土曜日、12月2011 16:50

木材の収穫

このアイテムを評価
(33票)

現在の記事は、FAO 1996 と FAO/ILO 1980 の 1998 つの出版物に大きく依存しています。この記事は概要です。 他にも多数の参考文献があります。 予防措置に関する具体的なガイダンスについては、ILO XNUMX を参照してください。

木材の収穫とは、ユーザーの要求に応じて森林または植林地で丸太を準備し、丸太を消費者に届けることです。 これには、木の伐採、丸太への変換、抽出、および消費者または加工工場への長距離輸送が含まれます。 条件 森林伐採, 木材の収穫 or ロギング 同義語として使われることが多い。 長距離輸送と非木材林産物の収穫については、この章の別の記事で扱います。

業務執行統括

木材の収穫には多くの異なる方法が使用されますが、それらはすべて同様の一連の操作を伴います。

  • 木の伐採: 木を切り株から切り離して倒す
  • トッピングとデブランチ(デリムビング): 使えない樹冠と枝を切り落とす
  • 皮剥ぎ: 幹から樹皮を取り除きます。 この作業は、森林ではなく加工工場で行われることが多い。 薪の収穫では、それはまったく行われません
  • 抽出: 幹または丸太を切り株から林道に近い場所に移動し、そこで選別して積み上げ、長距離輸送を待つために一時的に保管することがよくあります
  • 丸太作り・横切り(バッキング): 丸太の使用目的によって指定された長さに幹を切断する
  • スケーリング: 通常、体積を測定することによって、生産される丸太の量を決定します (小寸法の木材の場合は重量でも測定します。パルプ材では後者が一般的です。その場合、重量測定は加工工場で行われます)。
  • 仕分け、積み上げ、一時保管: 丸太は通常、さまざまな寸法と品質であるため、パルプ材、製材などとしての潜在的な用途に応じて分類され、通常はトラック XNUMX 台分の積み荷が積み上げられるまで積み上げられます。 これらの操作、およびスケーリングとロードが行われるクリアされた領域は「着陸」と呼ばれます
  • 読み込み中: 丸太を輸送媒体 (通常はトラック) に移動し、積荷を取り付けます。

 

これらの操作は、必ずしも上記の順序で実行されるとは限りません。 森林の種類、希望する製品の種類、および利用可能な技術に応じて、作業を早めに (つまり、切り株に近づけて) 行うか、後で (つまり、水揚げ地で、または加工工場でさえ) 行う方が有利な場合があります。 )。 収穫方法の一般的な分類の XNUMX つは、以下の区別に基づいています。

  • フルツリーシステム、 樹木が道端、水揚げ場、または加工工場に完全なクラウンで抽出される場所
  • 短木システム、 トッピング、デブランチング、クロスカットが切り株の近くで行われる場所 (丸太は通常 4 ~ 6 m を超えません)
  • 木の長さのシステム、 抽出前に上部と枝が取り除かれます。

 

工業用木材の収穫方法の最も重要なグループは、樹木の長さに基づいています。 短木システムは北ヨーロッパでは標準であり、世界の他の多くの地域では小寸法の木材や燃料木材でも一般的です。 彼らのシェアは増加する可能性があります。 全木システムは、産業用木材収穫ではあまり一般的ではなく、限られた数の国 (カナダ、ロシア連邦、米国など) でのみ使用されています。 そこでは、それらはボリュームの 10% 未満を占めます。 この方法の重要性は低下しています。

作業組織、安全分析、および検査のために、木材収穫作業における XNUMX つの異なる作業領域を考えることは有用です。

  1. 伐採場所または切り株
  2. 切り株と林道の間の林地
  3. 着陸。

 

また、操作が空間と時間において大きく独立して行われるのか、それとも密接に関連して相互に依存して行われるのかを調べることも価値があります。 後者は、多くの場合、すべてのステップが同期されている収穫システムに当てはまります。 したがって、伐採から輸送までのチェーン全体が乱れると混乱します。 これらのいわゆるホットロギングシステムは、慎重にバランスを取らないと、余分な圧力と緊張を生み出す可能性があります.

木材の伐採が行われる森林のライフ サイクルの段階と伐採パターンは、技術的プロセスとそれに伴う危険の両方に影響を与えます。 木材の収穫は、間伐または最終伐採として行われます。 間伐とは、残りの木の成長と品質を改善するために、通常は望ましくない木のいくつかを若い林から取り除くことです。 通常は選択的です (つまり、個々のツリーは大きなギャップを作ることなく削除されます)。 生成される空間パターンは、選択的な最終切断の場合と似ています。 ただし、後者の場合、木は成熟しており、多くの場合大きくなります。 それでも、一部の木が伐採されるだけで、かなりの樹木被覆が残っています。 どちらの場合も、残存する樹木や植生が視界を遮るため、作業現場でのオリエンテーションは困難です。 樹冠は残りの木の樹冠に遮られる傾向があるため、樹木を倒すのは非常に困難な場合があります。 クラウンから破片が落ちる危険性が高いです。 どちらの状況も機械化が困難です。 したがって、間伐と選択的な切断を安全に行うには、より多くの計画とスキルが必要です。

