木曜日、17月2011 16:43

呼吸保護

このアイテムを評価
(3票)

一部の産業では、潜在的に有害な粉塵、煙、ミスト、蒸気、またはガスで汚染された空気が労働者に害を及ぼす可能性があります。 これらの物質への暴露を制御することは、汚染された空気を吸い込むことによって引き起こされる職業病のリスクを減らすために重要です。 曝露を制御する最善の方法は、職場の汚染を最小限に抑えることです。 これは、工学的管理手段を使用することによって達成できます(例えば、操作の囲いまたは閉じ込め、全体的および局所的な換気、および毒性の低い材料の代替による)。 効果的な工学的管理が実行できない場合、またはそれらが実施または評価されている間は、人工呼吸器を使用して労働者の健康を守ることができます。 人工呼吸器が期待どおりに機能するには、適切でよく計画された人工呼吸器プログラムが必要です。

呼吸器への危険

呼吸器系への危険は、空気汚染物質の形で、または十分な酸素の不足が原因である可能性があります。 大気汚染物質を構成する微粒子、ガス、または蒸気は、さまざまな活動に関連している可能性があります (表 1 を参照)。

表 1. 特定の活動に関連する重大な危険

ハザードの種類

典型的な情報源または活動

ダスト

縫製、研磨、サンディング、チッピング、サンドブラスト

木粉、石炭、シリカ粉

溶接、ろう付け、製錬

鉛、亜鉛、酸化鉄の煙

ミスト

スプレー塗装、メッキ、機械加工

塗料ミスト、オイルミスト

繊維

絶縁、摩擦製品

アスベスト、ガラス繊維

ガス

溶接、燃焼機関、水処理

オゾン、二酸化炭素、一酸化炭素、塩素

蒸気

脱脂・塗装・洗浄剤

塩化メチレン、トルエン、ミネラルスピリット

 

酸素は、生命を維持するために必要な環境の正常な構成要素です。 生理学的に言えば、酸素欠乏症は体の組織への酸素の利用可能性の減少です。 空気中の酸素の割合の減少または酸素分圧の減少が原因である可能性があります。 (ガスの分圧は、問題のガスの分画濃度に全大気圧を掛けたものに等しい。)作業環境における酸素欠乏症の最も一般的な形態は、酸素が環境内の別のガスに置換されて酸素の割合が減少した場合に発生する。限られたスペース。

マスクの種類

レスピレーターは、呼吸器系に提供されるカバー (吸気口カバー) のタイプと、汚染物質または酸素欠乏から着用者を保護するために使用されるメカニズムによって分類されます。 メカニズムは、空気浄化または供給空気のいずれかです。

入口カバー

呼吸器系への「入口」は鼻と口です。 人工呼吸器が機能するためには、十分な酸素の摂取を可能にすると同時に、呼吸可能な環境の危険から人の呼吸器系を何らかの方法で隔離するカバーで密閉する必要があります。 使用されるカバーのタイプは、きつい場合と緩い場合があります。

ぴったりとフィットするカバーは、クォーターマスク、ハーフマスク、フルフェイスピース、またはマウスビットの形をとることがあります. クォーターマスクは、鼻と口の両方をカバーします。 シール面は、鼻梁から唇の下 (顔の XNUMX 分の XNUMX) まで伸びています。 ハーフ フェースピースは、鼻梁からあごの下 (顔の半分) までのシールを形成します。 フルフェイスピースのシールは、目の上 (髪の生え際の下) からあごの下 (顔全体を覆う) まで伸びています。

マウスビットを採用した人工呼吸器では、呼吸器系の入口を覆うメカニズムがわずかに異なります。 人工呼吸器に取り付けられたゴム製のビットをかみ、ノーズ クリップを使用して鼻を塞ぎます。 したがって、両方の呼吸器系の入口が密閉されます。 マウスビット式マスクは、危険な雰囲気からの脱出が必要な状況でのみ使用される特殊なタイプです。 それらの使用法は非常に特殊であるため、この章ではこれ以上説明しません。

クォーター、ハーフ、またはフルフェイスタイプのカバーリングは、空気清浄タイプまたは給気タイプのレスピレーターで使用できます。 マウスビットタイプは空気清浄タイプのみ。

ルーズフィットの入口カバーは、その名前が示すように、密閉面に依存せずに作業者の呼吸器系を保護します。 むしろ、顔、頭、または頭と肩を覆い、安全な環境を提供します。 このグループには、全身を覆うスーツも含まれます。 (スーツには、スプラッシュ スーツなど、皮膚を保護するためだけに着用される衣類は含まれません。) 顔に密着しないため、ルーズ フィットの吸気口カバーは、空気の流れを提供するシステムでのみ機能します。 空気の流れは、マスクの外側の汚染物質が内側に漏れるのを防ぐために、呼吸に必要な空気よりも多くなければなりません。

空気清浄マスク

空気清浄マスクは、汚染物質を除去する空気清浄要素に周囲の空気を通過させます。 空気は、呼吸作用 (陰圧レスピレーター) または送風機 (動力付き空気浄化レスピレーター、PAPR) によって空気浄化要素を通過します。

空気清浄エレメントの種類によって、除去される汚染物質が決まります。 エアロゾルを除去するために、さまざまな効率のフィルターが使用されます。 フィルターの選択は、エアロゾルの特性によって異なります。 通常、粒子サイズが最も重要な特性です。 薬品カートリッジには、蒸気またはガス状汚染物質を吸収または反応するように特別に選択された材料が充填されています。

