日曜日、13月2011 15:49

地下採掘の技術

このアイテムを評価
(12票)

方法と設備の万華鏡を示す地下鉱山が世界中にあります。 約 650 の地下鉱山があり、それぞれの年間生産量は 150,000 万トンを超え、西側世界の鉱石生産量の 90% を占めています。 さらに、それぞれの生産量が 6,000 トン未満の小規模な鉱山が 150,000 あると推定されています。 各鉱山は、特定の鉱物の市場や投資のための資金の利用可能性などの経済的考慮事項だけでなく、求められる鉱物の種類、場所、地層によって決定される作業場、設備、および地下作業で独特です。 XNUMX 世紀以上にわたって操業を続けている鉱山もあれば、操業を開始したばかりの鉱山もあります。

鉱山は、ほとんどの仕事が重労働を伴う危険な場所です。 労働者が直面する危険は、陥没、爆発、火災などの大惨事から、事故、ほこりへの暴露、騒音、熱などにまで及びます。 労働者の健康と安全を守ることは、採掘作業を適切に実施する上で重要な考慮事項であり、ほとんどの国で法律や規制によって義務付けられています。

地下鉱山

地下鉱山は、地中の岩盤にある工場で、鉱山労働者が岩塊に隠れた鉱物を回収するために働いています。 彼らは、鉱石、つまり、少なくとも XNUMX つの鉱物の混合物を含む岩石にアクセスして回収するために、掘削、装入、爆破を行い、そのうちの少なくとも XNUMX つを加工して利益を上げて販売できる製品にすることができます。 鉱石は表面に運ばれ、高品位の精鉱に精製されます。

地表深くの岩塊の内部で作業するには、特別なインフラストラクチャが必要です。地表と接続し、鉱山内の労働者、機械、岩石の移動を可能にする立坑、トンネル、チャンバーのネットワークです。 立坑は、横方向のドリフトが立坑駅と生産拠点をつなぐ地下へのアクセスです。 内部ランプは、さまざまな高さ (深さ) の地下レベルを結ぶ傾斜したドリフトです。 すべての地下開口部には、排気換気と新鮮な空気、電力、水と圧縮空気、浸出する地下水を収集するための排水管とポンプ、および通信システムなどのサービスが必要です。

ホイストプラントとシステム

ヘッドフレームは、地表で地雷を識別する高い建物です。 それは立坑の真上にあり、鉱山労働者が職場に出入りし、供給品や設備が降ろされ、鉱石や廃棄物が地表に持ち上げられる鉱山の大動脈です。 シャフトとホイストの設置は、必要な容量、深さなどによって異なります。 各鉱山には、緊急時に避難するための代替ルートを提供するために、少なくとも XNUMX つの立坑が必要です。

巻き上げとシャフトの移動は、厳しい規則によって規制されています。 巻き上げ装置(ワインダー、ブレーキ、ロープなど)は、十分な安全マージンを備えて設計されており、定期的にチェックされています。 シャフトの内部は、ケージの上に立つ人によって定期的に検査され、すべてのステーションの停止ボタンが非常ブレーキをトリガーします。

ケージがステーションにないときは、立坑バリケードの前にあるゲートが開口部になります。 ケージが到着して完全に停止すると、信号がゲートをクリアして開きます。 鉱山労働者がケージに入ってゲートを閉じた後、別の信号がケージをクリアして、立坑を上下に移動します。 やり方はさまざまで、信号の命令はケージテンダーによって与えられるか、各立坑駅に掲示されている指示に従って、鉱山労働者が自分で立坑の目的地を合図することがあります。 鉱山労働者は一般に、坑道に乗ったり巻き上げたりする際の潜在的な危険性を十分に認識しており、事故はめったにありません。

ダイヤモンド掘削

採掘を開始する前に、岩石内の鉱床をマッピングする必要があります。 鉱体がどこにあるかを知り、その幅、長さ、深さを定義して、鉱床の XNUMX 次元ビジョンを実現する必要があります。

ダイヤモンド掘削は、岩塊を調査するために使用されます。 掘削は地表から、または地下鉱山のドリフトから行うことができます。 小さなダイヤモンドがちりばめられたドリル ビットは、ビットに続く一連のチューブに捕捉された円筒形のコアを切断します。 コアを取り出して分析し、岩の中に何があるかを調べます。 コアサンプルが検査され、鉱化部分が分割され、金属含有量が分析されます。 鉱床の位置を特定するには、大規模な掘削プログラムが必要です。 鉱体の寸法を特定するために、水平方向と垂直方向の両方の間隔で穴が開けられます (図 1 を参照)。

図 1. 掘削パターン、ガーペンバーグ鉱山、鉛亜鉛鉱山、スウェーデン

MIN040F4

鉱山開発

鉱山開発には、ストープ生産に必要なインフラストラクチャを確立し、将来の操業継続に備えるために必要な掘削が含まれます。 すべてドリル ブラスト掘削技術によって生成される通常の要素には、水平ドリフト、傾斜ランプ、垂直または傾斜レイズが含まれます。

軸沈み

立坑沈下は、下方に進む岩の掘削を含み、通常、鉱山の職員によって行われるのではなく、請負業者に割り当てられます。 シャフトを沈めるヘッドフレーム、ロープに吊り下げられた大きなバケツを備えた特別なホイスト、サボテンをつかむシャフトをいじる装置など、経験豊富な労働者と特別な設備が必要です。

シャフトが沈む乗組員は、さまざまな危険にさらされています。 彼らは深い垂直掘削の底で働いています。 人、材料、爆破された岩はすべて大きなバケツを共有する必要があります。 シャフトの底にいる人は、落下物から隠れる場所がありません。 明らかに、シャフトの沈み込みは未経験者の仕事ではありません。

