日曜日、13月2011 15:57

地下石炭採掘

このアイテムを評価
(9票)

坑内での石炭生産は、最初にアクセス トンネル (坑道) から始まり、地表の露頭から継ぎ目に採掘されました。 しかし、石炭を地表に運ぶための不十分な輸送手段と、ろうそくやその他の裸火ライトからのメタンのポケットに引火するリスクの増加によって引き起こされた問題により、初期の地下鉱山で作業できる深さは制限されました。

産業革命中の石炭需要の増加は、より深い石炭埋蔵量にアクセスするためのシャフト沈下のインセンティブを与え、1970 世紀半ばまでには、世界の石炭生産のはるかに多くの割合が地下操業からもたらされました。 1980 年代から 1990 年代にかけて、特に米国、南アフリカ、オーストラリア、インドなどの国で、新しい地表炭鉱の開発が広範囲に行われました。 しかし、1990 年代になると、坑内採掘への新たな関心が高まり、以前の露天採掘の最深部から新しい採掘が (たとえば、オーストラリアのクイーンズランドで) 開発されました。 45 年代半ばには、世界中で採掘された硬質炭のおそらく 30% を坑内採掘が占めていました。 実際の割合は大きく異なり、オーストラリアとインドの 95% 未満から中国の約 XNUMX% まで幅がありました。 経済的な理由から、亜炭や褐炭は地下で採掘されることはめったにありません。

地下炭鉱は、本質的に XNUMX つのコンポーネントで構成されています。 立坑または衰退のふもとへの石炭輸送。 そして、石炭を地表に持ち上げるか運ぶかのいずれかです。 生産には、鉱山の将来の生産エリアへのアクセスを許可するために必要な準備作業も含まれ、結果として、最高レベルの個人的リスクを表します。

鉱山開発

石炭層にアクセスする最も簡単な方法は、表面の露頭から炭層をたどることです。これは、上にある地形が急勾配で、層が比較的平らな地域で今でも広く実践されている手法です。 その一例が、米国ウェストバージニア州南部のアパラチア炭田です。 シームで使用される実際の採掘方法は、この時点では重要ではありません。 重要な要素は、アクセスが安価で最小限の建設労力で得られることです。 アディットは、低技術の石炭採掘の分野でも一般的に使用されており、アディットの採掘中に生産された石炭を使用して開発コストを相殺することができます。

アクセスの他の手段には、下り坂 (またはランプ) と垂直シャフトが含まれます。 選択は通常、作業中の石炭層の深さに依存します。層が深ければ深いほど、車両またはベルトコンベヤがそれに沿って動作できる傾斜傾斜路を開発するのに費用がかかります。

立坑を地表から垂直に下向きに採掘する立坑沈降は、費用と時間がかかり、建設の開始から最初の石炭の採掘までのリードタイムが長くなります。 ほとんどのヨーロッパ諸国や中国のように層が深い場合、立坑はしばしば石炭層の上にある水を含む岩に沈めなければなりません。 この場合、地面の凍結やグラウト注入などの専門技術を使用して、水がシャフトに流れ込むのを防ぐ必要があります。シャフトは、スチールリングまたはキャストコンクリートで裏打ちされ、長期的なシールを提供します。

デクラインは通常、露天採掘には深すぎるが、まだ比較的地表に近いシームにアクセスするために使用されます。 たとえば、南アフリカのムプマランガ (東トランスバール) 炭田では、採掘可能な層は 150 m 以下の深さにあります。 露天掘りで採掘される地域もあれば、地下採掘が必要な地域もあり、その場合、採掘設備へのアクセスを提供したり、採掘された石炭を鉱山から運び出すために使用されるベルトコンベアを設置したりするために下り坂が使用されることがよくあります。