人工呼吸器

大気供給レスピレーターは、職場の大気とは無関係に呼吸に適した大気を供給するレスピレーターのクラスです。 XNUMX つのタイプは一般に エアラインレスピレーター デマンド、連続フロー、または圧力デマンドの XNUMX つのモードのいずれかで動作します。 デマンド モードおよび圧力デマンド モードで動作するマスクには、ハーフフェイスまたはフル フェイスピースのインレット カバーを装備できます。 連続流タイプには、ヘルメット/フードまたはルーズフィットのフェイスピースも装備できます。

と呼ばれる XNUMX 番目のタイプの空気供給呼吸器 自己完結型の呼吸装置 (SCBA) には、自己完結型の空気供給が装備されています。 避難のみ、または危険な雰囲気への出入りに使用できます。 空気は、圧縮空気シリンダーまたは化学反応によって供給されます。

一部の給気レスピレーターには、小さな補助空気ボトルが装備されています。 空気ボトルは、主要な空気供給に障害が発生した場合にレスピレーターを使用している人に逃げる能力を提供します。

コンビネーションユニット

一部の特殊な人工呼吸器は、空気供給モードと空気浄化モードの両方で動作するように作られている場合があります。 という コンビネーションユニット.

呼吸保護プログラム

人工呼吸器が意図したとおりに機能するには、最小限の人工呼吸器プログラムを開発する必要があります。 使用する人工呼吸器の種類、関与する人数、および人工呼吸器の使用の複雑さに関係なく、すべてのプログラムに含める必要がある基本的な考慮事項があります。 単純なプログラムの場合、適切な要件は最小限で済みます。 大規模なプログラムでは、複雑な事業の準備が必要になる場合があります。

例として、機器の適合テストの記録を保持する必要性を考えてみましょう。 XNUMX 人または XNUMX 人のプログラムの場合、最後のフィット テストの日付、レスピレーターのフィット テスト、および手順を単純なカードに保存できますが、数百人のユーザーが参加する大規模なプログラムの場合は、追跡するシステムを備えたコンピューター化されたデータベースを使用できます。フィットテストを受ける予定の人は、必要になる場合があります。

プログラムを成功させるための要件は、次の XNUMX つのセクションで説明されています。

1. プログラムの運営

人工呼吸器プログラムの責任は、 プログラム管理者. 管理者が責任者を明確に理解できるように、このタスクは XNUMX 人に割り当てられます。 同様に重要なことは、この人物には意思決定を行い、プログラムを実行するために必要な地位が与えられることです。

プログラム管理者は、人工呼吸器プログラムを安全かつ効果的な方法で監督するために、呼吸保護に関する十分な知識を持っている必要があります。 プログラム管理者の責任には、呼吸障害の監視、記録の維持、プログラム評価の実施が含まれます。

2. 操作手順書

各参加者が何をする必要があるか、誰が活動の責任者であり、どのように実施する必要があるかを理解できるように、文書化された手順を使用してプログラムを文書化します。 手順文書には、プログラムの目標に関する記述を含める必要があります。 この声明は、会社の経営陣が労働者の健康と人工呼吸器プログラムの実施に責任があることを明確にします。 人工呼吸器プログラムの基本的な手順を説明する文書は、次の機能をカバーする必要があります。

  • 人工呼吸器の選択
  • 保守、点検、修理
  • 従業員、監督者、および人工呼吸器を発行する人のトレーニング
  • フィットテスト
  • 購買、在庫管理、記録管理などの管理活動
  • 危険の監視
  • 人工呼吸器使用のモニタリング
  • 医学的評価
  • 緊急用呼吸器の提供
  • プログラム評価。

 

3。 トレーニング

トレーニングは人工呼吸器プログラムの重要な部分です。 人工呼吸器を使用する人々の監督者、使用者自身、および使用者に人工呼吸器を提供する人々はすべてトレーニングを受ける必要があります。 監督者は、使用されているレスピレーターと、それが使用されている理由について十分に理解している必要があります。これにより、適切な使用を監視できるようになります。正しい人工呼吸器が配られます。

人工呼吸器を使用する労働者は、訓練を受け、定期的に再訓練を受ける必要があります。 トレーニングには、以下の説明とディスカッションを含める必要があります。

  1. 呼吸器の危険の性質と、マスクが適切に使用されていない場合に起こりうる健康への影響
  2. 特定のタイプの人工呼吸器が選択された理由
  3. 人工呼吸器の仕組みとその限界
  4. レスピレーターの装着方法と、それが機能しており、適切に調整されていることを確認する方法
  5. レスピレーターの保守、点検、保管方法
  6. 陰圧レスピレーターのレスピレーターフィットテスト。

 

4.人工呼吸器のメンテナンス

レスピレーターのメンテナンスには、定期的なクリーニング、損傷の検査、摩耗した部品の交換が含まれます。 レスピレーターの製造元は、クリーニング、検査、修理、およびメンテナンスの実行方法に関する最良の情報源です。

人工呼吸器は、定期的に洗浄および消毒する必要があります。 人工呼吸器を複数の人が使用する場合は、他の人が着用する前に洗浄および消毒する必要があります。 緊急用のマスクは、使用するたびに洗浄および消毒する必要があります。 呼吸用保護具を適切に機能させ続けるために特別な必要がある場合があるため、この手順を無視してはなりません。 これには、デバイスのエラストマーへの損傷を防ぐための洗浄液の温度制御が含まれる場合があります。 さらに、一部の部品は、損傷を避けるために慎重に、または特別な方法で洗浄する必要がある場合があります。 人工呼吸器のメーカーが推奨手順を提供します。