ドリフトとランピング

ドリフトは、岩石や鉱石の輸送に使用される水平アクセス トンネルです。 ドリフト掘削は、鉱山の開発における日常的な活動です。 機械化された鉱山では、16.0 ブームの電気油圧式ドリル ジャンボが切羽掘削に使用されます。 典型的なドリフト プロファイルは XNUMX m です。2 断面図であり、切羽は深さ 4.0 m まで掘削されています。 穴は、特別な充電トラックから爆発物、通常は大量の硝酸アンモニウム燃料油 (ANFO) で空気圧で充電されます。 短遅延の非電気(ノネル)起爆装置が使用されます。

マッキングは、バケット容量が約 2 m の (ロード ホール ダンプ) LHD 車 (図 3.0 を参照) で行われます。3. 泥は鉱石パスシステムに直接運ばれ、より長い運搬のためにトラックに移されます。 傾斜路は、1:7 から 1:10 の範囲の勾配 (通常の道路に比べて非常に急な勾配) で XNUMX つまたは複数のレベルを接続する通路であり、重い自走式機器に十分な牽引力を提供します。 ランプは、らせん階段と同様に、上向きまたは下向きのらせん状に駆動されることがよくあります。 ランプ掘削は、鉱山の開発スケジュールのルーチンであり、漂流と同じ機器を使用します。

図 2. LHD ローダー

MIN040F6

アトラスコプコ

調達

レイズとは、鉱山のさまざまなレベルをつなぐ垂直または急勾配の開口部です。 これは、ストップへのはしご道、鉱石の通路、または鉱山の換気システムの気道として機能する可能性があります。 育てるのは難しく危険ですが、必要な仕事です。 引き上げ方法は、単純な手動ドリルとブラストから、レイズ ボーリング マシン (RBM) を使用した機械的な岩盤掘削までさまざまです (図 3 を参照)。

図 3. 引き上げ方法

MIN040F3

手動上げ

手作業による引き上げは、鉱山労働者の敏捷性、強さ、持久力に挑戦する、困難で危険で肉体的に厳しい作業です。 体調の良い経験豊富な坑夫のみに配属されるお仕事です。 原則として、レイズ セクションは木造の壁によって XNUMX つのコンパートメントに分割されます。 XNUMX つは切羽やエア パイプなどに登るために使用されるはしご用に開いたままにします。もう XNUMX つは、鉱山労働者がラウンドを掘削する際のプラットフォームとして使用する発破からの岩石で満たされます。 木材の分割は、各ラウンドの後に延長されます。 この作業には、はしご登り、材木工事、岩盤掘削、発破作業が含まれ、すべてが狭く換気の悪い場所で行われます。 ヘルパーの余地がないため、すべて XNUMX 人のマイナーによって実行されます。 鉱山は、危険で骨の折れる手作業による引き上げ方法に代わるものを探しています。

レイズ・クライマー

レイズクライマーは、はしごを登る必要がなく、手動の方法の難しさの多くを回避する乗り物です。 この車両は、岩にボルトで固定されたガイド レールのレイズを登り、鉱山労働者が上でラウンドを掘削しているときに堅牢な作業プラットフォームを提供します。 非常に高いレイズはレイズクライマーで掘削でき、手作業よりも安全性が大幅に向上します。 しかし、レイズ掘削は依然として非常に危険な仕事です。

レイズボーリングマシン

RBM は機械的に岩を砕く強力な機械です (図 4 を参照)。 計画された隆起の上に立てられ、直径約 300 mm のパイロット穴が開けられ、より低いレベルのターゲットで突破されます。 パイロット ドリルを目的のレイズ径のリーマー ヘッドに交換し、RBM を逆にしてリーマー ヘッドを回転させて上方に引っ張り、フルサイズのサーキュラー レイズを作成します。

図 4. 中ぐり盤を上げる

MIN040F7

アトラスコプコ

地上管制

地上管制は、岩盤内で作業する人々にとって重要な概念です。 これは、ドリフト開口部が 25.0 m のゴムタイヤ装備を使用する機械化された鉱山では特に重要です。2 断面では、通常 10.0 m しかないレールドリフトのある鉱山とは対照的です。2. 5.0 m の屋根は高すぎて、鉱夫がスケール バーを使用して落石の可能性をチェックすることはできません。

地下の開口部に屋根を固定するために、さまざまな手段が使用されます。 スムーズな爆破では、輪郭の穴が密集してドリルで開けられ、低強度の爆発物が装填されます。 爆風は、外側の岩を破壊することなく滑らかな輪郭を作り出します。

とはいえ、岩盤には表面に現れない亀裂が存在することが多いため、落石は常に存在する危険です。 リスクは、ロック ボルト、つまり鋼棒をボア穴に挿入して固定することで軽減されます。 ロックボルトは、岩盤を固定し、亀裂の拡大を防ぎ、岩盤を安定させ、地下環境をより安全にします。

地下採掘の方法

採掘方法の選択は、鉱床の形状とサイズ、含まれる鉱物の価値、組成、岩塊の安定性と強度、および生産量と安全な労働条件に対する要求 (時には矛盾する) に影響されます。 )。 採掘方法は古代から進化してきましたが、この記事では、XNUMX 世紀後半に半機械化から完全機械化された鉱山で使用された方法に焦点を当てています。 それぞれの鉱山はユニークですが、安全な職場と収益性の高い事業運営という目標を共有しています。

フラット ルーム アンド ピラー マイニング

部屋と柱の採掘は、20°を超えない角度で水平から中程度の傾斜を持つ板状の鉱化作用に適用できます (図 5 を参照)。 堆積物は多くの場合堆積物起源のものであり、岩はしばしば吊り壁と有能な鉱化作用の両方にあります (鉱山労働者は、安定性が疑わしい屋根を補強するために岩ボルトを取り付けるオプションがあるため、ここでは相対的な概念です)。 ルーム アンド ピラーは、主要な坑内採炭方法の XNUMX つです。

