Sabato, Febbraio 26 2011 18: 19

Industria pirotecnica

Vota questo gioco
(Voto 1)

Adattato dalla 3a edizione, "Encyclopaedia of Occupational Health and Safety".

L'industria pirotecnica può essere definita come la fabbricazione di articoli pirotecnici (fuochi d'artificio) per l'intrattenimento, per uso tecnico e militare nella segnalazione e nell'illuminazione, per uso come pesticidi e per vari altri scopi. Questi articoli contengono sostanze pirotecniche costituite da composizioni in polvere o in pasta che vengono modellate, compattate o compresse secondo necessità. Quando vengono accesi, l'energia che contengono viene rilasciata per dare effetti specifici, come illuminazione, detonazione, fischi, urla, formazione di fumo, combustione senza fiamma, propulsione, accensione, adescamento, spari e disintegrazione. La sostanza pirotecnica più importante è ancora la polvere nera (polvere da sparo, costituita da carbone, zolfo e nitrato di potassio), che può essere utilizzata sfusa per la detonazione, compattata per la propulsione o il tiro, o tamponata con carbone di legna come innesco.

Processi

Le materie prime utilizzate nella fabbricazione di articoli pirotecnici devono essere purissime, prive di ogni impurità meccanica e (soprattutto) prive di ingredienti acidi. Questo vale anche per materiali sussidiari come carta, cartone e colla. La tabella 1 elenca le materie prime comuni utilizzate nella produzione di articoli pirotecnici.

Tabella 1. Materie prime utilizzate nella fabbricazione di articoli pirotecnici

Prodotti

Materie prime

Esplosivi

Nitrocellulosa (lana di collodio), fulminato d'argento, polvere nera
(nitrato di potassio, zolfo e carbone).

Materiali combustibili

Resina acaroide, destrina, acido gallico, gomma arabica, legno, carbone,
colofonia, lattosio, cloruro di polivinile (PVC), gommalacca, metilcellulosa,
solfuro di antimonio, alluminio, magnesio, silicio, zinco,
fosforo, zolfo.

Materiali ossidanti

Clorato di potassio, clorato di bario, potassio, perclorato, bario
nitrato, nitrato di potassio, nitrato di sodio, nitrato di stronzio, bario
perossido, biossido di piombo, ossido di cromo.

Materiali ignifughi

Carbonato di bario (verde), criolite (giallo), rame, ammonio
solfato (blu), ossalato di sodio (giallo), carbonato di rame (blu),
arsenito di acetato di rame (blu), carbonato di stronzio (rosso), stronzio
ossalato (rosso). I coloranti sono usati per produrre fumo colorato,
e cloruro di ammonio per produrre fumo bianco.

Materiali inerti

Tristearato di glicerile, paraffina, farina fossile, calce, gesso.

 

Dopo essere state essiccate, macinate e setacciate, le materie prime vengono pesate e miscelate in un apposito edificio. Anticamente si impastavano sempre a mano ma negli impianti moderni si utilizzano spesso impastatrici meccaniche. Dopo la miscelazione, le sostanze devono essere conservate in appositi magazzini per evitare accumuli nei locali di lavoro. Da questi edifici dovrebbero essere portati nei laboratori solo le quantità necessarie per le effettive operazioni di lavorazione.

Le custodie per articoli pirotecnici possono essere di carta, cartone, materiale sintetico o metallo. Il metodo di imballaggio varia. Ad esempio, per la detonazione la composizione viene versata sciolta in una custodia e sigillata, mentre per la propulsione, l'illuminazione, l'urlo o il fischio viene versata sciolta nella custodia e quindi compattata o compressa e sigillata.

La compattazione o la compressione in passato avveniva mediante colpi di mazzuolo su uno strumento di "fissatura" in legno, ma questo metodo è raramente utilizzato nelle strutture moderne; si utilizzano invece presse idrauliche o presse rotative a losanga. Le presse idrauliche consentono di comprimere simultaneamente la composizione in un certo numero di casi.

