日曜日、13月2011 16:11

鉱石の処理

このアイテムを評価
(7票)

利用されてきたほとんどすべての金属やその他の無機物質は、地球の地殻を構成する鉱物を構成する化合物として発生します。 地球の表面を形作った力とプロセスは、これらの鉱物をさまざまな量で濃縮しました. この濃度が十分に高く、鉱物を経済的に利用して回収できる場合、鉱床は鉱石または鉱体と呼ばれます。 しかし、その場合でも、ミネラルは通常、目的の最終製品への即時処理に必要な純度を備えた形で入手できません. アグリコラ (1950) は、鉱物処理に関する XNUMX 世紀の著作で次のように書いています。それらが製錬される前であること。

貴重な鉱物は、最初に商業的価値のないものから分離する必要があります。 ギャング. 鉱石処理とは、十分に高品位の鉱物濃縮物を生成するための、採掘された材料のこの初期処理を指し、さらに純粋な金属または他の最終製品に十分に処理されます。 鉱石を構成する鉱物のさまざまな特性を利用して、さまざまな物理的方法によってそれらを互いに分離し、一般に鉱物の化学組成を変更しません。 (石炭の処理については、記事「石炭の準備」で具体的に説明されています)

破砕・粉砕

処理プラントに到着する材料の粒子サイズは、使用される採掘作業と鉱石の種類によって異なりますが、比較的大きくなります。 粉砕ゴツゴツした鉱石の粒子サイズを段階的に小さくすることは、XNUMX つの理由で実行されます。材料をより便利なサイズに小さくすることと、効果的な分離と回収に向けた最初のステップとして、廃棄物から貴重な成分を解放することです。 実際には、粉砕は通常、より大きなサイズの材料を破砕し、続いて、回転する製鉄所でタンブリングして材料をより細かいサイズに砕くことで構成されます。

押しつぶす

非常に大きな塊から細かい材料まで、XNUMX 回の操作または XNUMX 台の機械で処理することはできません。 したがって、破砕は通常、一次、二次、三次と呼ばれる段階で通常行われる乾式操作です。

一次破砕機は、鉱石を 1.5 m から 100 ~ 200 mm まで縮小します。 ジョークラッシャーや回転クラッシャーなどの機械は、大きな粒子に破砕力を加え、鉱石を圧縮して破砕します。

ジョークラッシャーでは、鉱石は固定された破砕板と移動する破砕板の間のくさび形の空間に落ちます。 材料は、壊れて解放されるまで挟まれて絞られ、顎が開閉するにつれてさらに下に挟まれ、最終的に底に設定された隙間から抜け出します.

ジャイロトリークラッシャーでは、長いスピンドルが重くて硬いスチール製の円錐形の粉砕要素を支えており、粉砕チャンバーまたはシェル内の下部ベアリングスリーブによって偏心的に動かされます。 破砕面の相対運動は、偏心して取り付けられたコーンが外部チャンバーに対して回転することによって生成されます。 通常、このマシンは、高いスループット能力が必要な場合に使用されます。

二次破砕により、粒子サイズを5~20mmまで小さくします。 コーンクラッシャー、ロール、ハンマーミルは、使用される機器の例です。 コーンクラッシャーは、吊り下げられていないが、ヘッドの下のベアリングでサポートされている短いスピンドルを備えた修正された回転式クラッシャーです。 ロール クラッシャーは、互いに回転する XNUMX つの水平シリンダーで構成され、ロールは鉱石をそれらの間のギャップに引き込み、シングル ニップの後に生成物を排出します。 ハンマーミルは代表的なインパクトクラッシャーミルです。 粉砕は、作業スペース内のローターに取り付けられたハンマーによって高速で適用される鋭い打撃の衝撃によるものです。

研削

粉砕の最終段階である粉砕は、タンブリングミルとして知られる回転する円筒形の鋼製容器で行われます。 ここで、鉱物粒子は 10 ~ 300 μm に縮小されます。 鋼球、ロッド、小石などの粉砕媒体 (材料のバルクフィードよりもはるかに大きいサイズの鉱石の塊) をミルに追加して、鉱石を希望のサイズに粉砕します。 小石の使用は呼ばれます 自生研削. 鉱石の種類が適切な場合は、Run-of-Mine (ROM) 製粉を使用できます。 この形式の自生粉砕では、鉱山からの鉱石の流れ全体が事前粉砕なしで直接粉砕機に供給され、鉱石の大きな塊が粉砕媒体として機能します。

ミルには通常、粉砕された鉱石と粉砕媒体が半分以下まで充填されます。 研究によると、フライス加工によって生じる破損は、衝撃と摩耗の両方の組み合わせであることが示されています。 ミルライナーは、ミルシェルを摩耗から保護するために使用され、その設計により、粉砕媒体の滑りを減らし、フライス加工の持ち上げと衝撃部分を改善します.