図 5. 平らな鉱体のルーム アンド ピラー マイニング

MIN040F1

ルームアンドピラーは、多面フロントに沿って進行する水平掘削によって鉱体を抽出し、生産フロントの背後に空の部屋を形成します。 柱、岩のセクションは、屋根が陥没しないように部屋の間に残されています。 通常の結果は、部屋と柱の規則的なパターンであり、それらの相対的なサイズは、岩塊の安定性を維持することと、できるだけ多くの鉱石を抽出することとの間の妥協点を表しています. これには、柱の強度、屋根層のスパン容量、およびその他の要素の慎重な分析が含まれます。 ロック ボルトは、柱の岩の強度を高めるために一般的に使用されます。 採掘されたストップは、鉱石を鉱山の貯蔵庫に運ぶトラックの道路として機能します。

部屋と柱の停止面は、ドリフトのようにドリルで穴を開けて爆破されます。 ストープの幅と高さはドリフトのサイズに対応しており、かなり大きくなる可能性があります。 通常の高さの鉱山では、大型の生産的なドリル ジャンボが使用されます。 コンパクトなリグは、鉱石の厚さが 3.0 m 未満の場合に使用されます。 厚い鉱体は上から段階的に採掘されるため、鉱山労働者にとって便利な高さに屋根が固定されます。 下のセクションは、平らな穴をドリルで開け、上のスペースを爆破することにより、水平スライスで回収されます。 鉱石は切羽でトラックに積み込まれます。 通常は、通常のフロントエンドローダーとダンプトラックが使用されます。 低床鉱山では、特殊な鉱山用トラックと LHD 車両が利用可能です。

部屋と柱は効率的な採掘方法です。 安全性は、開放された部屋の高さと地上管制基準に依存します。 主なリスクは、落石や機器の移動による事故です。

傾斜した部屋と柱の採掘

傾斜した部屋と柱は、水平に対して 15° と 30° の角度または傾斜を伴う板状の鉱化作用に適用されます。 これは、ゴムタイヤの車両が登るには急すぎる角度であり、重力アシストの岩の流れには平坦すぎる.

傾斜した鉱体への従来のアプローチは、手作業に依存しています。 鉱山労働者は、手持ち式のさく岩機でストップに発破孔を掘削します。 ストーブはスラッシャースクレーパーで掃除されます。

傾斜したストーブは作業しにくい場所です。 鉱山労働者は、さく岩機、ドラッグ スラッシャー プーリー、鋼線を携えて、爆破された岩の急な山を登らなければなりません。 落石や事故に加えて、騒音、粉塵、不十分な換気、熱などの危険があります。

傾斜鉱床が機械化に適している場合は、「ステップルームマイニング」が使用されます。 これは、「傾斜が難しい」フットウォールを、トラックレスマシンに便利な角度のステップを備えた「階段」に変換することに基づいています。 ステップは、鉱体を横切る選択された角度で停止と牽引ウェイのダイヤモンド パターンによって生成されます。

鉱石の抽出は、水平方向のストーブ ドライブから始まり、結合されたアクセスと牽引のドリフトから分岐します。 最初のストップは水平で、吊り壁に沿っています。 次の駅は少し下ったところから始まり、同じルートをたどります。 この手順を下方向に繰り返し、鉱体を抽出する一連のステップを作成します。

吊り壁を支えるために、鉱化作用の一部が残されています。 これは、隣接する XNUMX つまたは XNUMX つのストープ ドライブを完全にマイニングしてから、次のストープ ドライブを XNUMX ステップ下で開始し、それらの間に細長い柱を残すことによって行われます。 この柱の一部は、下のストーブから掘削および爆破されたカットアウトとして後で回収できます。

最新のトラックレス機器は、階段室採掘にうまく適応します。 停止は、標準のモバイル機器を使用して完全に機械化できます。 爆破された鉱石は、LHD 車両によってストップに集められ、立坑/鉱石パスへの輸送のために鉱山トラックに移されます。 ストップがトラックの積み込みに十分な高さでない場合、トラックは運搬用ドライブに掘削された特別な積み込みベイに積み込むことができます。

収縮停止

収縮停止は、「古典的な」採掘方法と呼ばれる可能性があり、おそらく前世紀のほとんどで最も人気のある採掘方法でした. 大部分は機械化された方法に取って代わられましたが、世界中の多くの小さな鉱山でまだ使用されています. これは、有能な岩塊にホストされた規則的な境界と急な傾斜を持つ鉱床に適用できます。 また、爆破された鉱石は、斜面での保管によって影響を受けてはなりません (たとえば、硫化鉱石は、空気にさらされると酸化および分解する傾向があります)。

その最も顕著な特徴は、鉱石処理に重力流を使用することです。ストップからの鉱石は、シュートを介して鉄道車両に直接落下します。手作業による積み込みは、伝統的に採掘で最も一般的で、最も好まれていない仕事です。 1950 年代に空気圧ロッカー ショベルが登場するまで、地下鉱山で岩石を積み込むのに適した機械はありませんでした。

収縮停止は、鉱石を水平スライスで抽出し、ストープの底から始めて上方に進めます。 爆破された岩石のほとんどはストープに残り、鉱山労働者が屋根に穴を開けるための作業プラットフォームを提供し、ストープの壁を安定させるのに役立ちます. 発破により岩石の体積が約60%増加するため、停止中に約40%の鉱石が下部に引き出され、マックパイルの上部と屋根の間に作業スペースが確保されます。 残りの鉱石は、発破がストープの上限に達した後に引き出されます。

マックパイルの頂上から作業する必要があり、はしごを上げてアクセスする必要があるため、ストープで機械化された機器を使用することはできません。 鉱山労働者が一人で扱えるほど軽量な機器のみを使用することができます。 エアレッグとロック ドリルは、合わせて 45 kg の重量があり、引け止めを掘削するための通常のツールです。 マックパイルの上に立って、鉱山労働者はドリル/フィードを持ち上げ、脚を固定し、さく岩機/ドリル鋼を屋根に固定し、掘削を開始します。 それは簡単な仕事ではありません。

