水曜日、16月2011 21:39

熱中症

このアイテムを評価
(0票)

高温環境、高湿度、激しい運動、熱放散の障害は、さまざまな熱中症を引き起こす可能性があります。 全身疾患として熱失神、熱浮腫、熱けいれん、熱疲労、熱中症、局所疾患として皮膚病変などがあります。

全身性疾患

熱けいれん、熱疲労、熱射病は臨床的に重要です。 これらの全身性疾患の発生の根底にある機序は、循環不全、水分と電解質の不均衡、および/または高体温 (高体温) です。 中でも最も深刻なのが熱中症で、迅速かつ適切に治療しないと死に至ることもあります。

乳児を除く XNUMX つの異なる集団が、熱中症を発症するリスクがあります。 最初の、そしてより大きな人口は高齢者であり、特に、真性糖尿病、肥満、栄養失調、うっ血性心不全、慢性アルコール依存症、認知症、および体温調節を妨げる薬物を使用する必要性などの貧困層および慢性疾患を有する人々です。 熱中症にかかるリスクのある XNUMX 番目の集団は、長時間の運動を試みたり、過度の熱ストレスにさらされたりしている健康な個人で構成されています。 先天性および後天性の汗腺機能障害以外に、アクティブな若者が熱中症になりやすい要因には、体力の低下、環境順応の欠如、作業効率の低下、体重に対する皮膚面積の比率の低下が含まれます。

熱失神

失神は、脳血流の減少に起因する一時的な意識喪失であり、蒼白、視力のぼやけ、めまい、吐き気が先行することがよくあります。 熱中症の人に発症​​することがあります。 用語 熱崩壊 と同義に使用されている 熱性失神. これらの症状は、皮膚の血管拡張、血液の姿勢による貯留に起因するものであり、結果として心臓への静脈還流が減少し、心拍出量が減少します。 熱にさらされたほとんどの人に発生する軽度の脱水は、熱失神の可能性の一因となります。 心血管疾患を患っている人や環境に順応していない人は、熱虚脱を起こしやすい傾向があります。 犠牲者は通常、仰向けに寝かせた後、急速に意識を回復します。

熱浮腫

軽度の依存性浮腫、つまり手足のむくみは、暑い環境にさらされた環境に順応していない人に発生する可能性があります. 典型的には女性に発生し、環境に順応することで解決します。 患者を涼しい場所に寝かせると、数時間で治まります。

熱いけいれん

熱けいれんは、長時間の肉体労働による大量の発汗の後に発生することがあります。 激しい運動や疲労により四肢や腹筋に痛みを伴うけいれんが生じ、体温が上がりにくくなります。 これらのけいれんは、長時間の激しい発汗による水分の損失が、補助的な塩を含まない普通の水で補充され、血中のナトリウム濃度が臨界レベルを下回ったときに生じる塩の枯渇によって引き起こされます. 熱けいれん自体は比較的無害な状態です。 発作は通常、持続的な身体運動が可能な身体的に健康な個人に見られ、かつてはそのような労働者にしばしば発生するため、「鉱夫のけいれん」または「杖切りのけいれん」と呼ばれていました。

熱けいれんの治療は、活動の停止、涼しい場所での休息、および水分と電解質の交換で構成されます。 少なくとも 24 時間から 48 時間は、熱への露出を避ける必要があります。

熱疲労

熱中症は、臨床的に遭遇する最も一般的な熱中症です。 大量の汗が失われた後の重度の脱水症状が原因です。 典型的には、マラソンランナー、アウトドアスポーツ選手、軍の新兵、炭鉱労働者、建設労働者など、長時間の身体運動 (運動による熱疲労) を行う他の点では健康な若い個人に発生します。 この障害の基本的な特徴は、水分および/または塩分の枯渇による循環不全です。 熱中症の初期段階と考えられ、放っておくと最終的に熱中症に進行する可能性があります。 従来、水分の枯渇による熱疲労と塩分の枯渇による熱疲労の XNUMX つに分類されてきました。 しかし、多くの場合、両方のタイプが混在しています。

