日曜日、13月2011 16:03

表面採掘方法

このアイテムを評価
(19票)

鉱山開発

ピットの計画とレイアウト

露天採掘における全体的な経済目標は、最も市場価値のある鉱物製品を処理することにより、投資に対する最大の利益を得る一方で、最小限の量の材料を除去することです。 鉱床の等級が高いほど、価値が高くなります。 鉱床内の最も価値の高い物質にアクセスしながら資本投資を最小限に抑えるために、鉱体が抽出および処理される方法を正確に詳述する鉱山計画が開発されます。 多くの鉱床は均一な形状ではないため、鉱山計画の前に大規模な試掘を行い、地質と鉱体の位置をプロファイルします。 鉱床のサイズによって、鉱山のサイズとレイアウトが決まります。 地表鉱山のレイアウトは、その地域の鉱物と地質によって決まります。 ほとんどの露天掘り鉱山の形状はほぼ円錐形ですが、開発中の鉱床の形状を常に反映しています。 露天掘り鉱山は、一連の同心円状の出っ張りまたはベンチで構成されており、それらは鉱山へのアクセスによって二分され、ピットの縁から底までらせん状またはジグザグ方向に傾斜している運搬道路によって構成されています。 規模に関係なく、鉱山計画には、ピット開発、インフラストラクチャー (保管、オフィス、保守など) の輸送、設備、採掘率、採掘率に関する規定が含まれています。 採掘率と採掘率は、鉱体の枯渇または経済的限界の実現によって定義される鉱山の寿命に影響を与えます。

現代の露天掘り鉱山の規模は、XNUMX 日あたり数百トンの鉱石を処理する小規模な民間企業から、XNUMX 日あたり XNUMX 万トン以上の材料を採掘する政府や多国籍企業が運営する拡張工業団地までさまざまです。 最大の作戦には、数平方キロメートルの面積が含まれる場合があります。

表土の剥ぎ取り

表土は、下にある鉱体を露出させるために除去する必要がある、固結および未固結の材料からなる廃岩です。 目的の鉱石にアクセスするためには、表土をできるだけ少なくすることが望ましいですが、鉱床が深くなると、より多くの廃岩が掘削されます。 ほとんどの撤去技術は、抽出 (掘削、発破、積み込み) と撤去 (運搬) の段階で中断を伴う周期的です。 これは、最初に穴を開けて発破しなければならない硬い岩の表土に特に当てはまります。 この周期的な影響の例外は、水圧露天採掘で使用される浚渫船と、バケット ホイール エクスカベーターを使用した一部のタイプのルース マテリアル採掘です。 掘削された鉱石に対する廃岩の割合は、ストリッピング率として定義されます。 大規模な採掘作業では、2:1 から 4:1 までのストリッピング比率は珍しくありません。 商品によっては、6:1 を超える比率は経済的に実行可能性が低くなる傾向があります。 除去された表土は、道路や鉱滓の建設に使用できます。また、埋土として鉱業以外の商業的価値を持つ場合もあります。

マイニング機器の選択

採掘設備の選択は、採掘計画の機能です。 鉱山設備の選択で考慮される要素には、ピットとその周辺地域の地形、採掘される鉱石の量、処理のために鉱石を輸送しなければならない速度と距離、推定鉱山寿命などが含まれます。 一般に、最新の露天採掘作業のほとんどは、モバイル ドリル リグ、油圧ショベル、フロント エンド ローダー、スクレーパー、および運搬用トラックに依存して、鉱石を抽出し、鉱石処理を開始します。 採掘事業が大規模になればなるほど、採掘計画を維持するために必要な設備の容量も大きくなります。