Le sostanze di illuminazione vengono spesso modellate quando sono bagnate per formare stelle, che vengono poi essiccate e messe in custodie per razzi, bombe e così via. Le sostanze prodotte con un processo a umido devono essere ben essiccate o possono incendiarsi spontaneamente.

Poiché molte sostanze pirotecniche sono difficili da accendere quando vengono compresse, gli articoli pirotecnici interessati sono dotati di un ingrediente intermedio o di adescamento per garantire l'accensione; la custodia viene quindi sigillata. L'articolo viene acceso dall'esterno da un fiammifero, una miccia, un raschietto o talvolta da una capsula a percussione.

Pericoli

I pericoli più importanti nella pirotecnica sono chiaramente il fuoco e l'esplosione. A causa del numero ridotto di macchine coinvolte, i rischi meccanici sono meno importanti; sono simili a quelli di altri settori.

La sensibilità della maggior parte delle sostanze pirotecniche è tale che in forma sciolta possono essere facilmente accese da colpi, attrito, scintille e calore. Presentano rischi di incendio ed esplosione e sono considerati esplosivi. Molte sostanze pirotecniche hanno l'effetto esplosivo degli esplosivi ordinari e i lavoratori rischiano che i loro vestiti o il loro corpo vengano bruciati dalle fiamme.

Durante la lavorazione di sostanze tossiche utilizzate nella pirotecnica (ad es. composti di piombo e bario e arsenito di acetato di rame) può essere presente un pericolo per la salute dovuto all'inalazione della polvere durante la pesatura e la miscelazione.

Misure di sicurezza e salute

Solo persone affidabili dovrebbero essere impiegate nella produzione di sostanze pirotecniche. I giovani sotto i 18 anni non dovrebbero essere assunti. Sono necessarie adeguate istruzioni e supervisione dei lavoratori.

Prima di intraprendere qualsiasi processo produttivo è importante accertare la sensibilità delle sostanze pirotecniche all'attrito, all'urto e al calore, nonché la loro azione esplosiva. La natura del processo di produzione e le quantità consentite nei locali di lavoro e negli edifici di stoccaggio ed essiccazione dipenderanno da queste proprietà.

Le seguenti precauzioni fondamentali devono essere prese nella fabbricazione di sostanze e oggetti pirotecnici:

  • Gli edifici nella parte non pericolosa dell'impresa (uffici, officine, aree di ristoro e così via) dovrebbero essere ubicati ben distanti da quelli nelle aree pericolose.
  • Dovrebbero esserci edifici di produzione, lavorazione e stoccaggio separati per i diversi processi di produzione nelle aree pericolose e questi edifici dovrebbero essere ben distanziati
  • Gli edifici di lavorazione dovrebbero essere suddivisi in laboratori separati.
  • Le quantità di sostanze pirotecniche negli edifici di miscelazione, lavorazione, stoccaggio ed essiccazione dovrebbero essere limitate.
  • Il numero di lavoratori nei diversi ambienti di lavoro dovrebbe essere limitato.

 

Si consigliano le seguenti distanze:

  • tra gli edifici nelle aree pericolose e quelli nelle aree non pericolose, almeno 30 m
  • tra i vari fabbricati di lavorazione stessi, 15 m
  • tra gli edifici di miscelazione, essiccazione e stoccaggio e altri edifici, da 20 a 40 m a seconda della costruzione e del numero di lavoratori interessati
  • tra diversi edifici di miscelazione, essiccazione e stoccaggio, da 15 a 20 m.

 

Le distanze tra i locali di lavoro possono essere ridotte in circostanze favorevoli e se tra di essi vengono costruite pareti protettive.

Dovrebbero essere forniti edifici separati per i seguenti scopi: stoccaggio e preparazione delle materie prime, miscelazione, stoccaggio di composizioni, lavorazione (imballaggio, compattazione o compressione), essiccazione, finitura (incollaggio, laccatura, imballaggio, paraffinatura, ecc.), essiccazione e stoccaggio del articoli finiti e deposito di polvere nera.

