Sabato, Febbraio 26 2011 18: 16

Industria delle biotecnologie

Vota questo gioco
(0 voti )

Evoluzione e profilo

La biotecnologia può essere definita come l'applicazione di sistemi biologici a processi tecnici e industriali. Comprende sia gli organismi tradizionali che quelli geneticamente modificati. La biotecnologia tradizionale è il risultato della classica ibridazione, accoppiamento o incrocio di vari organismi per creare nuovi organismi utilizzati da secoli per produrre pane, birra, formaggio, soia, saki, vitamine, piante ibride e antibiotici. Più recentemente, vari organismi sono stati utilizzati anche per il trattamento delle acque reflue, delle acque reflue umane e dei rifiuti tossici industriali.

La moderna biotecnologia combina i principi della chimica e delle scienze biologiche (biologia molecolare e cellulare, genetica, immunologia) con le discipline tecnologiche (ingegneria, informatica) per la produzione di beni e servizi e per la gestione ambientale. La moderna biotecnologia utilizza gli enzimi di restrizione per tagliare e incollare le informazioni genetiche, il DNA, da un organismo all'altro al di fuori delle cellule viventi. Il DNA composito viene quindi reintrodotto nelle cellule ospiti per determinare se il tratto desiderato è espresso. La cellula risultante è chiamata clone ingegnerizzato, ricombinante o organismo geneticamente manipolato (OGM). L'industria biotecnologica "moderna" è nata nel 1961-1965 con la rottura del codice genetico ed è cresciuta notevolmente dai primi esperimenti riusciti di clonazione del DNA nel 1972.

Dall'inizio degli anni '1970, gli scienziati hanno capito che l'ingegneria genetica è una tecnologia estremamente potente e promettente, ma che ci sono rischi potenzialmente seri da considerare. Già nel 1974, gli scienziati hanno chiesto una moratoria mondiale su tipi specifici di esperimenti al fine di valutare i rischi ed elaborare linee guida appropriate per evitare pericoli biologici ed ecologici (Comitato per le molecole di DNA ricombinante, Consiglio nazionale delle ricerche, Accademia nazionale delle scienze 1974 ). Alcune delle preoccupazioni espresse riguardavano la potenziale "fuga di vettori che potrebbero avviare un processo irreversibile, con un potenziale di creare problemi molte volte maggiori di quelli derivanti dalla moltitudine di ricombinazioni genetiche che si verificano spontaneamente in natura". Si temeva che “i microrganismi con geni trapiantati potessero rivelarsi pericolosi per l'uomo o per altre forme di vita. Potrebbe derivarne un danno se la cellula ospite alterata ha un vantaggio competitivo che favorirebbe la sua sopravvivenza in qualche nicchia all'interno dell'ecosistema” (NIH 1976). Era anche ben chiaro che i lavoratori di laboratorio sarebbero stati i "canarini nella miniera di carbone" e si sarebbe dovuto fare qualche tentativo per proteggere i lavoratori e l'ambiente dai pericoli sconosciuti e potenzialmente gravi.

Nel febbraio 1975 si tenne una conferenza internazionale ad Asilomar, in California. Il suo rapporto conteneva le prime linee guida di consenso basate su strategie di contenimento biologico e fisico per il controllo dei potenziali pericoli previsti dalla nuova tecnologia. Si ritenne che alcuni esperimenti ponessero pericoli potenziali così seri che la conferenza ne sconsigliava la conduzione in quel momento (NIH 1976). Il seguente lavoro è stato originariamente bandito:

  • lavorare con il DNA di organismi patogeni e oncogeni
  • formando ricombinanti che incorporano i geni delle tossine
  • lavoro che potrebbe estendere la gamma ospite di patogeni delle piante
  • introduzione di geni di resistenza ai farmaci in organismi non noti per acquisirli naturalmente e dove il trattamento sarebbe compromesso
  • rilascio deliberato nell'ambiente (Freifelder 1978).

 

Negli Stati Uniti le prime linee guida del National Institutes of Health (NIHG) sono state pubblicate nel 1976, in sostituzione delle linee guida Asilomar. Questi NIHG hanno consentito alla ricerca di procedere classificando gli esperimenti in base alle classi di pericolo basate sui rischi associati alla cellula ospite, ai sistemi vettoriali che trasportano i geni nelle cellule e agli inserti genici, consentendo o limitando in tal modo lo svolgimento degli esperimenti in base alla valutazione del rischio. La premessa di base del NIHG - provvedere alla protezione dei lavoratori e, per estensione, alla sicurezza della comunità - rimane in vigore oggi (NIH 1996). Gli NIHG vengono aggiornati regolarmente e si sono evoluti fino a diventare uno standard di pratica ampiamente accettato per la biotecnologia negli Stati Uniti. La conformità è richiesta dalle istituzioni che ricevono finanziamenti federali, nonché da molte ordinanze cittadine o cittadine locali. Il NIHG fornisce una base per le normative in altri paesi del mondo, tra cui la Svizzera (SCBS 1995) e il Giappone (National Institute of Health 1996).

Dal 1976, il NIHG è stato ampliato per incorporare considerazioni di contenimento e approvazione per le nuove tecnologie, inclusi impianti di produzione su larga scala e proposte di terapia genica somatica vegetale, animale e umana. Alcuni degli esperimenti originariamente vietati sono ora consentiti con specifica approvazione da parte degli NIH o con specifiche pratiche di contenimento.

Nel 1986 l'Office of Science and Technology Policy (OSTP) degli Stati Uniti ha pubblicato il suo Coordinated Framework for Biotechnology Regulation. Ha affrontato la questione politica sottostante se le normative esistenti fossero adeguate per valutare i prodotti derivati ​​dalle nuove tecnologie e se i processi di revisione per la ricerca fossero sufficienti per proteggere il pubblico e l'ambiente. Le agenzie di regolamentazione e ricerca statunitensi (Environmental Protection Agency (EPA), Food and Drug Administration (FDA), Occupational Safety and Health Administration (OSHA), NIH, US Department of Agriculture (USDA) e National Science Foundation (NSF)) hanno concordato di regolamentare i prodotti, non i processi, e che non erano necessarie nuove norme speciali per proteggere i lavoratori, il pubblico o l'ambiente. La politica è stata stabilita per gestire i programmi di regolamentazione in modo integrato e coordinato, riducendo al minimo le sovrapposizioni e, per quanto possibile, la responsabilità dell'approvazione del prodotto sarebbe spettata a un'agenzia. Le agenzie coordinerebbero gli sforzi adottando definizioni coerenti e utilizzando revisioni scientifiche (valutazioni del rischio) di pari rigore scientifico (OSHA 1984; OSTP 1986).