設備容量のマッチングを考慮した上で、地表鉱山の規模の経済性に適合するように、設備は一般的に利用可能な最大のものです。 たとえば、小型のフロントエンド ローダーは大型の運搬用トラックを積載できますが、効率的ではありません。 同様に、大きなショベルは小さなトラックに積み込むことができますが、トラックのサイクル時間を短縮する必要があり、XNUMX つのショベル バケットに複数のトラックに十分な量の鉱石が含まれている可能性があるため、ショベルの利用を最適化することはできません。 バケットの半分だけを積み込もうとしたり、トラックが過負荷になったりすると、安全性が損なわれる可能性があります。 また、選択した機器の規模は、利用可能なメンテナンス施設と一致する必要があります。 大型機器は、確立された保守施設への輸送に伴う物流上の問題により、故障した場所で保守されることがよくあります。 可能であれば、鉱山のメンテナンス施設は、鉱山設備の規模と量に対応できるように設計されています。 したがって、採掘計画に新しい大型設備が導入されると、運搬道路のサイズと品質、工具、保守施設などのサポート インフラストラクチャにも対処する必要があります。

従来の露天採掘方法

露天採掘とストリップ採掘は、露天採掘の 90 つの主要なカテゴリであり、世界の露天採掘生産量の XNUMX% 以上を占めています。 これらの採掘方法の主な違いは、鉱体の場所と機械的抽出方法です。 ルースロック採掘の場合、プロセスは本質的に連続しており、抽出と運搬のステップが連続して実行されます。 固体岩石の採掘では、積み込みと運搬の段階の前に、掘削と発破の不連続なプロセスが必要です。 ストリップマイニング (または露天採掘) 技術は、地表近くにあり、比較的平坦または平板状の鉱体と鉱物の継ぎ目の抽出に関連しています。 ショベル、トラック、ドラッグ ライン、バケット ホイール掘削機、スクレーパーなど、さまざまな種類の機器を使用します。 ほとんどのストリップ鉱山は、非硬岩鉱床を処理します。 石炭は、地表の継ぎ目からストリップ採掘される最も一般的な商品です。 対照的に、 露天掘り 播種および/または深い層に位置する硬岩鉱石を除去するために使用され、通常、ショベルおよびトラック機器による抽出に限定されます。 金、銀、銅など、多くの金属が露天掘り技術によって採掘されています。

採石場 は、局地的な鉱床から高度な圧密と密度を備えた固体岩を抽出する特殊な露天採掘技術を表すために使用される用語です。 採石された材料は、ドロマイトや石灰岩などの骨材または建築用石を生成するために破砕されたり、壊されたり、セメントや石灰を生成するために他の化学物質と組み合わされたりします。 建設資材は、輸送コストを削減するために、材料の使用場所に近接した採石場から生産されます。 敷石、花崗岩、石灰岩、大理石、砂岩、スレートなどの寸法石は、採石された材料の XNUMX 番目のクラスを表します。 寸法石の採石場は、地理的に離れている場合とそうでない場合があり、ユーザー市場への輸送が必要な、望ましい鉱物特性を持つ地域にあります。

多くの鉱体はあまりにも拡散して不規則であるか、小さすぎたり深すぎたりするため、ストリップ法や露天掘り法で採掘することはできず、地下採掘のより外科的なアプローチによって抽出する必要があります。 露天採掘がいつ適用されるかを判断するには、サイトと地域の地形と標高、遠隔性、気候、道路などのインフラストラクチャ、電力と水の供給、規制と環境の要件、勾配など、多くの要因を考慮する必要があります。安定性、表土の処分、製品の輸送など。

地形と標高: 地形と標高も、採掘プロジェクトの実現可能性と範囲を定義する上で重要な役割を果たします。 一般に、標高が高く、地形が粗いほど、鉱山の開発と生産は困難になる可能性があります。 アクセスできない山岳地帯にある高品位の鉱物は、平坦な場所にある低品位の鉱石よりも採掘効率が低くなる可能性があります。 より低い標高にある鉱山は、鉱山の探査、開発、生産において、悪天候に関連した問題を経験することは一般的に少ない. このように、地形と場所は、採掘方法と経済的実現可能性に影響を与えます。

鉱山開発の決定は、探査によって鉱床の特性が明らかになり、実現可能性調査によって鉱物の抽出と処理のオプションが定義された後に行われます。 開発計画の策定に必要な情報には、鉱体中の鉱物の形状、サイズ、等級、表土を含む材料の総量またはトン数、および水文学やプロセス水の供給源へのアクセス、入手可能性などのその他の要因が含まれる場合があります。電力源、廃石の保管場所、輸送要件、および労働力をサポートするための人口密集地の場所や町の開発の必要性を含むインフラストラクチャの機能。