デクラインは通常、石炭ではなく岩で掘削され (シームが一定の割合で沈下しない限り)、車両とコンベアのアクセスを最適化するために一定の勾配で採掘されるという点で、アディットとは異なります。 1970 年代以降の技術革新は、生産能力と信頼性の点で従来のシャフト ホイストよりも優れたシステムである深鉱山の生産を運ぶために、減少傾向にあるベルト コンベヤを使用することでした。

採掘方法

坑内採炭には XNUMX つの主要な方法が含まれており、個々の作業における採掘条件に対処するために、多くのバリエーションが進化しています。 部屋と柱の抽出には、定期的なグリッド上の採掘トンネル (または道路) が含まれ、多くの場合、屋根を長期間サポートするためにかなりの柱が残ります。 ロングウォール採掘では、炭層の大部分を完全に抽出し、屋根の岩を掘り出された領域に崩壊させます。

ルームアンドピラーマイニング

ルーム・アンド・ピラー・マイニングは、最古の地下採炭システムであり、鉱山労働者を保護するために通常の屋根支持の概念を初めて使用したものです。 ルーム アンド ピラー マイニングという名前は、提供するために定期的なグリッドに残された石炭の柱に由来します。 現場の 屋根まで支えます。 それは高生産性の機械化された方法に発展しており、一部の国では、総地下生産量のかなりの割合を占めています. たとえば、米国の坑内石炭生産の 60% は、ルーム アンド ピラー鉱山によるものです。 規模の面では、南アフリカの一部の鉱山では、最大 10 m の厚さの継目で複数の生産セクションを運用することにより、年間 6 万トンを超える生産能力を導入しています。 対照的に、米国の多くのルーム アンド ピラー鉱山は小規模で、1 m という薄いシームの厚さで操業しており、市場の状況に応じて生産を迅速に停止および再開することができます。

ルーム アンド ピラー採掘は通常、浅い継ぎ目で使用されます。この場合、支柱に重なる岩石によって加えられる圧力が過度ではありません。 このシステムには、ロングウォール採掘に比べて 60 つの重要な利点があります。それは、その柔軟性と固有の安全性です。 その主な欠点は、石炭資源の回収が部分的であることであり、正確な量は、地表下の継ぎ目の深さとその厚さなどの要因に依存します。 最大XNUMX%の回収が可能です。 抽出プロセスの第 XNUMX 段階として柱を掘り出すと、XNUMX% の回収が可能です。

このシステムは、労働集約的な技術 (石炭の輸送を含む採掘のほとんどの段階が手作業である「バスケット採掘」など) から、高度に機械化された技術まで、さまざまなレベルの高度な技術に対応することもできます。 火薬や連続採掘機を使用して切羽から石炭を掘り出すことができます。 車両またはモバイル ベルト コンベヤは、機械化された石炭輸送を提供します。 ルーフボルトと金属または木材のストラップを使用して、道路の屋根と、開いたスパンが大きい道路間の交差点を支えます。

クローラートラックに取り付けられたカッティングヘッドと石炭ローディングシステムを組み込んだ連続採掘機は、動作するように設計されている動作高さ、設置された電力、および必要なカット幅に応じて、通常 50 ~ 100 トンの重量があります。 一部には、石炭の切断と同時に屋根のサポートを提供するオンボードのロックボルト設置機が装備されています。 それ以外の場合は、別々の連続採掘機とルーフボルター機が連続して使用されます。

石炭運搬船には、アンビリカル ケーブルから電力を供給するか、バッテリーまたはディーゼル エンジンを動力とすることができます。 後者はより大きな柔軟性を提供します。 石炭は、連続採鉱機の後部から車両に積み込まれます。車両は通常 5 ~ 20 トンのペイロードをメイン ベルト コンベア システムのフィード ホッパーまでの短い距離で運びます。 粉砕機をホッパーフィーダーに組み込んで、シュートを塞いだり、輸送システムに沿ってさらにコンベヤーベルトを損傷したりする可能性のある大きすぎる石炭や岩石を破砕することができます。