洗浄と消毒の後、各レスピレーターを検査して、適切な動作状態にあるかどうか、部品の交換や修理が必要かどうか、または廃棄する必要があるかどうかを判断する必要があります。 使用者は、マスクが適切な動作状態にあることを確認するために、使用の直前にマスクを検査できるように、十分な訓練を受け、マスクに精通している必要があります。

緊急用に保管されている人工呼吸器は、定期的に検査する必要があります。 毎月 XNUMX 回の頻度が推奨されます。 緊急用マスクを使用したら、再使用または保管する前に洗浄および検査する必要があります。

一般に、検査には接続の気密性のチェックが含まれます。 呼吸入口カバー、ヘッド ハーネス、バルブ、コネクティング チューブ、ハーネス アセンブリ、ホース、フィルター、カートリッジ、キャニスター、耐用年数インジケーター、電気部品および有効期限の終了の状態。 また、レギュレーター、アラーム、その他の警告システムが適切に機能するようにします。

この機器によく見られるエラストマーやプラスチック部品の検査には、特に注意が必要です。 ゴムまたはその他のエラストマー部品は、材料を伸ばしたり曲げたりして、ひび割れや摩耗の兆候を探すことにより、柔軟性と劣化の兆候を検査できます。 吸気弁と呼気弁は一般的に薄く、簡単に損傷します。 また、バルブ シートのシール面に石鹸やその他の洗浄剤が蓄積していないか確認する必要があります。 損傷や蓄積は、バルブから過度の漏れを引き起こす可能性があります。 プラスチック部品は、カートリッジのねじ山が剥がれたり壊れたりしているなどの損傷がないか検査する必要があります。

空気および酸素ボンベは、製造元の指示に従って完全に充電されていることを確認するために検査する必要があります。 一部のシリンダーは、金属自体に損傷や錆がないことを確認するために定期的な検査が必要です。 これには、シリンダーの完全性の定期的な静水圧試験が含まれる場合があります。

欠陥があると判明した部品は、メーカー自身が供給した在庫と交換する必要があります。 一部の部品は他のメーカーのものと非常によく似ている場合がありますが、レスピレーター自体の性能が異なる場合があります。 修理を行う人は、マスクの適切なメンテナンスと組み立てについてトレーニングを受ける必要があります。

給気式および自己完結型の機器については、より高いレベルのトレーニングが必要です。 減圧弁または流入弁、レギュレーター、およびアラームは、レスピレーターの製造元または製造元によって訓練された技術者のみが調整または修理する必要があります。

該当する検査基準を満たさないマスクは、直ちに使用を中止し、修理または交換する必要があります。

人工呼吸器は適切に保管する必要があります。 振動、日光、熱、極端な寒さ、過度の湿気、有害な化学物質などの物理的および化学的要因から保護されていない場合、損傷が発生する可能性があります。 フェースピースに使用されているエラストマーは、保護されていないと簡単に損傷する可能性があります。 マスクは、汚染や損傷から保護されていない限り、ロッカーや工具箱などの場所に保管しないでください。

5. 医学的評価

人工呼吸器は、肺系へのストレスが増すため、機器を使用する人の健康に影響を与える可能性があります。 医師が各レスピレーターの使用者を評価して、レスピレーターを問題なく着用できるかどうかを判断することをお勧めします。 医学的評価を構成するものを決定するのは医師次第です。 医師は、健康評価の一環として健康診断を必要とする場合と必要としない場合があります。

この作業を実行するには、医師は、使用されているレスピレーターの種類と、レスピレーターを使用している間に労働者が行う作業の種類と長さに関する情報を提供されなければなりません。 ほとんどのレスピレーターの場合、特に軽量の空気清浄タイプの場合、通常の健康な人はレスピレーターを着用しても影響を受けません。

緊急時に SCBA を使用することが予想される人は、より慎重な評価が必要になります。 SCBA 自体の重量は、実行しなければならない作業量を大幅に増加させます。

6. 承認されたマスク

多くの政府は、管轄区域で使用するマスクの性能をテストして承認するシステムを持っています。 このような場合、承認されたマスクは、承認されたという事実が、そのマスクが性能の最低要件を満たしていることを示しているため、使用する必要があります。 政府による正式な承認が必要ない場合、有効に承認されたレスピレーターは、特別な承認試験をまったく受けていないレスピレーターと比較して、意図したとおりに機能するというより良い保証を提供する可能性があります。

人工呼吸器プログラムに影響する問題

人工呼吸器プログラムの管理が困難になる可能性のある人工呼吸器の使用分野がいくつかあります。 これらは、顔の毛の着用と、メガネやその他の保護具と着用しているマスクとの適合性です。

顔の毛

顔の毛は、人工呼吸器プログラムの管理に問題を引き起こす可能性があります。 一部の労働者は、美容上の理由からひげを生やすのが好きです。 他の人は、シェービング後に顔の毛がカールして皮膚に成長する病状に苦しんで、シェービングが困難になります. 人が吸入すると、マスクの内部に陰圧が蓄積され、顔へのシールがきつくないと、汚染物質が内部に漏れる可能性があります. これは、空気清浄マスクと給気マスクの両方に適用されます。 問題は、人々が顔の毛を身に着けることを許可する一方で、健康を保護するために、どのように公平にするかです.