最終的な収穫のための選択的な伐採に代わるものは、「皆伐」と呼ばれる場所からすべての木を取り除くことです。 皆伐は 1 ヘクタールから 5 ヘクタールの小さなものもあれば、数平方キロメートルにわたる非常に大きなものもあります。 大規模な皆伐は、多くの国で環境上および風光明媚な理由から厳しく批判されています。 伐採のパターンがどうであれ、古い樹木や自然林を伐採することは、通常、若い樹木や人工林を伐採するよりも大きなリスクを伴います。 それらの枝は、他の木の冠や登山者と絡み合っている可能性があり、落下するときに他の木の枝を折ることがあります. 多くの木は枯れているか、伐採プロセスの後半まで明らかにならない内部腐敗があります. 伐採中の彼らの行動は、しばしば予測不可能です。 腐った木は折れて思わぬ方向に倒れることがあります。 緑の木とは異なり、北アメリカではスナッグと呼ばれる枯れ木や乾燥した木はすぐに倒れます。

技術開発

20 世紀後半、木材の収穫技術は急速に発展しました。 その過程で平均生産性は急上昇しています。 今日、多くの異なる収穫方法が使用されており、時には同じ国で並んでいます. たとえば、1980 年代半ばにドイツで使用されていたシステムの概要には、ほぼ 40 の異なる機器構成と方法が記載されています (Dummel and Branz 1986)。

一部の収穫方法は技術的に他の方法よりもはるかに複雑ですが、単一の方法が本質的に優れているわけではありません。 選択は通常、顧客の丸太の仕様、森林の状態と地形、環境への配慮、そして多くの場合決定的にコストに依存します。 一部の方法は、技術的に中小規模の樹木と、勾配が 15 ~ 20° を超えない比較的なだらかな地形に限定されます。

収穫システムのコストと性能は、システムが現場の条件にどれだけ適合しているか、また同様に重要なことに、作業者のスキルと操作がどのように組織化されているかに応じて、広範囲にわたって変化する可能性があります。 たとえば、手工具や手作業による抽出は、失業率が高く、人件費が低く、資本コストが高い国、または小規模な事業では、経済的および社会的に完全に理にかなっています。 完全に機械化された方法は、非常に高い毎日の生産量を達成できますが、多額の設備投資が必要です。 最新の収穫機は、好条件の下で 200 m 以上の収穫が可能3 8 日 10 時間あたりのログの数。 チェーンソーのオペレーターがその 500,000% 以上を生産する可能性は低いです。 ハーベスターや大型ケーブル ヤーダーの価格は、チェーンソーが 1,000 ~ 2,000 ドル、高品質のクロスカット ハンドソーが 200 ドルであるのに対し、約 XNUMX 万ドルです。

一般的な方法、機器、および危険

伐採と抽出の準備

この段階には、樹冠と枝の伐採と除去が含まれます。 皮剥き、クロスカット、スケーリングが含まれる場合があります。 これは、最も危険な産業職業の XNUMX つです。 手工具およびチェーンソーまたは機械は、樹木の伐採および枝切り、ならびに樹木の丸太へのクロスカットに使用されます。 ハンドツールには、斧、割りハンマー、ブッシュフック、ブッシュナイフなどの切削工具と、クロスカットソーやバウソーなどの手のこが含まれます。 チェーンソーは、ほとんどの国で広く使用されています。 チェーンソーを改良するための規制当局やメーカーによる多大な努力と進歩にもかかわらず、チェーンソーは林業において最も危険なタイプの機械であり続けています。 ほとんどの深刻な事故と多くの健康問題は、それらの使用に関連しています。

最初に行う作業は、伐採、または条件が許す限り地面に近い切り株から木を切断することです。 茎の下部は通常、最も価値のある部分です。これは、ボリュームが大きく、節がなく、木の質感が均一であるためです。 したがって、それは分裂してはならず、バットから繊維が引き裂かれるべきではありません. 倒れる方向をコントロールすることは、木や放置する木を守るだけでなく、作業者を守り、抜き取りを容易にするためにも重要です。 手作業による伐採では、この制御はカットの特別な順序と構成によって実現されます。

チェーンソーの標準的な方法を図1に示します。伐採方向(1)を決定し、木の根元と逃げ道を整えた後、2分の45から3分の4程度のアンダーカット(90)から鋸引きを開始します。ツリーへの直径の。 アンダーカットの開口部は、約 XNUMX° の角度にする必要があります。 斜めカット (XNUMX) は、水平カット (XNUMX) の前に行われます。水平カット (XNUMX) は、XNUMX 度で伐倒方向に面した直線で斜めカットと交わる必要があります。o 角度。 柔らかい木材によくあるように、切り株が木から破片を引き裂きやすい場合は、アンダーカットをヒンジ (5) の両側に小さな横方向のカット (6) で終了する必要があります。 バックカット (7) も水平でなければなりません。 アンダーカットの付け根より2.5~5cm高くします。 樹木の直径がガイドバーよりも小さい場合は、バックカットを 8 回の動作で行うことができます (9)。 それ以外の場合は、鋸を数回移動する必要があります (15)。 バットの直径が1980cm以上の木には、標準的な方法が使用されます。 樹冠が片側にある、一方向に傾いている、または直径がチェーンソーの刃の長さの XNUMX 倍を超える場合は、標準的な方法を変更します。 詳細な指示は、FAO/ILO (XNUMX) およびチェーンソー オペレーター向けの他の多くのトレーニング マニュアルに含まれています。

