極低周波 (ELF) および極低周波 (VLF) 電界および磁界は、静電界 (> 0 Hz) を超えて 30 kHz までの周波数範囲を網羅しています。 この文書では、ELF は > 0 ~ 300 Hz の周波数範囲にあり、VLF は > 300 Hz ~ 30 kHz の範囲にあると定義されています。 > 0 から 30 kHz の周波数範囲では、波長は ∞ (無限大) から 10 km まで変化するため、電場と磁場は本質的に互いに独立して作用し、別々に扱う必要があります。 電界強度 (E) は XNUMX メートルあたりのボルト (V/m) で測定され、磁場強度 (H) は XNUMX メートルあたりのアンペア (A/m) で測定され、磁束密度 (B) テスラ (T)。
この周波数範囲で動作する機器を使用している労働者によって、健康への悪影響の可能性についてかなりの議論が表明されています。 最も一般的な周波数は 50/60 Hz で、電力の生成、配電、および使用に使用されます。 50/60 Hz 磁場への曝露が癌発生率の増加と関連している可能性があるという懸念は、メディアの報道、誤った情報の配布、進行中の科学的議論によって煽られています (Repacholi 1990; NRC 1996)。
この記事の目的は、次のトピック領域の概要を提供することです。
- ソース、職業、アプリケーション
- 線量測定と測定
- 相互作用メカニズムと生物学的効果
- 人間の研究と健康への影響
- 保護対策
- 職業被ばく基準。
ELF および VLF の主な発生源からの電磁界の種類と強さ、生物学的影響、健康への影響の可能性、および現在の曝露限界を労働者に知らせるために、概要の説明が提供されています。 安全上の注意事項と保護措置の概要も示します。 多くの作業者が視覚表示装置 (VDU) を使用していますが、この記事の他の場所で詳しく説明されているため、この記事では簡単な詳細のみを示します。 百科事典.
ここに含まれる資料の多くは、多くの最近のレビューでより詳細に見つけることができます (WHO 1984、1987、1989、1993; IRPA 1990; ILO 1993; NRPB 1992, 1993; IEEE 1991; Greene 1992; NRC 1996)。
職業被ばくの原因
職業被ばくのレベルはかなり異なり、特定の用途に大きく依存します。 表 1 は、0 ~ 30 kHz の範囲の周波数の典型的なアプリケーションの概要を示しています。
表 1. > 0 ~ 30 kHz の範囲で動作する機器のアプリケーション
周波数 |
波長(km) |
一般的なアプリケーション |
16.67、50、60 Hz |
18,000-5,000 |
発電、送電および使用、電解プロセス、誘導加熱、アークおよびレードル炉、溶接、輸送など、電力の産業、商業、医療または研究用途 |
0.3〜3 kHz |
1,000-100 |
放送変調、医療用途、電気炉、誘導加熱、焼入れ、はんだ付け、溶解、精錬 |
3〜30 kHz |
100-10 |
超長距離通信、無線ナビゲーション、放送変調、医療用途、誘導加熱、硬化、はんだ付け、溶融、精製、VDU |
発電と配電
50/60 Hz 電界および磁界の主要な人工発生源は、発電および配電に関係するもの、および電流を使用するあらゆる機器です。 このような機器のほとんどは、ほとんどの国では 50 Hz、北米では 60 Hz の電源周波数で動作します。 一部の電車システムは 16.67 Hz で動作します。
高電圧 (HV) 送電線と変電所は、作業者が日常的にさらされる可能性のある最強の電界に関連付けられています。 導体の高さ、幾何学的構成、送電線からの横方向の距離、および送電線の電圧は、地上レベルでの最大電界強度を考慮する上で最も重要な要素です。 線の高さの約 1978 倍の横方向の距離では、電界強度は距離に応じてほぼ直線的に減少します (Zaffanella and Deno 100,000)。 HV 送電線の近くにある建物の内部では、建物の構成や構造材料にもよりますが、通常、電界強度は非摂動電界よりも約 XNUMX 倍低くなります。