貴重な成分を効果的に分離および回収するために、鉱石を粉砕する必要がある最適なサイズがあります。 アンダーグラインディングは、不完全な解放と不十分な回復をもたらします。 過剰に粉砕すると、高価なエネルギーを過剰に使用するだけでなく、分離が難しくなります。

サイジングセパレーション

破砕と粉砕の後、製品は通常、サイズに応じて簡単に分離されます。 主な目的は、さらなる処理のために適切なサイズの飼料材料を生産することです。 オーバーサイズの素材は、さらなる削減のためにリサイクルされます。

パーテーション類

スクリーニングは一般に、かなり粗い材料に適用されます。 また、必要に応じて、後続の操作で適度に均一なフィード サイズを生成するために使用することもできます。 グリズリーは、非常に粗い素材を選別するフレームにセットされた一連の重い平行棒です。 トロンメルは、傾斜した回転する円筒形のスクリーンです。 異なるサイズのスクリーンの多数のセクションを使用することにより、複数のサイズの製品を同時に生産できます。 さまざまな他のスクリーンおよびスクリーンの組み合わせを使用することができる。

分類器

分級とは、流体中の沈降速度に従って粒子を分離することです。 密度、大きさ、形状の違いを有効活用。 分級機は、粗い材料と細かい材料を分離するために使用され、それによって大きなサイズ分布を分別します。 典型的なアプリケーションは、閉回路研削操作を制御することです。 サイズの分離が主な目的ですが、通常、密度の違いにより鉱物の種類による分離が発生します。

スパイラル分級機では、すくい機構によって粗い砂がスラリー プールから持ち上げられ、きれいにスライム除去された製品が生成されます。

ハイドロサイクロンは遠心力を利用して沈降速度を加速し、微細な粒子を効率的に分離します。 スラリー懸濁液は、接線方向に高速で円錐形の容器に導入されます。 旋回運動により、より速く沈降する大きくて重い粒子は、速度が最も低い外壁に向かって移動し、下方に沈降します。一方、軽くて小さい粒子は、軸に沿って低圧のゾーンに向かって移動します。上に運んだ。

濃度分離

濃縮分離では、粒子を貴重な鉱物の粒子または脈石粒子として区別し、それらを濃縮物と尾鉱生成物に効果的に分離する必要があります。 目的は、さらなる加工や販売に適した等級で貴重な鉱物を最大限に回収することです。

鉱石選別

最も古く、最も単純な濃縮方法は、粒子を視覚的に選択し、手作業で除去することです。 ハンドソーティングには、多くの電子的方法における現代的な同等物があります。 測光法では、粒子認識はさまざまな鉱物の反射率の違いに基づいています。 次に、圧縮空気の噴射が作動して、移動中の材料ベルトからそれらを取り除きます。 異なる鉱物の異なる導電率は、同様の方法で利用することができます。

重中分離

重い媒体または濃い媒体の分離は、鉱物間の密度の違いのみに依存するプロセスです。 分離するXNUMXつのミネラルの密度の間にある密度の液体に混合物を導入することを含み、軽いミネラルは浮き、重いミネラルは沈みます. 一部のプロセスでは、最終粉砕前の鉱物の予備濃縮に使用され、石炭準備の洗浄ステップとして頻繁に使用されます。

相対密度が 2.96 のテトラブロモエタンなどの重い有機流体が特定の用途で使用されますが、商業規模では、単純なニュートン流体のように振る舞う細かく粉砕された固体の懸濁液が一般的に使用されます。 使用される材料の例は、マグネタイトとフェロシリコンです。 これらは低粘度で不活性で安定した「流体」を形成し、懸濁液から磁気的に容易に除去されます。

