月曜日、12月20 2010 19:25

毒性反応の遺伝的決定因子

このアイテムを評価
(2票)

環境化学物質に対する各人の反応が異なることは、長い間認識されてきました。 分子生物学と遺伝学における最近の爆発的な進歩により、そのような多様性の分子基盤についてより明確な理解がもたらされました。 化学物質に対する個人の反応の主な決定要因には、酵素の XNUMX 以上のスーパーファミリー間の重要な違いが含まれます。 生体異物- (体にとって異物)または 薬物代謝 酵素。 これらの酵素の役割は、古典的に解毒と見なされてきましたが、これらの同じ酵素は、多くの不活性化合物を毒性の高い中間体に変換します. 最近、これらの酵素をコードする遺伝子の多くの微妙な違いと全体的な違いが特定されており、酵素活性の顕著な変動をもたらすことが示されています。 各個人が生体異物代謝酵素活性の異なる補完物を持っていることは今や明らかです。 この多様性は、「代謝指紋」と考えることができます。 特定の個人における化学物質の運命と毒性の可能性だけでなく、曝露の評価も最終的に決定するのは、これらの多くの異なる酵素スーパーファミリーの複雑な相互作用です。 この記事では、シトクロム P450 酵素スーパーファミリーを使用して、化学物質に対する個人の反応を理解する上でなされた目覚ましい進歩を説明することにしました。 これらの酵素の特定の遺伝子変化を特定するように設計された比較的単純な DNA ベースのテストの開発により、化学物質への曝露に対する個人の反応をより正確に予測できるようになりました。 その結果が予防毒物学になることを願っています。 言い換えれば、各個人は、自分が特に敏感な化学物質について学ぶことができ、それによって、以前は予測できなかった毒性や癌を回避できる可能性があります。

一般的には認識されていませんが、人間は無数の多様な化学物質の集中砲火に毎日さらされています。 これらの化学物質の多くは非常に有毒であり、さまざまな環境および食事源に由来します。 このような暴露と人間の健康との関係は、世界中の生物医学研究努力の主要な焦点であり続けています。

この化学爆撃の例にはどのようなものがありますか? 赤ワインから 400 を超える化学物質が分離され、特徴付けられています。 火のついたたばこからは、少なくとも 1,000 種類の化学物質が生成されると推定されています。 化粧品や香料入り石鹸には無数の化学物質が含まれています。 化学物質への曝露のもう 75,000 つの主な原因は農業です。米国だけでも、農地は毎年 XNUMX を超える化学物質を殺虫剤、除草剤、肥料剤の形で受け取っています。 植物や放牧動物、近くの水路の魚に取り込まれた後、人間 (食物連鎖の終点) がこれらの化学物質を摂取します。 体内に取り込まれる高濃度の化学物質の他の XNUMX つの原因には、(a) 慢性的に摂取される薬物と、(b) 雇用期間にわたる職場での有害物質への曝露が含まれます。

化学物質への曝露が人間の健康の多くの側面に悪影響を及ぼし、慢性疾患や多くの癌の発症を引き起こす可能性があることは、現在十分に確立されています. 過去 XNUMX 年ほどの間に、これらの関係の多くの分子基盤が解明され始めました。 さらに、人間は化学物質への暴露の有害な影響に対する感受性が著しく異なるという認識が浮上しています。

化学物質への暴露に対する人間の反応を予測するための現在の取り組みは、1 つの基本的なアプローチを組み合わせたものです (図 XNUMX): 生物学的マーカー (バイオマーカー) による人間への暴露の程度を監視することと、特定のレベルの暴露に対する個人の反応を予測することです。 これらのアプローチはどちらも非常に重要ですが、両者は明確に異なることを強調しておく必要があります。 この記事では、 遺伝的要因 特定の化学物質への曝露に対する潜在的な個人の感受性。 この研究分野は広く 生態遺伝学または 薬理遺伝学 (Kalow 1962 および 1992 を参照)。 化学毒性に対する個々の感受性を決定する上での最近の進歩の多くは、人間や他の哺乳類が化学物質を解毒するプロセスと、関与する酵素システムの驚くべき複雑さをより深く理解することから発展しました。

図 1. 暴露評価、民族差、年齢、食事、栄養、および遺伝的感受性評価の間の相互関係 - これらはすべて、毒性とがんの個々のリスクに関与しています。TOX050F1

まず、ヒトにおける毒性反応の変動性について説明します。 次に、外来化学物質の代謝の違いによる、このような応答の変化の原因となる酵素のいくつかを紹介します. 次に、シトクロム P450 スーパーファミリーの歴史と命名法について詳しく説明します。 450 つのヒト P450 多型といくつかの非 PXNUMX 多型について簡単に説明します。 これらは、毒性反応における人間の違いの原因です。 次に、環境モニタリングによって決定されるように、個人の遺伝的差異が暴露評価に影響を与える可能性があるという点を強調するために、例を説明します。 最後に、重要な生命機能におけるこれらの生体異物代謝酵素の役割について説明します。

ヒト集団における毒性反応の変動

毒物学者と薬理学者は一般に、人口の 50% の平均致死量 (LD50)、人口の 50% の平均最大耐用量 (MTD50)、および人口の 50% に対する特定の薬物の平均有効用量 (ED50)。 しかし、これらの線量は私たち一人一人にどのような影響を与えるのでしょうか? 言い換えれば、非常に敏感な個人は、人口の中で最も抵抗力のある個人よりも 500 倍影響を受けるか、影響を受ける可能性が 500 倍高くなる可能性があります。 これらの人々のために、LD50 (および MTD50 ED50) 値にはほとんど意味がありません。 LD50、MTD50 ED50 値は、母集団全体を参照する場合にのみ関連します。

図2 任意の集団における個人による毒性反応の仮説的な用量反応関係を示しています。 この一般的な図は、喫煙したタバコの数に応じた気管支癌、職場のダイオキシン レベルの関数としての塩素座瘡、オゾンまたはアルデヒドの空気濃度の関数としての喘息、紫外線に応じた日焼け、凝固時間の減少を表しています。アスピリン摂取の関数、または数に応じた胃腸障害 ハラペニョ ピーマン消費。 一般に、これらの事例のそれぞれにおいて、暴露が大きければ大きいほど、毒性反応が大きくなります。 人口のほとんどは、用量の関数として毒性反応の平均と標準偏差を示します。 「耐性外れ値」(図 2 の右下) は、より高い用量または曝露で反応が少ない個人です。 「敏感な外れ値」(左上)は、比較的少量の線量または曝露に対して誇張された反応を示す個人です。 これらの外れ値は、集団内の大多数の個人と比較して反応が極端に異なるため、科学者が毒性反応の根底にある分子メカニズムを理解しようとするのに役立つ重要な遺伝的変異を表している可能性があります。 

図 2. 毒性反応と、環境、化学、または物理因子の投与量との一般的な関係

TOX050F2

家族研究でこれらの外れ値を使用して、多くの研究室の科学者は、特定の毒性反応に対するメンデル遺伝の重要性を認識し始めています. その後、分子生物学と遺伝子研究に目を向けて、遺伝子レベルで根底にあるメカニズムを特定することができます(遺伝子型) 環境に起因する病気の原因 (表現型).

生体異物または薬物代謝酵素

私たちがさらされている無数の外因性化学物質に、体はどのように反応するのでしょうか? 人間や他の哺乳類は、酵素の XNUMX 以上の異なるスーパーファミリーを含む非常に複雑な代謝酵素システムを進化させてきました。 人間がさらされるほぼすべての化学物質は、体内からの異物の除去を促進するために、これらの酵素によって変更されます。 まとめて、これらの酵素はしばしば次のように呼ばれます。 薬物代謝酵素 or 生体異物代謝酵素. 実際、どちらの用語も誤称です。 第一に、これらの酵素の多くは薬物を代謝するだけでなく、何十万もの環境および食事化学物質を代謝します. 第二に、これらの酵素はすべて、基質として正常な体内化合物も持っています。 これらの酵素はどれも、外来化学物質のみを代謝しません。

3 年以上にわたり、これらの酵素によって媒介される代謝プロセスは、通常、フェーズ I またはフェーズ II のいずれかに分類されてきました (図 XNUMX.). フェーズ I (「機能化」) 反応は、一般に、より水溶性の代謝産物を生成するために、酸化、還元、または加水分解による親化学物質の比較的小さな構造変更を含みます。 多くの場合、第 I 相反応は、後続の第 II 相反応による化合物のさらなる修飾の「ハンドル」を提供します。 第 I 相反応は主に、シトクロム P450 と総称される汎用性の高い酵素のスーパーファミリーによって媒介されますが、他の酵素スーパーファミリーも関与する可能性があります (図 4)。

図 3. 第 I 相および第 II 相生体異物または薬物代謝酵素の古典的な名称tox050f4

図4 薬物代謝酵素の例

TOX050T1

フェーズ II 反応は、排泄を促進するために、水溶性内因性分子を化学物質 (親化学物質またはフェーズ I 代謝産物) にカップリングすることを伴います。 フェーズ II 反応は、「結合」または「誘導体化」反応と呼ばれることがよくあります。 フェーズ II 反応を触媒する酵素スーパーファミリーは、一般に、関与する内因性結合部分に従って命名されます。たとえば、N-アセチルトランスフェラーゼによるアセチル化、スルホトランスフェラーゼによる硫酸化、グルタチオントランスフェラーゼによるグルタチオン結合、UDP グルクロノシルトランスフェラーゼによるグルクロン酸抱合などです (図 4)。 . 薬物代謝の主要な器官は肝臓ですが、いくつかの薬物代謝酵素のレベルは胃腸管、生殖腺、肺、脳、腎臓で非常に高く、そのような酵素は間違いなくすべての生きている細胞にある程度存在します.

