno la formula CnH2n + 2, e possono essere catene diritte (normali) o catene ramificate (isomeri) di atomi di carbonio. Le molecole di paraffina a catena lineare più leggere si trovano nei gas e nelle cere di paraffina. Le paraffine a catena ramificata si trovano solitamente nelle frazioni più pesanti del petrolio greggio e hanno un numero di ottani più elevato rispetto alle paraffine normali.
Aromatici: Gli aromatici sono composti idrocarburici (ciclici) di tipo ad anello insaturo. I naftaleni sono composti aromatici a doppio anello fusi. Gli aromatici più complessi, i polinucleari (tre o più anelli aromatici fusi), si trovano nelle frazioni più pesanti del petrolio greggio.
Nafteni: I nafteni sono raggruppamenti di idrocarburi di tipo ad anello saturo, con la formula
CnH2n, disposti in forma di anelli chiusi (ciclici), presenti in tutte le frazioni del greggio tranne le più leggere. Predominano i nafteni a singolo anello (mono-cicloparaffine) con 5 e 6 atomi di carbonio, con i nafteni a due anelli (dicicloparaffine) che si trovano nelle estremità più pesanti della nafta.
Non idrocarburi
Zolfo e composti solforati: Lo zolfo è presente nel gas naturale e nel petrolio greggio come idrogeno solforato (H2S), come composti (tioli, mercaptani, solfuri, polisolfuri, ecc.) o come zolfo elementare. Ogni gas e petrolio greggio ha quantità e tipi diversi di composti di zolfo, ma di norma la proporzione, la stabilità e la complessità dei composti sono maggiori nelle frazioni di petrolio greggio più pesanti.
Composti di zolfo chiamati mercaptani, che presentano odori distinti rilevabili a concentrazioni molto basse, si trovano in gas, petrolio greggio e distillati. I più comuni sono metil ed etil mercaptani. I mercaptani vengono spesso aggiunti al gas commerciale (GNL e GPL) per fornire un odore per il rilevamento delle perdite.
Il potenziale di esposizione a livelli tossici di H2S esiste quando si lavora nella perforazione, nella produzione, nel trasporto e nella lavorazione del petrolio greggio e del gas naturale. La combustione di idrocarburi di petrolio contenenti zolfo produce sostanze indesiderabili come acido solforico e anidride solforosa.
Composti dell'ossigeno: I composti dell'ossigeno, come fenoli, chetoni e acidi carbossilici, si trovano negli oli grezzi in quantità variabili.
Composti di azoto: L'azoto si trova nelle frazioni più leggere del petrolio greggio come composti basici e più spesso nelle frazioni più pesanti del petrolio greggio come composti non basici che possono anche includere tracce di metalli.
Tracce di metalli: Tracce o piccole quantità di metalli, tra cui rame, nichel, ferro, arsenico e vanadio, si trovano spesso nei greggi in piccole quantità.
Sali inorganici: Gli oli grezzi contengono spesso sali inorganici, come cloruro di sodio, cloruro di magnesio e cloruro di calcio, sospesi nel greggio o disciolti in acqua trascinata (salamoia).
Diossido di carbonio: L'anidride carbonica può derivare dalla decomposizione dei bicarbonati presenti o aggiunti al greggio o dal vapore utilizzato nel processo di distillazione.
Acidi naftenici: Alcuni greggi contengono acidi naftenici (organici), che possono diventare corrosivi a temperature superiori a 232 °C quando il numero di acidità del greggio è superiore a un certo livello.
Materiali radioattivi normalmente presenti: I materiali radioattivi normalmente presenti (NORM) sono spesso presenti nel petrolio greggio, nei depositi di perforazione e nel fango di perforazione e possono rappresentare un pericolo a causa di bassi livelli di radioattività.
Per classificare gli oli grezzi come paraffinici, naftenici, aromatici o misti, in base alla proporzione predominante di molecole di idrocarburi simili, vengono utilizzati saggi relativamente semplici sul petrolio greggio. I greggi a base mista hanno quantità variabili di ogni tipo di idrocarburo. Un metodo di analisi (US Bureau of Mines) si basa sulla distillazione e un altro metodo (fattore UOP "K") si basa sulla gravità e sui punti di ebollizione. Per determinare il valore del greggio (cioè la sua resa e la qualità dei prodotti utili) ei parametri di lavorazione vengono condotti saggi più completi del greggio. Gli oli grezzi sono generalmente raggruppati in base alla struttura del rendimento, con la benzina ad alto numero di ottano che è uno dei prodotti più desiderabili. Le materie prime di petrolio greggio di raffineria sono solitamente costituite da miscele di due o più diversi greggi.