輸送要件には、道路、高速道路、パイプライン、空港、鉄道、水路、および港が含まれる場合があります。 露天採掘の場合、既存のインフラストラクチャがない可能性がある大規模な土地が一般に必要です。 そのような場合、道路、ユーティリティ、および生活の手配を最初に確立する必要があります。 ピットは、必要な統合の程度に応じて、廃石貯蔵エリア、破砕機、濃縮器、製錬所、精製所などの他の処理要素と関連して開発されます。 これらの事業の資金調達には多額の資本が必要であるため、開発の残りの資金を調達するために、可能な限り早期に販売またはリース可能な鉱物を利用するために、開発を段階的に実施することができます。

生産と設備

掘削と発破

機械による掘削と発破は、ほとんどの開発された露天掘り鉱山から鉱石を抽出するための最初のステップであり、硬い岩の表土を除去するために使用される最も一般的な方法です。 固い岩石を緩めることができる機械装置は数多くありますが、爆薬に含まれるエネルギーの破砕能力に匹敵する機械装置は現在のところないため、爆薬が好ましい方法です。 一般的に使用される硬岩爆薬は硝酸アンモニウムです。 掘削装置は、鉱石の性質と、15 日に指定されたトン数の鉱石を破砕するのに必要な穴の速度と深さに基づいて選択されます。 例えば、60mの鉱石のベンチを採掘する場合、採掘するベンチの長さにもよりますが、一般的に現在の泥の表面から15m後方にXNUMX個以上の穴が掘削されます。 これは、後続の積み込みおよび運搬作業のための現場準備を可能にする十分なリードタイムで発生する必要があります.

ローディング

現在、露天採掘は通常、テーブル ショベル、フロント エンド ローダー、または油圧ショベルを使用して行われています。 露天採掘では、積載装置は、ショベルの XNUMX ~ XNUMX サイクルまたはパスで積載できる運搬用トラックに対応しています。 ただし、さまざまな要因が積載機器の優先順位を決定します。 鋭利な岩や硬い掘削や湿気の多い気候では、トラック付きシャベルが適しています。 逆に、ゴムタイヤローダーは資本コストがはるかに低く、少量で掘りやすい材料の積み込みに適しています。 さらに、ローダーは非常に可動性が高く、ある領域から別の領域への迅速な移動が必要な採掘シナリオや、鉱石の混合要件に適しています。 ローダーはまた、運搬トラックによって粉砕機の近くに積み上げられたブレンド ストック パイルから粉砕機に材料を積み込み、運搬し、投棄するためにも頻繁に使用されます。

油圧ショベルとケーブルショベルには、同様の利点と制限があります。 硬岩の掘削には油圧ショベルは好ましくなく、ケーブル ショベルは通常、より大きなサイズで入手できます。 したがって、生産量が 50 日あたり 200,000 トンを超える鉱山では、ペイロードが約 XNUMX 立方メートル以上の大型ケーブル ショベルが好まれます。 油圧ショベルは、鉱山の表面でより用途が広く、オペレーターの制御により、鉱山の表面の下半分または上半分から選択的にロードすることができます。 この利点は、積載ゾーンで鉱石から廃棄物を分離できる場合に役立ち、それによって運搬および処理される鉱石の品位が最大化されます。

運搬

露天掘り鉱山やストリップ鉱山での運搬は、運搬用トラックで行うのが最も一般的です。 多くの露天鉱山での運搬トラックの役割は、積み込みゾーンとピット内破砕ステーションまたは搬送システムなどの移送ポイントとの間のサイクリングに限定されています。 運搬用トラックは、1960 年代まで好まれた運搬方法であった鉄道に比べて操作の柔軟性に基づいて好まれています。 しかし、地表の金属ピットと非金属ピットで材料を輸送するコストは、一般に、鉱山の総運用コストの 50% を超えています。 ピット内破砕とベルトコンベヤシステムによる搬送は、輸送コスト削減の主な要因となっています。 ディーゼル エンジンや電気駆動などの運搬用トラックの技術開発により、はるかに大容量の車両が登場しました。 いくつかのメーカーは現在、240 トン容量のトラックを生産しており、近い将来には 310 トン容量を超えるトラックが期待されています。 さらに、コンピューター化された配車システムと全地球測位技術を使用することで、効率と生産性を向上させて車両を追跡し、スケジュールを立てることができます。

