水曜日、16月2011 22:04

熱ストレスと熱ストレス指数の評価

このアイテムを評価
(17票)

ヒートストレスは、人の環境(気温、放射温度、湿度、風速)、衣服、活動が相互に作用して体温が上昇する傾向にあるときに発生します。 次に、体の体温調節システムが反応して、熱損失を増加させます。 この反応は強力で効果的ですが、体に負担がかかり、不快感を引き起こし、最終的には熱中症や死に至ることもあります. したがって、労働者の健康と安全を確保するために、高温環境を評価することが重要です。

熱応力指数は、高温環境を評価し、身体にかかる可能性のある熱ひずみを予測するためのツールを提供します。 熱応力指数に基づく制限値は、そのひずみがいつ許容できなくなるかを示します。

熱ストレスのメカニズムは一般的に理解されており、高温環境での作業慣行は十分に確立されています。 これらには、熱ストレスの警告サイン、順化プログラム、水の交換に関する知識が含まれます。 しかし、依然として多くの犠牲者が出ており、これらの教訓を再学習する必要があるようです。

1964 年、Leithead と Lind は大規模な調査について説明し、熱中症は次の XNUMX つの理由の XNUMX つまたは複数で発生すると結論付けました。

  1. 脱水や順化の欠如などの要因の存在
  2. 監督当局または危険にさらされている個人のいずれかによる、熱の危険性に対する適切な認識の欠如
  3. 非常に高い熱ストレスにさらされる偶発的または予測不可能な状況。

 

彼らは、多くの死は無視と配慮の欠如に起因する可能性があり、障害が発生した場合でも、正しく迅速な治療のためのすべての要件が利用可能であれば、多くのことを行うことができると結論付けました.

熱応力指数

熱ストレス指数は、人間の熱環境における 1988 つの基本的なパラメーターの影響を統合した単一の数値であり、その値は、暑い環境にさらされた人が経験する熱的負担によって変化します。 指標値 (測定または計算) は、安全限界を確立するために設計または作業の実践で使用できます。 決定的な熱ストレス指数を決定するために多くの研究が行われており、どれが最適かについての議論があります. たとえば、Goldman (32) は XNUMX の熱ストレス指数を提示しており、世界中で使用されている数はおそらく少なくともその XNUMX 倍です。 多くの指数では、XNUMX つの基本的なパラメーターすべてが考慮されていませんが、すべての指数は適用時に考慮する必要があります。 インデックスの使用は個々のコンテキストに依存するため、非常に多くのインデックスが生成されます。 一部の指数は理論的には不十分ですが、特定の業界での経験に基づいて、特定のアプリケーションに対して正当化できます。

Kerslake (1972) は次のように述べています。 」。 最近の標準化の急増 (ISO 7933 (1989b) や ISO 7243 (1989a) など) により、世界中で同様の指標を採用するよう圧力がかかっています。 ただし、新しいインデックスを使用するには、経験を積む必要があります。

ほとんどの熱ストレス指数は、直接的または間接的に、身体への主な負担は発汗によるものであると考えています。 たとえば、熱のバランスと内部体温を維持するために必要な発汗量が多いほど、体への負担が大きくなります。 人間の温熱環境を表し、熱ひずみを予測するための熱ストレスの指標については、暑い環境で汗をかく人の熱を失う能力を推定するメカニズムが必要です。

環境への汗の蒸発に関する指標は、基本的に発汗によって内部体温を維持する場合に役立ちます。 これらの条件は、一般的に 規範的ゾーン (WHO 1969)。 したがって、熱ストレスによって心拍数と発汗量が上昇する一方で、深部体温は比較的一定に保たれます。 処方ゾーン(ULPZ)の上限では、体温調節が不十分で熱バランスを維持できず、体温が上昇します。 これは、 環境駆動ゾーン (WHO 1969)。 このゾーンでは、蓄熱は体内温度の上昇に関連しており、許容暴露時間を決定するための指標として使用できます (たとえば、38 °C の「コア」温度の予測安全限界に基づいて、図 1 を参照)。

図 1. 室温 2°C での 30 時間の運動脱水前後の細胞外コンパートメント (ECW) および細胞内コンパートメント (ICW) の計算された水分分布。

HEA080F1

熱ストレス指数は次のように便利に分類できます。 合理的、経験的 or 直接. 有理指数は、熱収支方程式を含む計算に基づいています。 経験的指標は、被験者の生理学的反応(発汗量など)から方程式を確立することに基づいています。 直接指数は、人体の反応をシミュレートするために使用される機器の測定値 (通常は温度) に基づいています。 最も影響力があり広く使用されている熱ストレス指数を以下に示します。

有理指数

熱ストレス指数 (HSI)

ヒート ストレス インデックスは、熱バランスを維持するために必要な蒸発率です (E必須) 環境で達成できる最大蒸発量 (Eマックス)、パーセンテージで表されます (Belding and Hatch 1955)。 方程式を表 1 に示します。

 


表 1. 熱ストレス指数 (HSI) と許容曝露時間 (AET) の計算に使用される式

 

 

 

 

服を着た

裸の

(1) 放射損失 (R)

 

for

4.4

7.3

(2) 対流損失 (C)

 

for

4.6

7.6

 

(3) 最大蒸発損失 ()

 

(上限390 )

 

for

7.0

11.7

 

(4) 必要蒸発量 ()

 

 

 

 

(5) 熱応力指数(HSI)

 

 

 

 

(6) 許容露光時間 (AET)

 

 

 

ここで、 M = 代謝力; =気温; = 放射温度; = 部分蒸気圧;  v = 風速 


                         

 