長時間の激しい発汗と不十分な水分摂取の結果として、水分枯渇による熱疲労が発生します。 汗には、30リットルあたり100~39ミリ当量の濃度のナトリウムイオンが含まれており、これは血漿よりも低いため、汗が大量に失われると、水分不足(体の水分量の減少)と高ナトリウム血症(血漿中のナトリウム濃度の上昇)が引き起こされます。 熱中症は、喉の渇き、脱力感、疲労感、めまい、不安、乏尿(尿の量が少ない)、頻脈(心拍が速い)、および中等度の高熱(XNUMX℃以上)によって特徴付けられます。 脱水はまた、発汗活動の低下、皮膚温度の上昇、および血漿タンパク質と血漿ナトリウムレベルの上昇、およびヘマトクリット値 (血液量に対する血球量の比率) の増加につながります。

治療は、犠牲者をひざを上げた横臥位で休ませ、涼しい環境で体を冷やし、冷たいタオルまたはスポンジで体を拭き、水分を摂取するか、経口摂取が不可能な場合は点滴で補います。 水分と塩分の補給量、体温、体重を注意深く監視する必要があります。 水分の摂取は、犠牲者の主観的な喉の渇きの感覚に従って調整されるべきではありません。特に、液体の損失が普通の水で補充される場合、血液の希釈は喉の渇きの消失と希釈利尿を容易に誘発し、体液バランスの回復を遅らせます。 この水分摂取不足の現象を自発的脱水といいます。 さらに、以下に説明するように、無塩水供給は熱中症を悪化させる可能性があります。 体重の 3% を超える脱水は、常に水と電解質の補充によって治療する必要があります。

塩分枯渇による熱疲労は、長時間の大量の発汗、水分の交換、および塩分不足に起因します。 その発生は、不完全順化、嘔吐、下痢などによって促進されます。 このタイプの熱中症は、通常、水分が枯渇してから数日後に発生します。 それは、喉の渇きを癒すために大量の水を飲んだ、暑さにさらされた座りっぱなしの高齢者に最もよく見られます. 頭痛、めまい、脱力感、疲労感、吐き気、嘔吐、下痢、食欲不振、筋肉のけいれん、精神錯乱などが一般的な症状です。 血液検査では、血漿量の減少、ヘマトクリットと血漿タンパク質レベルの増加、および高カルシウム血症 (過剰な血中カルシウム) が認められます。

早期発見と迅速な管理が不可欠であり、後者は患者を涼しい部屋で横になった姿勢で休ませ、水と電解質を補充することからなる. 尿の浸透圧または比重を監視し、血漿中の尿素、ナトリウム、塩化物レベルを監視し、体温、体重、水分と塩の摂取量も記録する必要があります。 症状が適切に治療されれば、被害者は通常、数時間以内に気分が良くなり、後遺症なく回復します。 そうでないと、熱中症に発展しやすくなります。

熱中症

熱射病は、死に至る可能性がある重大な医学的緊急事態です。 これは、制御不能な高体温が組織損傷を引き起こす複雑な臨床状態です。 このような体温の上昇は、過度の熱負荷による深刻な熱の輻輳によって最初に引き起こされ、結果として生じる高熱により、正常な体温調節機構の障害を含む中枢神経系の機能障害が誘発され、体温の上昇が加速されます。 熱射病は、基本的に、古典的熱射病と運動誘発性熱射病の XNUMX つの形態で発生します。 前者は、非常に若い、高齢者、肥満、または不適格な個人が、高温環境に長時間さらされている間に通常の活動を行っている場合に発生しますが、後者は特に、運動中に活動的な若い成人に発生します。 さらに、上記の両方の形態と一致する特徴を示す混合形態の熱中症があります。

高齢者、特に心血管疾患、真性糖尿病、アルコール依存症などの基礎疾患がある人、および特定の薬、特に向精神薬を服用している人は、古典的な熱中症のリスクが高くなります。 たとえば、熱波が続く間、60 歳以上の人口の死亡率は 60 歳以下の人口の XNUMX 倍以上になると記録されています。 熱射病の混合型が蔓延していることが判明したメッカ巡礼中のイスラム教徒の間でも、同様に高齢者人口の死亡率が高いことが報告されています。 高齢者が熱中症になりやすい要因としては、上記の慢性疾患以外に、熱知覚の低下、熱負荷の変化に対する血管運動や発汗反射(発汗反射)の反応の鈍化、熱への順化能力の低下などがあります。