Il NIHG e il quadro coordinato hanno fornito un grado adeguato di discussione scientifica obiettiva e partecipazione pubblica, che ha portato alla crescita della biotecnologia statunitense in un'industria multimiliardaria. Prima del 1970, c'erano meno di 100 aziende coinvolte in tutti gli aspetti della moderna biotecnologia. Nel 1977, altre 125 aziende si unirono ai ranghi; nel 1983 altre 381 società portarono il livello degli investimenti di capitale privato a più di 1 miliardo di dollari. Nel 1994 l'industria era cresciuta fino a superare le 1,230 società (Massachusetts Biotechnology Council Community Relations Committee 1993) e la capitalizzazione di mercato superava i 6 miliardi di dollari.

L'occupazione nelle aziende biotecnologiche statunitensi nel 1980 era di circa 700 persone; nel 1994 circa 1,300 aziende impiegavano più di 100,000 lavoratori (Massachusetts Biotechnology Council Community Relations Committee 1993). Inoltre, esiste un'intera industria di supporto che fornisce forniture (prodotti chimici, componenti dei media, linee cellulari), attrezzature, strumentazione e servizi (banca cellulare, validazione, calibrazione) necessari per garantire l'integrità della ricerca e della produzione.

In tutto il mondo c'è stato un grande livello di preoccupazione e scetticismo sulla sicurezza della scienza e dei suoi prodotti. Il Consiglio delle Comunità europee (Parlamento delle Comunità europee 1987) ha sviluppato direttive per proteggere i lavoratori dai rischi associati all'esposizione a sostanze biologiche (Consiglio delle Comunità europee 1990a) e per imporre controlli ambientali sulle attività sperimentali e commerciali, compreso il rilascio deliberato. Il termine “rilascio” comprende la commercializzazione di prodotti che utilizzano OGM (Consiglio delle Comunità europee 1990b; Van Houten e Flemming 1993). Sono stati sviluppati standard e linee guida relativi ai prodotti biotecnologici all'interno di organizzazioni internazionali e multilaterali come l'Organizzazione mondiale della sanità (OMS), l'Organizzazione internazionale per gli standard (ISO), la Commissione della Comunità europea, l'Organizzazione per l'alimentazione e l'agricoltura (FAO) e la rete di dati sui ceppi microbici ( OSTP 1986).

L'industria biotecnologica moderna può essere considerata in termini di quattro settori industriali principali, ciascuno con ricerca e sviluppo (R&S) di laboratorio, sul campo e/o clinica a supporto dell'effettiva produzione di beni e servizi.

  • prodotti biomedico-farmaceutici, biologici e dispositivi medici
  • agroalimentari, pesci e animali transgenici, piante resistenti alle malattie e ai parassiti
  • prodotti industriali geneticamente migliorati come acido citrico, butanolo, acetone, etanolo ed enzimi detergenti (vedi tabella 1)
  • ambientale-trattamento delle acque reflue, decontaminazione di rifiuti industriali.

 

Tabella 1. Microrganismi di importanza industriale

Nome

Organismo ospite

si utilizza

Acetobatteri aceti

Batterio aerobico

Fermenta la frutta

Aspirgillo niger

Fungo asessuato

Degrada la materia organica
Uso sicuro nella produzione di acido citrico ed enzimi

Aspirgillo oryzae

Fungo asessuato

Utilizzato nella produzione di miso, salsa di soia e sake

Bacillis licheniformis

Batterio

Prodotti chimici ed enzimi industriali

Bacillis subtilis

Batterio

Prodotti chimici, enzimi, fonte di proteine ​​unicellulari per il consumo umano in Asia

Cellule ovariche di criceto cinese (CHO)*

Coltura di cellule di mammifero

Produzione di biofarmaci

Clostridium acetobutilico

Batterio

Butanolo, produzione di acetone

Escherichia coli K-12*

Ceppo batterico

Clonazione per fermentazione, produzione di prodotti farmaceutici e biologici

Penicillium Roqueforti

Fungo asessuato

Produzione di formaggio blu

Saccharomyces cerevisiae*

Lievito

Clonazione per la produzione di birra

Saccharomyces uvarum*

Lievito

Clonazione per bevande alcoliche e produzione industriale di alcol

* Importante per la moderna biotecnologia.

 

Lavoratori della biotecnologia

La biotecnologia inizia nel laboratorio di ricerca ed è una scienza multidisciplinare. Biologi molecolari e cellulari, immunologi, genetisti, chimici di proteine ​​e peptidi, biochimici e ingegneri biochimici sono i più direttamente esposti ai rischi reali e potenziali della tecnologia del DNA ricombinante (rDNA). Altri lavoratori che possono essere esposti meno direttamente ai rischi biologici rDNA includono personale di servizio e supporto come tecnici di ventilazione e refrigerazione, fornitori di servizi di calibrazione e personale addetto alle pulizie. In un recente sondaggio tra i professionisti della salute e della sicurezza nel settore, è emerso che i lavoratori esposti direttamente e indirettamente costituiscono circa il 30-40% della forza lavoro totale nelle tipiche aziende biotecnologiche commerciali (Lee e Ryan 1996). La ricerca biotecnologica non si limita all'“industria”; è condotto anche nelle istituzioni accademiche, mediche e governative.

Gli addetti ai laboratori di biotecnologia sono esposti a un'ampia varietà di sostanze chimiche pericolose e tossiche, a pericoli biologici ricombinanti e non ricombinanti o "wild type", agenti patogeni a trasmissione ematica umana e malattie zoonotiche, nonché materiali radioattivi utilizzati negli esperimenti di etichettatura. Inoltre, i disturbi muscoloscheletrici e le lesioni da sforzi ripetuti stanno diventando sempre più ampiamente riconosciuti come potenziali rischi per i ricercatori a causa dell'uso estensivo di computer e micropipettatrici manuali.

Anche gli operatori della produzione di biotecnologie sono esposti a sostanze chimiche pericolose, ma non la varietà che si vede nel contesto della ricerca. A seconda del prodotto e del processo, potrebbe verificarsi un'esposizione ai radionuclidi durante la produzione. Anche al livello di rischio biologico più basso, i processi di produzione biotecnologici sono sistemi chiusi e il potenziale di esposizione alle colture ricombinanti è basso, tranne in caso di incidenti. Negli impianti di produzione biomedica, l'applicazione delle attuali buone pratiche di fabbricazione integra le linee guida sulla biosicurezza per proteggere i lavoratori nell'impianto. I principali rischi per i lavoratori della produzione nelle operazioni di buona pratica su larga scala (GLSP) che coinvolgono organismi ricombinanti non pericolosi includono lesioni muscoloscheletriche traumatiche (ad es. stiramenti e dolori alla schiena), ustioni termiche da linee di vapore e ustioni chimiche da acidi e sostanze caustiche (acido fosforico , idrossido di sodio e di potassio) utilizzati nel processo.