I greggi sono anche definiti in termini di peso API (specifico). Ad esempio, i greggi più pesanti hanno pesi API bassi (e pesi specifici elevati). Un petrolio greggio a bassa gravità API può avere un punto di infiammabilità alto o basso, a seconda delle sue estremità più leggere (costituenti più volatili). A causa dell'importanza della temperatura e della pressione nel processo di raffinazione, i greggi sono ulteriormente classificati in base a viscosità, punti di scorrimento e intervalli di ebollizione. Vengono prese in considerazione anche altre caratteristiche fisiche e chimiche, come il colore e il contenuto di residui carboniosi. Gli oli grezzi con alto contenuto di carbonio, basso contenuto di idrogeno e basso peso API sono generalmente ricchi di aromatici; mentre quelli con basso contenuto di carbonio, alto contenuto di idrogeno e alta gravità API sono generalmente ricchi di paraffine.
Gli oli grezzi che contengono quantità apprezzabili di idrogeno solforato o altri composti reattivi dello zolfo sono chiamati "acidi". Quelli con meno zolfo sono chiamati "dolci". Alcune eccezioni a questa regola sono i greggi West Texas (che sono sempre considerati “sour” indipendentemente dal loro H2contenuto di S) e grezzi arabi ad alto contenuto di zolfo (che non sono considerati “acidi” perché i loro composti di zolfo non sono altamente reattivi).
Gas naturale compresso e gas di idrocarburi liquefatti
La composizione dei gas di idrocarburi presenti in natura è simile a quella del petrolio greggio in quanto contengono una miscela di diverse molecole di idrocarburi a seconda della loro fonte. Possono essere estratti come gas naturale (quasi privi di liquidi) dai giacimenti di gas; gas associato al petrolio che viene estratto con petrolio da giacimenti di gas e petrolio; e gas da giacimenti di gas condensato, dove alcuni dei componenti liquidi del petrolio si convertono allo stato gassoso quando la pressione è elevata (da 10 a 70 mPa). Quando la pressione viene ridotta (da 4 a 8 mPa) la condensa contenente idrocarburi più pesanti si separa dal gas per condensazione. Il gas viene estratto da pozzi che raggiungono una profondità fino a 4 miglia (6.4 km) o più, con pressioni di giunzione che variano da 3 mPa fino a 70 mPa. (Vedi figura 3.)
Figura 3. Pozzo di gas naturale offshore situato in 87.5 metri d'acqua nell'area di Pitas Point del Canale di Santa Barbara, California meridionale
American Petroleum Institute
Il gas naturale contiene dal 90 al 99% di idrocarburi, costituiti prevalentemente da metano (l'idrocarburo più semplice) insieme a quantità minori di etano, propano e butano. Il gas naturale contiene anche tracce di azoto, vapore acqueo, anidride carbonica, idrogeno solforato e occasionalmente gas inerti come argon o elio. Gas naturali contenenti più di 50 g/m3 di idrocarburi con molecole di tre o più atomi di carbonio (C3 o superiore) sono classificati come gas “magri”.
A seconda di come viene utilizzato come combustibile, il gas naturale viene compresso o liquefatto. Il gas naturale proveniente dai giacimenti di gas e condensato di gas viene trattato sul campo per soddisfare specifici criteri di trasporto prima di essere compresso e immesso nei gasdotti. Questa preparazione include la rimozione dell'acqua con essiccatori (disidratatori, separatori e riscaldatori), la rimozione dell'olio mediante filtri a coalescenza e la rimozione dei solidi mediante filtrazione. Anche il solfuro di idrogeno e l'anidride carbonica vengono rimossi dal gas naturale, in modo che non corrodano le tubazioni e le apparecchiature di trasporto e compressione. Anche il propano, il butano e il pentano, presenti nel gas naturale, vengono rimossi prima della trasmissione in modo che non condensino e formino liquidi nel sistema. (Vedere la sezione “Operazioni di produzione e lavorazione del gas naturale.”)
Il gas naturale viene trasportato tramite gasdotto dai giacimenti di gas agli impianti di liquefazione, dove viene compresso e raffreddato a circa –162 ºC per produrre gas naturale liquefatto (GNL) (vedi figura 4). La composizione del GNL è diversa dal gas naturale a causa della rimozione di alcune impurità e componenti durante il processo di liquefazione. Il GNL viene utilizzato principalmente per aumentare le forniture di gas naturale durante i periodi di picco della domanda e per fornire gas in aree remote lontane dai principali gasdotti. Viene rigassificato mediante aggiunta di azoto e aria per renderlo assimilabile al gas naturale prima di essere immesso nelle linee di alimentazione del gas. Il GNL è utilizzato anche come carburante per autotrazione in alternativa alla benzina.