重力

河川系などの自然分離プロセスにより、重い大きな粒子が軽い小さな粒子から分離された砂鉱床が生成されました。 重力技術は、これらの自然のプロセスを模倣します。 分離は、重力に応じた粒子の動きと、分離が行われる流体によって加えられる抵抗によってもたらされます。

何年にもわたって、多くのタイプの重力分離機が開発されており、それらの継続的な使用は、このタイプの分離の費用対効果の高さを証明しています。

治具 ミネラル粒子の床は、水の脈動によって懸濁液(「流動化」)になります。 各サイクルの間に水が排出されると、密度の高い粒子が密度の低い粒子の下に落ち、小さな粒子、特に小さな密度の高い粒子が排出されている間に、大きな粒子の間の空間に浸透し、ベッドの下に沈みます。 このサイクルが繰り返されると、分離の度合いが増します。

振動台 ジグよりも細かい素材を扱います。 テーブルは、前から後へ、そして一方の端から他方の端へとわずかに傾斜している平らな面で構成されています。 木製のさざ波がテーブルを縦方向に直角に分割します。 飼料は上端に沿って入り、粒子は水の流れによって下方に運ばれます。 同時に、それらは縦軸または横軸に沿って非対称の振動を受けます。 さざ波の後ろに閉じ込められがちな高密度の粒子は、振動によってテーブルを横切ってシャッフルされます。

磁気分離

すべての物質は磁場の影響を受けますが、ほとんどの場合、影響が小さすぎて検出できません。 ただし、混合物の鉱物成分の XNUMX つが適度に強い磁化率を持っている場合、これを使用して他の成分から分離することができます。 磁気分離機は、低強度機械と高強度機械に分類され、さらに乾式飼料分離機と湿式飼料分離機に分類されます。

ドラム型セパレーターは、回転する非磁性ドラムで構成されており、そのシェル内に極性が交互に変化する固定磁石が含まれています。 磁性粒子は磁石によって引き付けられ、ドラムに固定され、磁場の外に運ばれます。 カルーセル型の湿式高強度分離器 (WHIMS) は、強力な電磁石を通過する鉄球の同心回転マトリックスで構成されています。 スラリー状の残留物は、電磁石が作動するマトリックスに注がれ、磁性粒子が磁化されたマトリックスに引き付けられ、スラリーの大部分がベースグリッドを通過して出ます。 電磁石のすぐ先で、磁場が逆転し、水流を使用して磁気部分が除去されます。

静電分離

かつて一般的に使用されていた静電分離は、浮選の出現によってかなりの程度に取って代わられました。 しかし、他の方法では困難であることが証明され、鉱物の導電性が静電分離を可能にする、ルチルなどの少数の鉱物にうまく適用されます。

この方法は、さまざまな鉱物の電気伝導率の違いを利用しています。 ドライフィードは、粒子がイオン衝撃によって荷電されるイオン化電極のフィールドに運ばれます。 導電性粒子は、この電荷を接地されたローターに急速に失い、遠心力によってローターから投げ出されます。 非導体はよりゆっくりと電荷を失い、静電気力によってアース導体にくっついたままになり、収集ポイントに運ばれます。

浮選

浮選は、さまざまな鉱物の物理化学的表面特性の違いを利用する分離プロセスです。

コレクターと呼ばれる化学試薬がパルプに加えられ、貴重な鉱物粒子の表面と選択的に反応します。 形成された反応生成物は、鉱物の表面を疎水性または非湿潤性にするため、気泡に容易に付着します。

浮選回路の各セルでは、パルプが攪拌され、導入された空気がシステム内に分散されます。 疎水性ミネラル粒子が気泡に付着し、適切な起泡剤が存在すると、これらは表面に安定した泡を形成します。 これは、浮遊選鉱セルの側面から絶え間なく溢れ出し、そのミネラル負荷を運びます。

浮選プラントは、相互接続されたセルのバンクで構成されています。 より粗いバンクで生成された最初の濃縮物は、よりクリーンなバンクで不要な脈石成分が除去され、必要に応じて細胞の XNUMX 番目のバンクで再洗浄されます。 追加の貴重なミネラルは、XNUMX 番目の銀行で回収され、尾が最終的に廃棄される前に、よりきれいな銀行にリサイクルされる場合があります。