架空送電線からの磁場強度は、通常、大電流を伴う産業用アプリケーションに比べて比較的低くなります。 変電所や稼働中の送電線の保守に従事する電力会社の従業員は、より大きな電磁界 (場合によっては 5 mT 以上) にさらされる特別なグループを形成します。 強磁性体がない場合、磁力線は導体の周りに同心円を形成します。 電源導体の形状とは別に、最大磁束密度は電流の大きさによってのみ決定されます。 HV 送電線の下の磁場は、主に送電線の軸に対して横方向に向けられます。 グランドレベルでの最大磁束密度は、導体間の位相関係に応じて、中心線の下または外部導体の下になる場合があります。 典型的な 500 回線 35 kV 架空送電線システムの地上レベルでの最大磁束密度は、送電電流 1992 キロアンペアあたり約 0.05 μT です (Bernhardt と Matthes 16)。 2 mT までの磁束密度の典型的な値は、架線近くの職場、変電所、および 3 50/60、1986、または XNUMX Hz の周波数で動作する発電所で発生します (Krause XNUMX)。
産業プロセス
職業上の磁場への曝露は、主に大電流を使用する産業機器の近くでの作業に起因します。 このような装置には、溶接、エレクトロスラグ精錬、加熱(炉、誘導加熱器)および攪拌に使用されるものが含まれます。
カナダ (Stuchly and Lecuyer 1985)、ポーランド (Aniolczyk 1981)、オーストラリア (Repacholi、未発表データ)、およびスウェーデン (Lövsund、Oberg、および Nilsson 1982) で実施された、産業で使用される誘導加熱器に関する調査では、磁束密度が使用する周波数とマシンからの距離に応じて、0.7 μT から 6 mT の範囲のオペレーターの位置。 Lövsund、Oberg、および Nilsson (1982) は、産業用電気鋼および溶接装置からの磁場の研究で、スポット溶接機 (50 Hz、15 ~ 106 kA) および取鍋炉 (50 Hz、13 ~ 15 kA) が最大 10 m の距離で最大 1 mT の電界を生成しました。 オーストラリアでは、50 Hz から 10 kHz の範囲で動作する誘導加熱プラントが、オペレーターが立つことができる位置で最大 2.5 mT (50 Hz 誘導炉) の磁場を与えることが判明しました。 さらに、他の周波数で動作する誘導ヒーター周辺の最大電界は、130 kHz で 1.8 μT、25 kHz で 2.8 μT、130 kHz で 9.8 μT を超えていました。
磁場を生成するコイルの寸法は小さいことが多いため、全身への高曝露はめったになく、主に手への局所曝露です。 オペレーターの手への磁束密度は 25 mT に達することがあります (Lövsund and Mild 1978; Stuchly and Lecuyer 1985)。 ほとんどの場合、磁束密度は 1 mT 未満です。 誘導加熱器の近くの電界強度は通常低いです。
電気化学産業の労働者は、電気炉または大電流を使用するその他の装置により、高強度の電場および磁場にさらされる可能性があります。 たとえば、誘導炉や工業用電解セルの近くでは、磁束密度が 50 mT にも達することがあります。
ビジュアルディスプレイユニット
ビジュアル ディスプレイ ユニット (VDU) またはビデオ ディスプレイ ターミナル (VDT) とも呼ばれる使用は、ますます増加しています。 VDT オペレーターは、低レベル放射線の放出による影響の可能性について懸念を表明しています。 15 A/m (125 μT) もの高い磁場 (周波数 0.69 ~ 0.9 kHz) が、スクリーンの表面に近い最悪の条件下で測定されました (Bureau of Radiological Health 1981)。 この結果は、多くの調査によって確認されています (Roy et al. 1984; Repacholi 1985 IRPA 1988)。 国家機関および個々の専門家による VDT の測定および調査の包括的なレビューは、VDT からの健康に影響を与える放射線放出はないと結論付けました (Repacholi 1985; IRPA 1988; ILO 1993a)。 最悪の場合や故障モードの条件下でも、放射レベルは国際基準や国内基準の限界をはるかに下回っているため、定期的な放射線測定を行う必要はありません (IRPA 1988)。
排出量の包括的なレビュー、該当する科学文献の要約、基準、およびガイドラインが文書で提供されています (ILO 1993a)。
医療アプリケーション