  HSI したがって、指数として、本質的に体の発汗に関して、0 から 100 の間の値で緊張に関連します。 HSI = 100、必要な蒸発は達成できる最大値であり、したがって処方ゾーンの上限を表します。 為に HSI>100、体の蓄熱があり、許容曝露時間は、深部体温の 1.8 ºC 上昇 (264 kJ の蓄熱) に基づいて計算されます。 為に HSI0 軽度の寒冷緊張がある - たとえば、労働者が熱中症から回復したとき (表 2 を参照)。

表 2. 熱ストレス指数 (HSI) 値の解釈

HSI

XNUMX時間暴露の効果

-20

軽度の寒冷緊張 (例: 熱暴露からの回復)。

0

熱ひずみなし

10-30

軽度から中等度の熱ひずみ。 肉体労働への影響は少ないが、熟練労働への影響の可能性がある

40-60

身体的に健康でない限り、健康への脅威を伴う重度の熱中症。 順化が必要

70-90

非常に激しい熱中症。 職員は健康診断によって選択されるべきです。 十分な水分と塩分の摂取を確保する

100

体に慣れた若い男性が毎日耐えられる最大の負担

100以上

深部体温の上昇によって制限される暴露時間

上限390W/m2 に割り当てられています Eマックス (発汗速度は 1 リットル/時間、8 時間にわたって維持された最大発汗速度と見なされます)。 衣服 (長袖シャツとズボン) の影響について簡単な仮定が行われ、皮膚温度は 35 ℃ で一定であると仮定されます。

熱応力指数 (ITS)

Givoni (1963, 1976) は、熱ストレス指数の改良版である熱ストレス指数を提供しました。 重要な改善点は、すべての汗が蒸発するわけではないという認識です。 (「I. 熱応力の指標」参照) ケーススタディ: 暑さ指数.)

必要発汗量

HSI と ITS のさらなる理論的および実用的な開発は、必要な発汗率 (SW必須) 指数 (Vogt et al. 1981)。 この指標は、改善された熱収支式から熱収支に必要な発汗を計算しましたが、最も重要なことは、必要とされるものと人間で生理学的に可能で許容されるものとを比較することにより、計算を解釈する実用的な方法も提供しました.

この指標の広範な議論と実験室および産業評価 (CEC 1988) により、国際規格 ISO 7933 (1989b) として受け入れられました。 労働者の観察された反応と予測された反応との違いは、提案された欧州規格 (prEN-12515) としての採用において、衣服を介した脱水および蒸発熱伝達を評価する方法に関する注意書きを含めることにつながりました。 (「II.必要発汗量」参照) ケーススタディ: 暑さ指数.)

SWの解釈必須

許容できるもの、または人が達成できるものという観点からの参照値は、計算された値の実際的な解釈を提供するために使用されます (表 3 を参照)。

表 3. 熱応力とひずみの基準の参照値 (ISO 7933、1989b)

基準

順応していない被験者

順応した被験者

 

警告

危険

警告

危険

最大の肌の濡れ

wマックス

0.85

0.85

1.0

1.0

最大発汗率

レスト (M 65 Wm-2 )

SWマックス Wm-2 gh-1

100

150

200

300

 

260

390

520

780

仕事 (M≥65 Wm-2 )

SWマックス Wm-2 gh-1

200

250

300

400

 

520

650

780

1,040

最大蓄熱量

Qマックス

うーん-2

50

60

50

60

最大水分損失

Dマックス

うーん-2 g

1,000

1,250

1,500

2,000

 

2,600

3,250

3,900

5,200

 

まず、皮膚の湿潤度の予測 (Wp)、蒸発率(Ep) と発汗率 (SWp) 作られています。 基本的に、必要に応じて計算されたものが達成できる場合、これらは予測値です (例: SWp =SW必須)。 達成できない場合は、最大値を取ることができます (例: SWp=SWマックス)。 詳細については、決定フローチャートを参照してください (図 2 を参照)。

図 2. の決定フローチャート  (必要な発汗率)。

HEA080F2

人が必要な発汗量を達成でき、許容できないほどの水分損失を引き起こさない場合、8 時間のシフトで熱にさらされることによる制限はありません。 そうでない場合、期間限定エクスポージャー (DLE) 以下から計算されます。

日時 Ep = E必須 & SWp = Dマックス/8, その後 DLE = 480分と SW必須 熱ストレス指数として利用できます。 上記が満たされていない場合は、次のようになります。

DLE1 = 60Qマックス/( E必須Ep)

DLE2 = 60Dマックス/SWp

DLE の下位です DLE1と DLE2. 詳細は ISO 7933 (1989b) に記載されています。

その他の有理指数

  SW必須 index と ISO 7933 (1989) は、熱収支式に基づく最も洗練された合理的な方法を提供し、それらは大きな進歩でした。 このアプローチをさらに発展させることができます。 ただし、別のアプローチは、熱モデルを使用することです。 基本的に、新実効温度 (ET*) と標準実効温度 (SET) は、人間の体温調節の 1977 ノード モデルに基づいた指標を提供します (Nishi and Gagge 1972)。 Givoni と Goldman (1973, XNUMX) も、熱ストレスの評価のための経験的予測モデルを提供しています。

経験的指標

実効温度と補正実効温度

有効温度指数 (Houghton and Yaglou 1923) は、もともと、快適性に対する気温と湿度の相対的な影響を決定する方法を提供するために確立されました。 1940 人の被験者は、1960 つの気候室の間を歩いてどちらが暖かいかを判断しました。 気温と湿度 (およびその後の他のパラメーター) のさまざまな組み合わせを使用して、同等の快適さのラインが決定されました。 一過性の応答が記録されたので、即時の印象が作られました。 これには、低温での湿度の影響を過度に強調し、高温での湿度の影響を過小評価するという効果がありました (定常状態の応答と比較した場合)。 元々は快適指数でしたが、ET ノモグラムの乾球温度を置き換えるために黒球温度を使用することで、補正有効温度 (CET) が得られました (Bedford 1940)。 Macpherson (34) によって報告された研究では、CET が平均放射温度の上昇の生理学的影響を予測することが示唆されました。 ET と CET は現在、快適さの指標としてはほとんど使用されていませんが、熱ストレスの指標として使用されてきました。 Bedford (38.6) は、CET を暖かさの指標として提案しました。上限は「妥当な効率」の 4°C、耐性の XNUMX°C です。 しかし、さらなる調査により、ETには熱ストレス指数としての使用には重大な欠点があることが示され、予測されるXNUMX時間発汗率(PXNUMXSR)指数につながりました.