図 1. チェーンソーの伐採: 一連のカット。

FOR020F4

標準的な方法を使用して、熟練した労働者は高い精度で木を伐採できます。 樹冠が左右対称になっている木や、意図した落下方向とは異なる方向に少し傾いている木は、まったく倒れないか、意図した方向から斜めに倒れることがあります。 このような場合、小さな木には伐採レバー、大きな木にはハンマーやウェッジなどのツールを使用して、木の自然な重心を目的の方向に移動させる必要があります。

非常に小さな木を除いて、斧は伐採や横切りには適していません。 手のこぎりでは、プロセスは比較的遅く、エラーを検出して修復できます。 チェーンソーを使用すると、切断は速く、ノイズは木が落ちる前に繊維を壊す音などの信号をブロックします。 木が倒れ始めたが、他の木に遮られた場合、「ハングアップ」が発生し、非常に危険であり、すぐに専門的に対処する必要があります. 小さな木には回転フックとレバー、大きな木には手動またはトラクターに取り付けられたウインチを使用して、吊るされた木を効果的かつ安全に降ろします。

伐採に伴う危険には、倒木や転がり木が含まれます。 枝の落下または折れ; 切削工具; チェーンソーによる騒音、振動、排気ガス。 突風は、木材や部分的に切断された根系が緊張している場合に特に危険です。 吊るされた木は、深刻で致命的な事故の原因となることがよくあります。 伐採に関わるすべての労働者は、特定の訓練を受けている必要があります。 伐採用のツールとハングアップした木を処理するためのツールは、オンサイトである必要があります。 クロスカットに関連する危険には、特に斜面での切断ツール、木材の破損、転がるステムまたはボルトが含まれます。

木が倒されると、通常はトッピングされ、枝切りされます。 ほとんどの場合、これは手工具またはチェーンソーを使用して切り株で行われます。 軸は枝切りに非常に効果的です。 可能であれば、木はすでに地面にある幹を横切って伐採されます。 したがって、この幹は自然な作業台として機能し、枝切りする木をより便利な高さに上げ、木を回転させることなく完全に枝切りを行うことができます。 枝と冠は幹から切り取られ、現場に残されます。 大きな広葉樹の樹冠は、道端への抽出や着陸を妨げるため、より小さな部分に切断するか、脇に引っ張る必要がある場合があります.

枝切りに伴う危険には、工具やチェーンソーによる切断が含まれます。 チェーンソーのキックバックのリスクが高い (図 2 を参照)。 緊張した状態で枝を折る。 ローリングログ; つまずいて転ぶ; ぎこちない作業姿勢; 貧弱な技術が使用されている場合の静的作業負荷。

図 2. チェーンソーのキックバック。

FOR020F5

機械化された操作では、十分に重いベースマシンに取り付けられたブームで木を保持し、ブームに組み込まれたせん断、丸のこ、またはチェーンソーで幹を切断することにより、方向性のある落下が達成されます。 これを行うには、機械を伐採する木の近くで運転する必要があります。 次に、ブームまたは機械のベースの動きによって、樹木を希望の方向に降ろします。 最も一般的なタイプの機械は、フェラー バンチャーとハーベスターです。

フェラーバンチャーは主にトラック付きのマシンに取り付けられていますが、タイヤを装備することもできます。 伐採ブームにより、通常、伐採して多数の小さな木 (束) を収集し、それをスキッド トレイルに沿って堆積させることができます。 いくつかは、負荷を収集するための二段ベッドを持っています。 フェラーバンチャーを使用する場合、トッピングと枝切​​りは通常、水揚げ場で機械によって行われます。

 

優れた機械設計と慎重な操作により、チェーンソーのオペレーターが機械と一緒に作業する場合を除いて、フェラー バンチャーによる事故のリスクは比較的低くなります。 ベースマシンは林業用に作られていないことが多いため、振動、騒音、粉塵、煙などの健康被害は重大です。 フェラーバンチャーは極端な傾斜地では使用しないでください。伐採方向が制御不能になるため、ブームを過負荷にしないでください。