Gli operatori sanitari, compresi i tecnici dei laboratori clinici, sono esposti a vettori di terapia genica, escrementi e campioni di laboratorio durante la somministrazione di farmaci e la cura dei pazienti arruolati in queste procedure sperimentali. Anche le governanti possono essere esposte. La protezione dei lavoratori e dell'ambiente sono due punti sperimentali obbligatori da considerare nel fare domanda al NIH per esperimenti di terapia genica umana (NIH 1996).

I lavoratori agricoli possono avere una forte esposizione a prodotti, piante o animali ricombinanti durante l'applicazione di pesticidi, la semina, la raccolta e la lavorazione. Indipendentemente dal potenziale rischio di rischio biologico derivante dall'esposizione a piante e animali geneticamente modificati, sono presenti anche i tradizionali pericoli fisici che coinvolgono le attrezzature agricole e l'allevamento di animali. I controlli tecnici, i DPI, la formazione e la supervisione medica sono utilizzati in modo adeguato ai rischi previsti (Legaspi e Zenz 1994; Pratt e maggio 1994). I DPI, tra cui tute, respiratori, guanti multiuso, occhiali o cappucci, sono importanti per la sicurezza dei lavoratori durante l'applicazione, la crescita e la raccolta delle piante geneticamente modificate o degli organismi del suolo.

Processi e pericoli

Nel processo biotecnologico nel settore biomedico le cellule o gli organismi, modificati in modi specifici per ottenere i prodotti desiderati, vengono coltivati ​​in bioreattori monocoltura. Nella coltura di cellule di mammifero, il prodotto proteico viene secreto dalle cellule nel mezzo nutritivo circostante e una varietà di metodi di separazione chimica (cromatografia dimensionale o di affinità, elettroforesi) può essere utilizzata per catturare e purificare il prodotto. Dove Escherichia coli gli organismi ospiti vengono utilizzati nelle fermentazioni, il prodotto desiderato viene prodotto all'interno della membrana cellulare e le cellule devono essere fisicamente rotte per poter raccogliere il prodotto. L'esposizione alle endotossine è un potenziale pericolo di questo processo. Spesso gli antibiotici vengono aggiunti ai terreni di produzione per migliorare la produzione del prodotto desiderato o mantenere una pressione selettiva su elementi di produzione genetica altrimenti instabili (plasmidi). Sono possibili sensibilità allergiche a questi materiali. In generale, questi sono rischi di esposizione all'aerosol.

Sono previste perdite e rilasci di aerosol e la potenziale esposizione è controllata in diversi modi. Le penetrazioni nei recipienti del reattore sono necessarie per fornire nutrienti e ossigeno, per la degassificazione dell'anidride carbonica (CO2) e per il monitoraggio e il controllo del sistema. Ogni penetrazione deve essere sigillata o filtrata (0.2 micron) per evitare la contaminazione della coltura. La filtrazione dei gas di scarico protegge anche i lavoratori e l'ambiente nell'area di lavoro dagli aerosol generati durante la coltura o la fermentazione. A seconda del potenziale di rischio biologico del sistema, l'inattivazione biologica convalidata degli effluenti liquidi (di solito mediante calore, vapore o metodi chimici) è una pratica standard. Altri potenziali pericoli nella produzione biotecnologica sono simili a quelli di altri settori: rumore, protezione meccanica, ustioni da vapore/calore, contatto con sostanze corrosive e così via.

Gli enzimi e la fermentazione industriale sono coperti altrove in questo Enciclopedia e coinvolgere i processi, i rischi ei controlli che sono simili per i sistemi di produzione geneticamente modificati.

L'agricoltura tradizionale dipende dallo sviluppo del ceppo che utilizza l'incrocio tradizionale di specie vegetali correlate. Il grande vantaggio delle piante geneticamente modificate è che il tempo tra le generazioni e il numero di incroci necessari per ottenere il tratto desiderato è notevolmente ridotto. Anche la dipendenza attualmente impopolare da pesticidi e fertilizzanti chimici (che contribuiscono all'inquinamento da ruscellamento) sta favorendo una tecnologia che potenzialmente renderà superflue queste applicazioni.

La biotecnologia vegetale implica la scelta di una specie vegetale geneticamente flessibile e/o finanziariamente significativa per le modifiche. Poiché le cellule vegetali hanno pareti cellulari dure e cellulosiche, i metodi utilizzati per trasferire il DNA nelle cellule vegetali differiscono da quelli utilizzati per i batteri e le linee cellulari di mammiferi nel settore biomedico. Esistono due metodi principali utilizzati per introdurre DNA ingegnerizzato estraneo nelle cellule vegetali (Watrud, Metz e Fishoff 1996):

  • una pistola a particelle spara il DNA nella cellula di interesse
  • un disarmato, non cancerogeno Agrobacterium tumefaciens virus introduce cassette geniche nel materiale genetico della cellula.

 

Tipo selvaggio Agrobacterium tumefaciens è un patogeno naturale delle piante che causa tumori della cistifellea nelle piante ferite. Questi ceppi vettoriali disarmati e ingegnerizzati non causano la formazione di tumori vegetali.

Dopo la trasformazione con entrambi i metodi, le cellule vegetali vengono diluite, placcate e coltivate su terreni di coltura tissutale selettivi per un periodo relativamente lungo (rispetto ai tassi di crescita batterica) in camere di crescita delle piante o incubatori. Le piante rigenerate dal tessuto trattato vengono trapiantate nel terreno in camere di crescita chiuse per un'ulteriore crescita. Dopo aver raggiunto l'età appropriata vengono esaminati per l'espressione dei tratti desiderati e poi coltivati ​​in serra. Sono necessarie diverse generazioni di esperimenti in serra per valutare la stabilità genetica del tratto di interesse e per generare lo stock di semi necessario per ulteriori studi. Anche i dati sull'impatto ambientale vengono raccolti durante questa fase del lavoro e presentati con proposte alle agenzie di regolamentazione per l'approvazione del rilascio di prove in campo aperto.

Controlli: l'esempio degli Stati Uniti

Il NIHG (NIH 1996) descrive un approccio sistematico per prevenire sia l'esposizione dei lavoratori che il rilascio nell'ambiente di organismi ricombinanti. Ogni istituzione (ad es. università, ospedale o laboratorio commerciale) è responsabile di condurre la ricerca sull'rDNA in modo sicuro e in conformità con il NIHG. Ciò si ottiene attraverso un sistema amministrativo che definisce le responsabilità e richiede valutazioni del rischio complete da parte di scienziati esperti e responsabili della biosicurezza, l'attuazione di controlli dell'esposizione, programmi di sorveglianza medica e piani di emergenza. Un comitato istituzionale per la biosicurezza (IBC) fornisce i meccanismi per la revisione e l'approvazione degli esperimenti all'interno dell'istituto. In alcuni casi, è richiesta l'approvazione del comitato consultivo ricombinante (RAC) dell'NIH stesso.