高温多湿の環境で活発に仕事や運動をする人は、熱中症や熱射病などの熱中症のリスクが高くなります。 高い身体的ストレスを受けるアスリートは、環境がそれほど暑くなくても、高い速度で代謝熱を生成することによって高熱の犠牲になる可能性があり、その結果、しばしば熱ストレス疾患に苦しんでいます. 比較的不健康な非アスリートは、自分の能力を認識し、それに応じて運動を制限する限り、この点でリスクが低くなります. しかし、楽しみのためにスポーツをし、非常に意欲的で熱心な場合、訓練された以上の強度で運動しようとすることが多く、熱中症 (通常は熱中症) に陥る可能性があります。 不十分な環境順化、不十分な水分補給、不適切な服装、アルコール消費、無汗症 (発汗の減少または不足) を引き起こす皮膚疾患、特にあせも (下記参照) などは、すべて症状を悪化させます。

子供は大人よりも熱中症や熱中症になりやすいです。 単位質量あたりの代謝熱の生成量が多く、発汗能力が比較的低いため、熱を放散する能力が低くなります。

熱中症の臨床的特徴

熱射病は、次の XNUMX つの基準によって定義されます。

  1. 深部体温が通常42℃を超える重度の高熱
  2. 中枢神経系の障害
  3. 発汗の停止を伴う熱く乾燥した皮膚。

 

この XNUMX つの基準が満たされると、熱射病の診断は簡単に確定できます。 ただし、これらの基準のいずれかが欠けている、あいまいである、または見落とされている場合、見落とされる可能性があります。 たとえば、深部体温が適切かつ遅滞なく測定されない限り、重度の高体温が認識されない場合があります。 または、労作による熱射病の非常に初期の段階では、発汗が持続するか、大量に発汗し、皮膚が湿っている可能性があります。

熱射病の発症は通常突然であり、前兆はありませんが、熱射病が差し迫っている患者の中には、中枢神経系の障害の症状や徴候がみられる場合があります。 それらには、頭痛、吐き気、めまい、衰弱、眠気、混乱、不安、見当識障害、無関心、攻撃性および不合理な行動、震え、痙攣および痙攣が含まれる. 熱射病が発生すると、すべての場合に中枢神経系の障害が現れます。 意識レベルはしばしば落ち込んでおり、深い昏睡状態が最も一般的です。 発作はほとんどの場合、特に身体的に健康な人に発生します。 小脳機能障害の徴候が顕著であり、持続する可能性があります。 ピンポイントの瞳孔がよく見られます。 小脳性運動失調(筋肉の協調運動の欠如)、片麻痺(体の片側の麻痺)、失語症、情緒不安定が一部の生存者に持続する可能性があります。

嘔吐と下痢が頻繁に起こります。 通常、頻呼吸 (急速な呼吸) が最初に見られ、脈拍が弱くて速いことがあります。 最も一般的な合併症の XNUMX つである低血圧は、著しい脱水、広範な末梢血管拡張、および心筋の最終的な低下に起因します。 急性腎不全は、特に労作性熱射病の場合、重症の場合に見られることがあります。

出血は、すべての実質臓器、皮膚(点状出血と呼ばれる場所)、および重篤な場合には胃腸管で発生します。 臨床的な出血症状には、下血(暗色のタール状の便)、吐血(血を吐く)、血尿(血尿)、喀血(血を吐く)、鼻血(鼻血)、紫斑(紫色の斑点)、斑状出血(黒と青のマーク)が含まれます。そして結膜出血。 血管内凝固は一般的に起こる。 出血性素因(出血傾向)は、通常、播種性血管内凝固症候群(DIC)に関連しています。 DIC は、血漿の線溶 (血栓溶解) 活動が増加する運動誘発性熱射病で主に発生します。 一方、血小板数の減少、プロトロンビン時間の延長、凝固因子の枯渇、およびフィブリン分解産物 (FDP) のレベルの増加は、全身の高体温によって引き起こされます。 DICと出血の証拠がある患者は、深部体温が高く、血圧が低く、動脈血のpHとpOが低い2、乏尿または無尿およびショックの発生率が高くなり、死亡率が高くなります。

ショックも一般的な合併症です。 これは、末梢循環不全に起因し、微小循環系における血栓の播種を引き起こす DIC によって悪化します。

熱中症の治療

熱射病は、患者の命を救うために迅速な診断と迅速かつ積極的な治療が必要な緊急医療です。 深部体温の適切な測定が必須です。直腸または食道の温度は、45℃まで読み取れる温度計を使用して測定する必要があります。 口腔体温と腋窩体温の測定は、実際の深部体温と大きく異なる可能性があるため、避ける必要があります。