生体異物代謝酵素は諸刃の剣 刀剣

人間の健康異常につながる生物学的および化学的プロセスについてさらに学ぶにつれて、薬物代謝酵素が相反する方法で機能することがますます明らかになりました (図 3)。 ほとんどの場合、脂溶性化学物質はより容易に排泄される水溶性代謝物に変換されます。 しかし、多くの場合、同じ酵素が他の不活性化学物質を反応性の高い分子に変換できることは明らかです。 これらの中間体は、タンパク質や DNA などの細胞高分子と相互作用することができます。 したがって、ヒトが曝露される各化学物質について、競合する経路の可能性が存在します。 代謝活性化 & 解毒.

遺伝学の簡単なレビュー

ヒトの遺伝学では、各遺伝子 () は、23 対の染色体の XNUMX つにあります。 二つ 対立遺伝子 (ペアの各染色体に XNUMX つずつ存在する) は同じ場合もあれば、互いに異なる場合もあります。 たとえば、 B & b 対立遺伝子 B (茶色の目)が優勢です b (青い目): 茶色の目の表現型の個人は、 BB or Bb 遺伝子型、一方、青い目の表現型の個人は、 bb 遺伝子型

A 多型 同じ遺伝子に由来する XNUMX つ以上の安定して継承された表現型 (形質) として定義されます。これらは集団内で維持されますが、その理由は必ずしも明らかではありません。 遺伝子が多型であるためには、遺伝子産物が発生、生殖力、またはその他の重要な生命過程に不可欠であってはなりません。 実際、ヘテロ接合体がいずれかのホモ接合体よりも明確な生存優位性を持っている「バランスのとれた多型」(例えば、マラリアへの抵抗性、および鎌状赤血球ヘモグロビン対立遺伝子) は、集団内の対立遺伝子を他の方法では説明できない高い状態に維持するための一般的な説明です。周波数 (参照 ゴンザレスとネバート 1990)。

生体異物代謝酵素のヒト多型

さまざまな薬物および環境化学物質の代謝における遺伝的差異は、1962 年以上前から知られていました (Kalow 1992 および XNUMX)。 これらの違いは、しばしば次のように呼ばれます。 薬理遺伝学 または、より広く、 生態遺伝的多型. これらの多型は、集団内で比較的高い頻度で発生するバリアント対立遺伝子を表し、一般に酵素の発現または機能の異常に関連しています。 歴史的に、多型は通常、治療薬に対する予想外の反応に続いて特定されました。 最近では、組換え DNA 技術により、科学者はこれらの多型の原因となる遺伝子の正確な変化を特定できるようになりました。 多型は現在、フェーズ I とフェーズ II の両方の酵素を含む、多くの薬物代謝酵素で特徴付けられています。 より多くの多型が特定されるにつれて、各個人が薬物代謝酵素の異なる補数を持っている可能性があることがますます明らかになりつつあります。 この多様性は「代謝フィンガープリント」と呼ばれるかもしれません。 特定の化学物質に対する特定の反応を最終的に決定するのは、個人内のさまざまな薬物代謝酵素スーパーファミリーの複雑な相互作用です (Kalow 1962 および 1992; Nebert 1988; Gonzalez および Nebert 1990; Nebert および Weber 1990)。

ヒト異物代謝酵素の細胞内発現 文化

化学物質に対するヒトの毒性反応のより良い予測因子を開発するにはどうすればよいでしょうか? 薬物代謝酵素の多様性を定義する進歩には、どの酵素が個々の化学物質の代謝運命を決定するかについての正確な知識が伴わなければなりません。 実験室のげっ歯類研究から集められたデータは、確かに有用な情報を提供しています。 ただし、生体異物代謝酵素の種間で大きな違いがあるため、データをヒト集団に外挿する際には注意が必要です。 この困難を克服するために、多くの研究所は、培養中のさまざまな細胞株を操作して、安定した高濃度の機能的なヒト酵素を生成できるシステムを開発しました (Gonzalez、Crespi、および Gelboin 1991)。 ヒト酵素の生産は、細菌、酵母、昆虫、哺乳類などのさまざまな細胞株で成功しています。

化学物質の代謝をより正確に定義するために、 複数の酵素 また、単一の細胞株で成功裏に生産されています (Gonzalez、Crespi、および Gelboin 1991)。 このような細胞株は、特定の化合物および有毒な代謝産物の代謝処理に関与する正確な酵素に関する貴重な洞察を提供します。 この情報をヒト組織内の酵素の存在とレベルに関する知識と組み合わせることができれば、これらのデータは応答の貴重な予測因子を提供するはずです。

チトクロムP450

歴史と命名法

チトクローム P450 スーパーファミリーは、最も研究されている薬物代謝酵素スーパーファミリーの 450 つであり、化学物質に反応する個人差が非常に大きい。 シトクロム PXNUMX は、無数の内因性および外因性基質の代謝において極めて重要な酵素の大きなスーパーファミリーを表すために使用される便利な総称です。 用語 シトクロムP450 1962年に未知のものを説明するために初めて造られました 顔料 還元されて一酸化炭素と結合すると、450 nmで特徴的な吸収ピークを生成する細胞で。 1980 年代初頭以来、cDNA クローニング技術は、シトクロム P450 酵素の多様性に驚くべき洞察をもたらしました。 現在までに、動物、植物、細菌、酵母で 400 を超える異なるシトクロム P450 遺伝子が同定されています。 ヒトなどの任意の哺乳類種は、60 個以上の異なる P450 遺伝子を持っている可能性があると推定されています (Nebert and Nelson 1991)。 P450 遺伝子の多様性は、標準化された命名体系の開発を必要とした (Nebert et al. 1987; Nelson et al. 1993)。 1987 年に最初に提案され、半年ごとに更新された命名法は、P450 タンパク質間のアミノ酸配列比較の分岐進化に基づいています。 P450 遺伝子はファミリーとサブファミリーに分けられます。ファミリー内の酵素は 40% を超えるアミノ酸類似性を示し、同じサブファミリー内の酵素は 55% の類似性を示します。 P450遺伝子はルート記号で命名されています CYP その後に、P450 ファミリーを示すアラビア数字、サブファミリーを示す文字、および個々の遺伝子を示すアラビア数字が続きます (Nelson et al. 1993; Nebert et al. 1991)。 したがって、 CYP1A1 は、ファミリー 450 およびサブファミリー A の P1 遺伝子 1 を表します。

1995 年 403 月現在、XNUMX 人 CYP データベース内の遺伝子は、59 のファミリーと 105 のサブファミリーで構成されています。 これらには、下等真核生物の 15 科、植物の 19 科、および細菌の 15 科が含まれます。 450 のヒト P26 遺伝子ファミリーは 22 のサブファミリーを含み、そのうち XNUMX はゲノムの大部分の染色体位置にマッピングされています。 一部のシーケンスは、多くの種にわたって明らかにオルソロガスです。たとえば、XNUMX つだけです。 CYP17 (ステロイド 17α-ヒドロキシラーゼ) 遺伝子は、これまでに調査されたすべての脊椎動物で発見されています。 サブファミリー内の他の配列は非常に重複しているため、オルソログペアの識別が不可能です (例: CYP2C 亜科)。 興味深いことに、ヒトと酵母はオーソロガス遺伝子を共有しています。 CYP51 家族。 P450 スーパーファミリーに関するさらなる情報を求める読者のために、多数の包括的なレビューが利用可能です (Nelson et al. 1993; Nebert et al. 1991; Nebert and McKinnon 1994; Guengerich 1993; Gonzalez 1992)。

P450 命名体系の成功により、UDP グルクロノシルトランスフェラーゼ (Burchell et al. 1991) およびフラビン含有モノオキシゲナーゼ (Lawton et al. 1994) に対して同様の用語体系が開発されました。 発散進化に基づく同様の命名法は、他のいくつかの薬物代謝酵素スーパーファミリー (例えば、スルホトランスフェラーゼ、エポキシド加水分解酵素、およびアルデヒド脱水素酵素) についても開発中です。

最近、哺乳類の P450 遺伝子スーパーファミリーを 1994 つのグループに分類しました (Nebert and McKinnon 450)。主に外来化学代謝に関与するグループ、さまざまなステロイド ホルモンの合成に関与するグループ、およびその他の重要な内因性機能に関与するグループです。 毒性の予測に最も重要であると想定されるのは、生体異物を代謝する PXNUMX 酵素です。

異物代謝P450酵素

外来化合物および薬物の代謝に関与する P450 酵素は、ほとんどの場合、家族内で発見されます。 CYP1、CYP2、CYP3 & CYP4. これらの P450 酵素は、さまざまな代謝反応を触媒し、450 つの P450 で多くの異なる化合物を代謝できることがよくあります。 さらに、複数の P450 酵素が単一の化合物を異なる部位で代謝する可能性があります。 また、化合物は、さまざまな速度ではあるが、複数の PXNUMX によって同じ単一部位で代謝される場合があります。