Il grado di controllo dipende dalla gravità del rischio ed è descritto in termini di designazioni di livello di biosicurezza (BL) 1-4; BL1 è il meno restrittivo e BL4 il più. Vengono fornite linee guida per il contenimento per la ricerca, la R&S su larga scala (superiore a 10 litri di coltura), la produzione su larga scala e gli esperimenti su animali e piante su larga e piccola scala.

L'Appendice G del NIHG (NIH 1996) descrive il contenimento fisico su scala di laboratorio. BL1 è appropriato per lavorare con agenti di cui non si conosce o che presentano un rischio potenziale minimo per il personale di laboratorio o per l'ambiente. Il laboratorio non è separato dai modelli di traffico generale nell'edificio. Il lavoro è condotto sui benchtops aperti. Non sono richiesti o utilizzati dispositivi di contenimento speciali. Il personale di laboratorio è addestrato nelle procedure di laboratorio e supervisionato da uno scienziato con una formazione generale in microbiologia o in una scienza correlata.

BL2 è idoneo per lavori che coinvolgono agenti di moderato potenziale pericolo per il personale e per l'ambiente. L'accesso al laboratorio è limitato durante lo svolgimento del lavoro, i lavoratori hanno una formazione specifica nella manipolazione di agenti patogeni e sono diretti da scienziati competenti e il lavoro che crea aerosol viene svolto in cappe di sicurezza biologica o altre apparecchiature di contenimento. Questo lavoro può richiedere sorveglianza medica o vaccinazioni come appropriato e determinato dall'IBC.

BL3 è applicabile quando il lavoro è svolto con agenti indigeni o esotici che possono causare malattie gravi o potenzialmente letali a seguito di esposizione per inalazione. I lavoratori hanno una formazione specifica e sono supervisionati da scienziati competenti che hanno esperienza nel lavorare con la manipolazione di questi agenti pericolosi. Tutte le procedure vengono eseguite in condizioni di contenimento che richiedono ingegneria e DPI speciali.

BL4 è riservato agli agenti più pericolosi ed esotici che presentano un elevato rischio individuale e comunitario di malattie potenzialmente letali. Esistono solo pochi laboratori BL4 al mondo.

L'Appendice K riguarda il contenimento fisico per attività di ricerca o produzione in volumi superiori a 10 litri (su larga scala). Come nelle linee guida su piccola scala, esiste una gerarchia di requisiti di contenimento dal potenziale di pericolo più basso a quello più alto: da GLSP a BL3-Large-Scale (BL3-LS).

Il NIHG, Appendice P, copre il lavoro con le piante a livello del banco, della camera di crescita e della scala della serra. Come osserva l'introduzione: “Lo scopo principale del contenimento delle piante è quello di evitare la trasmissione involontaria di un genoma vegetale contenente DNA ricombinante, incluso materiale ereditario nucleare o organello o il rilascio di organismi derivati ​​da DNA ricombinante associati alle piante. In generale questi organismi non rappresentano una minaccia per la salute umana o per gli animali superiori, a meno che non siano deliberatamente modificati a tale scopo. Tuttavia, è possibile la diffusione involontaria di un patogeno grave da una serra a una coltura agricola locale o l'introduzione e l'insediamento involontari di un organismo in un nuovo ecosistema” (NIH 1996). Negli Stati Uniti, l'EPA e l'APHIS (Animal and Plant Health Inspection Service) dell'USDA sono congiuntamente responsabili della valutazione del rischio e della revisione dei dati generati prima di concedere l'approvazione per i test di rilascio sul campo (EPA 1996; Foudin e Gay 1995). Vengono valutate - spesso prima in serra - questioni come la persistenza e la diffusione in acqua, aria e suolo, da parte di insetti e specie animali, la presenza di altre colture simili nell'area, la stabilità ambientale (sensibilità al gelo o al caldo) e la competizione con le specie autoctone (Liberman et al. 1996).

Anche i livelli di contenimento degli impianti per le strutture e le pratiche vanno da BL1 a BL4. I tipici esperimenti BL1 riguardano l'auto-clonazione. BL2 può comportare il trasferimento di tratti da un patogeno a una pianta ospite. BL3 potrebbe comportare l'espressione di tossine o agenti pericolosi per l'ambiente. La protezione dei lavoratori è raggiunta nei vari livelli da DPI e controlli tecnici come serre e capannoni con flusso d'aria direzionale e filtri antiparticolato ad alta efficienza (HEPA) per prevenire il rilascio di polline. A seconda del rischio, la protezione dell'ambiente e della comunità da agenti potenzialmente pericolosi può essere raggiunta mediante controlli biologici. Esempi sono un tratto sensibile alla temperatura, un tratto di sensibilità ai farmaci o esigenze nutrizionali non presenti in natura.

Con l'aumentare delle conoscenze scientifiche e l'avanzare della tecnologia, ci si aspettava che il NIHG avrebbe avuto bisogno di revisione e revisione. Negli ultimi 20 anni, il RAC si è riunito per esaminare e approvare proposte di modifica. Ad esempio, il NIHG non emette più divieti generali sul rilascio deliberato di organismi geneticamente modificati; I rilasci sperimentali sul campo di prodotti agricoli e gli esperimenti di terapia genica umana sono consentiti in circostanze appropriate e dopo un'adeguata valutazione del rischio. Un emendamento molto significativo al NIHG è stata la creazione della categoria di contenimento GLSP. Ha allentato i requisiti di contenimento per "ceppi ricombinanti non patogeni e non tossici derivati ​​da organismi ospiti che hanno una lunga storia di uso sicuro su larga scala, o che hanno costruito limitazioni ambientali che consentono una crescita ottimale su larga scala ma una sopravvivenza limitata senza conseguenze negative per l'ambiente” (NIH 1991). Questo meccanismo ha permesso alla tecnologia di progredire pur tenendo conto delle esigenze di sicurezza.

Controlli: l'esempio della Comunità Europea

Nell'aprile 1990 la Comunità Europea (CE) ha emanato due Direttive sull'uso confinato e l'emissione deliberata nell'ambiente di OGM. Entrambe le direttive impongono agli Stati membri di garantire che vengano prese tutte le misure appropriate per evitare effetti negativi sulla salute umana o sull'ambiente, in particolare facendo valutare preventivamente all'utilizzatore tutti i rischi pertinenti. In Germania, il Genetic Technology Act è stato approvato nel 1990 in parte in risposta alle Direttive CE, ma anche per rispondere alla necessità di un'autorità legale per costruire un impianto di produzione di insulina ricombinante per operazioni di prova (Reutsch e Broderick 1996). In Svizzera, i regolamenti si basano sul NIHG statunitense, sulle direttive del Consiglio della CE e sulla legge tedesca sull'ingegneria genetica. Gli svizzeri richiedono al governo la registrazione annuale e gli aggiornamenti degli esperimenti. In generale, gli standard sull'rDNA in Europa sono più restrittivi che negli Stati Uniti, e questo ha contribuito al fatto che molte aziende farmaceutiche europee hanno spostato la ricerca sull'rDNA dai loro paesi d'origine. Tuttavia, le normative svizzere consentono una categoria di sicurezza su larga scala di livello 4, che non è consentita dal NIHG (SCBS 1995).