Figura 4. Il più grande impianto GNL del mondo ad Arzew, Algeria
American Petroleum Institute
I gas associati al petrolio ei gas condensati sono classificati come gas "ricchi", perché contengono quantità significative di etano, propano, butano e altri idrocarburi saturi. I gas associati al petrolio e condensati vengono separati e liquefatti per produrre gas di petrolio liquefatto (GPL) mediante compressione, adsorbimento, assorbimento e raffreddamento negli impianti di lavorazione del petrolio e del gas. Questi impianti a gas producono anche benzina naturale e altre frazioni di idrocarburi.
A differenza del gas naturale, del gas associato al petrolio e del gas condensato, i gas di lavorazione del petrolio (prodotti come sottoprodotti della lavorazione di raffineria) contengono notevoli quantità di idrogeno e idrocarburi insaturi (etilene, propilene e così via). La composizione dei gas di lavorazione del petrolio dipende da ciascun processo specifico e dai greggi utilizzati. Ad esempio, i gas ottenuti a seguito di cracking termico contengono solitamente quantità significative di olefine, mentre quelli ottenuti da cracking catalitico contengono più isobutani. I gas di pirolisi contengono etilene e idrogeno. La composizione dei gas naturali e dei tipici gas di lavorazione del petrolio è mostrata nella tabella 3.
Tabella 3. Tipica composizione approssimativa dei gas naturali e di lavorazione del petrolio (percentuale in volume)
Tipo gas |
H2 |
CH4 |
C2H6 |
C3H4 |
C3H8 |
C3H6 |
C4H10 |
C4H8 |
N2+CO2 |
C5+ |
Gas naturale |
n / a |
98 |
0.4 |
n / a |
0.15 |
n / a |
0.05 |
n / a |
1.4 |
n / a |
Petrolio- |
n / a |
42 |
20 |
n / a |
17 |
n / a |
8 |
n / a |
10 |
3 |
Gas di lavorazione del petrolio |
|
|
|
|
|
|
|
|
|
|
Gas naturale combustibile, con potere calorifico da 35.7 a 41.9 MJ/m3 (da 8,500 a 10,000 kcal/m3), è utilizzato principalmente come combustibile per la produzione di calore in applicazioni domestiche, agricole, commerciali e industriali. L'idrocarburo del gas naturale è utilizzato anche come materia prima per processi petrolchimici e chimici. Gas di sintesi (CO + H2) viene elaborato dal metano mediante ossigenazione o conversione del vapore acqueo e utilizzato per produrre ammoniaca, alcol e altri prodotti chimici organici. Il gas naturale compresso (CNG) e il gas naturale liquefatto (GNL) sono entrambi utilizzati come carburante per i motori a combustione interna. I gas di petrolio liquefatti (GPL) della lavorazione del petrolio hanno un potere calorifico più elevato di 93.7 MJ/m3 (propano) (22,400 kcal/m3) e 122.9 MJ/m3 (butano) (29,900 kcal/m3) e sono utilizzati come carburante nelle case, nelle imprese e nell'industria, nonché nei veicoli a motore (NFPA 1991). Gli idrocarburi insaturi (etilene, propilene e così via) derivati dai gas di lavorazione del petrolio possono essere convertiti in benzina ad alto numero di ottano o utilizzati come materie prime nell'industria petrolchimica e chimica.
Proprietà dei gas idrocarburici
Secondo la US National Fire Protection Association, i gas infiammabili (combustibili) sono quelli che bruciano nelle concentrazioni di ossigeno normalmente presenti nell'aria. La combustione dei gas infiammabili è simile a quella dei vapori liquidi di idrocarburi infiammabili, poiché è necessaria una specifica temperatura di accensione per avviare la reazione di combustione e ciascuno brucerà solo entro un certo intervallo definito di miscele gas-aria. I liquidi infiammabili hanno a punto d'infiammabilità (la temperatura (sempre inferiore al punto di ebollizione) alla quale emettono vapori sufficienti per la combustione). Non esiste un punto di infiammabilità apparente per i gas infiammabili, poiché normalmente si trovano a temperature superiori ai loro punti di ebollizione, anche quando liquefatti, e sono quindi sempre a temperature ben superiori ai loro punti di infiammabilità.
La US National Fire Protection Association (1976) definisce i gas compressi e liquefatti come segue:
Il fattore principale che determina la pressione all'interno del recipiente è la temperatura del liquido immagazzinato. Quando esposto all'atmosfera, il gas liquefatto vaporizza molto rapidamente, viaggiando lungo il suolo o la superficie dell'acqua a meno che non sia disperso nell'aria dal vento o dal movimento meccanico dell'aria. A temperature atmosferiche normali, circa un terzo del liquido nel contenitore vaporizzerà.
I gas infiammabili sono ulteriormente classificati come gas combustibile e gas industriale. I gas combustibili, compreso il gas naturale ei gas di petrolio liquefatti (propano e butano), vengono bruciati con l'aria per produrre calore in forni, fornaci, scaldabagni e caldaie. I gas industriali infiammabili, come l'acetilene, sono utilizzati nelle operazioni di lavorazione, saldatura, taglio e trattamento termico. Le differenze nelle proprietà del gas naturale liquefatto (GNL) e dei gas di petrolio liquefatti (GPL) sono riportate nella tabella 3.