運搬道路システムは、単方向または双方向の交通を使用する場合があります。 トラフィックは、左または右の車線構成のいずれかです。 非常に大型のトラックでは、オペレータがタイヤの位置を把握しやすくするために、左車線の通行が好まれることがよくあります。 左側通行の安全性も向上し、道路中央での運転席側衝突の可能性が減少します。 運搬道路の勾配は、通常、持続的な運搬のために 8 ~ 15% に制限され、最適には約 7 ~ 8% です。 安全と排水には、45 m の厳しい勾配ごとに最大勾配が 2% の、少なくとも 460 m のセクションを含む長い勾配が必要です。 道路と隣接する掘削の間に位置する路肩 (高い土の境界) は、露天鉱山の標準的な安全機能です。 また、反対側の交通を分離するために、道路の真ん中に配置することもできます。 スイッチバック式運搬道路が存在する場合、長く急な坂道の終点に上昇する避難車線を設置することができます。 バームなどの道路端のバリアは標準であり、すべての道路と隣接する掘削の間に配置する必要があります。 高品質の道路は、安全なトラック速度を最大化し、メンテナンスのためのダウンタイムを短縮し、ドライバーの疲労を軽減することにより、生産性を最大化します。 運搬用トラックの道路整備は、燃料消費量の削減、タイヤの寿命の延長、修理費の削減を通じて、運用コストの削減に貢献します。

最良の条件下での鉄道輸送は、鉱石を鉱山の外に長距離輸送するための他の輸送方法よりも優れています。 しかし、実際問題として、電気トラックやディーゼル駆動トラックの出現以来、露天採掘では鉄道による運搬はもはや広く使用されていません。 運搬用トラックとピット内コンベア システムの汎用性と柔軟性を活用するために、鉄道運搬車が置き換えられました。 鉄道では、上り坂の運搬には 0.5 ~最大 3% の非常に緩やかな勾配が必要です。 鉄道エンジンと軌道要件への資本投資は非常に高く、投資収益率を正当化するには、長い鉱山寿命と大量の生産量が必要です。

鉱石ハンドリング(運搬)

ピット内での破砕と運搬は、1950 年代半ばに最初に実施されて以来、人気が高まっている方法論です。 鉱山ピット内にセミモバイルクラッシャーを配置し、その後コンベヤシステムによってピットから輸送することで、従来の車両運搬に比べて大幅な生産上の利点とコスト削減が実現しました。 高コストの運搬道路の建設と保守が削減され、運搬トラックの運転とトラックの保守と燃料に関連する人件費が最小限に抑えられます。

インピットクラッシャーシステムの目的は、主にコンベアによる鉱石の輸送を可能にすることです。 ピット内破砕機システムは、常設設備から完全に移動可能なユニットまでさまざまです。 しかし、より一般的には、破砕機はモジュール形式で構築され、鉱山内での携帯性を確保しています。 粉砕機は XNUMX 年から XNUMX 年ごとに移転する可能性があります。 ユニットのサイズと複雑さ、および移転距離によっては、移転を​​完了するのに数時間、数日、または数か月かかる場合があります。

運搬用トラックに対するコンベヤーの利点には、瞬時の始動、自動および連続運転、最大 90 ~ 95% の可用性による高度な信頼性が含まれます。 それらは通常、悪天候によって損なわれることはありません。 また、運搬用トラックに比べて、コンベヤの労働要件ははるかに低くなります。 トラックの運用と維持には、同等の容量のコンベア システムの 30 倍の乗組員が必要になる場合があります。 また、トラックの最大勾配は通常 10% ですが、コンベヤは最大 XNUMX% の勾配で動作できます。 急勾配を使用すると、低勾配の表土を除去する必要性が低くなり、高コストの運搬道路を確立する必要性が減少する可能性があります。 コンベアシステムは、多くの地表石炭作業でバケットホイールショベルにも統合されているため、運搬用トラックが不要になります。

ソリューション マイニング方法

溶液採掘は、XNUMX 種類の水採掘の中で最も一般的であり、従来の採掘方法では効率が低く経済的でない場合に、可溶性鉱石を抽出するために使用されます。 浸出または表面浸出としても知られるこの技術は、金および銀の浸出採掘のように主要な採掘方法である場合もあれば、低品位の銅酸化物鉱石を浸出する場合のように、製錬および精製の従来の乾式冶金工程を補う場合もあります。 .