予測される XNUMX 時間発汗率

予測される 4 時間発汗率 (P1947SR) 指数は、McArdle らによってロンドンで確立されました。 (7) と Macpherson (1960) によって要約された 4 年間の作業でシンガポールで評価されました。 これは、海戦中に銃に弾薬を装填している間、XNUMX 時間環境にさらされた順応した若い男性によって分泌される汗の量です。 XNUMX つの基本パラメータの効果をまとめた単一の数値(指標値)は特定集団の発汗量ですが、個々のグループの発汗量を示すものではなく、指標値として使用する必要があります。興味。

規範的ゾーン(例えば、P4SR)の外にあることが認められました>5 l) 発汗量は緊張の良い指標ではありませんでした。 P4SR ノモグラム (図 3) は、これを説明するために調整されました。 P4SR は、それが導出された条件下で有用であったようです。 ただし、衣服の効果は単純化されすぎており、蓄熱指標として最も有用です。 マッカードル等。 ( 1947 ) 4 l の P4.5SR を提案しました。適応の無力化がなく、順応した若い男性が発生した限界です。

図 3.「予測 4 時間発汗率」(P4SR) の予測のためのノモグラム。

HEA080F3

指標としての心拍予測

Fuller と Brouha (1966) は、XNUMX 分あたりの心拍数 (HR) の予測に基づく単純な指標を提案しました。 BTU/h 単位の代謝率と mmHg 単位の蒸気圧で最初に定式化された関係は、心拍数の単純な予測を提供します。 (T + p)、 従って T + p インデックス。

Givoni と Goldman (1973) は、心拍数の経時変化の式と、被験者の順応度の補正も提供しています。 ケーススタディ」熱指数 「IV. 心拍数"。

NIOSH (1986) (Brouha 1960 および Fuller and Smith 1980, 1981 より) は、作業方法と心拍数の回復方法について説明しています。 体温と脈拍数は、作業サイクル後の回復中、または作業日の指定された時間に測定されます。 作業サイクルの終わりに、労働者はスツールに座り、口内温度が測定され、次の XNUMX つの脈拍数が記録されます。

P1— 脈拍数を 30 秒から 1 分までカウント

P2— 脈拍数は 1.5 分から 2 分までカウントされます

P3— 脈拍数は 2.5 分から 3 分までカウントされます

熱中症の最終的な基準は、口内温度が 37.5 ºC であることです。

If P3≤90 bpm および P3P1 = 10 bpm、これは作業レベルが高いことを示しますが、体温の上昇はほとんどありません。 もしも P3>90 bpm および P3P110 bpm では、ストレス (熱 + 仕事) が高すぎて、仕事を再設計するための行動が必要です。

フォークト等。 (1981) および ISO 9886 (1992) は、熱環境を評価するために心拍数を使用するモデル (表 4) を提供します。

表 4. 心拍数を使用して熱ストレスを評価するモデル

総心拍数

活動レベル

HR0

残り(熱的中性)

HR0 + 人事M

仕事

HR0 + 人事S

静的運動

HR0 + 人事t

熱ひずみ

HR0 + 人事N

感情(心理)

HR0 + 人事e

残余

Vogtらに基づく。 (1981) および ISO 9886 (1992)。

熱ひずみの成分 (可能な熱応力指数) は、次の式から計算できます。

HRt = HRrHR0

コラボレー HRr は回復後の心拍数であり、 HR0 は、熱的にニュートラルな環境での安静時心拍数です。

直接熱応力指数

湿球地球温度指数

湿球地球温度 (WBGT) 指数は、世界中で最も広く使用されています。 これは、訓練中の熱による犠牲者に関する米海軍の調査 (Yaglou と Minard 1957) で開発されたもので、緑色の軍服の太陽吸収率を考慮して修正された、より扱いにくい補正実効温度 (CET) の近似値として作成されました。

WBGT 制限値は、軍の新兵がいつ訓練できるかを示すために使用されました。 気温のみではなく WBGT 指数を使用することで、暑さの中でのトレーニングの中止による熱による犠牲者と時間の損失の両方が減少することがわかりました。 WBGT 指数は、NIOSH (1972)、ACGIH (1990)、および ISO 7243 (1989a) によって採用され、今日でも提案されています。 ISO 7243 (1989a) は、WBGT インデックスに基づいており、高温環境で「迅速な」診断を提供するために簡単に使用できる方法を提供しています。 測定器の仕様は、順化された人または順化されていない人の WBGT 制限値と同様に、規格に記載されています (表 5 を参照)。 たとえば、0.6 clo の安静順応者の場合、限界値は 33°C WBGT です。 ISO 7243 (1989a) と NIOSH 1972 で規定されている制限は、ほぼ同じです。 WBGT 指数の計算は、添付のセクション V に記載されています。 ケーススタディ: 熱指数。

表 5. ISO 7243 (1989a) の WBGT 参照値

代謝率 M (Wm-2 )

WBGTの参考値

 

慣れている人
熱(℃)

慣れていない人
熱(℃)

0. 安静時 M≤65

33

 

32

 

1. 65M≤130

30

 

29

 

2. 130M≤200

28

 

26

 
 