車両輸送に代わるものは、連続運搬システムです。これは、切断された石炭を連続採鉱機からホッパーに直接輸送する、クローラーに取り付けられた柔軟なセクショナル コンベヤです。 これらは、人員の安全性と生産能力の面で利点を提供し、同じ理由で、それらの使用は長壁ゲートウェイ開発システムに拡張されています。

道路は幅 6.0 m まで採掘され、通常は継ぎ目の全高です。 ピラーのサイズは、表面下の深さによって異なります。 15.0 m の中心にある 21.0 m の四角い柱は、浅くて浅い鉱山の柱の設計を代表するものです。

ロングウォール採掘

ロングウォール鉱業は、200 世紀の開発であると広く認識されています。 しかし、この概念は実際には 1950 年以上前に開発されたと考えられています。 主な進歩は、以前の操作は主に手動でしたが、XNUMX 年代以降、機械化のレベルが高まり、長い壁の面が非常に少数の作業員で操作できる生産性の高いユニットになりました。

ロングウォーリングには、ルーム アンド ピラー マイニングと比較して 20 つの決定的な利点があります。それは、XNUMX 回のパスでパネルを完全に抽出することができ、総石炭資源のより高い割合を回収できることです。 しかし、この方法は比較的融通が利かず、大量の採掘可能な資源と実行可能な販売の保証の両方を必要とします。これは、最新のロングウォール フェースの開発と装備に伴う高い資本コスト (場合によっては XNUMX 万ドル以上) のためです。

過去には、個々の鉱山が複数の長い壁を同時に運用することが多かった (ポーランドなどの国では、多くの場合、鉱山ごとに XNUMX を超える) が、現在の傾向は、採掘能力をより少数の頑丈なユニットに統合することです。 これの利点は、必要な労働力の削減と、大規模な地下インフラストラクチャの開発と保守の必要性が少なくなることです。

ロングウォール採掘では、シームが採掘されるときに屋根が意図的に崩壊します。 地下の主要なアクセス ルートのみが支柱によって保護されています。 屋根の制御は、1.1 本または XNUMX 本の脚の油圧サポートによって長い壁の面に提供されます。これは、上にある屋根の負荷を即座に受け止め、採掘されていない面とパネルの両側の柱に部分的に分散させ、面の機器を保護します。そして、サポートラインの後ろにある崩壊した屋根からの人員。 石炭は、通常 XNUMX つの石炭切断ドラムを備えた電動剪断機によって切断され、通過ごとに表面から最大 XNUMX m の厚さの石炭のストリップを採掘します。 せん断機はそれに沿って走り、切り出された石炭を装甲コンベヤに積み込みます。装甲コンベヤは、削面サポートの連続的な動きによって各切断後に前方に蛇行します。

端面では、切断された石炭が地表への輸送のためにベルトコンベアに移されます。 前進するフェースでは、フェースの開始点からの距離が増加するにつれて、ベルトを規則的に伸ばす必要がありますが、後退するロングウォールではその逆が適用されます。

過去 40 年間に、採掘された長壁切羽の長さと、個々の長壁パネル (切羽が通過する石炭のブロック) の長さの両方が大幅に増加しました。 実例として、米国では、150 年の 1980 m から 227 年の 1993 m に、ロングウォールの平均フェース長が上昇しました。ドイツでは、1990 年代半ばの平均は 270 m で、300 m を超えるフェースの長さが計画されています。 英国とポーランドの両方で、顔は長さ 300 m まで採掘されます。 パネルの長さは、主に断層などの地質条件や鉱山の境界によって決まりますが、現在、良好な状態では一貫して 2.5 km を超えています。 米国では、最大 6.7 km の長さのパネルの可能性が議論されています。