ぴったりとフィットするレスピレーターのシール面にある顔の毛が過度の漏れにつながることを示すいくつかの調査研究があります。 調査によると、顔の毛に関連して漏れの量が非常に大きく異なるため、レスピレーターのフィット感を測定したとしても、労働者が適切な保護を受けられるかどうかをテストすることは不可能です。 これは、きついマスクを着用している顔の毛のある労働者は、十分に保護されていない可能性があることを意味します.

この問題を解決するための最初のステップは、ゆったりとしたマスクを使用できるかどうかを判断することです。 自給式呼吸器および脱出/エアライン併用式呼吸保護具を除く、ぴったりとフィットする呼吸用保護具のタイプごとに、同等の保護を提供する緩いフィットのデバイスが利用可能です。

もう XNUMX つの選択肢は、人工呼吸器の使用を必要としない労働者のための別の仕事を見つけることです。 実行できる最後のアクションは、労働者にひげをそることを要求することです。 髭剃りが困難なほとんどの人にとって、髭剃りと人工呼吸器の着用を可能にする医療上の解決策を見つけることができます。

眼鏡およびその他の保護具

一部の労働者は、適切に見るために眼鏡を着用する必要があり、一部の産業環境では、飛行物体から目を保護するために安全眼鏡またはゴーグルを着用する必要があります. ハーフマスク レスピレーターを使用すると、メガネやゴーグルが、レスピレーターが鼻梁に装着されている点でマスクのフィット感を妨げる可能性があります。 フルフェイスピースの場合、メガネのテンプルバーがレスピレーターのシール面に開口部を作り、漏れを引き起こします。

これらの問題に対する解決策は、次のように実行されます。 ハーフマスクマスクの場合、最初にフィットテストが実施されます。その間、作業者はマスク、ゴーグル、またはマスクの機能を妨げる可能性のあるその他の保護具を着用する必要があります。 フィットテストは、眼鏡やその他の器具がマスクの機能を妨げないことを実証するために使用されます。

フルフェイスピースのレスピレーターの場合、オプションは、コンタクトレンズまたはフェイスピースの内側に取​​り付ける特別な眼鏡を使用することです.ほとんどのメーカーは、この目的のために特別な眼鏡キットを提供しています. 時々、コンタクトレンズは人工呼吸器と一緒に使用すべきではないと考えられてきましたが、調査によると、労働者は人工呼吸器と一緒にコンタクトレンズを問題なく使用できることが示されています.

人工呼吸器選択の推奨手順

レスピレーターの選択には、レスピレーターがどのように使用されるかを分析し、それぞれの特定のタイプの制限を理解することが含まれます。 一般的な考慮事項には、図 1 に模式的に示すように、作業者が何をするか、人工呼吸器をどのように使用するか、作業場所、人工呼吸器が作業に及ぼす可能性のある制限が含まれます。

図 1. 人工呼吸器の選択ガイド

PPE080F3

適切なマスクを選択する際には、危険区域での作業員の活動と作業員の場所を考慮する必要があります (たとえば、作業シフト中に作業員が連続的または断続的に危険区域にいるのか、作業率が軽度、中度、重度のいずれであるか)。 継続的な使用と重労働には、軽量のマスクが好まれます。

レスピレーターの着用者に必要な環境条件と労力のレベルは、レスピレーターの寿命に影響を与える可能性があります。 たとえば、極度の身体活動により、使用者は SCBA 内の空気供給を枯渇させ、その耐用年数が半分またはそれ以上短くなる可能性があります。

呼吸用保護具を着用しなければならない期間は、呼吸用保護具を選択する際に考慮しなければならない重要な要素です。 レスピレーターが実行するよう求められる作業のタイプ (日常業務、非日常業務、緊急作業、または救助作業) を考慮する必要があります。

レスピレーターを選択する際には、呼吸に適した空気のある安全なエリアに対する危険エリアの位置を考慮する必要があります。 このような知識により、緊急事態が発生した場合の労働者の脱出、保守作業を行うための労働者の立ち入り、および救助活動の計画が可能になります。 呼吸可能な空気までの距離が長い場合、または作業員が障害物を回避したり、階段やはしごを登ったりする必要がある場合は、人工呼吸器は適切な選択ではありません。

酸素欠乏環境の可能性がある場合は、関連する作業スペースの酸素含有量を測定します。 使用できる人工呼吸器の種類は、空気清浄または供給空気で、酸素分圧によって異なります。 空気浄化マスクは空気を浄化するだけなので、そもそも生命を維持するために周囲の大気に十分な酸素が存在する必要があります。

人工呼吸器の選択には、どのような危険が存在する可能性があるかを確認し (ハザード判定)、適切な保護を提供できる人工呼吸器のタイプまたはクラスを選択するために、各操作を確認することが含まれます。

ハザード判定ステップ

職場に存在する可能性のある汚染物質の特性を判断するには、この情報の主要な情報源、つまり材料の供給者に相談する必要があります。 多くのサプライヤーは、製品に含まれる材料の特定を報告し、暴露限界と毒性に関する情報も提供する製品安全データシート (MSDS) を顧客に提供しています。