Le seguenti materie prime devono essere conservate in locali isolati: clorati e perclorati, perclorato di ammonio; nitrati, perossidi e altre sostanze ossidanti; metalli leggeri; sostanze combustibili; liquidi infiammabili; fosforo rosso; nitrocellulosa. La nitrocellulosa deve essere mantenuta bagnata. Le polveri metalliche devono essere protette dall'umidità, dagli oli grassi e dal grasso. Gli ossidanti devono essere conservati separatamente dagli altri materiali.

Progettazione di edifici

Per la miscelazione, gli edifici del tipo di sfogo delle esplosioni (tre pareti resistenti, tetto resistente e una parete di sfogo delle esplosioni in teli di plastica) sono i più adatti. Si consiglia una parete di protezione davanti alla parete di sfogo dell'esplosione. Le camere di miscelazione per sostanze contenenti clorati non devono essere utilizzate per sostanze contenenti metalli o solfuro di antimonio.

Per l'essiccazione si sono dimostrati soddisfacenti gli edifici con zona di sfogo e gli edifici ricoperti di terra e dotati di parete di sfogo di esplosione. Dovrebbero essere circondati da un terrapieno. Negli essiccatoi è consigliabile una temperatura ambiente controllata di 50 ºC.

Negli edifici di lavorazione dovrebbero esserci locali separati per: riempimento; comprimere o compattare; tagliare, “soffocare” e chiudere gli astucci; laccatura di sostanze pirotecniche sagomate e compresse; adescamento di sostanze pirotecniche; stoccaggio di sostanze pirotecniche e prodotti intermedi; Imballaggio; e lo stoccaggio di sostanze imballate. Una fila di edifici con aree di sfiato delle esplosioni si è rivelata la soluzione migliore. La resistenza delle pareti intermedie deve essere adeguata alla natura e alla quantità delle sostanze trattate.

Di seguito sono riportate le regole di base per gli edifici in cui sono utilizzati o presenti materiali potenzialmente esplosivi:

  • Gli edifici dovrebbero essere a un piano e non avere interrato.
  • Le superfici del tetto dovrebbero offrire una protezione sufficiente contro la propagazione del fuoco.
  • Le pareti dei locali devono essere lisce e lavabili.
  • I pavimenti devono avere una superficie piana e liscia senza fessure. Dovrebbero essere realizzati in materiale morbido come xilolite, asfalto privo di sabbia e materiali sintetici. I normali pavimenti in legno non devono essere utilizzati. I pavimenti delle stanze pericolose dovrebbero essere elettricamente conduttivi e i lavoratori al loro interno dovrebbero indossare scarpe con suole elettricamente conduttive.
  • Le porte e le finestre di tutti gli edifici devono aprirsi verso l'esterno. Durante l'orario di lavoro le porte non devono essere chiuse a chiave.
  • Non è consentito il riscaldamento degli edifici mediante fuochi aperti. Per il riscaldamento di edifici pericolosi, devono essere utilizzati solo impianti elettrici ad acqua calda, vapore a bassa pressione oa tenuta di polvere. I radiatori devono essere lisci e facili da pulire su tutti i lati: non devono essere utilizzati radiatori con tubi alettati. Si consiglia una temperatura di 115 ºC per il riscaldamento di superfici e tubi.
  • I banchi da lavoro e gli scaffali devono essere realizzati in materiale ignifugo o in legno duro.
  • I locali di lavoro, di stoccaggio e di asciugatura e le relative attrezzature devono essere puliti regolarmente mediante panno umido.
  • I luoghi di lavoro, gli ingressi e le vie di fuga devono essere progettati in modo tale da poter evacuare rapidamente i locali.
  • Per quanto possibile, i luoghi di lavoro dovrebbero essere separati da pareti protettive.
  • Le scorte necessarie devono essere conservate in modo sicuro.
  • Tutti gli edifici dovrebbero essere dotati di parafulmini.
  • È vietato fumare, usare fiamme libere e portare fiammiferi e accendini all'interno dei locali.

 

Attrezzatura

Le presse meccaniche devono essere dotate di schermi o pareti protettive in modo che, in caso di incendio, i lavoratori non siano in pericolo e l'incendio non possa propagarsi ai luoghi di lavoro vicini. Se vengono movimentate grandi quantità di materiali, le presse dovrebbero trovarsi in locali isolati e azionate dall'esterno. Nessuno dovrebbe rimanere nella sala stampa.