感覚的な空気の動きがない

賢明な空気の動き

感覚的な空気の動きがない

賢明な空気の動き

3. 200M260

25

26

22

23

4.M>260

23

25

18

20

注: 与えられた値は、関係者の最大直腸温度 38°C を考慮して設定されています。

インデックスのシンプルさと影響力のある機関による使用により、広く受け入れられています。 すべての直接指数と同様に、人間の反応をシミュレートするために使用する場合には制限があり、実際のアプリケーションでは注意して使用する必要があります。 WBGT 指数を決定するポータブル機器を購入することは可能です (例: Olesen 1985)。

生理的熱暴露限界 (PHEL)

Dasler (1974, 1977) は、許容できない歪みの (実験データからの) 任意の XNUMX つの生理学的限界を超える予測に基づいて、WBGT 限界値を提供しています。 制限は次の式で与えられます。

フェル=(17.25×108-12.97M×106+18.61M2 ×103)×WBGT-5.36

したがって、この指数は、蓄熱が発生する可能性がある環境駆動ゾーン (図 4 を参照) の WBGT 直接指数を使用します。

湿球温度 (WGT) 指数

適切なサイズの湿った黒球の温度は、熱ストレスの指標として使用できます。 原理は、汗をかく男性のように、乾燥熱伝達と蒸発熱伝達の両方の影響を受けるということです。温度は、経験に基づいて、熱ストレス指標として使用できます。 Olesen (1985) は、湿った黒い布で覆われた直径 2.5 インチ (63.5 mm) の黒い球体の温度として WGT を説明しています。 温度は、約 10 から 15 分の暴露後に平衡に達したときに読み取られます。 NIOSH (1986) は、Botsball (Botsford 1971) を最も単純で最も読みやすい楽器と表現しています。 これは 3 インチ (76.2 mm) の銅製の球体で、黒い布で覆われており、自給式の貯水池からの 100% の湿潤度に保たれています。 温度計の感知素子は球体の中心にあり、温度は (色分けされた) ダイヤルで読み取られます。

WGT を WBGT に関連付ける簡単な式は次のとおりです。

 

WBGT = WGT +2℃

中程度の輻射熱と湿度の条件に対して (NIOSH 1986)、もちろん、この関係は広い範囲の条件で成り立つわけではありません。

オックスフォード指数

Lind (1957) は、貯蔵が制限された熱暴露に使用され、吸引された湿球温度の加重和に基づく、単純で直接的な指標を提案しました (Twb) と乾球温度 (Tdb):

WD = 0.85 Twb + 0.15 Tdb

地雷救助隊の許容曝露時間は、この指標に基づいていました。 広く適用できますが、熱放射が大きい場所には適していません。

高温環境での作業方法

NIOSH (1986) は、予防医療行為を含む、高温環境での作業行為に関する包括的な説明を提供しています。 ISO CD 12894 (1993) には、高温環境または低温環境にさらされる個人の医学的監督に関する提案が記載されています。 これは、1985 年の国連総会で確認された基本的人権であることを常に念頭に置いておく必要があります。 ヘルシンキ宣言、 可能であれば、人は説明を必要とせずに極端な環境から身を引くことができます。 ばく露が発生する場所では、定義された作業手順によって安全性が大幅に向上します。

環境エルゴノミクスおよび産業衛生において、可能であれば、環境ストレス要因をその発生源から減らすことは合理的な原則です。 NIOSH (1986) は、制御方法を 6 つのタイプに分類しています。 これらを表 XNUMX に示します。

表 6. 高温環境での作業方法

A. 工学的管理

1.熱源を減らす

作業者から離れるか、温度を下げてください。 常に実用的であるとは限りません。

2.対流熱制御

気温と空気の動きを変更します。 スポット クーラーが役立つ場合があります。

3. 輻射熱制御

表面温度を下げるか、放射源と作業員の間に反射シールドを配置してください。 表面の放射率を変更します。 アクセスが必要な場合にのみ開くドアを使用します。

4. 蒸発熱制御

空気の動きを増やし、水蒸気圧を下げます。 扇風機またはエアコンを使用してください。 衣類を濡らし、人全体に風を当てる。

B. 作業と衛生慣行
および管理上の制御

1. 露出時間の制限および/または
温度

日中および年間の涼しい時間帯に作業を行ってください。 休息と回復のための涼しい場所を提供します。 余分な人員、作業を中断する労働者の自由、水の摂取量の増加。

2.代謝熱負荷を軽減する

機械化。 再設計ジョブ. 作業時間を短縮します。 労働力を増やす。

3.許容時間の強化

熱順化プログラム。 労働者の身体を健康に保ちます。 必要に応じて、失われた水分を補い、電解質のバランスを維持してください。

4. 安全衛生教育

監督者は、熱中症の兆候の認識と応急処置の訓練を受けています。 人体に対する予防措置、保護具の使用、および非職業的要因 (アルコールなど) の影響に関するすべての担当者への基本的な指示。 「バディ」システムの使用。 治療のための緊急時対応計画を整備する必要があります。

5.暑さ不耐性のスクリーニング

熱中症の既往歴。 体に不向き。

C.熱警報プログラム

1.春は暑さ注意報を設置
委員会(産業医)
または看護師、産業衛生士、
安全エンジニア、操作
エンジニア、上級マネージャー)

トレーニングコースを手配します。 水飲み場などをチェックするための監督者へのメモ 施設、慣行、準備状況などをチェックする

2. 予測で熱警報を宣言する
猛暑の呪文

緊急性のないタスクを延期します。 労働者を増やし、休息を増やします。 従業員に飲酒を促す。 作業慣行を改善します。

D.補助体冷却および保護服

労働者、作業、または環境を変更することができず、熱ストレスが限界を超えている場合に使用します。 個人は完全に暑さに順応し、防護服の使用と着用について十分な訓練を受ける必要があります。 例としては、水冷式衣類、空冷式衣類、保冷ベスト、濡れた上着が挙げられます。

E. パフォーマンスの低下

有毒物質からの保護を提供する防護服を着用すると、熱ストレスが増加することを覚えておく必要があります。 すべての衣服は活動を妨げ、パフォーマンスを低下させる可能性があります (たとえば、感覚情報を受け取る能力が低下し、聴覚や視覚が損なわれるなど)。

出典: NIOSH 1986.