閾値限界値 (TLV)、許容暴露限界 (PEL)、最大許容濃度 (MAK)、またはその他の利用可能な暴露限界や汚染物質の毒性の推定値など、公開されている暴露限界があるかどうかを判断する必要があります。 汚染物質の生命または健康に直ちに危険な (IDLH) 濃度の値が利用可能かどうかを確認する必要があります。 各マスクには、暴露レベルに基づいた使用制限があります。 人工呼吸器が十分な保護を提供するかどうかを判断するには、何らかの制限が必要です。

特定の汚染物質に対して法的に義務付けられた健康基準があるかどうかを確認するための手順を実行する必要があります (鉛やアスベストの場合と同様)。 その場合、選択プロセスを絞り込むのに役立つ特定の人工呼吸器が必要になる場合があります。

汚染物質の物理的状態は重要な特性です。 エアロゾルの場合、その粒子サイズを決定または推定する必要があります。 エアロゾルの蒸気圧は、作業環境の予想最高温度でも重要です。

存在する汚染物質が皮膚から吸収されるか、皮膚感作性を引き起こすか、目や皮膚に刺激性または腐食性があるかどうかを判断する必要があります。 既知の臭気、味、または刺激濃度が存在する場合は、ガス状または蒸気状の汚染物質についても検出する必要があります。

汚染物質の正体が判明したら、その濃度を決定する必要があります。 これは通常、サンプル媒体上の材料を収集し、続いて実験室で分析することによって行われます。 以下に説明するように、ばく露を推定することによって評価を行うことができる場合もあります。

ばく露の推定

ハザード判定では、サンプリングは必ずしも必要ではありません。 ばく露は、類似の作業に関するデータを調べるか、モデルによる計算によって推定できます。 モデルまたは判断を使用して、可能性のある最大暴露を推定することができ、この推定を使用してレスピレーターを選択できます。 (このような目的に適した最も基本的なモデルは蒸発モデルであり、特定の量の物質が空気空間に蒸発することを想定または許可し、その蒸気濃度を求め、暴露を推定します。希釈効果または換気。)

エクスポージャー情報の他のソースとして考えられるのは、さまざまな業界のエクスポージャー データを提示する雑誌や業界誌の記事です。 同様のプロセスの衛生プログラムで収集された業界団体およびデータも、この目的に役立ちます。

推定被ばくに基づいて防護措置を講じることには、被ばくの種類に対する経験に基づく判断が含まれます。 たとえば、配送ラインの突然の中断が最初に発生した場合、以前のタスクの空気監視データは役に立ちません。 このような偶発的な放出の可能性は、レスピレーターの必要性を決定する前に、まず最初に予測する必要があります。その後、汚染物質の推定濃度と性質に基づいて、特定のタイプのレスピレーターを選択することができます。 たとえば、室温でトルエンを含むプロセスの場合、トルエンの濃度が 2,000 ppm の IDLH レベルを超えるとは予想されないため、連続フローの空気ライン以上の保護を提供する安全装置を選択する必要はありません。 ただし、二酸化硫黄ラインが破損した場合は、より効果的な装置 (たとえば、逃避ボトル付きの空気供給呼吸器) が必要になります。 20 ppm の IDLH レベルを超える汚染物質。 次のセクションでは、人工呼吸器の選択についてさらに詳しく説明します。

特定の人工呼吸器の選択手順

潜在的に危険な汚染物質が存在する可能性があるかどうかを判断できない場合、その大気は生命または健康にとって直ちに危険であると見なされます。 その場合、エスケープ ボトルを備えた SCBA またはエア ラインが必要です。 同様に、暴露限界やガイドラインがなく、毒性の推定ができない場合、大気は IDLH と見なされ、SCBA が必要です。 (IDLH 大気に関する以下の説明を参照してください。)

一部の国では、特定の化学物質に対して特定の状況で使用できるマスクを管理する非常に具体的な基準があります。 汚染物質に関する特定の基準が存在する場合は、法的要件に従う必要があります。

酸素欠乏環境の場合、選択されるレスピレーターのタイプは、酸素の分圧と濃度、および存在する可能性のある他の汚染物質の濃度によって異なります。

ハザード比と割り当てられた保護係数

汚染物質の測定濃度または推定濃度を暴露限界またはガイドラインで除算して、ハザード比を求めます。 この汚染物質に関しては、ハザード比の値よりも大きな保護係数 (APF) が割り当てられているレスピレーターが選択されます (割り当てられた保護係数は、レスピレーターの推定性能レベルです)。 多くの国では、ハーフ マスクに XNUMX の APF が割り当てられています。 レスピレーター内の濃度は XNUMX 分の XNUMX、つまりレスピレーターの APF で減少すると想定されます。

割り当てられた保護係数は、レスピレーターの使用に関する既存の規制、または呼吸保護に関する米国規格 (ANSI Z88.2 1992) に記載されています。 ANSI APF を表 2 に示します。

 


表 2. ANSI Z88 2 (1992) から割り当てられた保護係数

 

人工呼吸器の種類

呼吸入口カバー

 

ハーフマスク1

フルフェイスピース

ヘルメット/フード

ルーズフィットフェイスピース

空気清浄

10

100

   

大気供給

SCBA(デマンド型)2

10

100

   

エアライン(デマンド型)

10

100

   

電動空気清浄機

50

10003

10003

25

大気供給エアライン式

圧送デマンド型

50

1000

-

-

連続流

50

1000

1000

25

自己完結型の呼吸装置

正圧(デマンド開閉回路)