カットアンドフィルマイニング

切土採掘は、安定性が良好から中程度の岩塊に含まれる急勾配の鉱床に適しています。 底部の切り口から水平スライスで鉱石を取り除き、上に向かって進むことで、不規則な鉱化作用に合わせてストープ境界を調整することができます。 これにより、低品位の鉱石を残して、高品位のセクションを選択的に採掘することができます。

ストープがきれいに掘り起こされた後、次のスライスが採掘されたときに作業プラットフォームを形成し、ストープの壁に安定性を追加するために、採掘されたスペースが埋め戻されます。

無軌道環境での開削採掘の開発には、メイン レベルの鉱体に沿ったフットウォール牽引ドライブ、油圧バックフィル用の排水管を備えたストップのアンダーカット、アクセス ターンアウトを備えたフットウォールに掘削されたスパイラル ランプが含まれます。ストップと、換気と充填輸送のためのストップから上のレベルへの上昇。

オーバーハンドストップ は、埋め戻し材として乾式岩石と水硬性砂の両方を使用して、切土と盛土で使用されます。 オーバーハンドとは、厚さ 3.0 m ~ 4.0 m のスライスを発破して、鉱石を下から掘削することを意味します。 これにより、完全なストープ領域を掘削し、中断することなく完全なストープの発破を行うことができます。 「上部」の穴は、単純なワゴン ドリルで開けられます。

アップホール掘削と爆破により、屋根の荒い岩肌が残ります。 むち打ち後の高さは約7.0m。 鉱山労働者がその地域に立ち入る前に、屋根の輪郭をスムースブラストでトリミングし、続いてゆるい岩をスケーリングして、屋根を固定する必要があります。 これは、マックパイルから作業するハンドヘルドさく岩機を使用して鉱山労働者によって行われます。

In フロントストップ、トラックレス機器は鉱石生産に使用されます。 砂の尾鉱は埋め戻しに使用され、プラスチック パイプを介して地下駅に分配されます。 ストッパーはほぼ完全に埋められており、ゴムタイヤの機器が通過するのに十分なほど硬い表面を作り出しています。 停留所の生産は、ドリフトジャンボとLHD車で完全に機械化されています。 絞り面は、絞りを横切る 5.0 m の垂直壁で、その下に 0.5 m の開いたスロットがあります。 表面に長さ XNUMX メートルの水平な穴が開けられ、鉱石が底の開いたスロットに吹き付けられます。

XNUMX 回の爆風で生成されるトン数は、面の面積に依存し、オーバーハンド ストープ ブラストで生成されるトン数とは比較になりません。 ただし、無軌道装置の出力は手動方法よりもはるかに優れていますが、屋根の制御は、ストープブラストと一緒にスムーズブラスト穴をあけるドリルジャンボによって達成できます。 特大のバケツと大きなタイヤを装備した LHD 車両は、積み込みと輸送のための多用途のツールであり、盛土面を簡単に移動できます。 ダブル フェース ストップでは、ドリル ジャンボが一方の端でドリル ジャンボと係合し、他方の端で LHD がマックパイルを処理するため、機器の効率的な使用が可能になり、生産量が向上します。

サブレベル停止 オープンストップで鉱石を取り除きます。 採掘後に圧密充填でストップを埋め戻すことにより、鉱夫は後で戻ってストップ間の柱を回収することができ、鉱床の非常に高い回収率が可能になります。

サブレベル停止の開発は広範で複雑です。 鉱体は垂直高さ約 100 m のセクションに分割され、サブレベルが準備され、傾斜ランプを介して接続されます。 鉱体セクションは横方向にさらに分割され、ストッパーとピラーが交互に配置され、メール運搬ドライブが下部のフットウォールに作成され、ドローポイントの読み込み用の切り欠きがあります。

採掘されると、サブレベル ストップは鉱体を横切る長方形の開口部になります。 ストープの底はV字型になっており、ブラストされた材料をドローポイントに注ぎ込みます。 長穴リグ用の掘削ドリフトは、上部サブレベルに用意されています (図 6 を参照)。

図 6. リングドリルとクロスカットローディングを使用したサブレベル停止

MIN040F2

発破には、岩の体積が膨張するためのスペースが必要です。 これには、長穴発破を開始する前に、幅数メートルのスロットを準備する必要があります。 これは、ストープのボトムからトップへのレイズをフルスロットに拡大することによって達成されます。

スロットを開けた後、長穴リグ (図 7 を参照) は、すべての発破孔、カラーリングの位置、穴の深さと方向を指定する、発破の専門家によって設計された詳細な計画に正確に従って、サブレベルのドリフトで生産掘削を開始します。 ドリルリグは、XNUMX つのレベルのすべてのリングが完成するまで掘削を続けます。 その後、次のサブレベルに転送され、掘削が続行されます。 その間、穴が充電され、ストープ内の広い領域をカバーする爆風パターンが、XNUMX 回の爆風で大量の鉱石を砕きます。 発破された鉱石はストープの底に落ち、ストープの下のドローポイントをいじる LHD 車両によって回収されます。 通常、長穴掘削は装入および発破より先に行われ、発破可能な鉱石を確保することで、効率的な生産スケジュールを実現します。

図 7. ロングホール ドリル リグ

MIN040F8

アトラスコプコ

サブレベル停止は生産的なマイニング方法です。 長穴掘削に完全に機械化された生産的なリグを使用できることに加えて、リグを継続的に使用できるという事実によって、効率が向上します。 また、サブレベルのドリフト内で掘削を行い、ドローポイントをいじることで落石の可能性が排除されるため、比較的安全です。

垂直クレーター後退採掘

サブレベル停止と収縮停止のように、垂直クレーター後退 (VCR) 採掘は急傾斜地層の鉱化作用に適用できます。 しかし、岩石の自由表面から約 165 m 離れた非常に大きな直径 (約 3 mm) の穴 (「クレーター」) に配置された重く濃縮された電荷で岩石を破壊する別の爆破技術を使用します。 発破は、穴の周りの岩塊の円錐形の開口部を破壊し、発破された材料が生産段階中にストープに残ることを可能にし、ロックフィルがストープ壁を支えるのを助けることができます. 岩の安定性の必要性は、サブレベルの停止よりも少なくなります。