ハーベスターは、皮むき以外のすべての伐採作業を統合する機械です。 通常は 6 ~ 10 輪、油圧式トラクションとサスペンション、アーティキュレート ステアリングを備えています。 荷を積んだときにリーチが 40 ~ 60 m のブームがあります。 ワングリップハーベスターとツーグリップハーベスターは区別されます。 ワングリップハーベスターには、伐採、枝切り、トッピング、クロスカット用の装置が取り付けられた伐倒ヘッドを備えたブームが XNUMX つあります。 幹の直径が XNUMX cm までの小さな木に使用され、主に間伐材に使用されますが、最終伐採にもますます使用されます。 ツーグリップハーベスターには、伐採ヘッドと処理ヘッドが別々に装備されています。 後者は、ブームではなくベースマシンに取り付けられています。 切り株の直径がXNUMXcmまでの木に対応できます。 最新のハーベスターには、必要な品揃えに応じて最適なクロスカッティングを決定するようにプログラムできる、統合されたコンピューター支援測定装置があります。

ハーベスターは、北ヨーロッパでの大規模な収穫における主要な技術ですが、現在、世界の収穫に占める割合はかなり小さいです。 しかし、その重要性は、二次成長、人工林、およびプランテーションが原材料の供給源としてより重要になるにつれて、急速に高まる可能性があります.

通常、ハーベスター操作での事故率は低いですが、チェーンソーのオペレーターがハーベスターと一緒に作業すると事故のリスクが高まります。 収穫機のメンテナンスは危険です。 修理は常に高い仕事のプレッシャーにさらされており、ますます夜間になります。 滑ったり転んだり、不快でぎこちない作業姿勢、重いものを持ち上げたり、作動油や加圧された高温の油と接触したりする危険性が高くなります。 最大の危険は、静的な筋肉の緊張と、操作コントロールによる反復的な負担、および心理的ストレスです。

抽出プロセス

抽出には、幹または丸太を切り株から踊り場または道端に移動し、そこで処理したり、品揃えに積み上げたりすることが含まれます。 抽出は非常に重くて危険な作業になる可能性があります。 また、森林とその再生、土壌、水路に重大な環境被害を与える可能性があります。 一般的に認識されている抽出システムの主なタイプは次のとおりです。

  • 地面滑りシステム: 幹または丸太は、機械、荷役動物、または人間によって地面に引きずられます。
  • フォワーダー: 幹や丸太は機械で運ばれます (薪の場合は人力も)。
  • ケーブル システム: 丸太は、XNUMX つまたは複数の吊り下げられたケーブルによって切り株から着陸まで運ばれます。
  • 空中システム: ヘリコプターや気球を使って丸太を空輸します。

 

工業用木材と薪炭材の両方で最も重要な抽出システムであるグラウンド スキッディングは、通常、林業用に特別に設計された車輪付きスキッダーを使用して行われます。 クローラー トラクター、特に農業用トラクターは、小さな私有林や植林地からの小さな木の伐採では費用対効果が高い場合がありますが、オペレーターと機械の両方を保護するために適応が必要です。 トラクターは、専用の機械よりも堅牢性が低く、バランスが取れておらず、保護も不十分です。 林業で使用されるすべての機械と同様に、危険には転倒、落下物、侵入物、火災、全身の振動および騒音が含まれます。 全輪駆動が望ましく、操作中は機械重量の最低 20% を操舵車軸の負荷として維持する必要があります。これには、機械の前部に追加の重量を取り付ける必要がある場合があります。 エンジンとトランスミッションには、追加の機械的保護が必要な場合があります。 最小のエンジン出力は、小さな寸法の木材では 35 kW にする必要があります。 通常、通常サイズの丸太には 50 kW で十分です。

グラップルスキッダーは、個々の幹または事前に束ねられた幹に直接移動し、荷物の前端を持ち上げて着陸までドラッグします。 ケーブルウィンチを備えたスキッダーは、スキッドロードから操作できます。 それらの負荷は通常、個々の丸太に取り付けられたチョーカー、ストラップ、チェーン、または短いケーブルを介して組み立てられます。 チョーカーセッターは、フックアップする丸太を準備し、スキッダーが着陸から戻ると、多数のチョーカーがメインラインに取り付けられ、スキッダーにウィンチされます. ほとんどのスキッダーには、横滑り中の摩擦を減らすために荷物の前端を持ち上げることができるアーチがあります。 電動ウインチ付きのスキッダーを使用する場合、双方向ラジオまたは光信号または音響信号を介した乗組員間の良好な通信が不可欠です。 明確なシグナルについて合意する必要があります。 理解されていない信号は、「ストップ!」を意味します。 図 3  は、電動ウインチを備えたスキッダー用に提案された手信号を示しています。

図 3. 電動ウインチ付きスキッダーに使用される手信号に関する国際的な慣習。

FOR020F6

経験則として、15 度を超える斜面ではグラウンド スキッド装置を使用しないでください。 クローラー トラクターは、比較的急な地形から大きな樹木を伐採するために使用できますが、不注意に使用すると、土壌に重大な損傷を与える可能性があります。 環境上および安全上の理由から、例外的に雨天の場合はすべての横滑り作業を中止する必要があります。

家畜を使った抽出は、特に間伐作業において、小さな丸太にとって経済的に実行可能なオプションです。 横滑り距離は短く (通常は 200 m 以下)、傾斜は緩やかでなければなりません。 最大の引っ張り力を提供する適切なハーネスと、横滑り抵抗を軽減する横滑り用パン、サルキー、そりなどのデバイスを使用することが重要です。