-

4

-

-

1 XNUMX/XNUMX マスク、使い捨てハーフ マスク、エラストマー フェイスピース付きハーフ マスクが含まれます。
2 デマンド SCBA は、消火活動などの緊急事態には使用しないでください。
3 記載されている保護係数は、高効率フィルターと吸着剤 (カートリッジとキャニスター) のものです。 ダスト フィルターでは、フィルターの制限により、割り当てられた保護係数 100 を使用する必要があります。
4 陽圧マスクは現在、最高レベルの呼吸保護を提供すると見なされていますが、限られた数の最近のシミュレートされた職場研究では、すべてのユーザーが保護係数 10,000 を達成できない可能性があると結論付けられています。 この限られたデータに基づいて、陽圧 SCBA に割り当てられた決定的な保護係数をリストすることはできませんでした。 危険濃度を推定できる緊急時計画の目的では、10,000 を超えない割り当てられた保護係数を使用する必要があります。

注: 指定された保護係数は、避難用マスクには適用されません。 空気浄化フィルターを備えたエアラインレスピレーターなどの複合呼吸器の場合、使用中の動作モードによって、適用される割り当てられた保護係数が決まります。

出典: ANSI Z88.2 1992。


 

たとえば、作業現場でのすべての測定データが 50 ppm 未満のスチレン暴露 (暴露限界 150 ppm) の場合、ハザード比は 3 (つまり、150 ¸ 50 = 3) です。 保護係数 10 が割り当てられたハーフマスクのマスクを選択すると、ほとんどの未測定データが割り当てられた制限を十分に下回ることが保証されます。

「最悪の場合」のサンプリングが行われたり、少数のデータしか収集されなかったりする場合には、暴露レベルの許容可能な信頼できる評価に十分なデータが収集されたかどうかを判断するために使用する必要があります。 たとえば、そのタスクの「最悪のケース」を表す短期タスクで 2 つのサンプルが収集され、両方のサンプルが暴露限界の 10 倍未満 (ハザード比 1,000) であった場合、ハーフマスク呼吸器 ( XNUMX の APF を使用する) が適切な選択である可能性が高く、確実に連続フロー フルフェイスピース レスピレーター (APF XNUMX を使用) は十分に保護されます。 汚染物質の濃度は、カートリッジ/キャニスターの最大使用濃度よりも低くなければなりません。この後者の情報は、レスピレーターの製造元から入手できます。

エアロゾル、ガス、蒸気

汚染物質がエアロゾルの場合は、フィルターを使用する必要があります。 フィルターの選択は、粒子に対するフィルターの効率に依存します。 製造元から提供された文献には、使用する適切なフィルターに関するガイダンスが記載されています。 たとえば、汚染物質が塗料、ラッカー、またはエナメルである場合、塗料ミスト用に特別に設計されたフィルターを使用できます。 その他の特別なフィルターは、通常よりも大きな煙やほこりの粒子用に設計されています。

ガスと蒸気の場合、カートリッジの故障について適切な通知が必要です。 臭い、味、または刺激は、汚染物質がカートリッジを「突破」したことの指標として使用されます。 したがって、臭い、味、または刺激が認められる濃度は、暴露限界未満でなければなりません。 汚染物質がガスまたは蒸気であり、警告特性が不十分な場合は、通常、空気供給呼吸器の使用が推奨されます。

ただし、空気供給の不足や作業者の移動の必要性のために、空気供給呼吸器を使用できない場合があります。 この場合、空気清浄装置を使用することができますが、汚染物質が侵入する前にユーザーに適切な警告が与えられるように、装置の耐用年数の終わりを知らせるインジケーターを装備する必要があります。 もう XNUMX つの方法は、カートリッジ交換スケジュールを使用することです。 交換スケジュールは、カートリッジのサービス データ、予想濃度、使用パターン、曝露期間に基づいています。

緊急事態または IDLH 状態のための人工呼吸器の選択

前述のように、IDLH 状態は、汚染物質の濃度が不明な場合に存在すると推定されます。 さらに、酸素濃度が 20.9% 未満の密閉された空間は、生命や健康に対する差し迫った危険があると考えるのが賢明です。 密閉された空間は特有の危険をもたらします。 密閉された空間での酸素不足は、多数の死亡や重傷の原因となっています。 存在する酸素のパーセンテージの減少は、少なくとも、密閉された空間が十分に換気されていないことの証拠です.

通常の大気圧の IDLH 条件下で使用するレスピレーターには、陽圧 SCBA のみ、または供給空気レスピレーターとエスケープ ボトルの組み合わせのいずれかが含まれます。 IDLH 条件下で人工呼吸器を着用する場合、少なくとも XNUMX 人の待機者が安全な場所にいる必要があります。 待機者は、困難な場合にマスクの着用者を支援するために、適切な機器を利用できるようにする必要があります。 待機者と着用者の間で通信を維持する必要があります。 IDLH 雰囲気で作業している間、着用者は、必要に応じて安全な場所に移動できるように、安全ハーネスと安全ロープを装備する必要があります。

酸素欠乏大気

厳密に言えば、酸素欠乏は、特定の大気中の分圧のみの問題です。 酸素欠乏症は、大気中の酸素の割合の減少、減圧、または濃度と圧力の両方の低下によって引き起こされる可能性があります。 高地では、全気圧が低下すると、酸素圧が非常に低くなる可能性があります。