露天採掘の環境側面

地雷の環境への重大な影響は、地雷がどこにあっても注目を集めています。 地形の変化、植物の破壊、固有の動物への悪影響は、露天採掘の必然的な結果です。 地表水と地下水の汚染は、特に溶液採掘での浸出剤の使用と水圧採掘からの流出で、しばしば問題を引き起こします。

世界中の環境保護主義者の関心が高まり、航空機や航空写真が使用されるようになったおかげで、鉱業企業は、目的の鉱石の採掘が完了したときに、もはや自由に「掘って走る」ことができなくなりました。 法律や規制は、ほとんどの先進国で公布されており、国際機関の活動を通じて、まだ存在していない場所では促進されています。 彼らは、すべての採掘プロジェクトに不可欠な要素として環境管理プログラムを確立し、予備的な環境影響評価などの要件を規定しています。 土地の輪郭の復元、再植林、固有の動物相の再植林、固有の野生生物の再飼育などを含む漸進的なリハビリテーション プログラム。 同時および長期のコンプライアンス監査 (UNEP 1991、UN 1992、環境保護庁 (オーストラリア) 1996、ICME 1996)。 これらは、必要な政府のライセンスに必要な文書のステートメント以上のものであることが不可欠です。 基本原則は、現場のマネージャーによって受け入れられ、実践され、すべてのレベルの労働者に伝達されなければなりません。


 

必要性や経済的利点に関係なく、すべての表面処理方法には 1 つの共通の特徴があります。(2) 鉱石は通常の方法で採掘され、その後備蓄されます。 (2)鉱石ストックの頂部に水溶液が適用され、関心のある金属と化学的に反応し、そこから得られた金属塩溶液が収集および処理のためにストックパイルを通って送られる。 表面溶液採掘の適用は、ボリューム、目的の鉱物と関連する母岩の冶金、および操作を経済的に実行可能にするのに十分な大きさの浸出ダンプを開発するために利用可能な面積と排水に依存します。

ソリューションマイニングが主要な生産方法である露天鉱山での浸出ダンプの開発は、鉱石がミルではなくダンプのみに向けられていることを除いて、すべての露天掘り操作と同じです。 粉砕法と溶解法の両方を使用する鉱山では、鉱石は粉砕部分と浸出部分に分離されます。 たとえば、ほとんどの硫化銅鉱石は、製錬と精製によって市場グレードの銅に粉砕および精製されます。 一般に乾式冶金処理に適していない酸化銅鉱石は、浸出操作に送られます。 ダンプが開発されると、ソリューションは、ダンプの設計パラメーター、適用される溶液の性質と量、および金属の濃度と鉱物学によって制御される予測可能な速度で、周囲の岩石から可溶性金属を浸出させます。鉱石。 可溶性金属を抽出するために使用される溶液は、 寛大な. この鉱業部門で使用される最も一般的な浸出剤は、金にはアルカリ性シアン化ナトリウム、銅には酸性硫酸、マンガンには二酸化硫黄水溶液、ウラン鉱石には硫酸-硫酸鉄の希薄溶液です。 ただし、ほとんどの浸出ウランと可溶性塩は、 その場 事前の機械的抽出を行わずに浸出剤を鉱体に直接注入する採掘。 この後者の技術は、鉱床から鉱石を抽出することなく、低品位の鉱石を処理することを可能にします。