Prodotti di biotecnologia

Alcuni dei prodotti biologici e farmaceutici che sono stati realizzati con successo dalle biotecnologie del DNA ricombinante includono: insulina umana; Ormone della crescita umano; vaccini contro l'epatite; alfa-interferone; beta-interferone; gamma-interferone; Fattore stimolante le colonie di granulociti; attivatore tissutale del plasminogeno; Fattore stimolante le colonie di granulociti-macrofagi; IL2; Eritropoietina; Crymax, prodotto insetticida per il controllo dei bruchi negli ortaggi; colture di noci e viti; Flavr Savr (TM) pomodoro; Chimogeno, un enzima che produce il formaggio; ATIII (antitrombina III), derivato dal latte di capra transgenico utilizzato per prevenire la formazione di coaguli di sangue in chirurgia; BST e PST (somatotropina bovina e suina) utilizzate per aumentare la produzione di latte e carne.

Problemi di salute e modelli di malattia

Esistono cinque principali rischi per la salute derivanti dall'esposizione a microrganismi o ai loro prodotti nella biotecnologia su scala industriale:

  • infezione
  • reazione all'endotossina
  • allergia ai microrganismi
  • reazione allergica a un prodotto
  • reazione tossica a un prodotto.

 

L'infezione è improbabile poiché nella maggior parte dei processi industriali vengono utilizzati agenti non patogeni. Tuttavia, è possibile che microrganismi considerati innocui come Pseudomonas ed Aspergillus specie possono causare infezione in individui immunocompromessi (Bennett 1990). L'esposizione all'endotossina, un componente dello strato di lippopolisaccaridi della parete cellulare di tutti i batteri gram-negativi, a concentrazioni superiori a circa 300 ng/m3 provoca sintomi transitori simil-influenzali (Balzer 1994). I lavoratori di molti settori, tra cui l'agricoltura tradizionale e la biotecnologia, hanno sperimentato gli effetti dell'esposizione alle endotossine. In molti settori si verificano anche reazioni allergiche al microrganismo o al prodotto. L'asma professionale è stata diagnosticata nell'industria biotecnologica per un'ampia gamma di microrganismi e prodotti inclusi Aspergillus niger, Penicillium spp. e proteasi; alcune aziende hanno rilevato incidenze superiori al 12% della forza lavoro. Le reazioni tossiche possono essere tanto varie quanto gli organismi e i prodotti. È stato dimostrato che l'esposizione agli antibiotici causa cambiamenti nella flora microbica nell'intestino. È noto che i funghi sono in grado di produrre tossine e agenti cancerogeni in determinate condizioni di crescita (Bennett 1990).

Per affrontare la preoccupazione che i lavoratori esposti sarebbero i primi a sviluppare potenziali effetti negativi sulla salute dalla nuova tecnologia, la sorveglianza medica dei lavoratori rDNA è stata una parte del NIHG sin dal loro inizio. I Comitati Istituzionali per la Biosicurezza, in consultazione con il medico di medicina del lavoro, hanno il compito di determinare, progetto per progetto, quale sorveglianza medica sia opportuna. A seconda dell'identità dell'agente specifico, della natura del rischio biologico, delle potenziali vie di esposizione e della disponibilità di vaccini, i componenti del programma di sorveglianza medica potrebbero includere controlli fisici pre-collocamento, esami periodici di follow-up, vaccini specifici, valutazioni di allergie e malattie, sieri pre-esposizione e indagini epidemiologiche.

Bennett (1990) ritiene improbabile che i microrganismi geneticamente modificati rappresentino un rischio maggiore di infezione o allergia rispetto all'organismo originale, ma potrebbero esserci rischi aggiuntivi dal nuovo prodotto o dall'rDNA. Un recente rapporto rileva che l'espressione di un allergene della noce brasiliana nei semi di soia transgenici può causare effetti inaspettati sulla salute tra lavoratori e consumatori (Nordlee et al. 1996). Altri nuovi rischi potrebbero essere l'uso di linee cellulari animali contenenti oncogeni o virus sconosciuti o non rilevati potenzialmente dannosi per l'uomo.

È importante notare che i primi timori riguardanti la creazione di specie mutanti geneticamente pericolose o di supertossine non si sono materializzati. L'OMS ha scoperto che la biotecnologia non presenta rischi diversi da quelli di altre industrie di trasformazione (Miller 1983) e, secondo Liberman, Ducatman e Fink (1990), “l'attuale consenso è che i potenziali rischi dell'rDNA sono stati inizialmente sopravvalutati e che il i pericoli associati a questa ricerca sono simili a quelli associati all'organismo, al vettore, al DNA, ai solventi e all'apparato fisico utilizzato”. Concludono che gli organismi ingegnerizzati sono destinati a presentare pericoli; tuttavia, il contenimento può essere definito per ridurre al minimo l'esposizione.

È molto difficile identificare le esposizioni professionali specifiche dell'industria biotecnologica. La "biotecnologia" non è un'industria separata con un codice SIC (Standard Industrial Classification) distintivo; piuttosto, è visto come un processo o un insieme di strumenti utilizzati in molte applicazioni industriali. Di conseguenza, quando vengono segnalati incidenti ed esposizioni, i dati sui casi che coinvolgono lavoratori delle biotecnologie sono inclusi tra i dati su tutti gli altri che si verificano nel settore industriale ospitante (ad esempio, agricoltura, industria farmaceutica o sanità). Inoltre, gli incidenti e gli incidenti di laboratorio sono notoriamente sottostimati.

Sono state segnalate poche malattie specificamente dovute a DNA geneticamente modificato; tuttavia, non sono sconosciuti. Almeno un'infezione locale documentata e sieroconversione è stata segnalata quando un lavoratore ha subito una puntura d'ago contaminata con un vettore ricombinante di vaccinia (Openshaw et al. 1991).

Problemi di politica

Negli anni '1980 sono emersi i primi prodotti della biotecnologia negli Stati Uniti e in Europa. L'insulina geneticamente modificata è stata approvata per l'uso nel 1982, così come un vaccino geneticamente modificato contro la "razza" della malattia dei suini (Sattelle 1991). È stato dimostrato che la somatotropina bovina ricombinante (BST) aumenta la produzione di latte vaccino e il peso dei bovini da carne. Sono state sollevate preoccupazioni in merito alla salute pubblica e alla sicurezza dei prodotti e se le normative esistenti fossero adeguate per affrontare tali preoccupazioni in tutte le diverse aree in cui i prodotti della biotecnologia potrebbero essere commercializzati. Il NIHG fornisce protezione dei lavoratori e dell'ambiente durante le fasi di ricerca e sviluppo. La sicurezza e l'efficacia del prodotto non sono responsabilità di NIHG. Negli Stati Uniti, attraverso il Coordinated Framework, i rischi potenziali dei prodotti della biotecnologia vengono valutati dall'agenzia più appropriata (FDA, EPA o USDA).