VCR 採掘の開発は、オーバーカットとアンダーカットの両方の掘削を必要とすることを除いて、サブレベル停止の開発と似ています。 オーバーカットは、大口径の発破孔を掘削するリグに対応するため、および穴を装填して発破する際にアクセスするために、最初の段階で必要です。 アンダーカット掘削により、VCR 発破に必要な自由表面が提供されました。 また、LHD 車両 (オペレーターはストップの外にいて遠隔操作で操作) にアクセスして、ストップの下のドローポイントから爆破された鉱石を回収することもできます。

通常の VCR ブラストでは、4.0 × 4.0 m のパターンの穴を垂直または急勾配に向けて使用し、電荷を計算された距離に慎重に配置して、下の表面を解放します。 チャージは協力して、厚さ約 3.0 m の水平な鉱石スライスを切り離します。 爆破された岩は下のストープに落ちます。 掘り出す速度を制御することにより、ストープは部分的に埋められたままになり、ロックフィルが生産段階でストープの壁を安定させるのに役立ちます。 最後の爆風はオーバーカットをストープに壊します。その後、ストープはきれいに汚され、埋め戻しの準備が整います。

VCR 鉱山では、多くの場合、鉱体への一次停止と二次停止のシステムが使用されます。 プライマリ ストップは、最初の段階で採掘され、セメントで埋め戻されます。 ストープは、塗りつぶしを統合するために残されます。 その後、鉱山労働者は戻ってきて、一次停留所と二次停留所の間の柱で鉱石を回収します。 このシステムは、セメント埋め戻しと組み合わせることで、埋蔵鉱量をほぼ 100% 回収します。

サブレベルの洞窟探検

サブレベルのケービングは、急勾配から中程度の傾斜と深さでの大きな拡張を伴う鉱物堆積物に適用できます。 鉱石は発破で扱いやすいブロックに粉砕する必要があります。 吊り壁は鉱石の抽出に続いて陥没し、鉱体の上の地表は沈下します。 (人が立ち入らないようにバリケードを張る必要があります。)

サブレベル ケイビングは、鉱石と岩石の両方を含む砕けた岩塊内の重力の流れに基づいています。 岩塊は、最初に掘削と発破によって破砕され、次に岩塊の洞窟の下にあるドリフトヘッディングから掘り出されます。 鉱夫は常にドリフトサイズの開口部内で作業するため、安全な採掘方法としての資格があります。

サブレベルのケービングは、鉱体内部に垂直間隔がかなり狭い (10.0 m から 20 0 m) で準備された規則的なドリフト パターンを持つサブレベルに依存します。 ドリフト レイアウトは各サブレベルで同じです (つまり、足壁輸送ドライブから吊り壁まで鉱体を横切る平行ドライブ) が、各サブレベルのパターンはわずかにオフセットされているため、下位レベルのドリフトはその上のサブレベルでドリフトします。 断面は、規則的な垂直方向と水平方向の間隔でドリフトするダイヤモンド パターンを示します。 したがって、サブレベルのケービングの開発は広範囲に及びます。 しかし、ドリフト掘削は簡単な作業であり、容易に機械化できます。 いくつかのサブレベルで複数のドリフトヘディングに取り組むことは、機器の高い利用率に有利に働きます。

サブレベルの開発が完了すると、長穴ドリル リグが移動して、上の岩に扇状に広がったパターンで発破孔を掘削します。 すべての発破孔の準備が整うと、長孔ドリル リグが下のサブレベルに移動します。

長穴の爆風は、サブレベルのドリフトの上の岩塊を砕き、吊り壁の接触から始まり、サブレベルの鉱体を横切るまっすぐな前線に沿ってフットウォールに向かって後退する洞窟を開始します。 垂直断面は、上の各サブレベルが下のサブレベルよりも XNUMX 段進んでいる階段を示します。

爆風は地下の前線を鉱石と廃棄物の混合物で満たします。 LHD 車両が到着すると、洞窟には 100% の鉱石が含まれています。 積み込みが続くと、オペレータが廃棄物の希釈が高すぎると判断して積み込みを停止するまで、廃石の割合が徐々に増加します。 ローダーがマッキングを続けるために次のドリフトに移動すると、ブラスターが入って次の穴のリングをブラスト用に準備します。

サブレベルをいじることは、LHD 車両にとって理想的なアプリケーションです。 特定の状況に合わせてさまざまなサイズが用意されており、バケツを満たし、約 200 m 移動し、バケツを鉱石パスに空にして、別の積荷のために戻ります。

サブレベルのケービングは、独立して実行される反復作業手順 (開発漂流、長穴掘削、装入と発破、積み込みと輸送) を備えた概略レイアウトを特徴としています。 これにより、手順をあるサブレベルから別のサブレベルに継続的に移動できるため、作業員と機器を最も効率的に使用できます。 実際、鉱山は部門別の工場に似ています。 ただし、サブレベル マイニングは他の方法より選択性が低いため、特に効率的な抽出率は得られません。 洞窟には約 20 ~ 40% の廃棄物が含まれており、15 ~ 25% の範囲で鉱石が失われています。

ブロックケイビング

ブロックケイビングは、ケイビングしやすい岩塊に含まれる全方向で 100 億トン程度の鉱化作用に適用可能な大規模な方法です (つまり、岩塊の支持要素を除去した後、採掘されたブロックの破砕)。 年間生産量は 10 万から 30 万トンに及ぶと予想されます。 これらの要件は、ブロックケイビングをいくつかの特定の鉱床に制限します。 世界中に、銅、鉄、モリブデン、およびダイヤモンドを含む鉱床を利用するブロックケイビング鉱山があります。