健康と安全面

溶液採掘における鉱石の機械的抽出に関連する職業上の健康および安全上の危険は、従来の露天採掘作業の場合と本質的に類似しています。 この一般化の例外は、従来の処理のためにミルに運ばれる前に、非浸出鉱石が地表の鉱山ピットで一次粉砕を受ける必要があることです。ソリューションマイニング。 したがって、ソリューションマイニングの労働者は、粉塵、騒音、物理的危険などの主要な粉砕の危険にさらされることが少なくなります。

露天採掘環境での負傷の主な原因には、マテリアルハンドリング、スリップと落下、機械、ハンドツールの使用、動力運搬、および電源接触が含まれます。 ただし、溶液採掘に特有なのは、輸送、浸出現場活動、および化学処理および電解処理中に化学浸出剤にさらされる可能性があることです。 酸性ミストへの暴露は、金属の電解抽出タンクハウスで発生する可能性があります。 ウラン採掘では、抽出から濃縮に比例して増加する電離放射線の危険に対処する必要があります。

油圧採掘方法

水圧採掘、または「液圧採掘」では、高圧水スプレーを使用して、ゆるく固結または未固結の物質を処理用のスラリーに掘削します。 水圧法は、主に金属および骨材の鉱床に適用されますが、石炭、砂岩、および金属ミル尾鉱もこの方法に適しています。 最も一般的で最もよく知られているアプリケーションは次のとおりです。 砂鉱採掘 ここでは、金、チタン、銀、スズ、タングステンなどの金属が漂砂鉱床 (プレーサー) から洗い流されます。 水の供給と圧力、流出のための地面の勾配、採掘面から処理施設までの距離、採掘可能な材料の圧密の程度、および廃棄物処理エリアの利用可能性はすべて、水力採掘作業の開発における主な考慮事項です。 他の露天採掘と同様に、適用可能性は場所によって異なります。 この方法によるマイニングの固有の利点には、比較的低い運用コストと、シンプルで頑丈なモバイル機器の使用による柔軟性が含まれます。 その結果、多くの油圧操作は、インフラストラクチャ要件が制限されていない遠隔地の採鉱地域で開発されています。

他のタイプの露天採掘とは異なり、油圧技術は、採掘と採掘された材料の運搬 (「スライシング」) の両方の媒体として水に依存しています。 高圧水スプレーは、モニターまたはウォーター キャノンによってプレーサー バンクまたは鉱床に送られます。 それらは、砂利と未固結の材料を分解し、収集および処理施設に洗い流します。 水圧は、非常にゆるい細かい物質の通常の重力流から、固結していない堆積物の平方センチメートルあたり数千キログラムまでさまざまです。 ブルドーザー、グレーダー、またはその他の移動式掘削装置を使用して、より圧縮された材料の採掘を容易にすることがあります。 歴史的に、そして現代の小規模事業では、スラリーまたは流出物の収集は、少量の水門とキャッチで管理されています。 商業規模の操業は、XNUMX 時間あたり非常に大量のスラリーを処理できるポンプ、封じ込めおよび沈殿池、分離装置に依存しています。 採掘される鉱床のサイズに応じて、水モニターの操作は手動、遠隔制御、またはコンピューター制御のいずれかになります。

水圧採掘が水中で行われる場合、それは浚渫と呼ばれます。 この方法では、フローティング処理ステーションが、粘土、シルト、砂、砂利、および関連する鉱物などの緩い堆積物を、バケット ライン、ドラッグ ライン、および/または水中のウォーター ジェットを使用して抽出します。 採掘された材料は、水力または機械で浚渫装置の一部である洗浄ステーションに輸送されるか、分離して処理を完了するための後続の処理ステップで物理的に分離されます。 浚渫は商業用の鉱物を抽出し、石を集約するために使用されますが、水路や氾濫原をきれいにして深くするために使用される技術として最もよく知られています。

健康と安全

水圧採掘の物理的危険性は、露天採掘法とは異なります。 掘削、爆発物、運搬、および削減活動の最小限の適用により、安全上の危険は、ほとんどの場合、高圧水システム、モバイル機器の手動移動、電源と水に関連する近接の問題、および建物の崩壊に関連する近接の問題に関連する傾向があります。鉱山の顔とメンテナンス活動。 健康上の危険には、主に騒音やほこりへの暴露、および機器の取り扱いに関連する人間工学的な危険が含まれます。 採掘媒体として水を使用するため、従来の露天採掘ほど粉塵への曝露は一般的に問題になりません。 管理されていない溶接などの保守活動も、作業員の曝露に寄与する可能性があります。