脱水

ほとんどの操作に続いて、分離プロセスで使用される水を、生成された濃縮物または廃棄脈石材料から分離する必要があります。 乾燥した環境では、水をリサイクルして再利用できるようにすることが特に重要です。

セトリング タンクは円筒形の容器で構成されており、パルプはフィード ウェルを介して中央に供給されます。 これは、沈殿した固体の乱れを最小限に抑えるために表面の下に配置されます。 浄化された液体は、タンクの側面からオーバーフローして洗濯機に流れ込みます。 ブレードを備えたラジアル アームが、沈降した固形物を中心に向かって掻き集め、そこから回収します。 凝集剤を懸濁液に添加して、固体の沈降速度を速めることができる。

ろ過とは、流体から固体粒子を除去して、乾燥および輸送できる濃縮物のケーキを生成することです。 一般的な形式は連続真空フィルターで、代表的なのはドラムフィルターです。 水平な円筒形のドラムが開放タンク内で回転し、下部がパルプに浸されます。 ドラムのシェルは、フィルター媒体で覆われた一連のコンパートメントで構成されています。 内側の二重壁シェルは、中央シャフトのバルブ機構に接続されており、真空または圧力を適用できます。 パルプに浸された部分に真空が適用され、フィルターを通して水が引き出され、布の上に濃縮物のケーキが形成されます。 真空は、スラリーからケーキを脱水します。 切片がスラリーに再び入る直前に、ケーキを吹き飛ばすために圧力をかけます。 ディスクフィルターは同じ原理で動作しますが、中央のシャフトに取り付けられた一連のディスクで構成されています。

尾鉱の処分

採掘された鉱石のごく一部のみが貴重なミネラルで構成されています。 残りは脈石であり、処理後に処分しなければならない尾鉱を形成します。

尾鉱の処分における XNUMX つの主な考慮事項は、安全性と経済性です。 安全性には XNUMX つの側面があります。 人の健康に影響を与え、環境に損害を与える可能性のある廃棄物による汚染。 尾鉱は、安全性に見合った、可能な限り費用対効果の高い方法で処分する必要があります。

最も一般的には尾鉱のサイズが決められ、選択された場所にダムを建設するために粗い砂の部分が使用されます。 細かい部分またはスライムは、ダムの壁の後ろの池にポンプでくみ上げられます。

廃水中にシアン化物などの有毒化学物質が存在する場合、地下水の汚染の可能性を防ぐために、ダムの土台に特別な準備 (例えば、プラスチック シートの使用による) が必要になる場合があります。

ダムから回収された水は可能な限り再利用されます。 これは、乾燥地域では非常に重要である可能性があり、化学汚染物質による地下水と地表水の汚染を防止することを目的とした法律によってますます要求されるようになっています.

ヒープと その場で 浸出工程

鉱石処理によって生成される精鉱の多くは、湿式製錬法によってさらに処理されます。 金属値は鉱石から浸出または溶解され、異なる金属が互いに分離されます。 得られた溶液を濃縮し、金属を沈澱および電解または化学析出などの工程によって回収する。

多くの鉱石は、予備濃縮のコストを正当化するには品位が低すぎます。 廃棄物には、一定量の金属価値が含まれている場合もあります。 場合によっては、そのような材料は、ヒープ浸出またはダンプ浸出として知られる湿式冶金プロセスのバージョンによって経済的に処理される場合があります。

ヒープ リーチングは、300 年以上前にスペインのリオ ティントで確立されました。 低品位の鉱石の山をゆっくりと浸透する水は、鉱石の酸化によって生じる溶解した銅塩によって青色に着色されました. 銅はスクラップ鉄上への沈殿により溶液から回収された。

この基本的なプロセスは、世界中の低品位および廃棄物の酸化物および硫化物のヒープ浸出に利用されています。 材料の山またはダンプが作成されると、適切な可溶化剤(例えば酸溶液)が山の上に散水または浸水することによって適用され、底に浸透した溶液が回収される。

ヒープリーチングは長い間成功裏に実施されてきましたが、プロセスにおける特定のバクテリアの重要な役割が認識されたのは比較的最近のことです. これらの細菌は、鉄酸化種として同定されています チオバチルス・フェロオキシダンス および硫黄酸化種 チオバチルス・チオオキシダンス. 鉄酸化細菌は、第一鉄イオンから第二鉄イオンへの酸化と、硫化物から硫酸塩への酸化による硫黄酸化種からエネルギーを引き出します。 これらの反応は、金属硫化物の可溶性金属硫酸塩への加速酸化を効果的に触媒する。