よく治癒しない、または結合しない骨折に苦しむ患者は、パルス磁場で治療されてきました (Bassett、Mitchell、および Gaston 1982; Mitbreit および Manyachin 1984)。 パルス磁場を使用して創傷治癒と組織再生を促進する研究も行われています。
骨成長刺激には、磁場パルスを生成するさまざまなデバイスが使用されます。 典型的な例は、約 0.3 mT の平均磁束密度、約 2.5 mT のピーク強度を生成し、0.075 ~ 0.175 V/m の範囲のピーク電界強度を骨に誘導するデバイスです (Bassett、Pawluk およびピラ 1974)。 露出した手足の表面近くで、デバイスは 1.0 mT 程度のピーク磁束密度を生成し、約 10 ~ 100 mA/m のピーク イオン電流密度を引き起こします。2 (1~10μA/cm2) 組織内。
測定
ELF または VLF 電磁界の測定を開始する前に、発生源の特性と被ばく状況についてできるだけ多くの情報を取得することが重要です。 この情報は、予想される電界強度の推定と、最も適切な調査機器の選択に必要です (Tell 1983)。
ソースに関する情報には、次のものが含まれている必要があります。
- 高調波を含む存在する周波数
- 伝達される電力
- 偏光(の向き E 分野)
- 変調特性(ピーク値と平均値)
- デューティサイクル、パルス幅、およびパルス繰り返し周波数
- タイプ、ゲイン、ビーム幅、スキャン レートなどのアンテナ特性。
曝露状況に関する情報には、次のものが含まれている必要があります。
- ソースからの距離
- 散乱物体の存在。 平面による散乱は、 E コーナーリフレクタなどの曲面を使用すると、さらに大きな効果が得られる場合があります。
表 2. 磁界への職業暴露源
ソース |
磁束 |
距離 (m) |
ディスプレイ |
最大2.8x 10-4 |
0.3 |
HVライン |
最大0.4 |
下線 |
発電所 |
最大0.27 |
1 |
溶接アーク (0 ~ 50 Hz) |
0.1-5.8 |
0-0.8 |
誘導加熱器 (50 ~ 10 kHz) |
0.9-65 |
0.1-1 |
50Hz取鍋炉 |
0.2-8 |
0.5-1 |
50Hzアーク炉 |
最大1 |
2 |
10Hzインダクションスターラー |
0.2-0.3 |
2 |
50 Hz エレクトロスラグ溶接 |
0.5-1.7 |
0.2-0.9 |
治療機器 |
1-16 |
1 |
出典: アレン 1991; ベルンハルト 1988; クラウゼ 1986; Lövsund、Oberg、および Nilsson 1982; レパコリ、未発表データ。 Stuchly 1986; Stuchly と Lecuyer 1985 年、1989 年。
計装
電界または磁界測定器は、プローブ、リード、モニターの XNUMX つの基本部品で構成されています。 適切な測定を行うには、次の計測器の特性が必要または望ましいものです。
- プローブは、 E フィールドまたは H 両方に同時にではありません。
- プローブは、フィールドの重大な摂動を生成してはなりません。
- プローブからモニターへのリード線は、プローブのフィールドを著しく妨害したり、フィールドからのエネルギーを結合したりしてはなりません。
- プローブの周波数応答は、測定に必要な周波数範囲をカバーする必要があります。
- 反応性近接場で使用する場合、プローブ センサーの寸法は、存在する最高周波数での波長の XNUMX 分の XNUMX 未満であることが望ましいです。
- 計測器は、測定フィールド パラメータの二乗平均平方根 (rms) 値を示す必要があります。
- 計測器の応答時間を知る必要があります。 断続的なフィールドを容易に検出できるように、約 1 秒以下の応答時間を有することが望ましいです。
- プローブは、フィールドのすべての偏光成分に応答する必要があります。 これは、固有の等方性応答によって、またはプローブを XNUMX つの直交方向に物理的に回転させることによって達成できます。
- 優れた過負荷保護、バッテリ動作、携帯性、および頑丈な構造は、他の望ましい特性です。
- 計測器は、次のパラメータの XNUMX つまたは複数の指標を提供します: 平均 E フィールド (V/m) または平均二乗 E フィールド (V2/m2); 平均 H フィールド (A/m) または平均二乗 H フィールド (A2/m2).