Il dibattito sulla sicurezza dell'ingegneria genetica e dei prodotti della biotecnologia continua (Thomas e Myers 1993), soprattutto per quanto riguarda le applicazioni agricole e gli alimenti per il consumo umano. I consumatori in alcune aree vogliono prodotti etichettati per identificare quali sono gli ibridi tradizionali e quali sono derivati ​​dalla biotecnologia. Alcuni produttori di prodotti lattiero-caseari si rifiutano di utilizzare il latte delle mucche che ricevono BST. È vietato in alcuni paesi (ad esempio, Svizzera). La FDA ha ritenuto i prodotti sicuri, ma ci sono anche questioni economiche e sociali che potrebbero non essere accettabili per il pubblico. La BST può effettivamente creare uno svantaggio competitivo per le aziende agricole più piccole, la maggior parte delle quali sono a conduzione familiare. A differenza delle applicazioni mediche in cui potrebbe non esserci alternativa al trattamento geneticamente modificato, quando i cibi tradizionali sono disponibili e abbondanti, il pubblico è a favore dell'ibridazione tradizionale rispetto al cibo ricombinante. Tuttavia, gli ambienti difficili e l'attuale carenza di cibo a livello mondiale possono cambiare questo atteggiamento.

Nuove applicazioni della tecnologia alla salute umana e alle malattie ereditarie hanno ravvivato le preoccupazioni e creato nuove questioni etiche e sociali. Il Progetto Genoma Umano, iniziato nei primi anni '1980, produrrà una mappa fisica e genetica del materiale genetico umano. Questa mappa fornirà ai ricercatori informazioni per confrontare l'espressione genica "sana o normale" e "malata" per comprendere meglio, prevedere e indicare le cure per i difetti genetici di base. Le tecnologie del genoma umano hanno prodotto nuovi test diagnostici per la malattia di Huntington, la fibrosi cistica e il cancro al seno e al colon. La terapia genica umana somatica dovrebbe correggere o migliorare i trattamenti per le malattie ereditarie. Il "fingerprinting" del DNA mediante la mappatura del polimorfismo dei frammenti di restrizione del materiale genetico viene utilizzato come prova forense nei casi di stupro, rapimento e omicidio. Può essere utilizzato per dimostrare (o, tecnicamente, confutare) la paternità. Può anche essere utilizzato in aree più controverse, come per valutare le possibilità di sviluppare cancro e malattie cardiache per coperture assicurative e trattamenti preventivi o come prova nei tribunali per crimini di guerra e come "targhette" genetiche nell'esercito.

Sebbene tecnicamente fattibile, il lavoro sugli esperimenti sulla linea germinale umana (trasmissibile di generazione in generazione) non è stato considerato per l'approvazione negli Stati Uniti a causa delle serie considerazioni sociali ed etiche. Tuttavia, negli Stati Uniti sono previste udienze pubbliche per riaprire la discussione sulla terapia della linea germinale umana e sui desiderabili miglioramenti dei tratti non associati alle malattie.

Infine, oltre alle questioni di sicurezza, sociali ed etiche, sono ancora in evoluzione le teorie legali sulla proprietà dei geni e del DNA e sulla responsabilità per uso o uso improprio.

Devono essere seguite le implicazioni a lungo termine del rilascio ambientale di vari agenti. Nuove questioni relative al contenimento biologico e alla gamma degli ospiti emergeranno per il lavoro che è attentamente e opportunamente controllato nell'ambiente di laboratorio, ma per il quale non sono note tutte le possibilità ambientali. I paesi in via di sviluppo, in cui potrebbero non esistere un'adeguata competenza scientifica e/o agenzie di regolamentazione, potrebbero trovarsi riluttanti o incapaci di assumersi la valutazione del rischio per il loro particolare ambiente. Ciò potrebbe portare a restrizioni inutili oa un'imprudente politica della “porta aperta”, entrambe le quali potrebbero rivelarsi dannose per i benefici a lungo termine del paese (Ho 1996).

Inoltre, la cautela è importante quando si introducono agenti agricoli ingegnerizzati in nuovi ambienti in cui non sono presenti gelo o altre pressioni di contenimento naturali. Le popolazioni indigene o gli scambiatori naturali di informazioni genetiche si accoppieranno con agenti ricombinanti in natura con conseguente trasferimento di tratti ingegnerizzati? Questi tratti si sarebbero rivelati dannosi in altri agenti? Quale sarebbe l'effetto per gli amministratori del trattamento? Le reazioni immunitarie limiteranno la diffusione? Gli agenti vivi ingegnerizzati sono in grado di attraversare le barriere delle specie? Persistono nell'ambiente di deserti, montagne, pianure e città?

In breve

La biotecnologia moderna negli Stati Uniti si è sviluppata secondo le linee guida del consenso e l'ordinanza locale dall'inizio degli anni '1970. Un attento esame non ha mostrato tratti inaspettati e incontrollabili espressi da un organismo ricombinante. È una tecnologia utile, senza la quale non sarebbero stati possibili molti miglioramenti medici basati su proteine ​​terapeutiche naturali. In molti paesi sviluppati la biotecnologia è una grande forza economica e un'intera industria è cresciuta attorno alla rivoluzione biotecnologica.

I problemi medici per i lavoratori della biotecnologia sono legati ai rischi specifici dell'ospite, del vettore e del DNA e alle operazioni fisiche eseguite. Finora la malattia dei lavoratori è stata prevenibile mediante ingegneria, pratica lavorativa, vaccini e controlli di contenimento biologico specifici per il rischio, valutati caso per caso. E la struttura amministrativa è pronta per fare valutazioni prospettiche del rischio per ogni nuovo protocollo sperimentale. Se questo track record di sicurezza continua nell'arena del rilascio ambientale di materiali vitali è una questione di valutazione continua dei potenziali rischi ambientali: persistenza, diffusione, scambiatori naturali, caratteristiche della cellula ospite, specificità dell'intervallo ospite per gli agenti di trasferimento utilizzati, natura del gene inserito e così via. Questo è importante da considerare per tutti i possibili ambienti e specie interessati al fine di ridurre al minimo le sorprese che la natura spesso presenta.

 

Di ritorno

Leggi 11432 volte Ultima modifica Martedì, Settembre 13 2011 18: 43

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Riferimenti di lavorazione chimica

Adams, WV, RR Dingman e JC Parker. 1995. Tecnologia Dual Gas Sealing per pompe. Atti 12° Simposio internazionale degli utenti di pompe. Marzo, College Station, Texas.

American Petroleum Institute (API). 1994. Sistemi di tenuta dell'albero per pompe centrifughe. Standard API 682. Washington, DC: API.