リトリート採掘は業界標準になりつつありますが、ロングウォールが開始される前に、各パネルの最も遠い範囲まで道路を開発するための初期資本支出が高くなります。 可能な場合、道路は、岩の動きに受動的に反応するのではなく、上にある岩に積極的な支持を提供するために、以前に使用されていた鋼製のアーチとトラスをロックボルトサポートに置き換えて、継続的な鉱山労働者を使用して継ぎ目で採掘されています。 ただし、有能なルーフロックへの適用は限られています。

安全上のご注意

ILO の統計 (1994 年) は、石炭採掘で発生する死亡率の地理的ばらつきが大きいことを示していますが、これらのデータは採掘の高度化のレベルと国ごとの雇用労働者数を考慮に入れる必要があります。 多くの先進国では状況が改善されています。

エンジニアリング基準が改善され、耐火性がコンベアベルトや地下で使用される作動油などの材料に組み込まれたため、主要な採掘事故は現在では比較的まれになっています. それにもかかわらず、人的または構造的損害のいずれかを引き起こす可能性のある事故の可能性は残っています。 換気方法が大幅に改善されたにもかかわらず、メタンガスと石炭粉塵の爆発は依然として発生しており、屋根の落下は世界中の重大事故の大部分を占めています。 機器上または自然発火の結果として発生する火災は、特定の危険を表します。

労働集約型採掘と高度に機械化された採掘という XNUMX つの両極端を考慮すると、事故率と関連するインシデントの種類の両方に大きな違いがあります。 小規模な手作業の鉱山で雇用されている労働者は、道路の屋根や側壁から岩石や石炭が落下して怪我をする可能性が高くなります。 また、換気システムが不十分な場合、粉塵や可燃性ガスにさらされるリスクが高くなります。

部屋と柱の採掘と、長壁パネルへのアクセスを提供する道路の開発の両方で、屋根と側壁の岩を支える必要があります。 サポートの種類と密度は、シームの厚さ、上にある岩の能力、シームの深さなどの要因によって異なります。 鉱山で最も危険な場所は支えられていない屋根の下であり、ほとんどの国では、支えが設置される前に開発される可能性のある道路の長さに厳しい法的制約を課しています. 部屋と柱の操作における柱の復旧は、突然の屋根の崩壊の可能性を通じて特定の危険をもたらし、作​​業員へのリスクの増加を防ぐために慎重に計画する必要があります。

最新の生産性の高いロングウォール フェイスでは、XNUMX ~ XNUMX 人のオペレーターのチームが必要になるため、潜在的な危険にさらされる人の数が大幅に減少します。 ロングウォール剪断機から発生する粉塵は大きな懸念事項です。 したがって、石炭の切断は切羽に沿った一方向に制限されることがあり、換気の流れを利用して、剪断作業者から粉塵を運び去ります。 切羽の範囲内でますます強力な電気機械によって生成される熱も、特に地雷が深くなるにつれて、切羽作業員に潜在的に有害な影響を及ぼします。

せん断機が顔に沿って作業する速度も増しています。 45 年代後半には、毎分 1990 m までの切断速度が活発に検討されています。 労働者が 300 m の長さの切羽を繰り返し移動する採炭機に物理的に追いつくことができるかどうかは疑わしい。実際のオペレーターとしてではなく、モニターとして。

フェース機器の回収と新しい作業現場への移動は、作業者に特有の危険をもたらします。 移動作業中の岩石落下のリスクを最小限に抑えるために、長壁の屋根と面炭を固定するための革新的な方法が開発されました。 ただし、機械の個々のアイテムは非常に重く (大きな面サポートの場合は 20 トン以上、剪断機の場合はかなりの重量)、特注設計のトランスポーターを使用しているにもかかわらず、長壁の回収中に個人が押しつぶされたり持ち上げたりして怪我をする危険性が残っています。 .