調査
調査は通常、職場に存在するフィールドが国の基準によって設定された制限を下回っているかどうかを判断するために実施されます。 したがって、測定を行う人は、これらの基準を十分に理解している必要があります。
占有されアクセス可能なすべての場所を調査する必要があります。 被試験機器の操作者と測量士は、試験エリアから実行可能な限り離れている必要があります。 エネルギーを反射または吸収する可能性がある、通常存在するすべてのオブジェクトが所定の位置にある必要があります。 測量者は、特に高出力低周波システムの近くでは、無線周波数 (RF) による火傷や衝撃に対して予防措置を講じる必要があります。
相互作用メカニズムと生物学的効果
相互作用メカニズム
ELF および VLF フィールドが生物系と相互作用する唯一の確立されたメカニズムは次のとおりです。
- 露出した物体に表面電荷を誘導し、電流を発生させる電界 (mA/m で測定)2) 体の内部で、その大きさは表面電荷密度に関連しています。 露出条件、サイズ、フィールド内の露出された物体の形状、および位置に応じて、表面電荷密度が大幅に変化する可能性があり、その結果、物体内の電流分布が変化し、不均一になります。
- 磁場は、体内に電場と電流を誘導することによって、人間にも作用します。
- ELF または VLF 電界にさらされた導電体 (自動車など) に誘導された電荷は、それに接触した人に電流を流す可能性があります。
- 導体 (たとえば、ワイヤー フェンス) に結合する磁界は、それに接触している人の身体を通過する電流 (露出フィールドと同じ周波数) を引き起こします。
- 強い電界にさらされている人や金属製の物体が十分に接近すると、一時的な放電 (火花) が発生することがあります。
- 電場または磁場は、植込み型医療機器 (ユニポーラ心臓ペースメーカーなど) に干渉し、機器の誤動作を引き起こす可能性があります。
上記の最初の XNUMX つの相互作用は、人と ELF または VLF フィールドとの間の直接結合の例です。 最後の XNUMX つの相互作用は、暴露された生物が他の物体の近くにある場合にのみ発生する可能性があるため、間接的な結合メカニズムの例です。 これらの身体には、他の人間や動物、および自動車、フェンス、埋め込み型デバイスなどの物体が含まれる場合があります。
生体組織と ELF または VLF 界との間の相互作用の他のメカニズムが仮定されているか、それらの存在を支持するいくつかの証拠がありますが (WHO 1993; NRPB 1993; NRC 1996)、健康への悪影響の原因であることが示されているものはありません。
健康への影響
証拠は、周波数範囲 > 0 ~ 30 kHz の電場および磁場への暴露の確立された影響のほとんどが、表面電荷および誘導電流密度に対する急性応答に起因することを示唆しています。 人は、ELF 電場 (磁場ではなく) によって身体に誘導される振動する表面電荷の影響を知覚できます。 これらの効果が十分に強い場合、迷惑になります。 人体を通過する電流の影響 (知覚、手放し、または破傷風のしきい値) の概要を表 3 に示します。
表 3. 人体を通過する電流の影響
効果 |
件名 |
しきい値電流 (mA) |
||||
50および60 Hz |
300 Hz |
1000 Hz |
10kHz |
30kHz |
||
知覚 |
メンズ レディース 子供達 |
1.1 0.7 0.55 |
1.3 0.9 0.65 |
2.2 1.5 1.1 |
15 10 9 |
50 35 30 |
手放し閾値ショック |
メンズ レディース 子供達 |
9 6 4.5 |
11.7 7.8 5.9 |
16.2 10.8 8.1 |
55 37 27 |
126 84 63 |
胸部テタニゼーション; |
メンズ レディース 子供達 |
23 15 12 |
30 20 15 |
41 27 20.5 |
94 63 47 |
320 214 160 |
出典: Bernhardt 1988a.
人間の神経細胞と筋肉細胞は、数 mT および 1 ~ 1.5 kHz の磁場への曝露によって誘導される電流によって刺激されてきました。 閾値電流密度は 1 A/m を超えると考えられています2. ちらつき視覚感覚は、約 5 ~ 10 mT (20 Hz で) の低い磁場にさらされるか、または頭部に直接適用される電流によって、人間の目に誘発される可能性があります。 これらの反応と神経生理学的研究の結果を考慮すると、推論や記憶などの中枢神経系の微妙な機能が、10 mA/m を超える電流密度によって影響を受ける可能性があることが示唆されます。2 (NRPB 1993)。 しきい値は、約 1 kHz までは一定のままですが、その後は周波数が高くなるにつれて上昇します。