薬物代謝を行う P450 酵素の最も重要な特性は、これらの遺伝子の多くが、その基質として機能するまさにその物質によって誘導されることです。 一方、他の P450 遺伝子は非基質によって誘導されます。 この酵素誘導の現象は、治療上重要な多くの薬物間相互作用の根底にあります。

多くの組織に存在しますが、これらの特定の P450 酵素は、薬物代謝の主要部位である肝臓に比較的高いレベルで見られます。 生体異物を代謝する P450 酵素のいくつかは、特定の内因性基質 (アラキドン酸など) に対して活性を示します。 しかし、一般に、生体異物を代謝するこれらの P450 酵素のほとんどは重要な生理学的役割を果たしていないと考えられていますが、これはまだ実験的に確立されていません。 マウスにおける遺伝子ターゲティング方法論による個々の生体異物代謝 P450 遺伝子の選択的ホモ接合性破壊、または「ノックアウト」は、生体異物代謝 P450 の生理学的役割に関する明確な情報をすぐに提供する可能性があります。遺伝子ターゲティングについては、Capecchi 1994 を参照)。

主に生理学的プロセスに関与する酵素をコードする P450 ファミリーとは対照的に、生体異物代謝を行う P450 酵素をコードするファミリーは、顕著な種特異性を示し、サブファミリーごとに多くの活性遺伝子を含むことが多い (Nelson et al. 1993; Nebert et al. 1991)。 生理学的基質が明らかに欠如していることを考えると、ファミリー内の P450 酵素は CYP1、CYP2、CYP3 & CYP4 過去数億年に出現したこれらは、環境や食事で遭遇した外来化学物質を解毒する手段として進化しました。 明らかに、生体異物を代謝する P450 の進化は、現在人間がさらされているほとんどの合成化学物質の合成よりもはるかに前の期間にわたって発生したと考えられます。 これらの 1.2 つの遺伝子ファミリーの遺伝子は、過去 1990 億年の間に植物代謝物にさらされたため、動物で進化し、分岐した可能性があります。これは、記述的に「動植物戦争」と呼ばれるプロセスです (Gonzalez and Nebert 450)。 動植物戦争は、植物が動物による摂取を防ぐための防御メカニズムとして新しい化学物質 (フィトアレキシン) を開発した現象であり、動物は、多様化する基質に対応するために新しい P450 遺伝子を開発することで対応しました。 この提案にさらに弾みをつけているのは、有毒基質の P1994 解毒を含む最近報告された植物 - 昆虫および植物 - 菌類の化学戦争の例である (Nebert XNUMX)。

以下は、毒性応答の遺伝的決定因子が非常に重要であると考えられている、いくつかのヒト生体異物代謝 P450 酵素多型の簡単な紹介です。 最近まで、P450 多型は、投与された治療薬に対する患者の反応の予想外の差異によって一般的に示唆されていました。 実際、いくつかの P450 多型は、多型が最初に同定された薬剤に従って命名されています。 最近では、化学物質の代謝に関与する正確な P450 酵素の同定と、関与する P450 遺伝子の正確な特徴付けに研究努力が集中しています。 前述のように、モデル化学物質に対する P450 酵素の測定可能な活性を表現型と呼ぶことができます。 各個人の P450 遺伝子の対立遺伝子の違いは、P450 遺伝子型と呼ばれます。 P450 遺伝子の分析にますます精査が適用されるにつれて、以前に文書化された表現型の差異の正確な分子基盤がより明確になりつつあります。

CYP1A サブファミリー

  CYP1A サブファミリーは、ヒトおよび他のすべての哺乳類の 1 つの酵素で構成されています。これらは、標準的な P1 命名法で CYP1A2 および CYP450A1 と指定されています。 これらの酵素は、多くの発がん性物質の代謝活性化に関与しており、ダイオキシンを含む毒性学的に懸念されるいくつかの化合物によっても誘導されるため、非常に興味深いものです。 たとえば、CYP1A1 はタバコの煙に含まれる多くの化合物を代謝的に活性化します。 CYP2A1 は、化学染料業界で発見された、膀胱がんに関連する多くのアリールアミンを代謝的に活性化します。 CYP2A4 はまた、タバコ由来のニトロソアミンである 1-(メチルニトロソアミノ)-3-(1-ピリジル)-1-ブタノン (NNK) を代謝的に活性化します。 CYP1A1 と CYP2A1 は、煙に含まれる多環式炭化水素による誘導により、喫煙者の肺にも高レベルで見られます。 したがって、CYP1A1 および CYP2AXNUMX 活性のレベルは、多くの潜在的に有毒な化学物質に対する個々の反応の重要な決定要因であると考えられています。

への毒性学的関心 CYP1A サブファミリーは、タバコ喫煙者における CYP1973A1 誘導能のレベルと肺癌に対する個々の感受性とを関連付けた 1 年の報告によって大幅に強化されました (Kellermann、Shaw、および Luyten-Kellermann 1973)。 CYP1A1 および CYP1A2 誘導の分子基盤は、多くの研究室の主な焦点となっています。 誘導プロセスは、ダイオキシンおよび構造的に関連する化学物質が結合する Ah 受容体と呼ばれるタンパク質によって媒介されます。 名前 Ah から派生しています aリル h多くの CYP1A インデューサーのハイドロカーボンの性質。 興味深いことに、マウスの系統間で Ah 受容体をコードする遺伝子が異なると、化学反応と毒性が著しく異なります。 Ah 受容体遺伝子の多型は、ヒトでも発生するようです。人口の約 1 分の 1 が CYPXNUMXAXNUMX の高い誘導を示し、人口の他の XNUMX 分の XNUMX よりも、化学的に誘発された特定の癌を発症するリスクが高い可能性があります。 の酵素の制御における Ah 受容体の役割 CYP1A サブファミリー、および化学物質への曝露に対するヒトの反応の決定因子としてのその役割は、最近のいくつかのレビューの対象となっています (Nebert、Pega および Puga 1991; Nebert、Puga および Vasiliou 1993)。

細胞内の CYP1A タンパク質のレベルを制御する他の多型はありますか? のポリモーフィズム CYP1A1 遺伝子も同定されており、これは日本人の喫煙者の肺がんリスクに影響しているように見えるが、この同じ多型は他の民族グループのリスクには影響していないようである (Nebert and McKinnon 1994)。

CYP2C19

個人が抗けいれん薬 (S)-メフェニトインを代謝する速度の変動は、長年にわたって十分に文書化されてきました (Guengerich 1989)。 白人の 2% から 5%、アジア人の 25% はこの活動が不足しており、薬物による毒性のリスクが高い可能性があります。 この酵素欠損は、人間のメンバーに関与することが長い間知られていた CYP2C 亜科ですが、この欠乏の正確な分子基盤はかなりの論争の対象となっています。 この困難の主な理由は、ヒトの XNUMX つ以上の遺伝子でした。 CYP2C 亜科。 しかし、最近、一塩基変異が CYP2C19 遺伝子がこの欠乏の主な原因です (Goldstein and de Morais 1994)。 ポリメラーゼ連鎖反応 (PCR) に基づく簡単な DNA テストも開発されており、ヒト集団でこの変異を迅速に特定することができます (Goldstein and de Morais 1994)。

CYP2D6

おそらく、P450 遺伝子で最も広く特徴付けられている変異は、 CYP2D6 遺伝子。 この遺伝子に影響を与える突然変異、再編成、および欠失の例が 1994 以上報告されています (Meyer 20)。 この多型は、XNUMX 年前に、降圧剤デブリソキンに対する患者の反応の臨床的ばらつきによって最初に示唆されました。 の変更 CYP2D6 したがって、酵素活性の変化を引き起こす遺伝子は、総称して デブリソキン多型.