原位置で リーチング (ソリューション マイニングとも呼ばれます) は、事実上、ヒープ リーチングの一種です。 それは、放棄された鉱山、作業中の洞窟、遠く離れた作業領域、またはこれらが溶液に対して透過性であることが示されている鉱体全体に溶液をポンプで送ることで構成されています. 岩層は、浸出溶液と接触し、必要な酸素を利用できるようにする必要があります。

 

戻る

読む 8456 <font style="vertical-align: inherit;">回数</font> 最終更新日: 28 年 2011 月 12 日火曜日 19:XNUMX
このカテゴリの詳細: « 地表炭採掘管理 石炭の準備 »

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

鉱業および採石に関する参考文献

Agricola, G. 1950. De Re Metallica、HC Hoover と LH Hoover による翻訳。 ニューヨーク:ドーバー出版。

ビッケル、KL。 1987. ディーゼル動力鉱山設備の分析。 鉱山局技術移転セミナーの議事録: 地下鉱山のディーゼル。 Information Circular 9141. ワシントン DC: 鉱山局。

鉱山局。 1978 年。炭鉱の火災と防爆。 Information Circular 8768. ワシントン DC: 鉱山局。

—。 1988. 金属および非金属の防火における最近の発展。 Information Circular 9206. ワシントン DC: 鉱山局。

チェンバレン、EAC。 1970 年。自然発熱の早期発見に関連した石炭の周囲温度酸化。 鉱業技術者 (130 月) 121(1):6-XNUMX。

エリコット、CW。 1981. ガス混合物の爆発性の評価とサンプル時間の傾向の監視。 着火、爆発、火災に関するシンポジウムの議事録。 Illawara: オーストラリア鉱業冶金研究所。

環境保護庁 (オーストラリア)。 1996. 鉱業における環境管理のベスト プラクティス。 キャンベラ: 環境保護庁。

Funkemeyer、M および FJ コック。 1989. 自然発火しやすいライダーの縫い目の作業における防火。 グリュッカウフ 9-12。

グラハム、JI。 1921. 炭鉱での一酸化炭素の正常な生成。 鉱業技術者協会のトランザクション 60:222-234。

Grannes、SG、MA Ackerson、および GR Green。 1990. 地下採掘ベルトコンベヤーの自動消火システムの故障防止。 Information Circular 9264. ワシントン DC: 鉱山局。

グレアー、RE. 1974. 不活性ガスを使用した鉱山消火の研究。 USBM コントラクト レポート No. S0231075。 ワシントン DC: 鉱山局。

グリフィン、RE。 1979 年。煙探知機の鉱山内評価。 Information Circular 8808. ワシントン DC: 鉱山局。

Hartman、HL(ed。)。 1992. SME 鉱業工学ハンドブック、第 2 版。 メリーランド州ボルチモア: 鉱業、冶金、探査協会。

Hertzberg, M. 1982. 石炭粉塵とメタン爆発の抑制と消滅。 調査報告書 8708. ワシントン DC: 鉱山局。

フック、E、PK カイザー、WF ボーデン。 1995. 地下硬岩鉱山のサポートの設計。 ロッテルダム: AA バルケマ。

ヒューズ、AJ、WE レイボールド。 1960. 鉱山の火災ガスの爆発性の迅速な測定。 鉱業技術者 29:37-53。

国際金属環境会議 (ICME)。 1996. 採掘および冶金プロセスにおける環境慣行を示すケース スタディ。 オタワ: ICME.

国際労働機関 (ILO)。 1994. 炭鉱産業の最近の発展。 ジュネーブ: ILO.

ジョーンズ、JE、JC トリケット。 1955. 炭鉱での爆発から生じるガスの検査に関するいくつかの観察。 鉱業技術者協会のトランザクション 114: 768-790。

マッケンジー ウッド P と J ストラング。 1990. 火災ガスとその解釈。 鉱業技術者 149(345):470-478.