いくつかの ビトロ 研究 (WHO 1993; NRPB 1993) は、ELF および VLF 電場および細胞培養に直接印加された電流にさらされたさまざまな細胞系で、酵素活性およびタンパク質代謝の変化、リンパ球の細胞毒性の低下などの代謝変化を報告しています。 ほとんどの影響は、約 10 ~ 1,000 mA/m の電流密度で報告されています。2ただし、これらの応答はあまり明確に定義されていません (Sienkiewicz、Saunder、および Kowalczuk 1991)。 ただし、神経や筋肉の電気的活動によって生成される内因性電流密度は、通常 1 mA/m にも達することに注意してください。2 最大 10 mA/m に達する可能性があります2 心の中に。 これらの電流密度は、神経、筋肉、その他の組織に悪影響を及ぼすことはありません。 このような生物学的影響は、誘導電流密度を 10 mA/m 未満に制限することによって回避されます。2 約 1 kHz までの周波数で。
多くの健康への影響があり、私たちの知識が限られている生物学的相互作用のいくつかの可能性のある領域には、松果体の夜間メラトニンレベルの変化の可能性と、ELF電界または磁界への曝露によって動物に誘発される概日リズムの変化が含まれます。発生および発がんのプロセスに対する ELF 磁界の影響の可能性。 さらに、非常に弱い電場と磁場に対する生物学的反応の証拠がいくつかあります。これらには、脳組織内のカルシウム イオンの移動度の変化、ニューロンの発火パターンの変化、およびオペランド動作の変化が含まれます。 振幅と周波数の両方の「ウィンドウ」が報告されており、用量の増加とともに反応の大きさが増加するという従来の仮定に挑戦しています。 これらの影響は十分に確立されておらず、ヒトへの曝露に対する制限を確立する根拠にはなりませんが、さらなる調査が必要です (Sienkievichz、Saunder および Kowalczuk 1991; WHO 1993; NRC 1996)。
表 4 は、ヒトにおけるさまざまな生物学的影響の誘導電流密度のおおよその範囲を示しています。
表 4. さまざまな生物学的影響のおおよその電流密度範囲
効果 |
電流密度 (mA/m2) |
直接的な神経と筋肉の刺激 |
1,000-10,000 |
中枢神経系活動の調節 |
100-1,000 |
網膜機能の変化 |
|
内因性電流密度 |
1-10 |
出典:Sienkiewicz ら。 1991年。
職業暴露基準
> 0 ~ 30 kHz の範囲に制限があるほぼすべての規格は、その根拠として、誘導電界と電流を安全なレベルに保つ必要があります。 通常、誘導電流密度は 10 mA/m 未満に制限されます。2. 表 5 は、いくつかの現在の職業暴露限度の要約を示しています。
表 5. 周波数範囲 > 0 ~ 30 kHz の電界および磁界への曝露の職業上の制限 (f は Hz 単位であることに注意してください)
国/参照 |
周波数範囲 |
電場 (V/m) |
磁場 (A/m) |
国際 (IRPA 1990) |
50 / 60ヘルツ |
10,000 |
398 |
米国 (IEEE 1991) |
3〜30 kHz |
614 |
163 |
米国 (ACGIH 1993) |
1〜100 Hz 100〜4,000 Hz 4〜30 kHz |
25,000 2.5 x 106/f 625 |
60 /f 60 /f 60 /f |
ドイツ(1996) |
50 / 60ヘルツ |
10,000 |
1,600 |
英国 (NRPB 1993) |
1〜24 Hz 24〜600 Hz 600〜1,000 Hz 1〜30 kHz |
25,000 6 x 105/f 1,000 1,000 |
64,000 /f 64,000 /f 64,000 /f 64 |
保護対策
高電圧送電線の近くで発生する職業被ばくは、高電位での活線作業中の地面または導体のいずれかの作業者の場所によって異なります。 活線条件下で作業する場合、防護服を使用して体内の電界強度と電流密度を地上での作業と同様の値に下げることができます。 防護服は磁場の影響を弱めません。
ELF または VLF 電界および磁界へのばく露の潜在的な悪影響から労働者および一般市民を保護する責任は、明確に割り当てられる必要があります。 管轄当局が次の手順を検討することをお勧めします。
- 曝露制限の開発と採用、およびコンプライアンス プログラムの実施
- ペースメーカーなどの電磁干渉に対する感受性を低減するための技術基準の開発
- 電磁干渉のために強力な電界および磁界の発生源周辺のアクセスが制限されたゾーンを定義する基準の開発 (例: ペースメーカーやその他の埋め込み型デバイス)。 適切な警告標識の使用を検討する必要があります。
- 曝露の可能性が高い各サイトで、労働者と公衆の安全に責任を負う担当者を特定して配置する必要性
- 標準化された測定手順と調査技術の開発
- ELF または VLF 電界および磁界へのばく露の影響に関する労働者教育の要件、およびそれらを保護するための対策と規則
- ELF または VLF の電場および磁場における労働者の安全のためのガイドラインまたは行動規範の起草。 ILO (1993a) は、そのようなコードについて優れたガイダンスを提供しています。