治療手段の目的は、熱負荷を軽減し、皮膚からの熱放散を促進することにより、体温を下げることです。 治療には、患者を安全で涼しく、日陰で換気の良い場所に移動させ、不要な衣服を脱​​がせ、扇風機で扇ぐことが含まれます。 顔と頭を冷やすと、有益な脳の冷却が促進される可能性があります。

一部の冷却技術の効率は疑問視されています。 首、鼠径部、腋窩の主要な血管に保冷剤を当て、体を冷水に浸したり、アイスタオルで覆ったりすると、震えや皮膚の血管収縮が促進され、実際には冷却効率が低下する可能性があると主張されてきました. 伝統的に、患者が医療施設に運ばれたら、氷水浴に浸し、皮膚の血管収縮を最小限に抑えるために激しい皮膚マッサージと組み合わせることが、選択の治療法として推奨されてきました。 この冷却方法にはいくつかの欠点があります。酸素と液体を投与し、血圧と心電図を継続的に監視する必要があるため、看護が困難であり、昏睡状態の嘔吐物と下痢で浴槽が汚染されるという衛生上の問題があります。忍耐。 別のアプローチは、扇風機で皮膚からの蒸発を促進しながら、患者の体に冷たいミストをスプレーすることです。 この冷却方法により、中心部の温度を 0.03 ~ 0.06 ℃/分下げることができます。

けいれん、けいれん、震えの予防対策も早急に開始する必要があります。 継続的な心臓のモニタリングと血清電解質レベルの決定、および動脈血と静脈血のガス分析が不可欠であり、約 10℃ の比較的低温での電解質溶液の静脈内注入と、制御された酸素療法を適時に開始する必要があります。 気道を保護するための気管挿管、中心静脈圧を推定するための心臓カテーテルの挿入、胃管の留置、および尿道カテーテルの挿入も、追加の推奨措置に含まれる場合があります。

熱中症の予防

熱中症を予防するためには、気候順応、年齢、体格、一般的な健康状態、水分と塩分摂取量、服装、宗教への献身の特徴、熱中症に対する無知または軽視する責任など、さまざまな人的要因を考慮に入れる必要があります。公衆衛生の促進を目的とした規制。

暑い環境で運動する前に、労働者、運動選手、または巡礼者は、作業負荷と遭遇する可能性のある熱ストレスのレベル、および熱中症の危険性について知らされるべきです. 激しい身体活動および/または深刻な曝露の危険にさらされる前に、一定期間順応することをお勧めします。 活動のレベルは周囲の気温に合わせる必要があり、XNUMX 日の中で最も暑い時間帯の運動は避けるか、少なくとも最小限に抑える必要があります。 運動中は、水への自由なアクセスが必須です。 電解質は汗で失われ、水を自発的に摂取する機会が制限される可能性があるため、熱性脱水からの回復が遅れる可能性があるため、多量の発汗の場合は電解質も交換する必要があります. 適切な服装も重要な対策です。 吸水性があり、空気や水蒸気を透過する生地で作られた衣服は、熱の放散を促進します。

皮膚疾患

ミリアリア 熱負荷に関連する最も一般的な皮膚疾患です。 汗管の閉塞により、皮膚表面への汗の送達が妨げられた場合に発生します。 無汗症(汗を放出できないこと)が体表面に広がっている場合、汗貯留症候群が起こり、患者が熱中症になりやすくなります。

ミリアリアは通常、高温多湿の環境での運動によって誘発されます。 熱性疾患による; 湿布、包帯、石膏ギプスまたは絆創膏の適用による; 通気性の悪い服を着ることによって。 粟粒は、汗の貯留の深さによって、結晶性粟粒、紅斑、深部粟粒の XNUMX 種類に分類できます。

ミリアリア クリスタリーナは、皮膚の角質層内またはそのすぐ下に汗がたまり、そこに小さな透明な非炎症性の水ぶくれが見られることによって引き起こされます。 それらは通常、重度の日焼け後または熱性疾患の間に「作物」に現れます。 このタイプのミリアリアは、それ以外の場合は無症状で、苦痛が最も少なく、水ぶくれが発生して鱗屑が残る数日で自然に治癒します.