 

戻る

読む 37748 <font style="vertical-align: inherit;">回数</font> 最終更新日: 30 年 2022 月 03 日 (土) 23:XNUMX
このカテゴリの詳細: « 地下炭鉱 地表炭採掘管理 »

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

鉱業および採石に関する参考文献

Agricola, G. 1950. De Re Metallica、HC Hoover と LH Hoover による翻訳。 ニューヨーク:ドーバー出版。

ビッケル、KL。 1987. ディーゼル動力鉱山設備の分析。 鉱山局技術移転セミナーの議事録: 地下鉱山のディーゼル。 Information Circular 9141. ワシントン DC: 鉱山局。

鉱山局。 1978 年。炭鉱の火災と防爆。 Information Circular 8768. ワシントン DC: 鉱山局。

—。 1988. 金属および非金属の防火における最近の発展。 Information Circular 9206. ワシントン DC: 鉱山局。

チェンバレン、EAC。 1970 年。自然発熱の早期発見に関連した石炭の周囲温度酸化。 鉱業技術者 (130 月) 121(1):6-XNUMX。

エリコット、CW。 1981. ガス混合物の爆発性の評価とサンプル時間の傾向の監視。 着火、爆発、火災に関するシンポジウムの議事録。 Illawara: オーストラリア鉱業冶金研究所。

環境保護庁 (オーストラリア)。 1996. 鉱業における環境管理のベスト プラクティス。 キャンベラ: 環境保護庁。

Funkemeyer、M および FJ コック。 1989. 自然発火しやすいライダーの縫い目の作業における防火。 グリュッカウフ 9-12。

グラハム、JI。 1921. 炭鉱での一酸化炭素の正常な生成。 鉱業技術者協会のトランザクション 60:222-234。

Grannes、SG、MA Ackerson、および GR Green。 1990. 地下採掘ベルトコンベヤーの自動消火システムの故障防止。 Information Circular 9264. ワシントン DC: 鉱山局。

グレアー、RE. 1974. 不活性ガスを使用した鉱山消火の研究。 USBM コントラクト レポート No. S0231075。 ワシントン DC: 鉱山局。

グリフィン、RE。 1979 年。煙探知機の鉱山内評価。 Information Circular 8808. ワシントン DC: 鉱山局。

Hartman、HL(ed。)。 1992. SME 鉱業工学ハンドブック、第 2 版。 メリーランド州ボルチモア: 鉱業、冶金、探査協会。

Hertzberg, M. 1982. 石炭粉塵とメタン爆発の抑制と消滅。 調査報告書 8708. ワシントン DC: 鉱山局。

フック、E、PK カイザー、WF ボーデン。 1995. 地下硬岩鉱山のサポートの設計。 ロッテルダム: AA バルケマ。

ヒューズ、AJ、WE レイボールド。 1960. 鉱山の火災ガスの爆発性の迅速な測定。 鉱業技術者 29:37-53。

国際金属環境会議 (ICME)。 1996. 採掘および冶金プロセスにおける環境慣行を示すケース スタディ。 オタワ: ICME.

国際労働機関 (ILO)。 1994. 炭鉱産業の最近の発展。 ジュネーブ: ILO.

ジョーンズ、JE、JC トリケット。 1955. 炭鉱での爆発から生じるガスの検査に関するいくつかの観察。 鉱業技術者協会のトランザクション 114: 768-790。

マッケンジー ウッド P と J ストラング。 1990. 火災ガスとその解釈。 鉱業技術者 149(345):470-478.

鉱山事故防止協会オンタリオ。 nd 緊急時準備ガイドライン。 技術常任委員会レポート。 ノースベイ: 鉱山事故防止協会オンタリオ。

ミッチェル、D および F バーンズ。 1979 年。鉱山火災の状態の解釈。 ワシントン DC: 米国労働省。

モリス、RM。 1988. 密閉されたエリアの状況を判断するための新しい火災比率。 鉱業技術者 147(317):369-375.