ブロック マイニングレイアウトを指します。 鉱体は大きなセクション、ブロックに分割され、それぞれが長年の生産に十分なトン数を含んでいます。 ケービングは、長穴掘削と爆破によって破砕された 15 m の高さの岩石セクションであるアンダーカットによって、ブロックの直下にある岩塊の支持力を除去することによって誘発されます。 大陸の動きを引き起こすものと同様に、かなりの大きさの自然の地殻変動力によって生じる応力は、岩塊に亀裂を生じさせ、ブロックを破壊し、うまくいけば鉱山のドローポイントの開口部を通過します。 しかし、自然界では、特大の岩を処理するために鉱山労働者の助けが必要になることがよくあります。

ブロックケイビングの準備には、ブロックの下の掘削の複雑なシステムを含む、長期的な計画と大規模な初期開発が必要です。 これらはサイトによって異なります。 通常、アンダーカット、ドローベル、大型の岩石を制御するためのグリズリー、および鉱石を列車に積み込むための鉱石パスが含まれます。

ドローベルは、アンダーカットの下に掘削された円錐形の開口部で、広い領域から鉱石を集めて、下の生産レベルのドローポイントに注ぎ込みます。 ここで、鉱石は LHD 車両で回収され、鉱石パスに移されます。 バケツには大きすぎる岩はドローポイントで爆破され、小さい岩はグリズリーで処理されます。 グリズリー (粗い物質をふるいにかけるための平行棒のセット) は、一般的にブロックケイビング鉱山で使用されますが、ますます油圧ブレーカが好まれるようになっています。

ブロックケイビング鉱山の開口部は、高い岩圧を受けます。 したがって、ドリフトなどの開口部は、可能な限り最小のセクションで掘削されます。 それにもかかわらず、開口部を無傷に保つには、大規模なロック ボルトとコンクリート ライニングが必要です。

適切に適用されたブロックケイビングは、低コストで生産性の高い大量採掘方法です。 ただし、岩塊の洞窟への適応性は常に予測できるとは限りません。 また、必要な包括的な開発により、鉱山が生産を開始するまでのリードタイムが長くなります。収益の遅れは、投資を正当化するために使用される財務予測に悪影響を及ぼす可能性があります。

ロングウォール採掘

ロングウォール採掘は、均一な形状、限られた厚さ、および大きな水平方向の広がりを持つ層状堆積物に適用できます (例: 石炭層、カリ層または岩礁、南アフリカの金鉱山で開発された石英小石層)。 これは、石炭を採掘するための主要な方法の XNUMX つです。 ミネラルを直線に沿ってスライスして回収し、それを繰り返してより広い範囲で材料を回収します。 切羽に最も近いスペースは開いたままで、吊り下げられた壁は鉱山労働者とその機器の後ろの安全な距離で崩壊することが許されています。

ロングウォール採掘の準備には、採掘エリアへのアクセスと採掘された製品のシャフトへの輸送に必要なドリフトのネットワークが含まれます。 鉱化作用は広い範囲に広がるシート状であるため、通常、ドリフトは模式的なネットワーク パターンで配置できます。 牽引ドリフトは縫い目自体に準備されています。 隣接する XNUMX つの牽引ドリフト間の距離によって、ロングウォール面の長さが決まります。

バックフィル

坑口の埋め戻しは、岩盤の崩壊を防ぎます。 これは、安全性を促進し、目的の鉱石のより完全な抽出を可能にする岩塊の固有の安定性を維持します。 バックフィルは伝統的にカット アンド フィルで使用されますが、サブレベル ストップや VCR マイニングでも一般的です。

伝統的に、鉱山労働者は、開発からの廃石を地表に運ぶ代わりに、空き地に投棄してきました。 たとえば、カット アンド フィルでは、廃石がスクレーパーまたはブルドーザーによって空き区画に分散されます。

油圧埋め戻し 鉱山の選鉱工場からの尾鉱を使用し、ボアホールとプラスチックチューブを通して地下に分配します。 尾鉱は最初にスライムを取り除き、粗い部分だけを充填に使用します。 フィルは砂と水の混合物で、その約 65% が固形物です。 最後の注入にセメントを混合することにより、充填物の表面が硬化し、ゴムタイヤ装備用の滑らかな路盤になります。

埋め戻しは、サブレベルの停止と VCR 採掘でも使用され、砕石が砂の埋め立てを補完するものとして導入されます。 近くの採石場で生産された破砕されふるいにかけられた岩石は、特別な埋め戻しレイズを通じて地下に運ばれ、そこでトラックに積み込まれ、ストップに運ばれ、そこで特別なフィルレイズに投棄されます。 プライマリストップは、ロックフィルがストップに分配される前に、セメントフライアッシュスラリーをロックフィルに噴霧することによって生成されるセメントロックフィルで埋め戻されます。 セメントで固められたロックフィルが硬化して固体の塊になり、二次ストープを採掘するための人工柱が形成されます。 セメント スラリーは、固い土間を作るための最後の流し込みを除いて、一般に、XNUMX 次ストップが埋め戻される場合には必要ありません。

地下採掘用機器

地下採掘は、状況が許す限りますます機械化されています。 ゴムタイヤ、ディーゼル駆動、8 輪牽引、連結ステア キャリアは、すべての移動式地下機械に共通です (図 XNUMX を参照)。

図 8. 小型のフェイス リグ

MIN040F5

アトラスコプコ

開発掘削用フェイスドリルジャンボ

あらゆる岩石掘削作業に使用される鉱山では欠かせない主力製品です。 油圧式さく岩機を備えた 60 つまたは 4.0 つのブームを搭載しています。 制御盤に XNUMX 人の作業員がいて、深さ XNUMX m の XNUMX 個の発破孔のパターンを数時間で完成させます。