Gli impianti antincendio devono essere forniti in quantità sufficiente, contrassegnati in modo evidente e controllati a intervalli regolari. Dovrebbero essere adatti alla natura dei materiali presenti. Gli estintori di classe D devono essere utilizzati su polvere metallica in fiamme, non acqua, schiuma, prodotti chimici secchi o anidride carbonica. Docce, coperte di lana e coperte ignifughe sono consigliate per spegnere indumenti in fiamme.

Le persone che entrano in contatto con sostanze pirotecniche o che rischiano di essere messe in pericolo da lastre di fiamma devono indossare adeguati indumenti protettivi resistenti al fuoco e al calore. Gli indumenti devono essere depolverati quotidianamente in un luogo designato allo scopo per rimuovere eventuali contaminanti.

Nell'impresa dovrebbero essere prese misure per fornire il primo soccorso in caso di incidenti.

Materiali

I rifiuti pericolosi con proprietà diverse devono essere raccolti separatamente. I contenitori dei rifiuti devono essere svuotati giornalmente. Fino alla distruzione, i rifiuti raccolti devono essere conservati in un luogo protetto ad almeno 15 m da qualsiasi edificio. I prodotti difettosi ei prodotti intermedi dovrebbero di norma essere trattati come rifiuti. Dovrebbero essere rielaborati solo se farlo non crea alcun rischio.

Quando vengono lavorati materiali dannosi per la salute, evitare il contatto diretto con essi. I gas, i vapori e le polveri nocivi devono essere scaricati in modo efficace e sicuro. Se i sistemi di scarico sono inadeguati, è necessario indossare dispositivi di protezione delle vie respiratorie. Devono essere forniti indumenti protettivi adeguati.

 

Di ritorno

Leggi 9868 volte Ultima modifica Martedì 02 Agosto 2011 21:50
Altro in questa categoria: « Industria delle biotecnologie

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Riferimenti di lavorazione chimica

Adams, WV, RR Dingman e JC Parker. 1995. Tecnologia Dual Gas Sealing per pompe. Atti 12° Simposio internazionale degli utenti di pompe. Marzo, College Station, Texas.

American Petroleum Institute (API). 1994. Sistemi di tenuta dell'albero per pompe centrifughe. Standard API 682. Washington, DC: API.

Auger, J.E. 1995. Costruire un vero e proprio programma PSM da zero. Progresso dell'ingegneria chimica 91: 47-53.

Bahner, M. 1996. Gli strumenti di misurazione del livello mantengono il contenuto del serbatoio al loro posto. Ingegneria ambientale Mondo 2:27-31.

Balzer, K. 1994. Strategie per lo sviluppo di programmi di biosicurezza nelle strutture biotecnologiche. Presentato al 3° simposio nazionale sulla biosicurezza, 1 marzo, Atlanta, GA.

Barletta, T, R Bayle e K Kennelley. 1995. RUBINETTO fondo serbatoio: Dotato di attacco migliorato. Diario di petrolio e gas 93: 89-94.

Bartknecht, W. 1989. Esplosioni di polvere. New York: Springer Verlag.

Basta, N. 1994. La tecnologia solleva la nuvola di COV. Ingegneria Chimica 101:43-48.

Bennett, AM. 1990. Rischi per la salute nella biotecnologia. Salisbury, Wiltshire, Regno Unito: Division of Biologics, Public Health Laboratory Service, Centre for Applied Microbiology and Research.

Berufsgenossenschaftlices Institut für Arbeitssicherheit (BIA). 1997. Misurazione di sostanze pericolose: determinazione dell'esposizione ad agenti chimici e biologici. Cartella di lavoro BIA. Bielefeld: Erich Schmidt Verlag.

Bewanger, PC e RA Krecter. 1995. Rendere i dati sulla sicurezza "sicuri". Ingegneria Chimica 102:62-66.

Boicourt, GW. 1995. Progettazione del sistema di soccorso di emergenza (ERS): un approccio integrato che utilizza la metodologia DIERS. Process Safety Progress 14:93-106.