激しい熱負荷が長時間にわたる多量の発汗を引き起こすと、紅斑が発生します。 これは、汗が表皮に蓄積する最も一般的なタイプのミリアリアです。 赤い丘疹、小胞、または膿疱が形成され、灼熱感やかゆみを伴います(あせも)。 汗管は端子部分に差し込んでいます。 プラグの生成は、常在好気性細菌、特に球菌の働きによるもので、角層が汗で水分を吸収すると、角質層で個体数が大幅に増加します。 それらは、汗管の角質上皮細胞を傷つける毒素を分泌し、炎症反応を引き起こし、汗管の管腔内にキャストを引き起こします. 白血球による浸潤は、数週間にわたって汗の通過を完全に妨げる衝突を引き起こします。

深部粟粒では、汗が真皮に保持され、赤粃糠よりもかゆみが少なく、平らな炎症性丘疹、結節、および膿瘍を生成します。 このタイプのミリアリアの発生は、一般に熱帯地方に限られています。 炎症反応が皮膚の上部層から下方に広がるため、多量の発汗を繰り返した後、紅斑から進行性のシーケンスで発生する可能性があります。

熱帯性無汗性無力症. この用語は、熱帯の戦域に配備された軍隊があせもや暑さへの耐性に苦しんでいた第二次世界大戦中に定着しました。 これは、高温多湿の熱帯環境で見られる発汗症候群のモダリティです。 動悸、急速な動悸、高熱、頭痛、脱力感などの熱うっ血の症状を伴う無汗症および粟粒腫様の発疹を特徴とし、暑さの中での身体活動に耐えられなくなります。 それは通常、広範な紅斑粟粒が先行します。

治療. 粟粒腫および汗貯留症候群の初期かつ不可欠な治療は、罹患者を涼しい環境に移すことです。 冷たいシャワーと皮膚の穏やかな乾燥、およびカラミンローションの適用は、患者の苦痛を軽減する可能性があります. 化学的静菌剤の適用は、微生物叢の拡大を防ぐのに効果的であり、これらの微生物が耐性を獲得する可能性がある抗生物質の使用よりも好ましい.

表皮の再生の結果、約 3 週間後に汗管の詰まりが脱落します。

 

戻る

読む 6185 <font style="vertical-align: inherit;">回数</font> 最終更新日 13 年 2011 月 21 日木曜日 15:XNUMX

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

暑さと寒さの参照

ACGIH (米国政府産業衛生士会議)。 1990. 1989 ~ 1990 年の限界値と生物学的暴露指数。 ニューヨーク: ACGIH.

—。 1992年。寒冷ストレス。 作業環境における物理エージェントのしきい値制限値。 ニューヨーク: ACGIH.

Bedford, T. 1940. 環境の暖かさとその測定。 Medical Research Memorandum No. 17. London: Her Majesty's Stationery Office.

ベルディング、HS および TF ハッチ。 1955. 熱ストレスを結果として生じる生理学的ひずみの観点から評価するための指標。 暖房配管エアコン 27:129–136.

ビッテル、JHM. 1987 年。男性の寒冷適応の指標としての暑熱負債。 J Appl Physiol 62(4):1627–1634。

Bittel、JHM、C Nonotte-Varly、GH Livecchi-Gonnot、GLM Savourey、および AM Hanniquet。 1988. 男性の寒冷環境における体力と体温調節反応。 J Appl Physiol 65:1984-1989。

Bittel、JHM、GH Livecchi-Gonnot、AM Hanniquet、JL Etienne。 1989 年。JL Etienne の北極点への旅の前後に観測された温度変化。 Eur J Appl Physiol 58:646–651。

ブライ、J、KG ジョンソン。 1973. 熱生理学の用語集。 J Appl Physiol 35(6):941–961。

ボッツフォード、JH。 1971. 環境熱測定用湿球温度計。 Am Ind Hyg J 32:1–10.

Boutelier、C. 1979年。 ヌイイ・シュル・セーヌ: AGARD AG 211.

Brouha、L. 1960.産業における生理学。 ニューヨーク:ペルガモンプレス。

バートン、AC、OG エドホルム。 1955年。寒い環境にいる男。 ロンドン:エドワード・アーノルド。

チェン、F、H ニルソン、RI ホルマー。 1994. アルミニウム表面に接触した指の腹の冷却反応。 Am Ind Hyg Assoc J 55(3):218-22。

欧州正規化委員会 (CEN)。 1992 年。EN 344。寒さに対する防護服。 ブリュッセル: CEN.

—。 1993. EN 511. 寒さに対する保護手袋。 ブリュッセル: CEN.