いわゆる NBC (核、生物、化学) 防護服に関する軍事研究が数多く行われています。 暑い環境では衣服を脱ぐことができず、作業方法が非常に重要です。 同様の問題は、原子力発電所の労働者にも発生します。 作業員が作業を再開できるようにすばやく冷却する方法には、衣服の外面を水でスポンジし、乾いた空気をその上から吹き付ける方法があります。 他の技術には、身体の局所領域を冷却するための能動的冷却装置および方法が含まれる。 ミリタリー ウェア技術の産業環境への移行は新しいイノベーションですが、多くのことが知られており、適切な作業慣行によりリスクを大幅に軽減できます。

 

表 7. ISO 7933 (1989b) の指標と評価方法の計算に使用される式

自然対流用

or  、近似の場合、または値が方程式が導出された制限を超えている場合。

____________________________________________________________________________________

表 8. ISO 7933 (1989b) で使用される用語の説明

シンボル

契約期間

Units

放射による熱交換に関与する皮膚表面の割合

ND

C

対流による皮膚の熱交換  

Wm-2

対流による呼吸熱損失

Wm-2

E

皮膚表面での蒸発による熱流

Wm-2

完全に濡れた肌で達成できる最大蒸発速度

Wm-2

熱平衡に必要な蒸発

Wm-2

蒸発による呼吸熱損失

Wm-2

皮膚放射率 (0.97)

ND

衣服による顕熱交換の減少係数

ND

潜熱交換の減少係数

ND

被験者の衣服を着ている表面積と裸の表面積の比率

ND

対流熱伝達係数

蒸発熱伝達係数

放射熱伝達係数

衣類の基本的な乾熱断熱

K

伝導による皮膚の熱交換

Wm-2

M

代謝力

Wm-2

部分蒸気圧

kPa

皮膚温度での飽和蒸気圧

kPa

R

放射線による皮膚の熱交換

Wm-2

空気と衣類の制限層の総蒸発抵抗

必要な発汗速度での蒸発効率

ND

熱平衡に必要な発汗量

Wm-2

ステファン・ボルツマン定数、 

大気温

平均放射温度

平均皮膚温度

静止している対象の空気速度

相対空気速度

W

機械力

Wm-2

肌の潤い

ND

肌の潤いが必要

ND

ND = 無次元。

高温環境での作業方法

NIOSH (1986) は、予防医療行為を含む、高温環境での作業行為に関する包括的な説明を提供しています。 ISO CD 12894 (1993) には、高温環境または低温環境にさらされる個人の医学的監督に関する提案が記載されています。 これは、1985 年の国連総会で確認された基本的人権であることを常に念頭に置いておく必要があります。ヘルシンキ宣言、 可能であれば、人は説明を必要とせずに極端な環境から身を引くことができます。 ばく露が発生する場所では、定義された作業手順によって安全性が大幅に向上します。

環境エルゴノミクスおよび産業衛生において、可能であれば、環境ストレス要因をその発生源から減らすことは合理的な原則です。 NIOSH (1986) は、制御方法を 7 つのタイプに分類しています。 これらを表 XNUMX に示します。いわゆる NBC (核、生物、化学) 防護服に関する軍事研究が数多く行われています。 暑い環境では衣服を脱ぐことができず、作業方法が非常に重要です。 同様の問題は、原子力発電所の労働者にも発生します。 作業員が作業を再開できるようにすばやく冷却する方法には、衣服の外面を水でスポンジし、乾いた空気をその上から吹き付ける方法があります。 他の技術には、身体の局所領域を冷却するための能動的冷却装置および方法が含まれる。 ミリタリー ウェア技術の産業環境への移行は新しいイノベーションですが、多くのことが知られており、適切な作業慣行によりリスクを大幅に軽減できます。

ISO規格を使用した高温環境の評価

次の架空の例は、高温環境の評価に ISO 規格をどのように使用できるかを示しています (Parsons 1993)。

製鉄所の労働者は、1 つのフェーズで作業を行います。 彼らは衣服を着用し、暑い日差しの中で1時間軽作業を行います。 30時間休んでから、輻射熱を避けてXNUMX時間同じ軽作業を行います。 その後、XNUMX分間、暑い放射環境で中程度の身体活動を伴う作業を行います.

ISO 7243 は、WBGT インデックスを使用して環境を監視する簡単な方法を提供します。 計算された WBGT レベルが基準で指定された WBGT 参照値よりも低い場合、それ以上のアクションは必要ありません。 レベルが基準値 (表 6) を超える場合は、作業者の負担を軽減する必要があります。 これは、エンジニアリング制御と作業慣行によって達成できます。 補完的または代替的な措置は、ISO 7933 に従って分析評価を実施することです。

作業の WBGT 値を表 9 に示し、ISO 7243 および ISO 7726 で指定された仕様に従って測定しました。作業の 10 つのフェーズに関連する環境要因と個人要因を表 XNUMX に示します。

表 9. XNUMX つの作業段階の WBGT 値 (°C)

作業フェーズ (分)

WBGT = WBGTANK + 2WBGTabd +WBGThd

WBGT リファレンス

0-60

25

30

60-90

23

33

90-150

23

30

150-180

30

28

 

表 10. ISO 7933 を使用した分析評価の基本データ

作業フェーズ (分)

ta (°C)

tr (°C)

Pa (Kpa)

v

(MS-1 )

CLO

(クロ)

行為

(うーん-2 )