Carroll, LA e EN Ruddy. 1993. Selezionare la migliore strategia di controllo VOC. Progresso dell'ingegneria chimica 89: 28-35.

Centro per la sicurezza dei processi chimici (CCPS). 1988. Linee guida per lo stoccaggio e la manipolazione sicuri di materiali ad alto rischio tossico. New York: Istituto americano di ingegneri chimici.

—. 1993. Linee guida per la progettazione ingegneristica per la sicurezza dei processi. New York: Istituto americano di ingegneri chimici.
Cesana, C e R Siwek. 1995. Comportamento all'accensione delle polveri significato e interpretazione. Process Safety Progress 14:107-119.

Notizie di chimica e ingegneria. 1996. Fatti e cifre per l'industria chimica. C&EN (24 giugno):38-79.

Associazione dei produttori di prodotti chimici (CMA). 1985. Gestione della sicurezza dei processi (controllo dei rischi acuti). Washington, DC: CMA.

Comitato per le molecole di DNA ricombinante, Assemblea delle scienze della vita, Consiglio nazionale delle ricerche, Accademia nazionale delle scienze. 1974. Lettera all'editore. Scienza 185:303.

Consiglio delle Comunità europee. 1990a. Direttiva del Consiglio del 26 novembre 1990 sulla protezione dei lavoratori dai rischi derivanti dall'esposizione ad agenti biologici durante il lavoro. 90/679/CEE. Gazzetta ufficiale delle Comunità europee 50(374):1-12.

—. 1990b. Direttiva del Consiglio del 23 aprile 1990 sull'emissione deliberata nell'ambiente di organismi geneticamente modificati. 90/220/CEE. Gazzetta ufficiale delle Comunità europee 50(117): 15-27.

Azienda chimica Dow. 1994a. Dow's Fire & Explosion Index Hazard Classification Guide, 7a edizione. New York: Istituto americano di ingegneri chimici.

—. 1994 b. Guida all'indice di esposizione chimica di Dow. New York: Istituto americano di ingegneri chimici.

Ebadat, V. 1994. Test per valutare i rischi di incendio ed esplosione della polvere. Ingegneria delle polveri e della massa 14: 19-26.
Agenzia per la protezione dell'ambiente (EPA). 1996. Linee guida proposte per la valutazione del rischio ecologico. Registro federale 61.

Fone, CJ. 1995. L'applicazione dell'innovazione e della tecnologia al contenimento delle tenute meccaniche. Presentato alla prima conferenza europea sul controllo delle emissioni fuggitive da valvole, pompe e flange, 18-19 ottobre, Anversa.

Foudin, AS e C Gay. 1995. Introduzione di microrganismi geneticamente modificati nell'ambiente: revisione sotto USDA, autorità di regolamentazione APHIS. In Organismi ingegnerizzati in contesti ambientali: applicazioni biotecnologiche e agricole, a cura di MA Levin e E Israeli. Boca Raton, Florida: CRC Press.

Freifelder, D (a cura di). 1978. La polemica. Nel DNA ricombinante. San Francisco, California: WH Freeman.

Garzia, HW e JA Senecal. 1996. Protezione contro le esplosioni di sistemi di tubazioni che trasportano polveri combustibili o gas infiammabili. Presentato al 30° simposio sulla prevenzione delle perdite, 27 febbraio, New Orleans, LA.

Green, DW, JO Maloney e RH Perry (a cura di). 1984. Manuale dell'ingegnere chimico di Perry, 6a edizione. New York: McGraw Hill.

Hagen, T e R Rial. 1994. Il metodo di rilevamento delle perdite garantisce l'integrità dei serbatoi di stoccaggio a doppio fondo. Oil & Gas Journal (14 novembre).

Ciao, MW. 1996. Le attuali tecnologie transgeniche sono sicure? Presentato al workshop sullo sviluppo delle capacità nella biosicurezza per i paesi in via di sviluppo, 22-23 maggio, Stoccolma.