手作業による横滑りは、産業伐採ではますますまれになっていますが、自給自足の伐採では、特に薪の場合に引き続き行われています。 短距離に限定され、通常は下り坂で、重力を利用して丸太を移動します。 丸太は通常小さいですが、これは非常に重労働であり、急な斜面では危険です。 丸太を持ち上げたり引っ張ったりするために、フック、レバー、その他の手工具を使用することで、効率と安全性を高めることができます。 シュートは、伝統的に木材で作られていますが、ポリエチレンのハーフチューブとしても利用でき、急な地形で短い丸太を手動で地面に滑らせる代わりに使用できます。

フォワーダーは、独自のフレーム内またはトレーラーのいずれかで、完全に地上から大量の丸太を運ぶ抽出機です。 彼らは通常、丸太のセルフローディングおよびアンローディング用の機械式または油圧式のクレーンを持っています。 それらは、機械化された伐採および処理装置と組み合わせて使用​​される傾向があります。 経済的な抽出距離は、地上スキッダーの 2 ~ 4 倍です。 フォワーダーは、ログのサイズがほぼ均一な場合に最適に機能します。

フォワーダーが関与する事故は、通常、トラクターやその他の林業機械の事故と同様で、物体の横転、侵入、落下、電力線、メンテナンスの問題などがあります。 健康被害には、振動、騒音、作動油が含まれます。

人間を使って荷物を運ぶことは、一部の産業用伐採でのパルプ材やピット支柱などの短い丸太の場合でも行われており、薪の伐採ではルールになっています。 特に薪の収集を担当することが多い女性の場合、運ばれる荷物は推奨されるすべての制限を超えることがよくあります。 背骨への極度の負担を避ける適切なテクニックのトレーニングと、より良い体重分散をもたらすバックパックなどのデバイスを使用することで、負担が軽減されます.

ケーブル引き抜きシステムは、機械自体が移動しないという点で、他の引き抜きシステムとは根本的に異なります。 丸太は吊り下げられたケーブルに沿って動く台車で運ばれます。 ケーブルは、ヤード機または運搬機とも呼ばれるウィンチング マシンによって操作されます。 機械は、踊り場またはケーブルウェイの反対側の端に設置され、多くの場合、尾根の上に設置されます。 ケーブルは、樹木または鉄塔のいずれかである XNUMX つまたは複数の「スパー」ツリーで地上に吊り下げられます。 多くの異なるタイプのケーブル システムが使用されています。 スカイラインまたはケーブル クレーンには、本線に沿って移動できる台車があり、ケーブルを解放して、ログを持ち上げて着陸に送る前に、ログをラインに横方向に引っ張ることができます。 システムが運搬中に荷物を完全に吊り下げることができる場合、土壌の乱れは最小限に抑えられます。 機械が固定されているため、ケーブル システムは急な地形や湿った土壌でも使用できます。 一般に、ケーブル システムは地滑りよりもかなり高価であり、慎重な計画と熟練したオペレーターが必要です。

ケーブル システムの設置、操作、および解体中に危険が発生し、キャビンまたはスタンドの変形による機械的衝撃が含まれます。 ケーブル、アンカー、スパーまたはサポートの破損; ケーブル、キャリッジ、チョーカー、負荷の不注意または制御不能な動き。 可動部品からの圧迫、擦り傷など。 健康被害には、騒音、振動、ぎこちない作業姿勢が含まれます。

空中抽出システムは、抽出プロセス全体で丸太を空中に完全に吊るすシステムです。 現在使用されているのは気球システムとヘリコプターの 11 種類ですが、広く使用されているのはヘリコプターだけです。 約 30 トンの吊り上げ能力を持つヘリコプターが市販されています。 荷物はテザー ライン (「タグライン」とも呼ばれます) でヘリコプターの下に吊り下げられます。 テザー ラインは、地形とヘリコプターがホバリングしなければならない木の高さの両方に応じて、通常 100 ~ XNUMX m の長さです。 積荷は長いチョーカーで取り付けられ、飛行機からの遠隔操作でチョーカーが解除される着陸地点まで飛ばされます。 大きな丸太が引き抜かれているときは、チョーカーの代わりに電動グラップル システムを使用することができます。 通常、往復時間は XNUMX ~ XNUMX 分です。 ヘリコプターの直接費は非常に高くなりますが、高い生産率を実現し、高価な道路建設の必要性を削減または排除することもできます。 また、環境への影響も少ないです。 実際には、それらの使用は、他の方法ではアクセスできない地域またはその他の特別な状況での高価値の木材に限定されています。

このような機器を経済的に使用するには高い生産率が必要なため、ヘリコプターの運用に雇用される労働者の数は、他のシステムよりもはるかに多くなります。 これは着陸に当てはまりますが、切断作業の労働者にも当てはまります。 ヘリコプターの伐採は、予防措置が無視され、乗組員の準備が整っていない場合、死亡者を含む重大な安全上の問題を引き起こす可能性があります。