鉱山事故防止協会オンタリオ。 nd 緊急時準備ガイドライン。 技術常任委員会レポート。 ノースベイ: 鉱山事故防止協会オンタリオ。

ミッチェル、D および F バーンズ。 1979 年。鉱山火災の状態の解釈。 ワシントン DC: 米国労働省。

モリス、RM。 1988. 密閉されたエリアの状況を判断するための新しい火災比率。 鉱業技術者 147(317):369-375.

モロー、GS、CD リットン。 1992 年。煙探知機の鉱山内評価。 Information Circular 9311. ワシントン DC: 鉱山局。

全米防火協会 (NFPA)。 1992a。 防火コード。 NFPA 1. マサチューセッツ州クインシー: NFPA。

—。 1992b. 微粉燃料システムに関する規格。 NFPA 8503。マサチューセッツ州クインシー: NFPA。

—。 1994a。 切断・溶接工程における防火基準。 NFPA 51B。 マサチューセッツ州クインシー: NFPA.

—。 1994b. 携帯用消火器の規格です。 NFPA 10. マサチューセッツ州クインシー: NFPA。

—。 1994c。 中および高膨張フォームシステムの標準。 NFPA 11A。 マサチューセッツ州クンシー: NFPA.

—。 1994年d. 粉末消火システムの規格。 NFPA 17. マサチューセッツ州クインシー: NFPA。

—。 1994e。 選炭プラントの規格。 NFPA 120. マサチューセッツ州クインシー: NFPA。

—。 1995a。 地下の金属および非金属鉱山における防火および防火に関する規格。 NFPA 122. マサチューセッツ州クインシー: NFPA。

—。 1995b. 地下瀝青炭鉱における防火管理の基準。 NFPA 123. マサチューセッツ州クインシー: NFPA。

—。 1996a。 自走式および移動式地上採鉱設備の防火に関する規格。 NFPA 121. マサチューセッツ州クインシー: NFPA。

—。 1996b. 引火性および可燃性液体コード。 NFPA 30. マサチューセッツ州クインシー: NFPA。

—。 1996c。 米国電気工事規定。 NFPA 70. マサチューセッツ州クインシー: NFPA.

—。 1996年d. 全国火災警報コード。 NFPA 72. マサチューセッツ州クインシー: NFPA。

—。 1996e。 スプリンクラーシステムの設置に関する標準。 NFPA 13. マサチューセッツ州クインシー: NFPA。

—。 1996f. ウォータースプレーシステムの設置に関する規格。 NFPA 15. マサチューセッツ州クインシー: NFPA。

—。 1996g。 クリーン エージェント消火システムの標準。 NFPA 2001. マサチューセッツ州クインシー: NFPA.

—。 1996h. 発電所および高電圧 DC コンバーター ステーションにおける防火のための推奨プラクティス。 NFPA 850。マサチューセッツ州クインシー: NFPA。

Ng、D、CP ラザラ。 1990 年。模擬鉱山火災におけるコンクリート ブロックとスチール パネルの停止のパフォーマンス。 火災技術 26(1):51-76。

ニンテマン、DJ。 1978. 地下鉱山における硫化鉱の自然酸化と燃焼。 Information Circular 8775. ワシントン DC: 鉱山局。

ポムロイ、WH、TL マルドゥーン。 1983. 新しい悪臭ガス火災警報システム。 1983 年の MAPAO 年次総会および技術セッションの議事録。 ノースベイ: 鉱山事故防止協会オンタリオ。

Ramaswatny、A、および PS カティヤール。 1988. 地下での石炭火災との闘いにおける液体窒素の経験。 Journal of Mines Metals and Fuels 36(9):415-424。

スミス、AC および CN トンプソン。 1991 年。瀝青炭の自然発火の可能性を予測する方法の開発と応用。 ロシア連邦のマケエフカにあるマケエフカ国立石炭産業安全研究所の第 24 回鉱山研究所安全国際会議で発表。

ティモンズ、ED、RP ビンソン、FN キッセル。 1979年。金属および非金属鉱山におけるメタン災害の予測。 調査報告書 8392. ワシントン DC: 鉱山局。

国連 (UN) 開発技術協力局およびドイツ国際開発財団。 1992. 鉱業と環境: ベルリンのガイドライン。 ロンドン:鉱業ジャーナルブック。

国連環境計画 (UNEP)。 1991. 鉱石採掘における選択された非鉄金属 (Cu、Ni、Pb、Zn、Au) の環境側面。 パリ: UNEP。