DNAベースの研究が出現する前は、尿サンプル中の代謝物濃度に基づいて、個人はデブリソキンの低代謝者または高代謝者(PM、EM)として分類されていました。 現在では、 CYP2D6 遺伝子は、デブリソキンの代謝が不十分または広範囲であるだけでなく、超急速な代謝を示す個体をもたらす可能性があります。 のほとんどの変更 CYP2D6 遺伝子は、酵素機能の部分的または完全な欠乏に関連しています。 ただし、最近、XNUMXつの家族の個人が複数の機能的なコピーを持っていることが報告されています CYP2D6 CYP2D6 基質の超急速な代謝を引き起こす (Meyer 1994)。 この注目に値する観察は、集団研究で以前に観察された CYP2D6 活動の広いスペクトルに新しい洞察を提供します。 CYP2D6 機能の変化は、この酵素によって代謝される 30 を超える一般的に処方される薬物を考えると、特に重要です。 したがって、個々の CYP2D6 機能は、投与された治療に対する治療反応と毒性反応の両方の主要な決定要因です。 実際、最近では、患者の CYP2D6 状態を考慮することが、精神科および循環器の両方の薬を安全に使用するために必要であると主張されています。

の役割 CYP2D6 肺癌やパーキンソン病などのヒト疾患に対する個人の感受性の決定因子としての多型も、熱心な研究の対象となっています (Nebert and McKinnon 1994; Meyer 1994)。 利用された研究プロトコルの多様な性質を考えると、結論を定義することは困難ですが、研究の大部分は、デブリソキン(EM表現型)の広範な代謝者と肺がんとの関連を示しているようです. このような関連付けの理由は現在不明です。 しかし、CYP2D6 酵素は、タバコ由来のニトロソアミンである NNK を代謝することが示されています。

DNA ベースのアッセイが改善され、CYP2D6 の状態をさらに正確に評価できるようになるにつれて、CYP2D6 と疾患リスクとの正確な関係が明らかになると予想されます。 高代謝者は肺がんへの感受性と関連している可能性がありますが、低代謝者 (PM 表現型) は原因不明のパーキンソン病と関連しているようです。 これらの研究を比較することも困難ですが、CYP2D6 基質 (例えば、デブリソキン) を代謝する能力が低下した PM 患者は、パーキンソン病を発症するリスクが 2 倍から 2.5 倍高いようです。

CYP2E1

  CYP2E1 遺伝子は、薬物や多くの低分子量発がん物質を含む多くの化学物質を代謝する酵素をコードしています。 この酵素は、アルコールによって高度に誘導され、クロロホルム、塩化ビニル、四塩化炭素などの化学物質によって誘発される肝障害に関与する可能性があるため、興味深いものです。 この酵素は主に肝臓に見られ、酵素のレベルは個人間で著しく異なります。 の綿密な精査 CYP2E1 遺伝子は、いくつかの多型の同定をもたらした (Nebert and McKinnon 1994)。 特定の構造的変異の存在との関係が報告されています。 CYP2E1 いくつかの研究では、遺伝子と明らかな肺がんリスクの低下。 ただし、この可能な関係の明確化を必要とする明確な民族間の違いがあります。

CYP3A サブファミリー

ヒトでは、XNUMX つの酵素がそのメンバーとして同定されています。 CYP3A アミノ酸配列が似ていることからサブファミリーに分類されます。 CYP3A 酵素は、エリスロマイシンやシクロスポリンなど、一般的に処方される多くの薬物を代謝します。 発がん性食品汚染物質アフラトキシン B1 CYP3A 基質でもあります。 人間の一員 CYP3A サブファミリー、指定 CYP3A4、人間の肝臓の主要な P450 であり、消化管にも存在します。 他の多くの P450 酵素と同様に、CYP3A4 のレベルは個人間で大きく異なります。 CYP3A5 と呼ばれる 25 つ目の酵素は、肝臓の約 3% にしか見られません。 この発見の遺伝的根拠は解明されていません。 毒性反応の遺伝的決定要因としての CYP4A3 または CYP5A1994 変動性の重要性は、まだ確立されていません (Nebert and McKinnon XNUMX)。

非 P450 多型

他の生体異物代謝酵素スーパーファミリー内にも多数の多型が存在します (例えば、グルタチオントランスフェラーゼ、UDP グルクロノシルトランスフェラーゼ、パラオキソナーゼ、デヒドロゲナーゼ、N-アセチルトランスフェラーゼ、およびフラビン含有モノオキシゲナーゼ)。 P450 によって生成された中間体の最終的な毒性は、後続の第 II 相解毒反応の効率に依存するため、複数の酵素多型の組み合わせた役割は、化学的に誘発された疾患に対する感受性を決定する上で重要です。 したがって、第 I 相反応と第 II 相反応の間の代謝バランス (図 3) は、化学的に誘発されるヒト疾患および毒性反応の遺伝的決定要因の主要な要因である可能性があります。

GSTM1遺伝子多型

フェーズ II 酵素のよく研究された多型の例は、GST mu または GSTM1 と呼ばれるグルタチオン S-トランスフェラーゼ酵素スーパーファミリーのメンバーを含むものです。 この特定の酵素は、CYP1A1 酵素によるたばこの煙中の化学物質から生成される有毒代謝物のその後の解毒に関与しているように見えるため、毒性学的に非常に興味深いものです。 このグルタチオントランスフェラーゼ遺伝子で同定された多型は、研究されたすべての白人の半数に機能酵素が完全に欠如していることに関係しています。 このフェーズ II 酵素の欠如は、肺がんに対する感受性の増加と関連しているようです。 両方のバリアントに基づいて個人をグループ化することにより CYP1A1 遺伝子および機能の欠失または存在 GSTM1 喫煙によって誘発される肺がんの発症リスクは大きく異なることが実証されている (Kawajiri, Watanabe and Hayashi 1994)。 特にレアなXNUMX体を見せる個体 CYP1A1 遺伝子の変化、の欠如と組み合わせて GSTM1 遺伝子は、比較的低レベルのタバコの煙にさらされると、肺がんを発症するリスクが高くなります (1962 倍も)。 興味深いことに、変異遺伝子の重要性には民族間の違いがあるようであり、疾患に対する感受性におけるそのような変化の正確な役割を解明するためにさらなる研究が必要である (Kalow 1994; Nebert and McKinnon 1994; Kawajiri, Watanabe and Hayashi XNUMX)。

毒性に対するXNUMXつ以上の多型の相乗効果 応答

環境病原体に対する毒性反応は、同じ個体における 2 つの薬理遺伝学的欠陥の組み合わせによって大幅に誇張される可能性があります。 .

アリールアミンへの職業暴露は、膀胱がんの重大なリスクを構成します。 1954 年の Cartwright の洗練された研究以来、N-アセチル化剤の状態がアゾ色素誘発性膀胱癌の決定因子であることが明らかになりました。 遅いアセチレーター表現型と膀胱癌の発生、および膀胱壁におけるこの癌の浸潤度との間には、非常に有意な相関関係があります。 それどころか、急速アセチレーター表現型と結腸直腸癌の発生率との間には有意な関連性があります。 N-アセチルトランスフェラーゼ (NAT1、NAT2)遺伝子はクローン化され、配列決定されており、DNAベースのアッセイは現在、遅いアセチレーター表現型の原因となるXNUMXを超える対立遺伝子変異体を検出することができます. の NAT2 遺伝子は多形性であり、環境化学物質に対する毒性反応の変動性のほとんどに関与しています (Weber 1987; Grant 1993)。

グルコース-6-リン酸デヒドロゲナーゼ (G6PD) は、NADPH の生成と維持に重要な酵素です。 赤血球中の還元型グルタチオン (GSH) の正常なレベルが存在しないため、G6PD 活性が低いか存在しないと、重度の薬物または異物誘発性溶血につながる可能性があります。 G6PD 欠乏症は、世界中で少なくとも 300 億人に影響を与えています。 アフリカ系アメリカ人の男性の 10% 以上は、それほど深刻ではない表現型を示しますが、特定のサルデーニャのコミュニティでは、XNUMX 人に XNUMX 人という高い頻度で、より深刻な「地中海型」を示します。 の G6PD 遺伝子はクローン化され、X 染色体に局在化されており、多数の多様な点突然変異が G6PD 欠損個体に見られる表現型の異質性の大きな原因となっています (Beutler 1992)。

アリールアミンサルファ剤であるチオザルスルフォンは、治療集団において二峰性の溶血性貧血の分布を引き起こすことがわかった。 特定の薬物で治療した場合、G6PD欠損症と遅アセチル化表現型の組み合わせを持つ人は、G6PD欠損症単独または遅アセチル化表現型単独の人よりも影響を受けます. G6PD欠損の遅いアセチレーターは、通常のG40PDの速いアセチレーターよりも少なくとも6倍、チオザルスルホン誘発性溶血に対して感受性が高い.

曝露評価における遺伝子多型の影響

暴露評価とバイオモニタリング (図 1) には、各個人の遺伝子構成に関する情報も必要です。 危険な化学物質に同じようにさらされた場合、ヘモグロビン付加体 (または他のバイオマーカー) のレベルは、各人の代謝指紋に応じて、個人間で XNUMX ~ XNUMX 桁異なる可能性があります。

同じ薬理遺伝学の組み合わせが、ドイツの化学工場労働者で研究されています (表 1)。 アニリンとアセトアニリドにさらされた労働者のヘモグロビン付加物は、G6PD 欠損の遅いアセチレーターで、他の可能性のある組み合わされた薬理遺伝学的表現型と比較して、はるかに高くなっています。 この研究は、暴露評価に重要な意味を持っています。 これらのデータは、職場で XNUMX 人の個人が同じ周囲レベルの危険な化学物質にさらされている可能性があるとしても、(ヘモグロビン付加体などのバイオマーカーによる) 曝露量は XNUMX 桁以上少ないと推定される可能性があることを示しています。個人の根底にある遺伝的素因に。 同様に、結果として生じる健康への悪影響のリスクは、XNUMX 桁以上異なる可能性があります。

表 1: アニリンおよびアセトアニリドに暴露された労働者のヘモグロビン付加物

アセチレーターの状態 G6PD欠損症
尊大 遅く いいえ 有り Hgb付加物
+   +   2
+     + 30
  + +   20
  +   + 100