Auger, J.E. 1995. Costruire un vero e proprio programma PSM da zero. Progresso dell'ingegneria chimica 91: 47-53.

Bahner, M. 1996. Gli strumenti di misurazione del livello mantengono il contenuto del serbatoio al loro posto. Ingegneria ambientale Mondo 2:27-31.

Balzer, K. 1994. Strategie per lo sviluppo di programmi di biosicurezza nelle strutture biotecnologiche. Presentato al 3° simposio nazionale sulla biosicurezza, 1 marzo, Atlanta, GA.

Barletta, T, R Bayle e K Kennelley. 1995. RUBINETTO fondo serbatoio: Dotato di attacco migliorato. Diario di petrolio e gas 93: 89-94.

Bartknecht, W. 1989. Esplosioni di polvere. New York: Springer Verlag.

Basta, N. 1994. La tecnologia solleva la nuvola di COV. Ingegneria Chimica 101:43-48.

Bennett, AM. 1990. Rischi per la salute nella biotecnologia. Salisbury, Wiltshire, Regno Unito: Division of Biologics, Public Health Laboratory Service, Centre for Applied Microbiology and Research.

Berufsgenossenschaftlices Institut für Arbeitssicherheit (BIA). 1997. Misurazione di sostanze pericolose: determinazione dell'esposizione ad agenti chimici e biologici. Cartella di lavoro BIA. Bielefeld: Erich Schmidt Verlag.

Bewanger, PC e RA Krecter. 1995. Rendere i dati sulla sicurezza "sicuri". Ingegneria Chimica 102:62-66.

Boicourt, GW. 1995. Progettazione del sistema di soccorso di emergenza (ERS): un approccio integrato che utilizza la metodologia DIERS. Process Safety Progress 14:93-106.

Carroll, LA e EN Ruddy. 1993. Selezionare la migliore strategia di controllo VOC. Progresso dell'ingegneria chimica 89: 28-35.

Centro per la sicurezza dei processi chimici (CCPS). 1988. Linee guida per lo stoccaggio e la manipolazione sicuri di materiali ad alto rischio tossico. New York: Istituto americano di ingegneri chimici.

—. 1993. Linee guida per la progettazione ingegneristica per la sicurezza dei processi. New York: Istituto americano di ingegneri chimici.
Cesana, C e R Siwek. 1995. Comportamento all'accensione delle polveri significato e interpretazione. Process Safety Progress 14:107-119.

Notizie di chimica e ingegneria. 1996. Fatti e cifre per l'industria chimica. C&EN (24 giugno):38-79.

Associazione dei produttori di prodotti chimici (CMA). 1985. Gestione della sicurezza dei processi (controllo dei rischi acuti). Washington, DC: CMA.

Comitato per le molecole di DNA ricombinante, Assemblea delle scienze della vita, Consiglio nazionale delle ricerche, Accademia nazionale delle scienze. 1974. Lettera all'editore. Scienza 185:303.

Consiglio delle Comunità europee. 1990a. Direttiva del Consiglio del 26 novembre 1990 sulla protezione dei lavoratori dai rischi derivanti dall'esposizione ad agenti biologici durante il lavoro. 90/679/CEE. Gazzetta ufficiale delle Comunità europee 50(374):1-12.

—. 1990b. Direttiva del Consiglio del 23 aprile 1990 sull'emissione deliberata nell'ambiente di organismi geneticamente modificati. 90/220/CEE. Gazzetta ufficiale delle Comunità europee 50(117): 15-27.

Azienda chimica Dow. 1994a. Dow's Fire & Explosion Index Hazard Classification Guide, 7a edizione. New York: Istituto americano di ingegneri chimici.

—. 1994 b. Guida all'indice di esposizione chimica di Dow. New York: Istituto americano di ingegneri chimici.

Ebadat, V. 1994. Test per valutare i rischi di incendio ed esplosione della polvere. Ingegneria delle polveri e della massa 14: 19-26.
Agenzia per la protezione dell'ambiente (EPA). 1996. Linee guida proposte per la valutazione del rischio ecologico. Registro federale 61.

Fone, CJ. 1995. L'applicazione dell'innovazione e della tecnologia al contenimento delle tenute meccaniche. Presentato alla prima conferenza europea sul controllo delle emissioni fuggitive da valvole, pompe e flange, 18-19 ottobre, Anversa.

Foudin, AS e C Gay. 1995. Introduzione di microrganismi geneticamente modificati nell'ambiente: revisione sotto USDA, autorità di regolamentazione APHIS. In Organismi ingegnerizzati in contesti ambientali: applicazioni biotecnologiche e agricole, a cura di MA Levin e E Israeli. Boca Raton, Florida: CRC Press.

Freifelder, D (a cura di). 1978. La polemica. Nel DNA ricombinante. San Francisco, California: WH Freeman.

Garzia, HW e JA Senecal. 1996. Protezione contro le esplosioni di sistemi di tubazioni che trasportano polveri combustibili o gas infiammabili. Presentato al 30° simposio sulla prevenzione delle perdite, 27 febbraio, New Orleans, LA.

Green, DW, JO Maloney e RH Perry (a cura di). 1984. Manuale dell'ingegnere chimico di Perry, 6a edizione. New York: McGraw Hill.

Hagen, T e R Rial. 1994. Il metodo di rilevamento delle perdite garantisce l'integrità dei serbatoi di stoccaggio a doppio fondo. Oil & Gas Journal (14 novembre).

Ciao, MW. 1996. Le attuali tecnologie transgeniche sono sicure? Presentato al workshop sullo sviluppo delle capacità nella biosicurezza per i paesi in via di sviluppo, 22-23 maggio, Stoccolma.

Associazione per le biotecnologie industriali. 1990. Biotecnologia in prospettiva. Cambridge, Regno Unito: Hobsons Publishing plc.

Assicuratori Rischi Industriali (IRI). 1991. Layout e spaziatura degli impianti per impianti petroliferi e chimici. Manuale Informativo IRI 2.5.2. Hartford, CT: IRI.

Commissione internazionale per la protezione dalle radiazioni non ionizzanti (ICNIRP). In stampa. Guida pratica per la sicurezza nell'uso di riscaldatori e sigillanti dielettrici RF. Ginevra: OIL.

Lee, SB e LP Ryan. 1996. Salute e sicurezza sul lavoro nel settore delle biotecnologie: un'indagine sui professionisti che praticano. Am Ind Hyg Assoc J 57:381-386.

Legaspi, JA e C Zenz. 1994. Aspetti di salute sul lavoro dei pesticidi: principi clinici e igienici. In Occupational Medicine, 3a edizione, a cura di C Zenz, OB Dickerson e EP Horvath. St. Louis: Mosby-Year Book, Inc.

Lipton, S e JR Lynch. 1994. Manuale sul controllo dei rischi per la salute nell'industria dei processi chimici. New York: John Wiley & Figli.