ログの作成とロード

丸太作りは、水揚げ場で行われる場合、ほとんどがチェーンソーのオペレーターによって行われます。 また、加工業者(すなわち、枝を取り除き、切り取り、長さに切断する機械)によって実行することもできます。 スケーリングは、ほとんどの場合、メジャーを使用して手動で行われます。 仕分けと積み上げのために、丸太は通常、前刃を使って丸太を押したり持ち上げたりするスキッダーのような機械、またはグラップル ローダーによって処理されます。 てこなどのハンド ツールを使用するヘルパーは、多くの場合、機械のオペレーターを支援します。 薪の収穫や小さな丸太が関係する場所では、トラックへの積み込みは通常、手動または小さなウインチを使用して行われます。 大きなログを手動でロードするのは非常に困難で危険です。 これらは通常、グラップルまたはナックル ブーム ローダーによって処理されます。 一部の国では、伐採トラックに自動積み込みが装備されています。 丸太は、しっかりと引っ張ることができる横方向のサポートとケーブルによってトラックに固定されています。

木材の手作業による積み込みでは、肉体的な負担と作業負荷が非常に高くなります。 手作業でも機械による積み込みでも、移動中の丸太や機器にぶつかる危険があります。 機械化された積み込みの危険には、騒音、粉塵、振動、高い精神的負荷、反復的な負担、転倒、侵入または落下する物体、および作動油が含まれます。

基準と規制

現在、林業機械に適用されるほとんどの国際安全基準は一般的なものです。たとえば、転覆保護などです。 ただし、国際標準化機構 (ISO) では専門的な標準に関する作業が進行中です。 (この章の記事「森林慣行の規則、法律、規制、規範」を参照してください。)

チェーンソーは、安全機能に関する特定の国際規則が存在する数少ない林業機械の 1994 つです。 さまざまな ISO 規格が関連しています。 それらは、608 年に欧州規格 XNUMX に組み込まれ、補足されました。 農業および林業機械: 携帯用チェーンソー - 安全性. この規格には、設計上の特徴に関する詳細な指示が含まれています。 また、製造業者は、オペレーター/ユーザーのメンテナンスと鋸の安全な使用のあらゆる側面に関する包括的な指示と情報を提供する必要があることも規定しています。 これには、安全服と個人用保護具の要件、およびトレーニングの必要性が含まれます。 欧州連合内で販売されているすべての鋸には、「警告、取扱説明書を参照」とマークする必要があります。 規格には、ハンドブックに含める項目がリストされています。

林業用機械は国際規格で十分にカバーされておらず、多くの場合、必要な安全機能に関する特定の国内規制はありません。 林業用機械には、人間工学的に重大な欠陥がある場合もあります。 これらは、オペレーターの間で深刻な健康上の苦情が発生する主な原因となっています。 また、機械は特定の労働者集団に適した設計であっても、労働者の体格やコミュニケーション ルーチンなどが異なる国に輸入されると、あまり適していない場合があります。 最悪の場合、輸出価格を引き下げるために、機械から不可欠な安全衛生機能が取り除かれます。

試験機関や機械取得の責任者を導くために、さまざまな国で人間工学に基づいた専用のチェックリストが作成されています。 チェックリストは通常​​、次のマシンの特性に対応しています。

  • 階段、はしご、ドアなどの出入りエリア
  • キャビンスペースとコントロールの位置
  • 運転席のシート、アーム、背もたれ、フットレスト
  • 主な操作を実行するときの可視性
  • 「ワーカー・マシン・インターフェース」: インジケーターのタイプと配置、およびマシン機能の制御
  • 振動騒音、ガス、気候要因などの物理的環境
  • 転覆、侵入物、火災などを含む安全性
  • メンテナンス。

 

このようなチェックリストの具体例は、Golsse (1994) および Apud and Valdés (1995) に記載されています。 ILO 1998 には、既存の ILO 基準のリストだけでなく、機械と設備に関する推奨事項も含まれています。

 

戻る

読む 19801 <font style="vertical-align: inherit;">回数</font> 01:先週の木曜日、9月2011 23 04で変更
このカテゴリの詳細: « 概要プロフィール 木材輸送 »

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

林業の参考文献

Apud、E、L Bostrand、I Mobbs、B Strehlke。 1989年。林業における人間工学的研究に関するガイドライン。 ジュネーブ: ILO.

Apud、E、S Valdés。 1995. 林業における人間工学 - チリの事例。 ジュネーブ: ILO.

バニスター、E、D ロビンソン、D トライト。 1990年。植林の人間工学。 カナダとブリティッシュ コロンビア州の森林資源開発協定、FRDA レポート 127。ブリティッシュ コロンビア州ビクトリア: FRDA。

ブラウン、GW. 1985 年。林業と水質。 オレゴン州コーバリス: オレゴン州立大学 (OSU) Book Stores Inc.