 

戻る

読む 14437 <font style="vertical-align: inherit;">回数</font> 最終更新日: 28 年 2011 月 12 日火曜日 18:XNUMX
このカテゴリの詳細: « 地下採掘の技術 露天採掘方法 »

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

鉱業および採石に関する参考文献

Agricola, G. 1950. De Re Metallica、HC Hoover と LH Hoover による翻訳。 ニューヨーク:ドーバー出版。

ビッケル、KL。 1987. ディーゼル動力鉱山設備の分析。 鉱山局技術移転セミナーの議事録: 地下鉱山のディーゼル。 Information Circular 9141. ワシントン DC: 鉱山局。

鉱山局。 1978 年。炭鉱の火災と防爆。 Information Circular 8768. ワシントン DC: 鉱山局。

—。 1988. 金属および非金属の防火における最近の発展。 Information Circular 9206. ワシントン DC: 鉱山局。

チェンバレン、EAC。 1970 年。自然発熱の早期発見に関連した石炭の周囲温度酸化。 鉱業技術者 (130 月) 121(1):6-XNUMX。

エリコット、CW。 1981. ガス混合物の爆発性の評価とサンプル時間の傾向の監視。 着火、爆発、火災に関するシンポジウムの議事録。 Illawara: オーストラリア鉱業冶金研究所。

環境保護庁 (オーストラリア)。 1996. 鉱業における環境管理のベスト プラクティス。 キャンベラ: 環境保護庁。

Funkemeyer、M および FJ コック。 1989. 自然発火しやすいライダーの縫い目の作業における防火。 グリュッカウフ 9-12。

グラハム、JI。 1921. 炭鉱での一酸化炭素の正常な生成。 鉱業技術者協会のトランザクション 60:222-234。

Grannes、SG、MA Ackerson、および GR Green。 1990. 地下採掘ベルトコンベヤーの自動消火システムの故障防止。 Information Circular 9264. ワシントン DC: 鉱山局。

グレアー、RE. 1974. 不活性ガスを使用した鉱山消火の研究。 USBM コントラクト レポート No. S0231075。 ワシントン DC: 鉱山局。

グリフィン、RE。 1979 年。煙探知機の鉱山内評価。 Information Circular 8808. ワシントン DC: 鉱山局。

Hartman、HL(ed。)。 1992. SME 鉱業工学ハンドブック、第 2 版。 メリーランド州ボルチモア: 鉱業、冶金、探査協会。

Hertzberg, M. 1982. 石炭粉塵とメタン爆発の抑制と消滅。 調査報告書 8708. ワシントン DC: 鉱山局。

フック、E、PK カイザー、WF ボーデン。 1995. 地下硬岩鉱山のサポートの設計。 ロッテルダム: AA バルケマ。

ヒューズ、AJ、WE レイボールド。 1960. 鉱山の火災ガスの爆発性の迅速な測定。 鉱業技術者 29:37-53。

国際金属環境会議 (ICME)。 1996. 採掘および冶金プロセスにおける環境慣行を示すケース スタディ。 オタワ: ICME.

国際労働機関 (ILO)。 1994. 炭鉱産業の最近の発展。 ジュネーブ: ILO.

ジョーンズ、JE、JC トリケット。 1955. 炭鉱での爆発から生じるガスの検査に関するいくつかの観察。 鉱業技術者協会のトランザクション 114: 768-790。

マッケンジー ウッド P と J ストラング。 1990. 火災ガスとその解釈。 鉱業技術者 149(345):470-478.

鉱山事故防止協会オンタリオ。 nd 緊急時準備ガイドライン。 技術常任委員会レポート。 ノースベイ: 鉱山事故防止協会オンタリオ。

ミッチェル、D および F バーンズ。 1979 年。鉱山火災の状態の解釈。 ワシントン DC: 米国労働省。

モリス、RM。 1988. 密閉されたエリアの状況を判断するための新しい火災比率。 鉱業技術者 147(317):369-375.