Associazione per le biotecnologie industriali. 1990. Biotecnologia in prospettiva. Cambridge, Regno Unito: Hobsons Publishing plc.

Assicuratori Rischi Industriali (IRI). 1991. Layout e spaziatura degli impianti per impianti petroliferi e chimici. Manuale Informativo IRI 2.5.2. Hartford, CT: IRI.

Commissione internazionale per la protezione dalle radiazioni non ionizzanti (ICNIRP). In stampa. Guida pratica per la sicurezza nell'uso di riscaldatori e sigillanti dielettrici RF. Ginevra: OIL.

Lee, SB e LP Ryan. 1996. Salute e sicurezza sul lavoro nel settore delle biotecnologie: un'indagine sui professionisti che praticano. Am Ind Hyg Assoc J 57:381-386.

Legaspi, JA e C Zenz. 1994. Aspetti di salute sul lavoro dei pesticidi: principi clinici e igienici. In Occupational Medicine, 3a edizione, a cura di C Zenz, OB Dickerson e EP Horvath. St. Louis: Mosby-Year Book, Inc.

Lipton, S e JR Lynch. 1994. Manuale sul controllo dei rischi per la salute nell'industria dei processi chimici. New York: John Wiley & Figli.

Liberman, DF, AM Ducatman e R Fink. 1990. Biotecnologie: c'è un ruolo per la sorveglianza medica? In Bioprocessing Safety: Worker and Community Safety and Health Considerations. Filadelfia, PA: Società americana per i test e i materiali.

Liberman, DF, L Wolfe, R Fink e E Gilman. 1996. Considerazioni sulla sicurezza biologica per il rilascio ambientale di organismi e piante transgenici. In Organismi ingegnerizzati in contesti ambientali: applicazioni biotecnologiche e agricole, a cura di MA Levin e E Israeli. Boca Raton, Florida: CRC Press.

Lichtenstein, N e K Quellmalz. 1984. Flüchtige Zersetzungsprodukte von Kunststoffen I: ABS-Polymere. Staub-Reinhalt 44(1):472-474.

—. 1986a. Flüchtige Zersetzungsprodukte von Kunststoffen II: polietilene. Staub-Reinhalt 46(1):11-13.

—. 1986b. Flüchtige Zersetzungsprodukte von Kunststoffen III: Poliammide. Staub-Reinhalt 46(1):197-198.

—. 1986 c. Flüchtige Zersetzungsprodukte von Kunststoffen IV: Policarbonato. Staub-Reinhalt 46(7/8):348-350.

Comitato per le relazioni con la comunità del Massachusetts Biotechnology Council. 1993. Statistiche non pubblicate.

Meclemburgo, JC. 1985. Layout dell'impianto di processo. New York: John Wiley & Figli.

Miller, H. 1983. Rapporto sul gruppo di lavoro dell'Organizzazione mondiale della sanità sulle implicazioni sanitarie della biotecnologia. Bollettino tecnico del DNA ricombinante 6:65-66.

Miller, HI, MA Crostata e TS Bozzo. 1994. Produzione di nuovi prodotti biotecnologici: guadagni e dolori della crescita. J Chem Technol Biotechnol 59:3-7.

Moretti, EC e N Mukhopadhyay. 1993. Controllo VOC: pratiche attuali e tendenze future. Progresso dell'ingegneria chimica 89: 20-26.

Mower, DS. 1995. Utilizzare l'analisi quantitativa per gestire il rischio di incendio. Elaborazione di idrocarburi 74:52-56.

Murphy, il sig. 1994. Prepararsi per la regola del programma di gestione del rischio dell'EPA. Progresso dell'ingegneria chimica 90: 77-82.

Associazione nazionale per la protezione antincendio (NFPA). 1990. Liquido infiammabile e combustibile. NFPA 30. Quincy, Massachusetts: NFPA.

Istituto nazionale per la sicurezza e la salute sul lavoro (NIOSH). 1984. Raccomandazioni per il controllo dei rischi per la sicurezza e la salute sul lavoro. Fabbricazione di vernici e prodotti di rivestimento affini. DHSS (NIOSH) Pubblicazione n. 84-115. Cincinnati, Ohio: NIOSH.