チェン、KT。 1990 年。伐採事故 - 新たな問題。 マレーシア、サラワク州: 医療部門の産業保健ユニット。

ダンメル、K および H ブランズ。 1986.「Holzernteverfahren」、Schriften Reihefdes Bundesministers für Ernätrung、Handwirtschaft und Forsten。 Reihe A: Landwirtschafts verlag Münster-Hiltrup.

ダーニン、JVGA、R パスモア。 1967年。エネルギー、仕事、レジャー。 ロンドン:ハイネマン。

国連食糧農業機関 (FAO)。 1992年。開発途上国の林業における人間工学の紹介。 林業紙 100。ローマ:FAO。

—。 1995 年。林業—明日のための今日の統計。 ローマ:FAO。

—。 1996 年。 FAO の森林伐採実施のモデル コード。 ローマ:FAO。

FAO/ECE/ILO。 1989年。土壌に対する森林操作の機械化の影響。 セミナーの議事録、ルーヴァン・ラ・ヌーヴ、ベルギー、11 月 15 ~ XNUMX 日。 ジュネーブ: FAO/ECE/ILO 森林技術、管理およびトレーニングに関する合同委員会。

—。 1991年。林業における農薬の使用。 10 年 14 月 1990 ~ XNUMX 日、イギリス、スパーショルトで開催されたセミナーの議事録。

—。 1994. 土、木、機械の相互作用、FORSITRISK。 インタラクティブなワークショップとセミナーの議事録、Feldafiraf、ドイツ、4 月 8 ~ XNUMX 日。 ジュネーブ: FAO/ECE/ILO 森林技術、管理およびトレーニングに関する合同委員会。

—。 1996a。 森林の急性被害に関するマニュアル。 UN/ECE/ FAO 討論文書 ECE/TIM/DP/7、ニューヨークおよびジュネーブ: 森林技術、管理および訓練に関する FAO/ECE/ILO 合同委員会。

—。 1996b. 林業におけるスキルとトレーニング - ECE 加盟国の調査結果。 ジュネーブ: FAO/ECE/ILO 森林技術、管理およびトレーニングに関する合同委員会。

FAO/ILO。 1980年。熱帯林のチェーンソー。 森林トレーニング シリーズ No. 2。ローマ: FAO。

Gellerstedt, S. 1993. 森林労働における労働と健康。 ヨーテボリ: チャルマーズ工科大学。

Giguère、D、R Bélanger、JM Gauthier、および C Larue。 1991年。 Rapport IRSST B-026。 モントリオール: IRSST.

—。 1993. マルチポット技術を使用した植林の人間工学的側面。 人間工学 36(8):963-972。

ゴルセ、JM. 1994. カナディアン フォレスト マシンの FERIC 人間工学的チェックリストの改訂。 Pointe Claire: カナダの森林工学研究所。

Haile, F. 1991. アディスアベバと都市周辺の森林における女性の薪運搬人。 アディスアベバ、エチオピア ETH/88/MO1/IRDC および ETH/89/MO5/NOR での薪輸送における女性に関する研究。 プロジェクトレポート。 ジュネーブ: ILO.

Harstela, P. 1990. 北欧の森林作業における労働者の作業姿勢と緊張: 選択的レビュー。 Int J Ind Erg 5:219–226.

国際労働機関 (ILO)。 1969 年。林業における安全と健康。 ILO 行動規範。 ジュネーブ: ILO.

—。 1988年。荷物の持ち上げと運搬における最大重量。 労働安全衛生サービス、第 59 号。ジュネーブ: ILO。

—。 1991 年。林業における労働安全衛生。 レポート II、林業および木材産業委員会、第 XNUMX セッション。 ジュネーブ: ILO.

—。 1997 年。林業における安全と健康に関する行動規範。 MEFW/1997/3. ジュネーブ: ILO.

—。 1998年。林業における安全と健康に関する行動規範。 ジュネーブ: ILO.

国際標準化機構 (ISO)。 1986. 土を処理するための機器: ROPS - 実験室試験および性能仕様。 ISO 3471-1。 ジュネーブ: ISO。

Jokulioma、H および H Tapola。 1993 年。フィンランドの森林労働者の安全と健康。 ウナシルバ 4(175):57–63.

Juntunen、ML。 1993. フィンランドでのハーベスター操作のトレーニング。 伐採作業における多機能機械および機器の使用に関するセミナーで発表。 Olenino Logging Enterprise、ロシア連邦、トヴォル州、22 月 28 ~ XNUMX 日。

—。 1995. プロのハーベスター オペレーター: トレーニングから得た基本的な知識とスキル - 職業生活からの操作スキル? 6月12~XNUMX日にフィンランドのタンプレで開催されたIUFRO XX世界会議で発表されました。

Kanninen, K. 1986. 伐採作業における労働災害の発生と予防措置の目的。 3 年 7 月 1985 ~ XNUMX 日、フィンランド、クオピオ、林業労働者の職業上の健康とリハビリテーションに関するセミナーの議事録。 FAO/ECE/ILO 森林労働技術と森林労働者の訓練に関する合同委員会。

Kastenholz, E. 1996 年。 博士論文。 フライブルク、ドイツ: フライブルク大学。

カントラ、M および P ハーステラ。 1988. 発展途上国における森林事業のための適切な技術に関するハンドブック、パート 2. 森林トレーニング プログラム出版物 19. ヘルシンキ: 全国職業教育委員会。

Kimmins, H. 1992. Balancing Act—林業における環境問題。 バンクーバー、ブリティッシュ コロンビア州: ブリティッシュ コロンビア大学出版局。

Lejhancova, M. 1968. 鉱物油による皮膚の損傷。 Procovni Lekarstvi 20(4):164–168.