Liberman, DF, AM Ducatman e R Fink. 1990. Biotecnologie: c'è un ruolo per la sorveglianza medica? In Bioprocessing Safety: Worker and Community Safety and Health Considerations. Filadelfia, PA: Società americana per i test e i materiali.

Liberman, DF, L Wolfe, R Fink e E Gilman. 1996. Considerazioni sulla sicurezza biologica per il rilascio ambientale di organismi e piante transgenici. In Organismi ingegnerizzati in contesti ambientali: applicazioni biotecnologiche e agricole, a cura di MA Levin e E Israeli. Boca Raton, Florida: CRC Press.

Lichtenstein, N e K Quellmalz. 1984. Flüchtige Zersetzungsprodukte von Kunststoffen I: ABS-Polymere. Staub-Reinhalt 44(1):472-474.

—. 1986a. Flüchtige Zersetzungsprodukte von Kunststoffen II: polietilene. Staub-Reinhalt 46(1):11-13.

—. 1986b. Flüchtige Zersetzungsprodukte von Kunststoffen III: Poliammide. Staub-Reinhalt 46(1):197-198.

—. 1986 c. Flüchtige Zersetzungsprodukte von Kunststoffen IV: Policarbonato. Staub-Reinhalt 46(7/8):348-350.

Comitato per le relazioni con la comunità del Massachusetts Biotechnology Council. 1993. Statistiche non pubblicate.

Meclemburgo, JC. 1985. Layout dell'impianto di processo. New York: John Wiley & Figli.

Miller, H. 1983. Rapporto sul gruppo di lavoro dell'Organizzazione mondiale della sanità sulle implicazioni sanitarie della biotecnologia. Bollettino tecnico del DNA ricombinante 6:65-66.

Miller, HI, MA Crostata e TS Bozzo. 1994. Produzione di nuovi prodotti biotecnologici: guadagni e dolori della crescita. J Chem Technol Biotechnol 59:3-7.

Moretti, EC e N Mukhopadhyay. 1993. Controllo VOC: pratiche attuali e tendenze future. Progresso dell'ingegneria chimica 89: 20-26.

Mower, DS. 1995. Utilizzare l'analisi quantitativa per gestire il rischio di incendio. Elaborazione di idrocarburi 74:52-56.

Murphy, il sig. 1994. Prepararsi per la regola del programma di gestione del rischio dell'EPA. Progresso dell'ingegneria chimica 90: 77-82.

Associazione nazionale per la protezione antincendio (NFPA). 1990. Liquido infiammabile e combustibile. NFPA 30. Quincy, Massachusetts: NFPA.

Istituto nazionale per la sicurezza e la salute sul lavoro (NIOSH). 1984. Raccomandazioni per il controllo dei rischi per la sicurezza e la salute sul lavoro. Fabbricazione di vernici e prodotti di rivestimento affini. DHSS (NIOSH) Pubblicazione n. 84-115. Cincinnati, Ohio: NIOSH.

Istituto Nazionale della Sanità (Giappone). 1996. Comunicazione personale.

Istituti Nazionali della Salute (NIH). 1976. Ricerca sul DNA ricombinante. Registro federale 41:27902-27905.

—. 1991. Azioni di ricerca sul DNA ricombinante secondo le linee guida. Registro federale 56:138.

—. 1996. Linee guida per la ricerca che coinvolgono molecole di DNA ricombinante. Registro federale 61:10004.

Netzel, JP. 1996. Tecnologia di tenuta: un controllo per l'inquinamento industriale. Presentato al 45° meeting annuale della Society of Tribologists and Lubrication Engineers. 7-10 maggio, Denver.

Nordlee, JA, SL Taylor, JA Townsend, LA Thomas e RK Bush. 1996. Identificazione di un allergene della noce brasiliana nella soia transgenica. New Engl J Med 334 (11):688-692.

Amministrazione per la sicurezza e la salute sul lavoro (OSHA). 1984. 50 FR 14468. Washington, DC: OSHA.

—. 1994. CFR 1910.06. Washington, DC: OSHA.

Ufficio per la politica della scienza e della tecnologia (OSTP). 1986. Quadro coordinato per la regolamentazione delle biotecnologie. FR 23303. Washington, DC: OSTP.

Openshaw, PJ, WH Alwan, AH Cherrie e FM Record. 1991. Infezione accidentale di lavoratore di laboratorio con virus vaccinico ricombinante. Lancetta 338.(8764):459.

Parlamento delle Comunità europee. 1987. Trattato che istituisce un Consiglio unico e una Commissione unica delle Comunità europee. Gazzetta ufficiale delle Comunità europee 50(152):2.

Pennington, RL. 1996. Operazioni di controllo VOC e HAP. Separazioni e sistemi di filtrazione Magazine 2: 18-24.

Pratt, D e J maggio. 1994. Medicina del lavoro agraria. In Occupational Medicine, 3a edizione, a cura di C Zenz, OB Dickerson e EP Horvath. St. Louis: Mosby-Year Book, Inc.

Reutsch, CJ e TR Broderick. 1996. Nuova legislazione sulle biotecnologie nella Comunità Europea e nella Repubblica Federale Tedesca. Biotecnologia.

Sattelle, D. 1991. Biotecnologie in prospettiva. Lancetta 338:9,28.

Scheff, PA e RA Wadden. 1987. Progettazione ingegneristica per il controllo dei rischi sul posto di lavoro. New York: McGraw Hill.

Siegell, JH. 1996. Esplorando le opzioni di controllo VOC. Ingegneria Chimica 103:92-96.

Società dei tribologi e degli ingegneri della lubrificazione (STLE). 1994. Linee guida per il rispetto delle normative sulle emissioni per macchine rotanti con tenute meccaniche. Pubblicazione speciale STLE SP-30. Park Ridge, IL: STLE.

Sutton, IS. 1995. Sistemi di gestione integrati migliorano l'affidabilità degli impianti. Elaborazione di idrocarburi 74:63-66.

Comitato interdisciplinare svizzero per la biosicurezza nella ricerca e nella tecnologia (SCBS). 1995. Linee guida per il lavoro con organismi geneticamente modificati. Zurigo: SCBS.

Thomas, JA e LA Myers (a cura di). 1993. Biotecnologia e valutazione della sicurezza. New York: Corvo Press.

Van Houten, J e DO Flemming. 1993. Analisi comparativa delle attuali normative sulla biosicurezza degli Stati Uniti e della CE e il loro impatto sull'industria. Giornale di microbiologia industriale 11: 209-215.

Watrud, LS, SG Metz e DA Fishoff. 1996. Impianti ingegnerizzati nell'ambiente. In Organismi ingegnerizzati in contesti ambientali: applicazioni biotecnologiche e agricole, a cura di M Levin e E Israeli. Boca Raton, Florida: CRC Press.

Boschi, DR. 1995. Progettazione di processo e pratica ingegneristica. Englewood Cliffs, New Jersey: Prentice Hall.