出典: Lewalter と Korallus 1985 から編集。

結合および代謝における遺伝的差異

ここで代謝について行われたのと同じケースが、結合についても行うことができることを強調しておく必要があります。 環境因子の結合における遺伝的差異は、毒性反応に大きく影響します。 たとえば、マウスの違い CDM 遺伝子は、カドミウム誘発性精巣壊死に対する個人の感受性に大きな影響を与える可能性があります (Taylor、Heiniger、および Meier 1973)。 Ah 受容体の結合親和性の違いは、ダイオキシン誘発性の毒性と癌に影響を与える可能性が高い (Nebert, Petersen and Puga 1991; Nebert, Puga and Vasiliou 1993)。

図 5 は、毒性とがんにおける代謝と結合の役割をまとめたものです。 毒性物質は、環境中に存在するか、代謝または結合の後に存在するため、遺伝毒性経路 (DNA への損傷が発生する) または非遺伝毒性経路 (DNA 損傷および突然変異誘発が発生する必要がない) のいずれかによってその影響を引き出します。 興味深いことに、「古典的な」DNA 損傷剤は、還元型グルタチオン (GSH) 依存性の非遺伝毒性シグナル伝達経路を介して機能することが最近明らかになった。 (Devary et al. 1993)。 しかし、代謝と結合の遺伝的差異は、異なる個々の毒性反応を制御する上での主要な決定要因として残っています。

図 5. 毒性が発生する一般的な手段

TOX050F6

細胞機能における薬物代謝酵素の役割

薬物代謝酵素機能の遺伝的変異は、化学物質に対する個々の反応を決定する上で非常に重要です。 これらの酵素は、曝露後の外来化学物質の運命と時間経過を決定する上で極めて重要です。

図 5 に示すように、化学物質への曝露に対する個人の感受性における薬物代謝酵素の重要性は、生体異物代謝に関するこの単純な議論から明らかな問題よりも、実際にははるかに複雑な問題を提示している可能性があります。 言い換えれば、過去 XNUMX 年間、遺伝毒性メカニズム (DNA 付加体およびタンパク質付加体の測定) が非常に強調されてきました。 しかし、毒性反応を引き起こす上で、非遺伝毒性メカニズムが少なくとも遺伝毒性メカニズムと同じくらい重要であるとしたら?

前述のように、生体異物代謝に関与する多くの薬物代謝酵素の生理学的役割は正確に定義されていません。 Nebert (1994) は、この惑星上に 3.5 億年以上にわたって存在していたため、薬物代謝酵素はもともと (そして現在もなお主に) 転写活性化に重要な多くの非ペプチド リガンドの細胞レベルの調節に関与していたと提案しています。成長、分化、アポトーシス、ホメオスタシス、神経内分泌機能に影響を与える遺伝子の研究。 さらに、すべてではないにしてもほとんどの環境因子の毒性は、 アゴニスト or 拮抗薬 これらのシグナル伝達経路に対する作用 (Nebert 1994)。 この仮説に基づいて、薬物代謝酵素の遺伝的多様性は、細胞内の多くの重要な生化学的プロセスに非常に劇的な影響を与え、それによって毒性反応に重要な違いをもたらす可能性があります. そのようなシナリオは、一般的に処方された薬を使用している患者に見られる多くの特異な有害反応の根底にある可能性もあります.

結論

過去 2 年間で、薬物、食品、環境汚染物質中の化学物質に対する反応の違いの遺伝的基盤に関する理解が著しく進歩しました。 薬物代謝酵素は、人間が化学物質に反応する方法に大きな影響を与えます。 薬物代謝酵素の多様性に対する認識が進化し続けるにつれて、多くの薬物や環境化学物質の毒性リスクの評価を改善できるようになりました。 これはおそらく、CYP6D450 シトクロム PXNUMX 酵素の場合に最も明確に示されています。 比較的単純な DNA ベースのテストを使用して、主にこの酵素によって代謝される薬物の反応を予測することができます。 この予測により、価値がありながら潜在的に毒性のある医薬品の安全な使用が保証されます。

将来、薬物代謝酵素が関与するさらなる多型 (表現型) の同定が爆発的に増加することは間違いありません。 この情報には、人間集団の遺伝子型を特定するための改良された低侵襲の DNA ベースの検査が付随します。

このような研究は、現在原因不明の多くの環境病における化学物質の役割を評価する上で特に有益なはずです。 複数の薬物代謝酵素多型を組み合わせて検討することも (例えば、表 1)、特に肥沃な研究分野を表す可能性があります。 このような研究は、癌の原因における化学物質の役割を明らかにするでしょう。 まとめると、この情報は、個人が懸念する可能性が高い化学物質の回避に関する、ますます個別化されたアドバイスの作成を可能にするはずです。 これは予防毒性学の分野です。 そのようなアドバイスは、私たちがさらされている化学物質の負荷が増え続けることに対処する上で、すべての人にとって大きな助けとなることは間違いありません。

 

戻る

読む 12874 <font style="vertical-align: inherit;">回数</font> 15:先週の金曜日、11月2019 17 04で変更
このカテゴリの詳細: « 年齢、性別、その他の要因の影響

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

毒物学の参考文献

アンデルセン、KE および HI マイバッハ。 1985年。モルモットの接触アレルギー予測試験。 チャプ。 14インチ 皮膚科における現在の問題。 バーゼル: カーガー。

アシュビー、J、RW テナント。 1991. 米国 NTP によってテストされた 301 の化学物質の化学構造、発がん性、および変異原性の決定的な関係。 ムタット解像度 257:229-306。

バーロウ、S、F サリバン。 1982年。 工業用化学物質の生殖障害。 ロンドン:アカデミックプレス。

バレット、J.C. 1993a。 既知のヒト発がん物質の作用機序。 の リスク同定における発がんメカニズム、H Vainio、PN Magee、DB McGregor、および AJ McMichael によって編集されました。 リヨン: 国際がん研究機関 (IARC)。

—。 1993b. 多段階発がんのメカニズムと発がん物質リスク評価。 環境健康パース 100:9-20。

バーンスタイン、メイン州。 1984. 男性の生殖器系に影響を与える薬剤: 活動に対する構造の影響。 薬物代謝レブ 15:941-996。

Beutler, E. 1992. G6PD バリアントおよびその他の赤血球欠陥の分子生物学。 アンヌ・レブ・メッド 43:47-59。

ブルーム、AD。 1981年。 暴露されたヒト集団における生殖研究のガイドライン。 ニューヨーク州ホワイト プレーンズ: マーチ オブ ダイムズ財団。

Borghoff、S、B Short、J Swenberg。 1990. α-2-グロブリン腎症の生化学的メカニズムと病理生物学。 Annu Rev Pharmacolトキシコール 30:349。

Burchell、B、DW Nebert、DR Nelson、KW Bock、T Iyanagi、PLM Jansen、D Lancet、GJ Mulder、JR Chowdhury、G Siest、TR Tephly、PI Mackenzie。 1991. UPD-グルクロノシルトランスフェラーゼ遺伝子スーパーファミリー: 進化的分岐に基づく命名法の提案。 DNA細胞生物 10:487-494。

バーレソン、G、A マンソン、および J ディーン。 1995年。 免疫毒性学における最新の方法。 ニューヨーク:ワイリー。

Capecchi, M. 1994. 標的遺伝子置換。 サイアム 270:52-59。

カーニー、EW. 1994. エチレングリコールの発生毒性に関する総合的展望。 レップトキシコール 8:99-113。

Dean、JH、MI Luster、AE Munson、および I Kimber。 1994年。免疫毒性学および免疫薬理学。 ニューヨーク:レイヴンプレス。

Descotes、J. 1986。 薬物および化学物質の免疫毒性学。 アムステルダム:エルゼビア。

Devary、Y、C ロゼット、JA ディドナート、M カリン。 1993年。核シグナルに依存しない紫外線によるNFkB活性化。 科学 261:1442-1445。

ディクソン、RL。 1985年。 生殖毒性学。 ニューヨーク:レイヴンプレス。

ダフス、JH. 1993. 毒物学で使用される用語の化学者のための用語集。 ピュアアプリケーションケム 65:2003-2122。

Elsenhans、B、K Schuemann、および W Forth。 1991.有毒金属:必須金属との相互作用。 の 栄養、毒性、がん、IRローランドによって編集されました。 ボカラトン:CRCプレス。

環境保護庁 (EPA)。 1992. ばく露評価のガイドライン。 連邦政府 57:22888-22938。

—。 1993年。神経毒性リスク評価の原則。 連邦政府 58:41556-41598。

—。 1994年。 生殖毒性評価のガイドライン。 ワシントン DC: 米国 EPA: 研究開発局。

ファーガソン、JE。 1990年。ヘビーエレメンツ。 チャプ。 15インチ 化学、環境への影響、健康への影響。 オックスフォード:ペルガモン。

ゲーリング、PJ、PG ワタナベ、GE ブラウ。 1976. 化学物質の毒性学的および環境的危険性の評価における薬物動態研究。 新しい概念の安全な評価 1(第1部第8章):195-270.