Lidén, E. 1995. スウェーデンの産業林業における林業機械請負業者: 1986 ~ 1993 年の重要性と状況。 運用効率レポート No. 195 部門。スウェーデン農業科学大学。

技能開発省。 1989. カッター スキッダー オペレーター: 能力に基づくトレーニング基準。 オンタリオ: 技能開発省。

Moos、H、および B Kvitzau。 1988. 他の職業から林業に入る成人の森林労働者の再訓練。 26 年 30 月 1988 ~ XNUMX 日、フランス、ルビエール、林業における請負業者の雇用に関するセミナーの議事録。

National Proficiency Test Council (NPTC) および Scottish Skill Testing Service (SSTS)。 1992. チェーンソー規格のスケジュール。 イギリス、ウォリックシャー: NPTC および SSTS。

—。 1993. チェーンソー操作の技能証明書。 イギリス、ウォリックシャー: National Proficiency Tests Council および Scottish Skills Testing Service。

Patosaari、P. 1987. 林業における化学物質: 健康被害と保護。 FAO/ECE/ILO 林業技術および林業労働者の訓練に関する合同委員会、ヘルシンキ (mimeo) に報告。

ペレット。 1995. ラポール・デチュード: L'ánalyse de l'áccident par la method de l'arbre des cause. ルツェルン: Schweizerische Unfallversicherungsanstalt (SUVA) (mimeo).

パワーズ、RF、DH アルバン、RE ミラー、AE ティアクス、CG ウェルズ、PE エイバース、RG クライン、RO フィッツジェラルド、JNS ロフタス。 1990年。
北米の森林におけるサイト生産性の維持: 問題と展望。 SP Gessed、DS Lacate、GF Weetman、および RF Powers が編集した森林土壌の持続的生産性。 バンクーバー、ブリティッシュ コロンビア州: 林業学部出版。

ロビンソン、DG、DG トライト、EW バニスター。 1993. ブリティッシュ コロンビア州の造林労働者による植林における作業ストレスと農薬曝露の生理学的影響。 人間工学 36(8):951–961。

ロデロ、F. 1987年。 マドリッド、スペイン: Instituto Nacional para la Conservación de la Naturaleza。

Saarilahti、M および A アスガル。 1994. チリマツの冬季植栽に関する研究. 研究論文 12、ILO プロジェクト、パキスタン。
Skoupy、A および R Ulrich。 1994. 一人用チェーンソーのチェーン潤滑油の散布。 Forsttechnische Information 11:121–123。

Skyberg、K、A Ronneberg、CC Christensen、CR Naess-Andersen、HE Refsum、および A Borgelsen。 1992. ケーブル製造会社の油にさらされた労働者の肺機能と肺線維症の X 線写真の兆候: 追跡調査。 Brit J Ind Med 49(5):309–315.

Slappendel、C、I Laird、I Kawachi、S Marshal、および C Cryer。 1993 年。林業労働者の労働災害に影響を与える要因:レビュー。 J Saf Res 24:19–32。

スミス、TJ。 1987. 植林作業の職業的特徴. シルヴィカルチャー マガジン II(1):12–17.

Sozialversicherung der Bauern。 1990 年。ILO に提出されたオーストリアの公式統計からの抜粋 (未発表)。

Staudt, F. 1990. Ergonomics 1990. Proceedings P3.03 Ergonomics XIX World Congress IUFRO、モントリオール、カナダ、1990 年 XNUMX 月。

Stjernberg、EI。 1988. カナダ中部および東部における手作業による植林作業の研究。 FERIC テクニカル レポート TR-79。 モントリオール: カナダ森林工学研究所。

Stolk, T. 1989. Gebruiker mee laten kiezen uit persoonlijke beschermingsmiddelen. Tuin & Landschap 18.

Strehlke, B. 1989. 森林事故の研究。 林業における人間工学的研究に関するガイドライン、E Apud 編。 ジュネーブ: ILO.

トライト、DG、DG ロビンソン、EW バニスター。 1993. ブリティッシュ コロンビア州の造林労働者の植樹シーズン中の心血管と筋肉の緊張。 人間工学 36(8):935–949。

ウド、ES。 1987.ナイジェリアの伐採および製材産業における労働条件と事故。 ILO への報告 (未発表)。

Wettman, O. 1992. Securité au travail dans l'exploitation forestière en Suisse. FAO/ECE/ILO Proceedings of Seminar on the Future of the Forestry Workforce、FAO/ECE/ILO 編集。 オレゴン州コーバリス: オレゴン州立大学出版局。