人間が生き残るためには、約 95 mm Hg (torr) の酸素分圧が必要です。 正確な圧力は、健康状態や低酸素圧への順化に応じて、人によって異なります。 この圧力 95 mm Hg は、海面で 12.5% の酸素、または高度 21 メートルで 4,270% の酸素に相当します。 このような雰囲気は、酸素レベルの低下に対する耐性が低下した人、または高度の精神的鋭敏さまたは重度のストレスを必要とする作業を行っている順化されていない人に悪影響を与える可能性があります。

悪影響を防ぐために、酸素分圧がより高い酸素分圧、例えば、海面で約 120 mmHg または 16% の酸素含有量で、人工呼吸器を提供する必要があります。 医師は、人々が低酸素環境で作業する必要があるすべての決定に関与する必要があります。 これらの広く一般的なガイドラインが示唆するものとは異なるレベルの酸素供給呼吸器を必要とする、法的に義務付けられたレベルの酸素パーセントまたは分圧が存在する場合があります。

フィットテストの推奨手順

ぴったりとフィットする陰圧マスクを割り当てられた各人は、定期的に適合テストを受ける必要があります。 それぞれの顔は異なり、特定の人工呼吸器が特定の人の顔に合わない場合があります。 フィット感が悪いと、汚染された空気がレスピレーターに漏れ、レスピレーターが提供する保護の量が低下します。 フィットテストは定期的に繰り返す必要があり、フェイスピースのシーリングを妨げる可能性のある状態、例えば、フェイスシールの領域の重大な傷跡、歯の変化、再建手術または美容整形手術などがある場合はいつでも実施する必要があります。 フィットテストは、眼鏡、ゴーグル、顔面シールド、作業活動中に着用される溶接用ヘルメットなどの保護具を被験者が着用している間に行う必要があり、レスピレーターのフィットを妨げる可能性があります。 レスピレーターは、使用されるように構成する必要があります。つまり、あごのキャニスターまたはカートリッジを使用します。

適合試験手順

特定のモデルとサイズのマスクが個人の顔にフィットするかどうかを判断するために、レスピレーター フィット テストが実施されます。 テストを実施する前に、マスクの適切な使用方法と装着方法について被験者に説明し、テストの目的と手順を説明する必要があります。 テストを受ける人は、最も快適なフィット感を提供するマスクを選択するように求められていることを理解する必要があります. 各レスピレーターは異なるサイズと形状を表し、適切にフィットして適切に使用されれば、適切な保護を提供します。

すべてのタイプの顔にフィットするマスクのサイズやモデルはありません。 さまざまなサイズとモデルが、より幅広い顔のタイプに対応します。 したがって、適切な数のサイズとモデルが利用可能であり、そこから満足のいくレスピレーターを選択できる必要があります。

検査を受ける人は、それぞれのフェイスピースを顔に近づけ、快適にフィットしないことが明らかなフェイスピースを取り除くように指示されるべきです。 通常、選択はハーフマスクから始まり、適切なフィットが見つからない場合は、フルフェイスピースマスクをテストする必要があります. (ごく一部のユーザーは、ハーフ マスクを着用できません。)

被験者は、テストを開始する前に、製造元の指示に従って負圧または正圧フィット チェックを実施する必要があります。 被験者は、以下にリストされている方法のいずれかによるフィットテストの準備が整いました. 器具を使用してレスピレーターへの漏れを測定する定量的フィット テスト方法など、他のフィット テスト方法も利用できます。 ここのボックスに概説されているフィット テスト方法は定性的なものであり、高価なテスト機器を必要としません。 これらは、(1) 酢酸イソアミル (IAA) プロトコルと (2) サッカリン溶液エアロゾル プロトコルです。

テスト演習. フィットテスト中、着用者は、レスピレーターが一連の基本的かつ必要な動作を実行できることを確認するために、多くのエクササイズを実行する必要があります. 次の 2 つのエクササイズをお勧めします: 静止する、普通に呼吸する、深呼吸する、頭を左右に動かす、頭を上下に動かす、話す。 (図 3 および図 XNUMX を参照)。

図 2. 酢酸イソアムリの定量適合試験法

PPE080F1

図 3. サカリン エアロゾルの定量的適合テスト法

PPE080F2

 

戻る

読む 9860 <font style="vertical-align: inherit;">回数</font> 最終更新日 13 年 2011 月 20 日木曜日 44:XNUMX
このカテゴリの詳細: « 防護服

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

個人保護に関する参考文献

アメリカ産業衛生協会 (AIHA)。 1991 年。呼吸保護: マニュアルおよびガイドライン。 バージニア州フェアファックス: AIHA.

米国規格協会 (ANSI)。 1974. 聴覚保護具のリアルイヤー保護とイヤーマフの物理的減衰の測定方法。 文書番号 S3.19-1974 (ASA Std 1-1975)。 ニューヨーク: ANSI.

—。 1984. 聴覚保護具の実耳減衰の測定方法。 文書番号 S12.6-1984 (ASA STD55-1984)。 ニューヨーク: ANSI.

—。 1989年。職業上および教育上の目と顔の保護のための実践。 文書番号 ANSI Z 87.1-1989。 ニューヨーク: ANSI.

—。 1992 年。呼吸保護のための米国国家規格。 文書番号 ANSI Z 88.2。 ニューヨーク: ANSI.