モロー、GS、CD リットン。 1992 年。煙探知機の鉱山内評価。 Information Circular 9311. ワシントン DC: 鉱山局。

全米防火協会 (NFPA)。 1992a。 防火コード。 NFPA 1. マサチューセッツ州クインシー: NFPA。

—。 1992b. 微粉燃料システムに関する規格。 NFPA 8503。マサチューセッツ州クインシー: NFPA。

—。 1994a。 切断・溶接工程における防火基準。 NFPA 51B。 マサチューセッツ州クインシー: NFPA.

—。 1994b. 携帯用消火器の規格です。 NFPA 10. マサチューセッツ州クインシー: NFPA。

—。 1994c。 中および高膨張フォームシステムの標準。 NFPA 11A。 マサチューセッツ州クンシー: NFPA.

—。 1994年d. 粉末消火システムの規格。 NFPA 17. マサチューセッツ州クインシー: NFPA。

—。 1994e。 選炭プラントの規格。 NFPA 120. マサチューセッツ州クインシー: NFPA。

—。 1995a。 地下の金属および非金属鉱山における防火および防火に関する規格。 NFPA 122. マサチューセッツ州クインシー: NFPA。

—。 1995b. 地下瀝青炭鉱における防火管理の基準。 NFPA 123. マサチューセッツ州クインシー: NFPA。

—。 1996a。 自走式および移動式地上採鉱設備の防火に関する規格。 NFPA 121. マサチューセッツ州クインシー: NFPA。

—。 1996b. 引火性および可燃性液体コード。 NFPA 30. マサチューセッツ州クインシー: NFPA。

—。 1996c。 米国電気工事規定。 NFPA 70. マサチューセッツ州クインシー: NFPA.

—。 1996年d. 全国火災警報コード。 NFPA 72. マサチューセッツ州クインシー: NFPA。

—。 1996e。 スプリンクラーシステムの設置に関する標準。 NFPA 13. マサチューセッツ州クインシー: NFPA。

—。 1996f. ウォータースプレーシステムの設置に関する規格。 NFPA 15. マサチューセッツ州クインシー: NFPA。

—。 1996g。 クリーン エージェント消火システムの標準。 NFPA 2001. マサチューセッツ州クインシー: NFPA.

—。 1996h. 発電所および高電圧 DC コンバーター ステーションにおける防火のための推奨プラクティス。 NFPA 850。マサチューセッツ州クインシー: NFPA。

Ng、D、CP ラザラ。 1990 年。模擬鉱山火災におけるコンクリート ブロックとスチール パネルの停止のパフォーマンス。 火災技術 26(1):51-76。

ニンテマン、DJ。 1978. 地下鉱山における硫化鉱の自然酸化と燃焼。 Information Circular 8775. ワシントン DC: 鉱山局。

ポムロイ、WH、TL マルドゥーン。 1983. 新しい悪臭ガス火災警報システム。 1983 年の MAPAO 年次総会および技術セッションの議事録。 ノースベイ: 鉱山事故防止協会オンタリオ。

Ramaswatny、A、および PS カティヤール。 1988. 地下での石炭火災との闘いにおける液体窒素の経験。 Journal of Mines Metals and Fuels 36(9):415-424。

スミス、AC および CN トンプソン。 1991 年。瀝青炭の自然発火の可能性を予測する方法の開発と応用。 ロシア連邦のマケエフカにあるマケエフカ国立石炭産業安全研究所の第 24 回鉱山研究所安全国際会議で発表。

ティモンズ、ED、RP ビンソン、FN キッセル。 1979年。金属および非金属鉱山におけるメタン災害の予測。 調査報告書 8392. ワシントン DC: 鉱山局。

国連 (UN) 開発技術協力局およびドイツ国際開発財団。 1992. 鉱業と環境: ベルリンのガイドライン。 ロンドン:鉱業ジャーナルブック。

国連環境計画 (UNEP)。 1991. 鉱石採掘における選択された非鉄金属 (Cu、Ni、Pb、Zn、Au) の環境側面。 パリ: UNEP。