欧州共同体委員会 (CEC)。 1988. 熱ストレス指標に関するセミナーの議事録。 ルクセンブルグ: CEC、健康安全総局。

ダーネン、ハム。 1993. 寒くて風の強い条件での手動性能の低下。 アガード、NATO、CP-540。

ダスラー、アーカンソー州。 1974年。陸上および海上での換気と熱ストレス。 第3章、海軍予防医学のマニュアル。 ワシントン DC: 海軍省、医学および外科局。

—。 1977. 人の熱ストレス、仕事機能、生理的熱曝露限界。 熱分析 - 人間の快適さ - 室内環境。 NBS Special Publication 491。ワシントン DC: 米国商務省。

Deutsches Institut für Normierung (DIN) 7943-2。 1992. Schlafsacke、Thermophysiologische Prufung。 ベルリン: DIN.

デュボア、D および EF デュボア。 1916. 臨床熱量測定 X: 身長と体重がわかっている場合に適切な表面積を推定する式。 Arch Int Med 17:863–871.

イーガン、CJ. 1963. 導入と用語。 Fed Proc 22:930–933。

エドワーズ、JSA、DE ロバーツ、SH ムッター。 1992年。寒い環境での使用に関する関係。 J Wildlife Med 3:27–47.

Enander, A. 1987. 適度な寒さにおける感覚反応とパフォーマンス。 博士論文。 Solna: 国立産業衛生研究所。

フラー、FH、L ブルーハ。 1966. 仕事環境を評価するための新しい工学的手法。 アシュラエ J 8(1):39–52.

フラー、FH、PE スミス。 1980. 暑い作業場での予防作業手順の有効性。 FN Dukes-Dobos および A Henschel (編)。 推奨される熱ストレス基準に関する NIOSH ワークショップの議事録。 ワシントン DC: DHSS (NIOSH) 発行番号 81-108。

—。 1981. 生理学的測定による暑いワークショップでの熱ストレスの評価。 Am Ind Hyg Assoc J 42:32–37.

Gagge、AP、AP Fobelets、LG Berglund。 1986. 熱環境に対する人間の反応の標準的な予測指標。 ASHRAE トランス 92:709–731。

ジソルフィ、CV、CB ウェンガー。 1984. 運動中の体温調節: 古い概念、新しいアイデア。 運動スポーツ科学改訂 12:339–372。

Givoni, B. 1963. 工業用熱暴露と最大許容作業負荷を評価するための新しい方法。 1963 年 XNUMX 月、フランスのパリで開催された国際生物気象会議に提出された論文。

—。 1976. 人、気候および建築、第 2 版。 ロンドン:応用科学。

ジヴォーニ、B、RF ゴールドマン。 1972. 仕事、環境、衣類に対する直腸温度の反応の予測。 J Appl Physiol 2(6):812–822。

—。 1973. 仕事、環境、衣服に対する心拍数の反応を予測。 J Appl Physiol 34(2):201–204。

ゴールドマン、RF。 1988 年。人間の熱暴露に関する基準。 環境エルゴノミクス、IB Mekjavic、EW Banister、JB Morrison が編集。 ロンドン:テイラー&フランシス。

ヘイルズ、JRS、DAB リチャーズ。 1987.熱ストレス。 アムステルダム、ニューヨーク: Oxford Excerpta Medica.

ハンメル、HT。 1963. 人間の比較熱パターンのまとめ。 Fed Proc 22:846–847.

Havenith、G、R Heus、WA Lotens。 1990. 衣類の通気性、防湿性、透湿指数: 姿勢、動き、風による変化。 人間工学 33:989–1005。

ヘイズ。 1988. IB Mekjavic、EW Banister、および JB Morrison によって編集された環境エルゴノミクス。 ロンドン:テイラー&フランシス。

Holmér, I. 1988.必要な衣類の断熱材に関する寒冷ストレスの評価—IREQ。 Int J Ind Erg 3:159–166.

—。 1993年。寒い中での作業。 寒冷ストレスの評価方法の見直し。 Int Arch Occ Env Health 65:147–155.

—。 1994. 寒冷ストレス: 第 1 部 — 開業医のためのガイドライン。 Int J Ind Erg 14:1–10.

—。 1994. 寒冷ストレス: パート 2 - ガイドの科学的根拠 (知識ベース)。 Int J Ind Erg 14:1–9.