長穴生産ドリルリグ

このリグ (図 7 を参照) は、ドリフトの周りに放射状に広がる爆破穴を掘削します。この穴は、岩の広い領域をカバーし、大量の鉱石を分割します。サブレベルの停止、サブレベルのケービング、ブロックケービング、および VCR 採掘で使用されます。強力な油圧式削岩機とエクステンション ロッド用のカルーセル ストレージ、オペレータはリモート コントロールを使用して安全な位置から削岩作業を実行します。

充電トラック

充電トラックは、漂流するジャンボに必要な補完物です。 キャリアには、油圧サービス プラットフォーム、加圧された ANFO 爆薬コンテナ、装填ホースが取り付けられており、オペレーターは非常に短時間で顔全体の発破孔を埋めることができます。 同時に、個々の爆発の正確なタイミングのために、ノネル起爆装置を挿入することができます。

左ハンドル車

汎用性の高いロード・ホール・ダンプ車両 (図 10 を参照) は、鉱石生産やマテリアル・ハンドリングなどのさまざまなサービスに使用されます。 採掘者が各タスクと各状況に最も適したモデルを選択できるように、サイズを選択できます。 鉱山で使用される他のディーゼル車両とは異なり、LHD 車両エンジンは通常、フルパワーで長時間連続して稼働し、大量の煙と排気ガスを発生させます。 これらの煙を希釈して排出できる換気システムは、積載エリアで許容される呼吸基準に準拠するために不可欠です。

地下運搬

鉱体に沿って広がるストップで回収された鉱石は、巻き上げシャフトの近くにある鉱石ダンプに輸送されます。 特別な運搬レベルは、より長い横移動のために用意されています。 それらは通常、鉱石輸送用の列車を備えた線路の設置を特徴としています。 鉄道は、無軌道鉱山で使用されるディーゼル駆動のトラックのように地下の大気を汚染しない電気機関車を使用して、大量の貨物を長距離にわたって運ぶ効率的な輸送システムであることが証明されています。

鉱石の取り扱い

ストップからホイスト シャフトまでのルートで、鉱石はさまざまなマテリアル ハンドリング技術を備えたいくつかのステーションを通過します。

  スラッシャー スクレーパーバケットを使用して、ストープからオアパスに鉱石を引き込みます。 前後のスクレーパー ルートを生成するように配置された回転ドラム、ワイヤー、プーリーが装備されています。 スラッシャーはストープ床の準備を必要とせず、ラフマッックパイルから鉱石を引き出すことができます。

  左ハンドル車、ディーゼル駆動でゴムタイヤで移動し、バケツ(サイズはさまざま)に保持されたボリュームを、マックパイルから鉱石パスまで運びます。

  鉱石パス 垂直または急勾配の開口部で、重力によって上層から下層に岩が流れます。 鉱石パスは、上部レベルから運搬レベルの共通の配送ポイントに鉱石を収集するために、垂直方向に配置されることがあります。

  オアパスの下部にあるゲートです。 鉱石のパスは通常、運搬ドリフトの近くの岩で終わります。そのため、シュートが開くと、鉱石が流れてその下のトラックの車を満たすことができます。

シャフトの近くでは、鉱石列車が通過します ゴミ捨て場 負荷が落ちる可能性がある場所 収納箱グリズリー ダンプステーションで、特大の岩がビンに落ちるのを防ぎます。 これらの岩は、爆破または油圧ハンマーによって分割されます。 a 粗粉砕機 さらにサイズを制御するために、グリズリーの下に設置することもできます。 収納ビンの下には、 メジャーポケット 荷物の体積と重量がスキップとホイストの容量を超えていないことを自動的に確認します。 空のとき スキップ、垂直移動用のコンテナが到着します ガソリンスタンド、計量ポケットの底にシュートが開き、スキップを適切な負荷で満たします。 後に ホイスト 積載されたスキップを表面のヘッドフレームまで持ち上げると、シュートが開き、積載物が表面の保管ビンに排出されます。 スキップホイストは、閉回路テレビを使用してプロセスを監視することで自動的に操作できます。

 

戻る

読む 54975 <font style="vertical-align: inherit;">回数</font> 最終更新日: 30 年 2022 月 20 日 (土) 26:XNUMX
このカテゴリの詳細: « 炭鉱の種類 地下炭鉱 »

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

鉱業および採石に関する参考文献

Agricola, G. 1950. De Re Metallica、HC Hoover と LH Hoover による翻訳。 ニューヨーク:ドーバー出版。

ビッケル、KL。 1987. ディーゼル動力鉱山設備の分析。 鉱山局技術移転セミナーの議事録: 地下鉱山のディーゼル。 Information Circular 9141. ワシントン DC: 鉱山局。

鉱山局。 1978 年。炭鉱の火災と防爆。 Information Circular 8768. ワシントン DC: 鉱山局。

—。 1988. 金属および非金属の防火における最近の発展。 Information Circular 9206. ワシントン DC: 鉱山局。

チェンバレン、EAC。 1970 年。自然発熱の早期発見に関連した石炭の周囲温度酸化。 鉱業技術者 (130 月) 121(1):6-XNUMX。

エリコット、CW。 1981. ガス混合物の爆発性の評価とサンプル時間の傾向の監視。 着火、爆発、火災に関するシンポジウムの議事録。 Illawara: オーストラリア鉱業冶金研究所。

環境保護庁 (オーストラリア)。 1996. 鉱業における環境管理のベスト プラクティス。 キャンベラ: 環境保護庁。

Funkemeyer、M および FJ コック。 1989. 自然発火しやすいライダーの縫い目の作業における防火。 グリュッカウフ 9-12。

グラハム、JI。 1921. 炭鉱での一酸化炭素の正常な生成。 鉱業技術者協会のトランザクション 60:222-234。

Grannes、SG、MA Ackerson、および GR Green。 1990. 地下採掘ベルトコンベヤーの自動消火システムの故障防止。 Information Circular 9264. ワシントン DC: 鉱山局。