バーガー、ええ。 1988. 聴覚保護具 - 仕様、フィッティング、使用および性能。 DM Lipscomb が編集した、企業、学校、軍隊における聴覚保護。 ボストン:カレッジヒルプレス。

—。 1991. フラットレスポンス、適度な減衰、およびレベル依存の HPD: それらがどのように機能し、何ができるか。 スペクトル 8 補遺。 1:17。

バーガー、EH、JR フランクス、F リンドグレン。 1996. 聴覚保護具の減衰に関するフィールド研究の国際レビュー。 第 XNUMX 回国際シンポジウムの議事録: Axelsson、H Borchgrevink、L Hellstrom、RP Hamernik、D Henderson、および RJ Salvi によって編集された、聴覚に対するノイズの影響。 ニューヨーク:Thieme Medical。

バーガー、EH、JE ケリバン、F ミンツ。 1982. 聴覚保護具減衰の測定における研究所間のばらつき。 J Sound Vibrat 16(1):14-19.

英国規格協会 (BSI)。 1994. 聴覚保護具 - 選択、使用、ケア、およびメンテナンスに関する推奨事項 - ガイダンス文書。 文書番号 BSI EN 458:1994。 ロンドン: BSI.

労働統計局。 1980. Work Injury Report - 足の怪我を伴う事故に関する管理レポート。 ワシントン DC: 労働統計局、労働省。

欧州標準化委員会 (CEN)。 1993.産業用安全ヘルメット。 欧州規格 EN 397-1993。 ブリュッセル: CEN.

欧州経済共同体 (EEC)。 1989.個人用保護具に関する加盟国の法律の概算に関する指令 89/686/EEC。 ルクセンブルグ: EEC.

欧州規格 (EN)。 1995年。切り替え可能な視感透過率を備えた溶接フィルターと二重視感透過率を備えた溶接フィルターの仕様。 最終ドラフト参照。 番号。 pr EN 379: 1993E。

連邦登録簿。 1979. 聴覚保護具の騒音表示要件。 連邦政府登録します。 44 (190)、40 CFR、パート 211: 56130-56147。 ワシントン DC: GPO。

—。 1983. 職業騒音暴露: 聴覚保護修正: 最終規則。 連邦準備制度.. 48 (46): 9738-9785. ワシントン DC: GPO。

—。 1994年。呼吸保護。 連邦準備制度. タイトル 29、パート 1910、サブパート 134。ワシントン DC: GPO。

フランクス、JR. 1988 年。職業上の騒音にさらされた労働者の数。 Sem Hearing 9(4):287-298、W. Melnick 編。

フランクス、JR、CL シーマン、C シェリス。 1995. 聴覚保護装置の NIOSH 大要。 発行番号95-105。 オハイオ州シンシナティ: NIOSH.

国際標準化機構 (ISO)。 1977. 産業用安全ヘルメット。 ISO 3873。ジュネーブ: ISO。

—。 1979年。溶接および関連技術のための個人用アイプロテクター - フィルター - 利用および透過率の要件。 国際規格 ISO 4850。ジュネーブ: ISO。

—。 1981.個人用アイプロテクター - レーザー放射に対するフィルターとアイプロテクター。 ISO 6161-1981。 ジュネーブ: ISO。

—。 1990. 音響 - 聴覚保護具 - パート 1: 音響減衰の測定のための主観的方法。 ISO 4869-1:1990(E)。ジュネーブ: ISO。

—。 1994. 音響 - 聴覚保護具 - パート 2: 聴覚保護具を装着した場合の実効 A 特性音圧レベルの推定。 ISO 4869-2:1994(E)。 ジュネーブ: ISO。

Luz、J、S Melamed、T Najenson、N Bar、および MS Green。 1991 年。男性産業従業員の事故や病気休暇の予測因子としての構造化された人間工学的ストレス レベル (ESL) 指数。 L Fechterによって編集されたICCEF 90会議の議事録。 ボルチモア: ICCEF.

マーシュ、JL. 1984.人工呼吸器のサッカリン定性フィッティングテストの評価。 Am Ind Hyg Assoc J 45(6):371-376。

三浦徹. 1978. 靴と足の衛生. 東京:文化出版局。

—。 1983年。目と顔の保護。 労働安全衛生百科事典、第 3 版。 ジュネーブ: ILO.

国立労働安全衛生研究所 (NIOSH)。 1987. NIOSH レスピレーター決定ロジック。 オハイオ州シンシナティ: NIOSH、標準開発および技術移転部門。

国家安全評議会。 Nd Safety Hats、データ シート 1-561 Rev 87。シカゴ: National Safety Council。

ネルソン、TJ、OT Skredtvedt、JL Loschiavo、SW Dixon。 1984. 酢酸イソアミルを使用した改良された質的フィット テストの開発。 J Int Soc Respir Prot 2(2):225-248。

ニクソン、CW、EH バーガー。 1991年。聴覚保護装置。 音響測定と騒音制御のハンドブック、CM Harris 編。 ニューヨーク: マグロウヒル。

プリチャード、JA。 1976. 工業用呼吸器保護ガイド。 オハイオ州シンシナティ: NIOSH.

ローゼンストック、LR。 1995. 13 年 1995 月 XNUMX 日付、米国国立労働安全衛生研究所所長の L. Rosenstock から米国労働省鉱山安全衛生局委員長 James R. Petrie への書簡。

スカローン、AA、RD デビッドソン、DT ブラウン。 1977.足の保護のための試験方法と手順の開発。 オハイオ州シンシナティ: NIOSH.