ホートン、FC、CP ヤゴグル。 1923. 同等のコンフォート ラインの決定。 J ASHVE 29:165–176。

国際標準化機構 (ISO)。 1985. ISO 7726. 熱環境 - 物理量を測定するための機器と方法。 ジュネーブ: ISO。

—。 1989a。 ISO 7243. 高温環境 - WBGT インデックス (湿球球温度) に基づく、働く男性の熱ストレスの推定。 ジュネーブ: ISO。

—。 1989b. ISO 7933. 高温環境 - 必要な発汗量の計算を使用した熱応力の分析的決定と解釈。 ジュネーブ: ISO。

—。 1989c。 ISO DIS 9886。エルゴノミクス—生理学的測定による熱ひずみの評価。 ジュネーブ: ISO。

—。 1990. ISO 8996. 人間工学 - 代謝熱産生の測定。 ジュネーブ: ISO。

—。 1992 年。ISO 9886。生理学的測定による熱ひずみの評価。 ジュネーブ: ISO。

—。 1993.主観的判断スケールを使用した熱環境の影響の評価。 ジュネーブ: ISO。

—。 1993. ISO CD 12894. 熱環境のエルゴノミクス - 高温環境または低温環境にさらされる個人の医療監督。 ジュネーブ: ISO。

—。 1993. ISO TR 11079 寒冷環境の評価 - 必要な衣類断熱材の決定、IREQ。 ジュネーブ: ISO。 (テクニカルレポート)

—。 1994年。ISO 9920。エルゴノミクス—衣類アンサンブルの熱特性の推定。 ジュネーブ: ISO。

—。 1994 年。ISO 7730。中程度の熱環境 - PMV および PPD 指数の決定と熱的快適性のための条件の仕様。 ジュネーブ: ISO。

—。 1995. ISO DIS 11933. 熱環境の人間工学。 国際規格の原則と適用。 ジュネーブ: ISO。

Kenneth、W、P Sathasivam、AL Vallerand、TB Graham。 1990. 28 ℃および 5 ℃の安静時の男性の代謝反応に対するカフェインの影響。 J Appl Physiol 68(5):1889–1895。

ケニー、WL、SR ファウラー。 1988.年齢の関数としてのメチルコリン活性化エクリン汗腺の密度と出力。 J Appl Physiol 65:1082–1086。

カースレイク、DMcK。 1972. 高温環境のストレス。 ケンブリッジ: ケンブリッジ大学出版局。

LeBlanc, J. 1975. 寒い中の男。 米国イリノイ州スプリングフィールド: Charles C Thomas Publ.

カリフォルニア州ライトヘッドと AR リンド。 1964.熱ストレスと頭部障害。 ロンドン: カッセル。

リンド、AR。 1957. すべての人の仕事の温度環境限界を設定するための生理学的基準。 J Appl Physiol 18:51–56。

ローテンズ、ワシントン州。 1989年。多層衣類の実際の断熱。 Scand J Work Environ Health 15 Suppl。 1:66–75。

—。 1993年。衣服を着た人間からの熱伝達。 論文、工科大学。 デルフト、オランダ。 (ISBN 90-6743-231-8)。

Lotens、WA、G Havenith。 1991. 衣類の断熱性と耐蒸気性の計算。 人間工学 34:233–254。

マクリーン、D および D Emslie-Smith。 1977. 偶発的な低体温症。 オックスフォード、ロンドン、エジンバラ、メルボルン: Blackwell Scientific Publication.

マクファーソン、RK。 1960. 暑い環境に対する生理学的反応。 Medical Research Council Special Report Series No. 298. London: HMSO.

Martineau、L、および I Jacob。 1988. ヒトの震え熱産生中の筋グリコーゲン利用。 J Appl Physiol 56:2046–2050。

モーガン、RJ. 1991.運動中の体液と電解質の損失と補充。 J スポーツ科学 9:117–142。

McArdle、B、W Dunham、HE Halling、WSS Ladell、JW Scalt、ML Thomson、JS Weiner。 1947. 暖かい環境と暑い環境の生理学的影響の予測。 医学研究評議会議員 47/391。 ロンドン: RNP.

McCullough、EA、BW Jones、PEJ Huck。 1985. 衣類の断熱材を推定するための包括的なデータベース。 ASHRAE トランス 91:29–47。

McCullough、EA、BW Jones、T Tamura。 1989. 衣服の蒸発抵抗を決定するためのデータベース。 ASHRAE トランス 95:316–328。

マッキンタイア、DA。 1980年。室内気候。 ロンドン: Applied Science Publishers Ltd.