グレアー、RE. 1974. 不活性ガスを使用した鉱山消火の研究。 USBM コントラクト レポート No. S0231075。 ワシントン DC: 鉱山局。

グリフィン、RE。 1979 年。煙探知機の鉱山内評価。 Information Circular 8808. ワシントン DC: 鉱山局。

Hartman、HL(ed。)。 1992. SME 鉱業工学ハンドブック、第 2 版。 メリーランド州ボルチモア: 鉱業、冶金、探査協会。

Hertzberg, M. 1982. 石炭粉塵とメタン爆発の抑制と消滅。 調査報告書 8708. ワシントン DC: 鉱山局。

フック、E、PK カイザー、WF ボーデン。 1995. 地下硬岩鉱山のサポートの設計。 ロッテルダム: AA バルケマ。

ヒューズ、AJ、WE レイボールド。 1960. 鉱山の火災ガスの爆発性の迅速な測定。 鉱業技術者 29:37-53。

国際金属環境会議 (ICME)。 1996. 採掘および冶金プロセスにおける環境慣行を示すケース スタディ。 オタワ: ICME.

国際労働機関 (ILO)。 1994. 炭鉱産業の最近の発展。 ジュネーブ: ILO.

ジョーンズ、JE、JC トリケット。 1955. 炭鉱での爆発から生じるガスの検査に関するいくつかの観察。 鉱業技術者協会のトランザクション 114: 768-790。

マッケンジー ウッド P と J ストラング。 1990. 火災ガスとその解釈。 鉱業技術者 149(345):470-478.

鉱山事故防止協会オンタリオ。 nd 緊急時準備ガイドライン。 技術常任委員会レポート。 ノースベイ: 鉱山事故防止協会オンタリオ。

ミッチェル、D および F バーンズ。 1979 年。鉱山火災の状態の解釈。 ワシントン DC: 米国労働省。

モリス、RM。 1988. 密閉されたエリアの状況を判断するための新しい火災比率。 鉱業技術者 147(317):369-375.

モロー、GS、CD リットン。 1992 年。煙探知機の鉱山内評価。 Information Circular 9311. ワシントン DC: 鉱山局。

全米防火協会 (NFPA)。 1992a。 防火コード。 NFPA 1. マサチューセッツ州クインシー: NFPA。

—。 1992b. 微粉燃料システムに関する規格。 NFPA 8503。マサチューセッツ州クインシー: NFPA。

—。 1994a。 切断・溶接工程における防火基準。 NFPA 51B。 マサチューセッツ州クインシー: NFPA.

—。 1994b. 携帯用消火器の規格です。 NFPA 10. マサチューセッツ州クインシー: NFPA。

—。 1994c。 中および高膨張フォームシステムの標準。 NFPA 11A。 マサチューセッツ州クンシー: NFPA.

—。 1994年d. 粉末消火システムの規格。 NFPA 17. マサチューセッツ州クインシー: NFPA。

—。 1994e。 選炭プラントの規格。 NFPA 120. マサチューセッツ州クインシー: NFPA。

—。 1995a。 地下の金属および非金属鉱山における防火および防火に関する規格。 NFPA 122. マサチューセッツ州クインシー: NFPA。

—。 1995b. 地下瀝青炭鉱における防火管理の基準。 NFPA 123. マサチューセッツ州クインシー: NFPA。

—。 1996a。 自走式および移動式地上採鉱設備の防火に関する規格。 NFPA 121. マサチューセッツ州クインシー: NFPA。

—。 1996b. 引火性および可燃性液体コード。 NFPA 30. マサチューセッツ州クインシー: NFPA。

—。 1996c。 米国電気工事規定。 NFPA 70. マサチューセッツ州クインシー: NFPA.

—。 1996年d. 全国火災警報コード。 NFPA 72. マサチューセッツ州クインシー: NFPA。

—。 1996e。 スプリンクラーシステムの設置に関する標準。 NFPA 13. マサチューセッツ州クインシー: NFPA。

—。 1996f. ウォータースプレーシステムの設置に関する規格。 NFPA 15. マサチューセッツ州クインシー: NFPA。

—。 1996g。 クリーン エージェント消火システムの標準。 NFPA 2001. マサチューセッツ州クインシー: NFPA.

—。 1996h. 発電所および高電圧 DC コンバーター ステーションにおける防火のための推奨プラクティス。 NFPA 850。マサチューセッツ州クインシー: NFPA。

Ng、D、CP ラザラ。 1990 年。模擬鉱山火災におけるコンクリート ブロックとスチール パネルの停止のパフォーマンス。 火災技術 26(1):51-76。

ニンテマン、DJ。 1978. 地下鉱山における硫化鉱の自然酸化と燃焼。 Information Circular 8775. ワシントン DC: 鉱山局。

ポムロイ、WH、TL マルドゥーン。 1983. 新しい悪臭ガス火災警報システム。 1983 年の MAPAO 年次総会および技術セッションの議事録。 ノースベイ: 鉱山事故防止協会オンタリオ。

Ramaswatny、A、および PS カティヤール。 1988. 地下での石炭火災との闘いにおける液体窒素の経験。 Journal of Mines Metals and Fuels 36(9):415-424。

スミス、AC および CN トンプソン。 1991 年。瀝青炭の自然発火の可能性を予測する方法の開発と応用。 ロシア連邦のマケエフカにあるマケエフカ国立石炭産業安全研究所の第 24 回鉱山研究所安全国際会議で発表。

ティモンズ、ED、RP ビンソン、FN キッセル。 1979年。金属および非金属鉱山におけるメタン災害の予測。 調査報告書 8392. ワシントン DC: 鉱山局。

国連 (UN) 開発技術協力局およびドイツ国際開発財団。 1992. 鉱業と環境: ベルリンのガイドライン。 ロンドン:鉱業ジャーナルブック。

国連環境計画 (UNEP)。 1991. 鉱石採掘における選択された非鉄金属 (Cu、Ni、Pb、Zn、Au) の環境側面。 パリ: UNEP。