Goldstein、JAおよびSMF de Morais。 1994. 人間の生化学と分子生物学 CYP2C 亜科。 薬理遺伝学 4:285-299。

ゴンザレス、FJ. 1992. ヒト シトクロム P450: 問題と展望。 Pharmacol Sciの動向 13:346-352。

ゴンザレス、FJ、CL クレスピ、HV ゲルボイン。 1991年。cDNA発現ヒトシトクロムP450:分子毒物学およびヒトリスク評価の新時代。 ムタット解像度 247:113-127。

ゴンザレス、FJ、DW ネバート。 1990. P450 遺伝子スーパーファミリーの進化: 動物と植物の「戦争」、分子ドライブ、および薬物酸化におけるヒトの遺伝的差異。 トレンド・ジュネ 6:182-186。

グラント、DM. 1993. N-アセチルトランスフェラーゼの分子遺伝学。 薬理遺伝学 3:45-50。

グレイ、LE、J オストビー、R シグモン、J フェレル、R リンダー、R クーパー、J ゴールドマン、J ラスキー。 1988. ラットにおける毒性物質の生殖への影響を評価するプロトコルの開発。 レップトキシコール 2:281-287。

ゲンゲリッチ、FP。 1989. ヒトにおけるシトクロム P450 の多型。 Pharmacol Sciの動向 10:107-109。

—。 1993. シトクロム P450 酵素。 アム・サイ 81:440-447。

Hansch、C、および A Leo。 1979年。 化学および生物学における相関分析のための置換定数。 ニューヨーク:ワイリー。

ハンシュ、C および L チャン。 1993. シトクロム P450 の定量的構造活性相関。 薬物代謝レブ 25:1-48。

ヘイズAW. 1988年。 毒物学の原理と方法. 第2版ニューヨーク:レイヴンプレス。

ハインデル、JJ、RE チャピン。 1993年。 毒物学の方法:男性および女性の生殖毒性学。 巻。 1 および 2. カリフォルニア州サンディエゴ: アカデミック プレス。

国際がん研究機関 (IARC)。 1992年。 太陽と紫外線。 リヨン: IARC.

—。 1993年。 美容師と理髪師の職業的暴露とヘアカラー剤の個人的使用: 一部の染毛剤、化粧品カラー剤、工業用染料、芳香族アミン。 リヨン: IARC.

—。 1994a。 前文。 リヨン: IARC.

—。 1994b. 一部の工業薬品。 リヨン: IARC.

国際放射線防護委員会 (ICRP)。 1965年。 放射性物質の取り扱いに関連する環境モニタリングの原則。 国際放射線防護委員会の委員会 IV の報告。 オックスフォード:ペルガモン。

化学物質安全性に関する国際プログラム (IPCS)。 1991年。 化学物質への暴露に関連する腎毒性の評価の原則と方法、EHC 119。 ジュネーブ:WHO。

—。 1996年。 評価の原則と方法 化学物質への曝露に関連する直接免疫毒性, EHC180. ジュネーブ: WHO.

Johanson、GおよびPH Naslund。 1988. スプレッドシート プログラミング - 溶媒トキシコキネティクスの生理学に基づくモデル化における新しいアプローチ。 有毒な手紙 41:115-127。

ジョンソン、BL. 1978年。 労働人口における神経毒性疾患の予防。 ニューヨーク:ワイリー。

Jones、JC、JM Ward、U Mohr、RD Hunt。 1990年。 造血系、ILSIモノグラフ、 ベルリン: スプリンガー出版社。

Kalow、W. 1962。 薬理遺伝学:遺伝と薬物への反応。 フィラデルフィア: WB サンダース。

—。 1992年。 薬物代謝の薬理遺伝学。 ニューヨーク:ペルガモン。

Kammüller、ME、N Bloksma、および W Seinen。 1989年。 自己免疫と毒物学。 薬物および化学物質によって誘発される免疫調節不全。 アムステルダム: エルゼビア サイエンシズ。

川尻、K、渡辺J、林SI。 1994. P450 とヒト癌の遺伝子多型。 の シトクロム P450: 生化学、生物物理学、分子生物学、MC Lechnerによって編集されました。 パリ: John Libbey Eurotext。

ケーラー、JP。 1993. 組織損傷および疾患のメディエーターとしてのフリーラジカル。 クリティカル・レブ・トキシック 23:21-48。

Kellerman、G、CR Shaw、M Luyten-Kellerman。 1973. アリール炭化水素ヒドロキシラーゼ誘導性と気管支原性癌腫。 ニューエンゲルメッド 289:934-937。

ケーラ、カンザス州。 1991.化学的に誘発された母体のホメオスタシスと受胎産物の組織学の変化:ラット胎児異常におけるそれらの病因的意義。 奇形学 44:259-297。

カリフォルニア州キンメル、GL キンメル、V フランコス。 1986. 生殖毒性リスク評価に関する省庁間規制連絡グループのワークショップ。 環境健康パース 66:193-221。

Klaassen, CD, MO Amdur and J Doull (eds.)。 1991年。 Casarett と Doull の毒物学. ニューヨーク:ペルガモンプレス。

Kramer、HJ、EJHM Jansen、MJ Zeilmaker、HJ van Kranen、ED Kroese。 1995. ヒト用量反応評価のための毒物学における定量的方法。 RIVM-レポート番号。 659101004.

Kress、S、C Sutter、PT Strickland、H Mukhtar、J Schweizer、および M Schwarz。 1992. マウス皮膚の紫外線 B 放射線誘発扁平上皮癌における p53 遺伝子の発癌物質特異的変異パターン。 Cancer Res 52:6400-6403。

Krewski、D、D Gaylor、M Szyazkowicz。 1991 年。低線量外挿へのモデルフリーアプローチ。 環境 H パー 90:270-285。

ロートン、MP、T クレステイル、AA エルファラ、E ホジソン、J オゾルス、RM フィルポット、AE レティ、DE ウィリアムズ、JR キャッシュマン、CT ドルフィン、RN ハインズ、T 木村、IR フィリップス、LL ポールセン、EA シェファー、DM ジーグラー。 1994. アミノ酸配列の同一性に基づく哺乳類のフラビン含有モノオキシゲナーゼ遺伝子ファミリーの命名法。 アーチ生化学バイオフィックス 308:254-257。

Lewalter、J および U Korallus。 1985年。血液タンパク質複合体と芳香族アミンのアセチル化。 生物学的モニタリングに関する新しい発見。 Int Arch が Environ Health を占有 56:179-196。

Majno、G、I Joris。 1995. アポトーシス、腫瘍症、および壊死: 細胞死の概要。 アム・J・パトール 146:3-15。

Mattison、DR、および PJ Thomford。 1989.生殖毒性物質の作用機序。 トキシコル・パトール 17:364-376。

マイヤー、UA。 1994. 発がんの危険因子としてのシトクロム P450 CYP2D6 の多型。 の シトクロム P450: 生化学、生物物理学、分子生物学、MC Lechnerによって編集されました。 パリ: John Libbey Eurotext。

Moller、H、H Vainio、E Heseltine。 1994 年。国際がん研究機関におけるリスクの定量的推定と予測。 がん研究 54:3625-3627.

Moolenaar、RJ。 1994. 規制当局が使用する発がん性リスク評価におけるデフォルトの仮定。 レギュラー トキシコール ファーマコール 20:135-141。

モーザー、VC. 1990.神経毒性へのスクリーニングアプローチ:機能的観察バッテリー。 J アム コール トキシコール 1:85-93。

国立研究評議会 (NRC)。 1983年。 連邦政府におけるリスク評価: プロセスの管理。 ワシントンDC:NASプレス。

—。 1989年。 生殖毒性における生物学的マーカー。 ワシントンDC:NASプレス。

—。 1992年。 免疫毒性学における生物学的マーカー. 毒物学小委員会。 ワシントンDC:NASプレス。

ネバート、DW. 1988. 薬物代謝酵素をコードする遺伝子: ヒト疾患における役割の可能性。 の 集団における表現型の変化、AD Woodhead、MA Bender、および RC Leonard によって編集されました。 ニューヨーク:プレナム出版。

—。 1994年。リガンド調節転写における薬物代謝酵素。 Biochem Pharmacol 47:25-37。

Nebert、DW、WW Weber。 1990. 薬理遺伝学。 の 薬物作用の原則。 薬理学の基礎、WB Pratt と PW Taylor によって編集されました。 ニューヨーク: チャーチル - リビングストン。

ネバート、DW、DR ネルソン。 1991年。進化に基づくP450遺伝子命名法。 の 酵素学の方法。 シトクロム P450MR Waterman と EF Johnson によって編集されました。 フロリダ州オーランド:アカデミックプレス。

Nebert、DW、RA McKinnon。 1994. シトクロム P450: 進化と機能的多様性。 プログレ・リヴ・ディス 12:63-97。

Nebert、DW、M Adesnik、MJ Coon、RW Estabrook、FJ Gonzalez、FP Guengerich、IC Gunsalus、EF Johnson、B Kemper、W Levin、IR Phillips、R Sato、MR Waterman。 1987. P450 遺伝子スーパーファミリー: 推奨される命名法。 DNA細胞生物 6:1-11。

Nebert、DW、DR Nelson、MJ Coon、RW Estabrook、R Feyereisen、Y Fujii-Kuriyama、FJ Gonzalez、FP Guengerich、IC Gunsalas、EF Johnson、JC Loper、R Sato、MR Waterman、および DJ Waxman。 1991. P450 スーパーファミリー: 新しい配列、遺伝子マッピング、および推奨される命名法の更新。 DNA細胞生物 10:1-14。