Mekjavic、IB、EW Banister および JB Morrison (eds.)。 1988年。環境エルゴノミクス。 フィラデルフィア:テイラー&フランシス。

Nielsen, B. 1984. 脱水、再水和および体温調節。 E Jokl と M Hebbelinck (編)。 医学とスポーツ科学。 バーゼル:S.カーガー。

—。 1994.熱ストレスと順化。 人間工学 37(1):49–58.

Nielsen、R、BW Olesen、PO Fanger。 1985. 衣服の断熱に対する身体活動と空気速度の影響。 人間工学 28:1617–1632。

国立労働安全衛生研究所 (NIOSH)。 1972. 高温環境への職業暴露。 HSM 72-10269。 ワシントン DC: 米国保健教育福祉省。

—。 1986. 高温環境への職業暴露。 NIOSH 出版物番号 86-113。 ワシントンDC:NIOSH。

西、Y、AP Gagge。 1977 年。低気圧および高気圧環境に使用される実効温度スケール。 Aviation Space and Envir Med 48:97–107.

オレセン、BW。 1985.熱ストレス。 Bruel and Kjaer Technical Review No. 2. デンマーク: Bruel and Kjaer.

オレセン、BW、E スリウィンスカ、TL マドセン、PO ファンガー。 1982. 衣服の断熱に対する体の姿勢と活動の影響: 可動式サーマル マネキンによる測定。 ASHRAE トランス 88:791–805。

Pandolf、KB、BS Cadarette、MN Sawka、AJ Young、RP Francesconi、RR Gonzales。 1988. J Appl Physiol 65(1):65–71.

パーソンズ、K.C. 1993.人間の熱環境。 イギリス、ハンプシャー:テイラー&フランシス。

リード、HL、D ブライス、KMM シャキール、KD バーマン、MM ダレサンドロ、JT オブライアン。 1990. 南極での長期滞在後の甲状腺ホルモンの遊離画分の減少。 J Appl Physiol 69:1467–1472。

ローウェル、LB. 1983.人間の体温調節の心臓血管の側面。 Circ Res 52:367–379。

—。 1986. 物理的ストレス中の人間の循環調節。 オックスフォード: OUP.

佐藤、K、F 佐藤。 1983.ヒトエクリン汗腺の構造と機能の個人差。 Am J Physiol 245:R203–R208。

Savourey、G、AL Vallerand、J Bittel。 1992. 厳しい北極環境でのスキー旅行後の一般的および局所的な適応. Eur J Appl Physiol 64:99–105。

Savourey、G、JP Caravel、B Barnavol、J Bittel。 1994. 局所的な寒冷順応後の寒気環境における甲状腺ホルモンの変化。 J Appl Physiol 76(5):1963–1967。

Savourey、G、B Barnavol、JP Caravel、C Feuerstein および J Bittel。 1996. 局所的な寒冷順応によって引き起こされる低体温の一般的な寒冷適応。 Eur J Appl Physiol 73:237–244。

Vallerand、AL、I Jacob、MF Kavanagh。 1989. ヒトにおけるエフェドリン/カフェイン混合物による耐寒性増強のメカニズム。 J Appl Physiol 67:438–444。

van Dilla, MA, R Day and PA Siple. 1949年。手の特別な問題。 熱調節の生理学、R Newburgh 編。 フィラデルフィア: サンダース。

ベラー、OD。 1969. 発汗による栄養素の損失。 オスロ: Universitetsforlaget.

Vogt、JJ、V Candas、JP Libert、F Daull。 1981. 産業界における熱ひずみの指標として必要な発汗量。 In Bioengineering, Thermal Physiology and Comfort, K Cena と JA Clark が編集. アムステルダム:エルゼビア。 99–110。

Wang、LCH、SFP Man、AN Bel Castro。 1987. 男性のテオフィリン増加耐寒性における代謝およびホルモン反応。 J Appl Physiol 63:589–596。

世界保健機関 (WHO)。 1969. 熱ストレス条件下での作業に関与する健康要因。 Technical Report 412. ジュネーブ: WHO。

Wissler、EH。 1988年。人間の熱モデルのレビュー。 環境エルゴノミクス、IB Mekjavic、EW Banister、JB Morrison が編集。 ロンドン:テイラー&フランシス。

ウッドコック、ああ。 1962年。テキスタイルシステムにおける水分移動。 パート I. Textile Res J 32:628–633。

Yaglou、CP、および D Minard。 1957. 軍事訓練センターでの熱中症の管理。 Am Med Assoc Arch Ind Health 16:302–316 および 405。