モロー、GS、CD リットン。 1992 年。煙探知機の鉱山内評価。 Information Circular 9311. ワシントン DC: 鉱山局。

全米防火協会 (NFPA)。 1992a。 防火コード。 NFPA 1. マサチューセッツ州クインシー: NFPA。

—。 1992b. 微粉燃料システムに関する規格。 NFPA 8503。マサチューセッツ州クインシー: NFPA。

—。 1994a。 切断・溶接工程における防火基準。 NFPA 51B。 マサチューセッツ州クインシー: NFPA.

—。 1994b. 携帯用消火器の規格です。 NFPA 10. マサチューセッツ州クインシー: NFPA。

—。 1994c。 中および高膨張フォームシステムの標準。 NFPA 11A。 マサチューセッツ州クンシー: NFPA.

—。 1994年d. 粉末消火システムの規格。 NFPA 17. マサチューセッツ州クインシー: NFPA。

—。 1994e。 選炭プラントの規格。 NFPA 120. マサチューセッツ州クインシー: NFPA。

—。 1995a。 地下の金属および非金属鉱山における防火および防火に関する規格。 NFPA 122. マサチューセッツ州クインシー: NFPA。

—。 1995b. 地下瀝青炭鉱における防火管理の基準。 NFPA 123. マサチューセッツ州クインシー: NFPA。

—。 1996a。 自走式および移動式地上採鉱設備の防火に関する規格。 NFPA 121. マサチューセッツ州クインシー: NFPA。

—。 1996b. 引火性および可燃性液体コード。 NFPA 30. マサチューセッツ州クインシー: NFPA。

—。 1996c。 米国電気工事規定。 NFPA 70. マサチューセッツ州クインシー: NFPA.

—。 1996年d. 全国火災警報コード。 NFPA 72. マサチューセッツ州クインシー: NFPA。

—。 1996e。 スプリンクラーシステムの設置に関する標準。 NFPA 13. マサチューセッツ州クインシー: NFPA。

—。 1996f. ウォータースプレーシステムの設置に関する規格。 NFPA 15. マサチューセッツ州クインシー: NFPA。

—。 1996g。 クリーン エージェント消火システムの標準。 NFPA 2001. マサチューセッツ州クインシー: NFPA.

—。 1996h. 発電所および高電圧 DC コンバーター ステーションにおける防火のための推奨プラクティス。 NFPA 850。マサチューセッツ州クインシー: NFPA。

Ng、D、CP ラザラ。 1990 年。模擬鉱山火災におけるコンクリート ブロックとスチール パネルの停止のパフォーマンス。 火災技術 26(1):51-76。

ニンテマン、DJ。 1978. 地下鉱山における硫化鉱の自然酸化と燃焼。 Information Circular 8775. ワシントン DC: 鉱山局。

ポムロイ、WH、TL マルドゥーン。 1983. 新しい悪臭ガス火災警報システム。 1983 年の MAPAO 年次総会および技術セッションの議事録。 ノースベイ: 鉱山事故防止協会オンタリオ。

Ramaswatny、A、および PS カティヤール。 1988. 地下での石炭火災との闘いにおける液体窒素の経験。 Journal of Mines Metals and Fuels 36(9):415-424。

スミス、AC および CN トンプソン。 1991 年。瀝青炭の自然発火の可能性を予測する方法の開発と応用。 ロシア連邦のマケエフカにあるマケエフカ国立石炭産業安全研究所の第 24 回鉱山研究所安全国際会議で発表。

ティモンズ、ED、RP ビンソン、FN キッセル。 1979年。金属および非金属鉱山におけるメタン災害の予測。 調査報告書 8392. ワシントン DC: 鉱山局。

国連 (UN) 開発技術協力局およびドイツ国際開発財団。 1992. 鉱業と環境: ベルリンのガイドライン。 ロンドン:鉱業ジャーナルブック。

国連環境計画 (UNEP)。 1991. 鉱石採掘における選択された非鉄金属 (Cu、Ni、Pb、Zn、Au) の環境側面。 パリ: UNEP。