Nebert、DW、DD Petersen、A Puga。 1991. ヒト AH 遺伝子座多型とがん: 燃焼生成物とダイオキシンによる CYP1A1 と他の遺伝子の誘導性。 薬理遺伝学 1:68-78。

Nebert、DW、A Puga、V Vasiliou。 1993. 毒性、癌、およびシグナル伝達における Ah 受容体およびダイオキシン誘導性 [Ah] 遺伝子バッテリーの役割。 Ann NY Acad Sci 685:624-640。

Nelson、DR、T Kamataki、DJ Waxman、FP Guengerich、RW Estabrook、R Feyereisen、FJ Gonzalez、MJ Coon、IC Gunsalus、O Gotoh、DW Nebert、および K Okuda。 1993. P450 スーパーファミリー: 新しい配列、遺伝子マッピング、アクセッション番号、酵素の初期の自明な名前、および命名法の更新。 DNA細胞生物 12:1-51。

Nicholson、DW、A All、NA Thornberry、JP Vaillancourt、CK Ding、M Gallant、Y Gareau、PR Griffin、M Labelle、YA Lazebnik、NA Munday、SM Raju、ME Smulson、TT Yamin、VL Yu、および DK Miller。 1995.哺乳類のアポトーシスに必要なICE/CED-3プロテアーゼの同定と阻害。 自然 376:37-43。

ノーラン、RJ、WT ストット、PG ワタナベ。 1995. 化学物質の安全性評価における毒性データ。 チャプ。 2インチ パティの産業衛生と毒物学、LJ Cralley、LV Cralley、および JS Bus によって編集されました。 ニューヨーク:ジョン・ワイリー&サンズ。

ノードバーグ、GF。 1976年。 有毒金属の影響と用量反応関係。 アムステルダム:エルゼビア。

技術評価局 (OTA)。 1985年。 職場での生殖ハザード。 文書番号 OTA-BA-266。 ワシントン DC: 政府印刷局。

—。 1990年。 神経毒性:神経系の毒物の特定と制御。 文書番号 OTA-BA-436。 ワシントン DC: 政府印刷局。

経済協力開発機構 (OECD)。 1993年。 (定量的)構造活性関係の評価に関する米国 EPA/EC 共同プロジェクト。 パリ:OECD。

パーク、CN、および NC ホーキンス。 1993. 技術レビュー; がんリスク評価の概要。 毒性の方法 3:63-86。

ピーズ、W、J ヴァンデンバーグ、WK フーパー。 1991.生殖毒性物質の規制レベルを確立するための代替アプローチの比較: ケーススタディとしての DBCP。 環境健康パース 91:141-155。

プリピƒ -マジƒ 、D、S テリシュマン、S ケジƒ . 6.5. ヒトにおける鉛とアルコールの相互作用および赤血球デルタ-アミノレブリン酸デヒドラターゼの阻害に関するインビトロ研究。 Scand J 職場環境の健康 10:235-238。

ライツ、RH、RJ ノーラン、AM シューマン。 1987. 塩化メチレンと 1,1,1-トリクロロエタンのための多種多経路薬物動態モデルの開発。 の 薬物動態とリスク評価、飲料水と健康。 ワシントン DC: ナショナル アカデミー プレス。

Roitt、I、J Brostoff、D Male。 1989年。 免疫学。 ロンドン: Gower Medical Publishing.

Sato, A. 1991. 有機溶媒蒸気の薬物動態挙動に対する環境要因の影響。 アン・オキュプ・ハイグ 35:525-541。

シルバーゲルド、EK。 1990. 神経毒性物質の正式なリスク評価方法の開発: 最新技術の評価。 の 神経行動毒性学の進歩、BL Johnson、WK Anger、A Durao、および C Xintaras によって編集されました。 ミシガン州チェルシー:ルイス。

スペンサー、PS および HH シャンバーグ。 1980年。 実験的および臨床的神経毒物学。 ボルチモア: ウィリアムズ & ウィルキンズ.

Sweeney、AM、MR Meyer、JH Aarons、JL Mills、および RE LePorte。 1988. 環境疫学研究における早期胎児喪失の前向き同定のための方法の評価。 アムJエピデミオール 127:843-850。

テイラー、BA、HJ ハイニガー、H マイヤー。 1973. マウスにおけるカドミウム誘発性精巣損傷に対する耐性の遺伝子分析。 Proc Soc Exp Biol Med 143:629-633。

Telišman, S. 1995. 人間のさまざまな毒物および慢性疾患に対する感受性の個人差に関する、必須および/または有毒な金属および半金属の相互作用。 アル・リグ・ラダ・トクシコル 46:459-476。

Telišman、S、A Pinent、D Prpi ƒ -マジƒ . 6.5. 鉛に対する明らかな個人の感受性の可能な説明としての、亜鉛代謝における鉛干渉およびヒトにおける鉛と亜鉛の相互作用。 の 環境中の重金属、 RJ Allan と JO Nriagu によって編集されました。 エジンバラ: CEP コンサルタント。

テリスマン、S、D プリピƒ -マジƒ 、および S ケジƒ . 6.5. ヒトにおける鉛とアルコールの相互作用および赤血球デルタ-アミノレブリン酸デヒドラターゼの阻害に関するインビボ研究。 Scand J 職場環境の健康 10:239-244。

ティルソン、HA、PA ケイブ。 1978. 環境要因の神経行動学的影響の評価のための戦略。 環境健康パース 26:287-299。

トランプ、BF、AU アルスティラ。 1971年。細胞損傷と細胞死。 の 病理生物学の原則、MF LaVia および RB Hill Jr. によって編集されました。ニューヨーク: オックスフォード大学。 プレス。

トランプ、BF、IK ベレゼスキー。 1992.細胞質Ca2の役割+ 細胞損傷、壊死、アポトーシスに。 Curr Opin Cell Biol 4:227-232。

—。 1995年。カルシウム媒介性細胞損傷および細胞死。 FASEB J 9:219-228。

トランプ、BF、IK ベレゼスキー、A オソルニオ バルガス。 1981年。細胞死と病気のプロセス。 細胞カルシウムの役割。 の 生物学と病理学における細胞死、ID Bowen と RA Lockshin によって編集されました。 ロンドン:チャップマン&ホール。

Vos、JG、M Younes、E Smith。 1995年。 化学物質によって引き起こされるアレルギー性過敏症:予防のための推奨事項が世界保健機関ヨーロッパ地域事務局に代わって発行されました. フロリダ州ボカラトン: CRC Press.

ウェーバー、W. 1987年。 アセチル化遺伝子と薬物応答。 ニューヨーク:オックスフォード大学プレス。

世界保健機関 (WHO)。 1980年。 重金属への職業的暴露における推奨される健康ベースの制限。 テクニカル レポート シリーズ、No. 647。ジュネーブ: WHO。

—。 1986年。 化学物質への暴露に関連する神経毒性の評価の原則と方法。 環境衛生基準、No.60。 ジュネーブ: WHO.

—。 1987年。 ヨーロッパの大気質ガイドライン。 ヨーロピアン シリーズ、No. 23。コペンハーゲン: WHO 地域刊行物。

—。 1989年。 IPCS 出版物で使用する化学物質の安全性に関する用語集。 ジュネーブ:WHO。

—。 1993年。 健康に基づく暴露限界のガイダンス値の導出. 環境衛生基準、未編集のドラフト。 ジュネーブ: WHO.

ワイリー、AH、JFR カー、AR カリー。 1980. 細胞死: アポトーシスの重要性。 Int Rev サイトル 68:251-306。

@REFS LABEL = その他の関連する読み取り

アルバート、RE。 1994. 米国環境保護庁における発がん性リスク評価。 クリティカル。 Rev.Toxicol 24:75-85。

Alberts、B、D Bray、J Lewis、M Raff、K Roberts、JD Watson。 1988年。 細胞の分子生物学. ニューヨーク:ガーランド出版。

アリエンス、EJ. 1964年。 分子薬理学. Vol.1。 ニューヨーク:アカデミックプレス。

Ariens、EJ、E Mutschler、および AM Simonis。 1978年。 Allgemeine Toxicology [一般毒性学]. シュトゥットガルト: Georg Thieme Verlag.

アシュビー、J、RW テナント。 1994. 44 の化学物質のげっ歯類発がん性の予測: 結果。 突然変異誘発 9:7-15。

Ashford、NA、CJ Spadafor、DB Hattis、および CC Caldart。 1990年。 労働者の曝露と疾病の監視。 ボルチモア: ジョンズ・ホプキンス大学. プレス。

Balabuha、NS、GE Fradkin。 1958年。 Nakoplenie radioaktivnih elementov v organizme I ih vivedenie [生物における放射性元素の蓄積とその排泄]. モスクワ:メジギズ。

ボールズ、M、J ブリッジス、J サウジー。 1991年。 毒物学における動物と代替物の現在の状況と将来の展望。 ノッティンガム、イギリス: 医学実験における動物の交換のための基金。

ベルリン、A、J ディーン、MH ドレーパー、EMB スミス、F スプレアフィコ。 1987年。 免疫毒性学. ドルドレヒト:マルティヌス・ナイホフ。

Boyhous、A. 1974年。 呼吸。 ニューヨーク:グルーン&ストラットン。

ブランダウ、R および BH リッポルド。 1982年。 皮膚および経皮吸収。 シュトゥットガルト: Wissenschaftliche Verlagsgesellschaft.