0-60

30

50

3

0.15

0.6

100

60-90

30

30

3

0.05

0.6

58

90-150

30

30

3

0.20

0.6

100

150-180

30

60

3

0.30

1.0

150

 

作業の一部で WBGT 値が基準値を上回っていることがわかります。 より詳細な分析が必要であると結論付けられています。

ISO 7933 に示されている分析評価方法は、表 10 に示されているデータと、規格の付属書に記載されているコンピューター プログラムを使用して実行されました。 順応した労働者の警報レベルに関する結果を表 11 に示します。

表 11. ISO 7933 を使用した分析評価

作業段階
(分)

予測値

演奏時間
限られました
暴露
(分)

の理由
制限

 

tsk (°C)

W(ND)

SW (GH-1 )

 

0-60

35.5

0.93

553

423

水の損失

60-90

34.6

0.30

83

480

制限なし

90-150

34.6

0.57

213

480

制限なし

150-180

35.7

1.00

566

45

体温

全体

-

0.82

382

480

制限なし

 

したがって、全体的な評価では、作業に適した環境に順応していない労働者は、容認できない(熱による)生理的緊張を受けることなく、8 時間のシフトを行うことができると予測されます。 より高い精度が必要な場合、または個々の労働者を評価する必要がある場合は、ISO 8996 および ISO 9920 が代謝熱の生成と衣類の断熱に関する詳細な情報を提供します。 ISO 9886 は、労働者の生理的負担を測定する方法を説明しており、特定の労働力の環境を設計および評価するために使用できます。 この例では、平均皮膚温度、体内温度、心拍数、および質量損失が重要です。 ISO CD 12894 は、調査の医学的監督に関するガイダンスを提供します。

 

戻る

読む 36879 <font style="vertical-align: inherit;">回数</font> 26:先週の火曜日、7月2022 21 20に行わ

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

暑さと寒さの参照

ACGIH (米国政府産業衛生士会議)。 1990. 1989 ~ 1990 年の限界値と生物学的暴露指数。 ニューヨーク: ACGIH.

—。 1992年。寒冷ストレス。 作業環境における物理エージェントのしきい値制限値。 ニューヨーク: ACGIH.

Bedford, T. 1940. 環境の暖かさとその測定。 Medical Research Memorandum No. 17. London: Her Majesty's Stationery Office.

ベルディング、HS および TF ハッチ。 1955. 熱ストレスを結果として生じる生理学的ひずみの観点から評価するための指標。 暖房配管エアコン 27:129–136.

ビッテル、JHM. 1987 年。男性の寒冷適応の指標としての暑熱負債。 J Appl Physiol 62(4):1627–1634。

Bittel、JHM、C Nonotte-Varly、GH Livecchi-Gonnot、GLM Savourey、および AM Hanniquet。 1988. 男性の寒冷環境における体力と体温調節反応。 J Appl Physiol 65:1984-1989。

Bittel、JHM、GH Livecchi-Gonnot、AM Hanniquet、JL Etienne。 1989 年。JL Etienne の北極点への旅の前後に観測された温度変化。 Eur J Appl Physiol 58:646–651。

ブライ、J、KG ジョンソン。 1973. 熱生理学の用語集。 J Appl Physiol 35(6):941–961。

ボッツフォード、JH。 1971. 環境熱測定用湿球温度計。 Am Ind Hyg J 32:1–10.

Boutelier、C. 1979年。 ヌイイ・シュル・セーヌ: AGARD AG 211.

Brouha、L. 1960.産業における生理学。 ニューヨーク:ペルガモンプレス。

バートン、AC、OG エドホルム。 1955年。寒い環境にいる男。 ロンドン:エドワード・アーノルド。

チェン、F、H ニルソン、RI ホルマー。 1994. アルミニウム表面に接触した指の腹の冷却反応。 Am Ind Hyg Assoc J 55(3):218-22。

欧州正規化委員会 (CEN)。 1992 年。EN 344。寒さに対する防護服。 ブリュッセル: CEN.

—。 1993. EN 511. 寒さに対する保護手袋。 ブリュッセル: CEN.

欧州共同体委員会 (CEC)。 1988. 熱ストレス指標に関するセミナーの議事録。 ルクセンブルグ: CEC、健康安全総局。

ダーネン、ハム。 1993. 寒くて風の強い条件での手動性能の低下。 アガード、NATO、CP-540。

ダスラー、アーカンソー州。 1974年。陸上および海上での換気と熱ストレス。 第3章、海軍予防医学のマニュアル。 ワシントン DC: 海軍省、医学および外科局。

—。 1977. 人の熱ストレス、仕事機能、生理的熱曝露限界。 熱分析 - 人間の快適さ - 室内環境。 NBS Special Publication 491。ワシントン DC: 米国商務省。

Deutsches Institut für Normierung (DIN) 7943-2。 1992. Schlafsacke、Thermophysiologische Prufung。 ベルリン: DIN.

デュボア、D および EF デュボア。 1916. 臨床熱量測定 X: 身長と体重がわかっている場合に適切な表面積を推定する式。 Arch Int Med 17:863–871.

イーガン、CJ. 1963. 導入と用語。 Fed Proc 22:930–933。

エドワーズ、JSA、DE ロバーツ、SH ムッター。 1992年。寒い環境での使用に関する関係。 J Wildlife Med 3:27–47.

Enander, A. 1987. 適度な寒さにおける感覚反応とパフォーマンス。 博士論文。 Solna: 国立産業衛生研究所。

フラー、FH、L ブルーハ。 1966. 仕事環境を評価するための新しい工学的手法。 アシュラエ J 8(1):39–52.

フラー、FH、PE スミス。 1980. 暑い作業場での予防作業手順の有効性。 FN Dukes-Dobos および A Henschel (編)。 推奨される熱ストレス基準に関する NIOSH ワークショップの議事録。 ワシントン DC: DHSS (NIOSH) 発行番号 81-108。

—。 1981. 生理学的測定による暑いワークショップでの熱ストレスの評価。 Am Ind Hyg Assoc J 42:32–37.