Alla ricerca di petrolio e gas
La ricerca di petrolio e gas richiede una conoscenza della geografia, della geologia e della geofisica. Il petrolio greggio si trova solitamente in alcuni tipi di strutture geologiche, come anticlinali, trappole di faglia e cupole saline, che si trovano sotto vari terreni e in un'ampia gamma di climi. Dopo aver selezionato un'area di interesse, vengono condotti molti diversi tipi di indagini geofisiche e misurazioni effettuate al fine di ottenere una valutazione precisa delle formazioni del sottosuolo, tra cui:
Figura 5. Arabia Saudita, operazioni sismiche
American Petroleum Institute
Quando le indagini e le misurazioni indicano la presenza di formazioni o strati che possono contenere petrolio, vengono perforati pozzi esplorativi per determinare se petrolio o gas sia effettivamente presente e, in tal caso, se sia disponibile e ottenibile in quantità commercialmente sostenibili.
Operazioni offshore
Sebbene il primo pozzo petrolifero offshore sia stato perforato all'inizio del 1900 al largo della costa della California, l'inizio della moderna perforazione marina risale al 1938, con una scoperta nel Golfo del Messico, a 1 km dalla costa degli Stati Uniti. Dopo la seconda guerra mondiale, le trivellazioni offshore si espansero rapidamente, prima in acque poco profonde adiacenti a note aree di produzione terrestre, e poi in altre aree di acque basse e profonde in tutto il mondo e in climi che variano dall'Artico al Golfo Persico. All'inizio, la perforazione offshore era possibile solo a profondità d'acqua di circa 1.6 m; tuttavia, le moderne piattaforme sono ora in grado di perforare acque profonde oltre 91 km. Le attività petrolifere offshore comprendono l'esplorazione, la perforazione, la produzione, la lavorazione, la costruzione sottomarina, la manutenzione e la riparazione e il trasporto di petrolio e gas a terra tramite nave o oleodotto.
Piattaforme offshore
Le piattaforme di perforazione supportano impianti di perforazione, forniture e attrezzature per operazioni offshore o in acque interne e vanno da chiatte e navi galleggianti o sommergibili, a piattaforme fisse su gambe in acciaio utilizzate in acque poco profonde, a grandi piattaforme galleggianti, in cemento armato, a gravità piattaforme di tipo utilizzato in acque profonde. Al termine della perforazione, le piattaforme marine vengono utilizzate per supportare le apparecchiature di produzione. Le piattaforme di produzione più grandi hanno alloggi per oltre 250 membri dell'equipaggio e altro personale di supporto, eliporti, impianti di lavorazione e capacità di stoccaggio di petrolio greggio e condensato di gas (vedi figura 6).
Figura 6. Vasi di perforazione; nave perforatrice Ben Ocean Laneer
American Petroleum Institute
Tipicamente, con la perforazione della piattaforma galleggiante in acque profonde, l'attrezzatura della testa del pozzo viene abbassata sul fondo dell'oceano e sigillata al rivestimento del pozzo. L'uso della tecnologia in fibra ottica consente a una grande piattaforma centrale di controllare e gestire a distanza piattaforme satellitari più piccole e modelli sottomarini. Gli impianti di produzione sulla grande piattaforma elaborano il petrolio greggio, il gas e il condensato provenienti dagli impianti satellite, prima che vengano spediti a terra.
Il tipo di piattaforma utilizzata nelle perforazioni subacquee è spesso determinato dal tipo di pozzo da perforare (esplorativo o di produzione) e dalla profondità dell'acqua (vedi tabella 4).
Tabella 4. Tipi di piattaforme per la perforazione subacquea
Tipo di piattaforma |
Profondità (m) |
Descrizione |
Chiatte e piattaforme sommergibili |
15-30 |
Chiatte o piattaforme, rimorchiate al sito e affondate per poggiare sul fondo. La colonna galleggiante inferiore mantiene a galla le piattaforme |
Jack-up (sulle gambe) |
30-100 |
Piattaforme galleggianti mobili autoelevanti le cui gambe sono sollevate per il traino. Nel sito, le gambe sono abbassate a |
Piattaforme galleggianti |
100-3,000 + |
Grandi strutture a gravità in cemento armato, autonome, multilivello, rimorchiate al sito, sommerse con |
Piattaforme galleggianti più piccole, anch'esse sospese, che supportano solo l'impianto di perforazione e sono servite da un galleggiante |
||
Chiatte di perforazione |
30-300 |
Chiatte semoventi, galleggianti o semisommergibili. |
Perforare le navi |
120-3,500 + |