Brusick、DJ。 1994年。 遺伝的リスク評価の方法。 ボカ・ラトン:ルイス・パブリッシャーズ。

Burrell, R. 1993. ヒト免疫毒性。 モルアスペクトメッド 14:1-81。

Castell、JVおよびMJ Gómez-Lechón。 1992年。 動物の薬理学 - 毒物学に代わるインビトロ。 マドリッド、スペイン: Farmaindustria。

チャップマン、G. 1967。 体液とその機能。 ロンドン:エドワード・アーノルド。

国立研究評議会の生物学的マーカーに関する委員会。 1987. 環境健康研究における生物学的マーカー。 環境健康パース 74:3-9。

Cralley、LJ、LV Cralley、および JS Bus (eds.)。 1978年。 パティの産業衛生と毒物学. ニューヨーク:ワイティ。

Dayan、AD、RF Hertel、E Heseltine、G Kazantis、EM Smith、MT Van der Venne。 1990年。 金属の免疫毒性と免疫毒性。 ニューヨーク:プレナムプレス。

Djuric、D. 1987.有毒化学物質への職業暴露の分子細胞側面。 の パート 1 トキシコキネティクス. ジュネーブ: WHO.

ダフス、JH. 1980年。 環境毒性学。 ロンドン:エドワード・アーノルド。

エコトック。 1986年。 毒物学と生態毒物学における構造と活性の関係、モノグラフ No. 8。 ブリュッセル:ECOTOC。

フォース、W、D ヘンシュラー、W ランメル。 1983年。 薬理学と毒物学。 マンハイム: Biblio-graphische Institut.

フレイジャー、JM. 1990年。 in VitroToxicity テストの検証のための科学的基準。 OECD 環境モノグラフ、No. 36. パリ:OECD。

—。 1992年。 In Vitro 毒性—安全性評価への応用。 ニューヨーク:マルセル・デッカー。

ガッド、サウスカロライナ州。 1994年。 インビトロ毒性学。 ニューヨーク:レイヴンプレス。

ガダスキナ、ID。 1970. Zhiroraya tkan I yadi [脂肪組織と毒物]。 の Aktualnie Vaprosi promishlenoi toksikolgii [職業毒性学における実際の問題]、NVラザレフによって編集されました。 レニングラード: 保健省 RSFSR。

ゲイラー、DW. 1983. リスクを制御するための安全係数の使用。 J 毒性環境健康 11:329-336。

ギブソン、GG、R ハバード、DV パーク。 1983年。 免疫毒性学。 ロンドン:アカデミックプレス。

ゴールドバーグ、午前。 1983~1995年。 毒物学における代替。 巻。 1-12。 ニューヨーク:メアリー・アン・リーバート。

Grandjean、P. 1992。毒性に対する個人の感受性。 有毒な手紙 64 / 65:43-51。

Hanke、J、JK Piotrowski。 1984年。 Biochemyczne podstawy toksikologii [毒物学の生化学的基礎]。 ワルシャワ: PZWL.

ハッチ、T および P グロス。 1954年。 吸入したエアロゾルの肺への沈着と滞留。 ニューヨーク:アカデミックプレス。

オランダ保健評議会:化学物質の発がん性評価委員会。 1994. オランダにおける発がん性化学物質のリスク評価。 レギュラー トキシコール ファーマコール 19:14-30。

オランダ、WC、RL クライン、AH ブリッグス。 1967年。 分子薬理学.

ハフ、JE。 1993. ヒトにおける化学物質と癌: 実験動物における最初の証拠。 環境健康パース 100:201-210。

クラーセン、CD、DL イートン。 1991. 毒物学の原則。 チャプ。 2インチ カサレットとドールの毒物学、CD Klaassen、MO Amdur、およびJ Doullによって編集されました。 ニューヨーク:ペルガモンプレス。

Kossover、EM。 1962年。 分子生化学。 ニューヨーク:マグロウヒル。

Kundiev、YI。 1975年。Vssavanie pesticidov cherez kozsu I profilaktika otravlenii [農薬の皮膚からの吸収と中毒の防止]. キエフ: ズドロヴィア。

クストフ、VV、LA ティウノフ、JA ヴァシリエフ。 1975年。 Komvinovanie deistvie promishlenih yadov 【産業毒物の複合効果】. モスクワ:メディチナ。

Lauwerys、R. 1982。 Toxicologie industrielle et intoxications professionalelles. パリ:マッソン。

Li、AP、RH Heflich。 1991年。 遺伝毒性学。 ボカラトン:CRCプレス。

Loewey、AGおよびP Siekewitz。 1969年。 細胞の構造と機能. ニューヨーク:ホルト、ラインハート、ウィンストン。

ルーミス、TA。 1976年。 毒物学の要点. フィラデルフィア:リーとフェビガー。

メンデルソン、ML、RJ アルベルティーニ。 1990年。 変異と環境、パーツ AE。 ニューヨーク:ワイリー・リス。

メッツラー、ドイツ。 1977年。 生化学. ニューヨーク:アカデミックプレス。

Miller、K、JL Turk、S Nicklin。 1992年。 免疫毒性学の原則と実践。 オックスフォード:ブラックウェルズ・サイエンティフィック。

通商産業省。 1981年。 既存化学物質ハンドブック。 東京:ケミカルデイリープレス。

—。 1987年。 化審法による化学品の承認申請書。 (日本語と英語)。 東京:化学工業日報プレス。

モンターニャ、W. 1956。 皮膚の構造と機能。 ニューヨーク:アカデミックプレス。

Moolenaar、RJ。 1994. 発がん性リスク評価: 国際比較。 Regul トキシコール ファーマコール 20:302-336。

国立研究評議会。 1989年。 生殖毒性の生物学的マーカー. ワシントンDC:NASプレス。

ノイマン、WG および M ノイマン。 1958年。 骨ミネラルの化学的動態. シカゴ:大学。 シカゴプレスの。

ニューカム、DS、NR ローズ、JC ブルーム。 1992年。 臨床免疫毒性学。 ニューヨーク:レイヴンプレス。

パチェコ、H. 1973。 ラ・ファーマコロジー・モレキュラー. パリ: Presse Universitaire。

ピオトロフスキー、JK。 1971.産業毒性学の問題への代謝および排泄速度論の応用. ワシントン DC: 米国保健教育福祉省。

—。 1983. 重金属の生化学的相互作用: メタロチオネイン。 の 化学物質への複合暴露の健康への影響. コペンハーゲン: WHO ヨーロッパ地域事務所。

Arnold O. Beckman/IFCC Conference of Environmental Toxicology Biomarkers of Chemical Exposure の議事録。 1994年。 クリンケム 40(7B)。

ラッセル、WMS、RL バーチ。 1959年。 人道的な実験技術の原則。 ロンドン: Methuen & Co. Universities Federation for Animal Welfare, 1993 により再版。

ライクロフト、RJG、T メネ、PJ フロッシュ、C ベネズラ。 1992年。 接触皮膚炎の教科書。 ベルリン:Springer-Verlag。

Schubert, J. 1951. 暴露された個人の放射性元素の推定。 ニュークレオニクス 8:13-28。

シェルビー、MD および E Zeiger。 1990. サルモネラおよびげっ歯類骨髄細胞遺伝学試験におけるヒト発がん物質の活性。 ムタット解像度 234:257-261。

Stone, R. 1995. がんリスクへの分子的アプローチ。 科学 268:356-357。

Teisinger、J. 1984。 Industrietoxikologie での展示テスト [産業毒性学における曝露試験]。 ベルリン: VEB Verlag Volk und Gesundheit.

米国議会。 1990年。 職場での遺伝子モニタリングとスクリーニング、OTA-BA-455。 ワシントン DC: 米国政府印刷局。

VEB。 1981年。 Kleine Enzyklopaedie: レーベン [生命]. ライプツィヒ: VEB Bibliographische Institut.

ワイル、E. 1975。 Elements de toxicology industrielle [産業毒性学の要素]。 パリ: Masson et Cie.

世界保健機関 (WHO)。 1975年。 有害物質の安全レベルを確立するためにソ連で使用される方法。 ジュネーブ:WHO。

1978. 化学物質の毒性を評価するための原則と方法、パート 1。 環境衛生基準、第 6 号。 ジュネーブ: WHO.

—。 1981年。 化学物質への複合ばく露、中間文書第 11 号. コペンハーゲン: WHO ヨーロッパ地域事務所。

—。 1986年。 トキシコキネティクス研究の原則。 環境衛生基準、いいえ。 57.ジュネーブ:WHO。

Yoftrey、JM、FC Courtice。 1956年。 リンパ管、リンパおよびリンパ組織. ケンブリッジ: ハーバード大学プレス。

Zakutinskiy、DI。 1959年。 Voprosi toksikologii radioaktivnih veshchestv [放射性物質の毒性学の問題]。 モスクワ:メジギズ。

Zurlo、J、D Rudacille、および AM Goldberg。 1993年。 試験における動物と代替物:歴史、科学、倫理. ニューヨーク:メアリー・アン・リーバート。