Gagge、AP、AP Fobelets、LG Berglund。 1986. 熱環境に対する人間の反応の標準的な予測指標。 ASHRAE トランス 92:709–731。

ジソルフィ、CV、CB ウェンガー。 1984. 運動中の体温調節: 古い概念、新しいアイデア。 運動スポーツ科学改訂 12:339–372。

Givoni, B. 1963. 工業用熱暴露と最大許容作業負荷を評価するための新しい方法。 1963 年 XNUMX 月、フランスのパリで開催された国際生物気象会議に提出された論文。

—。 1976. 人、気候および建築、第 2 版。 ロンドン:応用科学。

ジヴォーニ、B、RF ゴールドマン。 1972. 仕事、環境、衣類に対する直腸温度の反応の予測。 J Appl Physiol 2(6):812–822。

—。 1973. 仕事、環境、衣服に対する心拍数の反応を予測。 J Appl Physiol 34(2):201–204。

ゴールドマン、RF。 1988 年。人間の熱暴露に関する基準。 環境エルゴノミクス、IB Mekjavic、EW Banister、JB Morrison が編集。 ロンドン:テイラー&フランシス。

ヘイルズ、JRS、DAB リチャーズ。 1987.熱ストレス。 アムステルダム、ニューヨーク: Oxford Excerpta Medica.

ハンメル、HT。 1963. 人間の比較熱パターンのまとめ。 Fed Proc 22:846–847.

Havenith、G、R Heus、WA Lotens。 1990. 衣類の通気性、防湿性、透湿指数: 姿勢、動き、風による変化。 人間工学 33:989–1005。

ヘイズ。 1988. IB Mekjavic、EW Banister、および JB Morrison によって編集された環境エルゴノミクス。 ロンドン:テイラー&フランシス。

Holmér, I. 1988.必要な衣類の断熱材に関する寒冷ストレスの評価—IREQ。 Int J Ind Erg 3:159–166.

—。 1993年。寒い中での作業。 寒冷ストレスの評価方法の見直し。 Int Arch Occ Env Health 65:147–155.

—。 1994. 寒冷ストレス: 第 1 部 — 開業医のためのガイドライン。 Int J Ind Erg 14:1–10.

—。 1994. 寒冷ストレス: パート 2 - ガイドの科学的根拠 (知識ベース)。 Int J Ind Erg 14:1–9.

ホートン、FC、CP ヤゴグル。 1923. 同等のコンフォート ラインの決定。 J ASHVE 29:165–176。

国際標準化機構 (ISO)。 1985. ISO 7726. 熱環境 - 物理量を測定するための機器と方法。 ジュネーブ: ISO。

—。 1989a。 ISO 7243. 高温環境 - WBGT インデックス (湿球球温度) に基づく、働く男性の熱ストレスの推定。 ジュネーブ: ISO。

—。 1989b. ISO 7933. 高温環境 - 必要な発汗量の計算を使用した熱応力の分析的決定と解釈。 ジュネーブ: ISO。

—。 1989c。 ISO DIS 9886。エルゴノミクス—生理学的測定による熱ひずみの評価。 ジュネーブ: ISO。

—。 1990. ISO 8996. 人間工学 - 代謝熱産生の測定。 ジュネーブ: ISO。

—。 1992 年。ISO 9886。生理学的測定による熱ひずみの評価。 ジュネーブ: ISO。

—。 1993.主観的判断スケールを使用した熱環境の影響の評価。 ジュネーブ: ISO。

—。 1993. ISO CD 12894. 熱環境のエルゴノミクス - 高温環境または低温環境にさらされる個人の医療監督。 ジュネーブ: ISO。

—。 1993. ISO TR 11079 寒冷環境の評価 - 必要な衣類断熱材の決定、IREQ。 ジュネーブ: ISO。 (テクニカルレポート)

—。 1994年。ISO 9920。エルゴノミクス—衣類アンサンブルの熱特性の推定。 ジュネーブ: ISO。

—。 1994 年。ISO 7730。中程度の熱環境 - PMV および PPD 指数の決定と熱的快適性のための条件の仕様。 ジュネーブ: ISO。

—。 1995. ISO DIS 11933. 熱環境の人間工学。 国際規格の原則と適用。 ジュネーブ: ISO。

Kenneth、W、P Sathasivam、AL Vallerand、TB Graham。 1990. 28 ℃および 5 ℃の安静時の男性の代謝反応に対するカフェインの影響。 J Appl Physiol 68(5):1889–1895。

ケニー、WL、SR ファウラー。 1988.年齢の関数としてのメチルコリン活性化エクリン汗腺の密度と出力。 J Appl Physiol 65:1082–1086。

カースレイク、DMcK。 1972. 高温環境のストレス。 ケンブリッジ: ケンブリッジ大学出版局。

LeBlanc, J. 1975. 寒い中の男。 米国イリノイ州スプリングフィールド: Charles C Thomas Publ.

カリフォルニア州ライトヘッドと AR リンド。 1964.熱ストレスと頭部障害。 ロンドン: カッセル。

リンド、AR。 1957. すべての人の仕事の温度環境限界を設定するための生理学的基準。 J Appl Physiol 18:51–56。

ローテンズ、ワシントン州。 1989年。多層衣類の実際の断熱。 Scand J Work Environ Health 15 Suppl。 1:66–75。

—。 1993年。衣服を着た人間からの熱伝達。 論文、工科大学。 デルフト、オランダ。 (ISBN 90-6743-231-8)。

Lotens、WA、G Havenith。 1991. 衣類の断熱性と耐蒸気性の計算。 人間工学 34:233–254。

マクリーン、D および D Emslie-Smith。 1977. 偶発的な低体温症。 オックスフォード、ロンドン、エジンバラ、メルボルン: Blackwell Scientific Publication.