Istituto Nazionale della Sanità (Giappone). 1996. Comunicazione personale.

Istituti Nazionali della Salute (NIH). 1976. Ricerca sul DNA ricombinante. Registro federale 41:27902-27905.

—. 1991. Azioni di ricerca sul DNA ricombinante secondo le linee guida. Registro federale 56:138.

—. 1996. Linee guida per la ricerca che coinvolgono molecole di DNA ricombinante. Registro federale 61:10004.

Netzel, JP. 1996. Tecnologia di tenuta: un controllo per l'inquinamento industriale. Presentato al 45° meeting annuale della Society of Tribologists and Lubrication Engineers. 7-10 maggio, Denver.

Nordlee, JA, SL Taylor, JA Townsend, LA Thomas e RK Bush. 1996. Identificazione di un allergene della noce brasiliana nella soia transgenica. New Engl J Med 334 (11):688-692.

Amministrazione per la sicurezza e la salute sul lavoro (OSHA). 1984. 50 FR 14468. Washington, DC: OSHA.

—. 1994. CFR 1910.06. Washington, DC: OSHA.

Ufficio per la politica della scienza e della tecnologia (OSTP). 1986. Quadro coordinato per la regolamentazione delle biotecnologie. FR 23303. Washington, DC: OSTP.

Openshaw, PJ, WH Alwan, AH Cherrie e FM Record. 1991. Infezione accidentale di lavoratore di laboratorio con virus vaccinico ricombinante. Lancetta 338.(8764):459.

Parlamento delle Comunità europee. 1987. Trattato che istituisce un Consiglio unico e una Commissione unica delle Comunità europee. Gazzetta ufficiale delle Comunità europee 50(152):2.

Pennington, RL. 1996. Operazioni di controllo VOC e HAP. Separazioni e sistemi di filtrazione Magazine 2: 18-24.

Pratt, D e J maggio. 1994. Medicina del lavoro agraria. In Occupational Medicine, 3a edizione, a cura di C Zenz, OB Dickerson e EP Horvath. St. Louis: Mosby-Year Book, Inc.

Reutsch, CJ e TR Broderick. 1996. Nuova legislazione sulle biotecnologie nella Comunità Europea e nella Repubblica Federale Tedesca. Biotecnologia.

Sattelle, D. 1991. Biotecnologie in prospettiva. Lancetta 338:9,28.

Scheff, PA e RA Wadden. 1987. Progettazione ingegneristica per il controllo dei rischi sul posto di lavoro. New York: McGraw Hill.

Siegell, JH. 1996. Esplorando le opzioni di controllo VOC. Ingegneria Chimica 103:92-96.

Società dei tribologi e degli ingegneri della lubrificazione (STLE). 1994. Linee guida per il rispetto delle normative sulle emissioni per macchine rotanti con tenute meccaniche. Pubblicazione speciale STLE SP-30. Park Ridge, IL: STLE.

Sutton, IS. 1995. Sistemi di gestione integrati migliorano l'affidabilità degli impianti. Elaborazione di idrocarburi 74:63-66.

Comitato interdisciplinare svizzero per la biosicurezza nella ricerca e nella tecnologia (SCBS). 1995. Linee guida per il lavoro con organismi geneticamente modificati. Zurigo: SCBS.

Thomas, JA e LA Myers (a cura di). 1993. Biotecnologia e valutazione della sicurezza. New York: Corvo Press.

Van Houten, J e DO Flemming. 1993. Analisi comparativa delle attuali normative sulla biosicurezza degli Stati Uniti e della CE e il loro impatto sull'industria. Giornale di microbiologia industriale 11: 209-215.

Watrud, LS, SG Metz e DA Fishoff. 1996. Impianti ingegnerizzati nell'ambiente. In Organismi ingegnerizzati in contesti ambientali: applicazioni biotecnologiche e agricole, a cura di M Levin e E Israeli. Boca Raton, Florida: CRC Press.

Boschi, DR. 1995. Progettazione di processo e pratica ingegneristica. Englewood Cliffs, New Jersey: Prentice Hall.