マクファーソン、RK。 1960. 暑い環境に対する生理学的反応。 Medical Research Council Special Report Series No. 298. London: HMSO.

Martineau、L、および I Jacob。 1988. ヒトの震え熱産生中の筋グリコーゲン利用。 J Appl Physiol 56:2046–2050。

モーガン、RJ. 1991.運動中の体液と電解質の損失と補充。 J スポーツ科学 9:117–142。

McArdle、B、W Dunham、HE Halling、WSS Ladell、JW Scalt、ML Thomson、JS Weiner。 1947. 暖かい環境と暑い環境の生理学的影響の予測。 医学研究評議会議員 47/391。 ロンドン: RNP.

McCullough、EA、BW Jones、PEJ Huck。 1985. 衣類の断熱材を推定するための包括的なデータベース。 ASHRAE トランス 91:29–47。

McCullough、EA、BW Jones、T Tamura。 1989. 衣服の蒸発抵抗を決定するためのデータベース。 ASHRAE トランス 95:316–328。

マッキンタイア、DA。 1980年。室内気候。 ロンドン: Applied Science Publishers Ltd.

Mekjavic、IB、EW Banister および JB Morrison (eds.)。 1988年。環境エルゴノミクス。 フィラデルフィア:テイラー&フランシス。

Nielsen, B. 1984. 脱水、再水和および体温調節。 E Jokl と M Hebbelinck (編)。 医学とスポーツ科学。 バーゼル:S.カーガー。

—。 1994.熱ストレスと順化。 人間工学 37(1):49–58.

Nielsen、R、BW Olesen、PO Fanger。 1985. 衣服の断熱に対する身体活動と空気速度の影響。 人間工学 28:1617–1632。

国立労働安全衛生研究所 (NIOSH)。 1972. 高温環境への職業暴露。 HSM 72-10269。 ワシントン DC: 米国保健教育福祉省。

—。 1986. 高温環境への職業暴露。 NIOSH 出版物番号 86-113。 ワシントンDC:NIOSH。

西、Y、AP Gagge。 1977 年。低気圧および高気圧環境に使用される実効温度スケール。 Aviation Space and Envir Med 48:97–107.

オレセン、BW。 1985.熱ストレス。 Bruel and Kjaer Technical Review No. 2. デンマーク: Bruel and Kjaer.

オレセン、BW、E スリウィンスカ、TL マドセン、PO ファンガー。 1982. 衣服の断熱に対する体の姿勢と活動の影響: 可動式サーマル マネキンによる測定。 ASHRAE トランス 88:791–805。

Pandolf、KB、BS Cadarette、MN Sawka、AJ Young、RP Francesconi、RR Gonzales。 1988. J Appl Physiol 65(1):65–71.

パーソンズ、K.C. 1993.人間の熱環境。 イギリス、ハンプシャー:テイラー&フランシス。

リード、HL、D ブライス、KMM シャキール、KD バーマン、MM ダレサンドロ、JT オブライアン。 1990. 南極での長期滞在後の甲状腺ホルモンの遊離画分の減少。 J Appl Physiol 69:1467–1472。

ローウェル、LB. 1983.人間の体温調節の心臓血管の側面。 Circ Res 52:367–379。

—。 1986. 物理的ストレス中の人間の循環調節。 オックスフォード: OUP.

佐藤、K、F 佐藤。 1983.ヒトエクリン汗腺の構造と機能の個人差。 Am J Physiol 245:R203–R208。

Savourey、G、AL Vallerand、J Bittel。 1992. 厳しい北極環境でのスキー旅行後の一般的および局所的な適応. Eur J Appl Physiol 64:99–105。

Savourey、G、JP Caravel、B Barnavol、J Bittel。 1994. 局所的な寒冷順応後の寒気環境における甲状腺ホルモンの変化。 J Appl Physiol 76(5):1963–1967。

Savourey、G、B Barnavol、JP Caravel、C Feuerstein および J Bittel。 1996. 局所的な寒冷順応によって引き起こされる低体温の一般的な寒冷適応。 Eur J Appl Physiol 73:237–244。

Vallerand、AL、I Jacob、MF Kavanagh。 1989. ヒトにおけるエフェドリン/カフェイン混合物による耐寒性増強のメカニズム。 J Appl Physiol 67:438–444。

van Dilla, MA, R Day and PA Siple. 1949年。手の特別な問題。 熱調節の生理学、R Newburgh 編。 フィラデルフィア: サンダース。

ベラー、OD。 1969. 発汗による栄養素の損失。 オスロ: Universitetsforlaget.

Vogt、JJ、V Candas、JP Libert、F Daull。 1981. 産業界における熱ひずみの指標として必要な発汗量。 In Bioengineering, Thermal Physiology and Comfort, K Cena と JA Clark が編集. アムステルダム:エルゼビア。 99–110。

Wang、LCH、SFP Man、AN Bel Castro。 1987. 男性のテオフィリン増加耐寒性における代謝およびホルモン反応。 J Appl Physiol 63:589–596。

世界保健機関 (WHO)。 1969. 熱ストレス条件下での作業に関与する健康要因。 Technical Report 412. ジュネーブ: WHO。

Wissler、EH。 1988年。人間の熱モデルのレビュー。 環境エルゴノミクス、IB Mekjavic、EW Banister、JB Morrison が編集。 ロンドン:テイラー&フランシス。

ウッドコック、ああ。 1962年。テキスタイルシステムにおける水分移動。 パート I. Textile Res J 32:628–633。

Yaglou、CP、および D Minard。 1957. 軍事訓練センターでの熱中症の管理。 Am Med Assoc Arch Ind Health 16:302–316 および 405。